WorldWideScience

Sample records for pj-34 parp-1 inhibitor

  1. Upregulation of Salmonella-Induced IL-6 Production in Caco-2 Cells by PJ-34, PARP-1 Inhibitor: Involvement of PI3K, p38 MAPK, ERK, JNK, and NF-κB

    Directory of Open Access Journals (Sweden)

    Fu-Chen Huang

    2009-01-01

    Full Text Available Following Salmonella invasion, intestinal epithelial cells release a distinct array of proinflammatory cytokines. Interleukin (IL-6 produced by enterocytes may have anti-inflammatory and cell-protective effects, and may counteract some of the injurious effects of sepsis and endotoxemia. Recent studies in a variety of rodent models of experimental colitis by using PJ-34, a potent poly (ADP-ribose polymerase-1 (PARP-1 inhibitor, support the concept that the marked beneficial effect of PJ-34 can be exploited to treat human inflammatory diseases. The present study was to investigate the effect of PJ-34 on Salmonella-induced enterocyte IL-6 production and its mechanisms. We found that PJ-34 enhanced Salmonella-induced IL-6 production in Caco-2 cells, either secreted protein or mRNA expression. PJ-34 treatment enhanced the activity of NF-κB in Salmonella-infected Caco-2 cells. Besides, the involvement of PJ-34 in up-regulating IL-6 production in S. typhimurium-infected Caco-2 cells might be also through the ERK but not p38 MAPK, JNK or PI3K/Akt pathways, as demonstrated by Western blot of phosphorylated ERK, p38, JNK and Akt proteins. It suggests that PJ-34 may exert its protective effect on intestinal epithelial cells against invasive Salmonella infection by up-regulating IL-6 production through ERK and NF-κB but not P38 MAPK, JNK or PI3K/Akt signal pathways.

  2. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    Science.gov (United States)

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition.

  3. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Petra; Hegedűs, Csaba [Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); Salazar Ayestarán, Nerea; Juarranz, Ángeles [Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid (Spain); Kövér, Katalin E. [Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Debrecen, Debrecen (Hungary); Szabó, Éva [Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); Virág, László, E-mail: lvirag@med.unideb.hu [Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); MTA-DE Cell Biology and Signaling Research Group, Debrecen (Hungary)

    2016-08-15

    Highlights: • PARP-1 is not a key regulator of photochemotherapy. • The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. • Photosensitization by PJ-34 is associated with increased ROS production and DNA damage. • Cells sensitized by PJ-34 undergo caspase-mediated apoptosis. - Abstract: A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5 J/cm{sup 2}) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ–34 + UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and −8. In conclusion, PJ-34 is a photosensitizer and PJ–34 + UVA causes DNA damage and caspase

  4. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Wang, Huibo; Davis, Ben C. [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Liang, Jiyong [Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 (United States); Cui, Rutao [Department of Dermatology, Boston University School of Medicine, Boston, MA 02118 (United States); Chen, Sai-Juan, E-mail: sjchen@stn.sh.cn [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Xu, Zhi-Xiang, E-mail: zhi-xiang.xu@ccc.uab.edu [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States)

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  5. PARP1 Inhibitors: antitumor drug design.

    Science.gov (United States)

    Malyuchenko, N V; Kotova, E Yu; Kulaeva, O I; Kirpichnikov, M P; Studitskiy, V M

    2015-01-01

    The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a "sensor" for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed.

  6. Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells.

    Science.gov (United States)

    Bai, Xue Tao; Moles, Ramona; Chaib-Mezrag, Hassiba; Nicot, Christophe

    2015-10-23

    HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed. In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65. Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy.

  7. Sensitizing thermochemotherapy with a PARP1-inhibitor.

    Science.gov (United States)

    Oei, Arlene L; Vriend, Lianne E M; van Leeuwen, Caspar M; Rodermond, Hans M; Ten Cate, Rosemarie; Westermann, Anneke M; Stalpers, Lukas J A; Crezee, Johannes; Kanaar, Roland; Kok, H Petra; Krawczyk, Przemek M; Franken, Nicolaas A P

    2016-08-19

    Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects.

  8. Intervention timing and effect of PJ34 on astrocytes during oxygen-glucose deprivation/reperfusion and cell death pathways.

    Science.gov (United States)

    Cai, Chuan; Zhang, Rui; Huang, Qiao-Ying; Cao, Xu; Zou, Liang-Yu; Chu, Xiao-Fan

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) plays as a double edged sword in cerebral ischemia-reperfusion, hinging on its effect on the intracellular energy storage and injury severity, and the prognosis has relationship with intervention timing. During ischemia injury, apoptosis and oncosis are the two main cell death pathway sin the ischemic core. The participation of astrocytes in ischemia-reperfusion induced cell death has triggered more and more attention. Here, we examined the protective effects and intervention timing of the PARP-1 inhibitor PJ34, by using a mixed oxygen-glucose deprivation/reperfusion (OGDR) model of primary rat astrocytes in vitro, which could mimic the ischemia-reperfusion damage in the "ischemic core". Meanwhile, cell death pathways of various PJ34 treated astrocytes were also investigated. Our results showed that PJ34 incubation (10 μmol/L) did not affect release of lactate dehydrogenase (LDH) from astrocytes and cell viability or survival 1 h after OGDR. Interestingly, after 3 or 5 h OGDR, PJ34 significantly reduced LDH release and percentage of PI-positive cells and increased cell viability, and simultaneously increased the caspase-dependent apoptotic rate. The intervention timing study demonstrated that an earlier and longer PJ34 intervention during reperfusion was associated with more apparent protective effects. In conclusion, earlier and longer PJ34 intervention provides remarkable protective effects for astrocytes in the "ischaemic core" mainly by reducing oncosis of the astrocytes, especially following serious OGDR damage.

  9. An evaluation in vitro of PARP-1 inhibitors, rucaparib and olaparib, as radiosensitisers for the treatment of neuroblastoma.

    Science.gov (United States)

    Nile, Donna L; Rae, Colin; Hyndman, Iain J; Gaze, Mark N; Mairs, Robert J

    2016-08-11

    The radiopharmaceutical (131)I-meta-iodobenzylguanidine ((131)I-MIBG) is an effective treatment for neuroblastoma. However, maximal therapeutic benefit from (131)I-MIBG is likely to be obtained by its combination with chemotherapy. We previously reported enhanced antitumour efficacy of (131)I-MIBG by inhibition of the poly(ADP-ribose) polymerase-1 (PARP-1) DNA repair pathway using the phenanthridinone derivative PJ34. Recently developed alternative PARP-1 inhibitors have greater target specificity and are expected to be associated with reduced toxicity to normal tissue. Therefore, our purpose was to determine whether the more specific PARP-1 inhibitors rucaparib and olaparib enhanced the efficacy of X-radiation or (131)I-MIBG. Radiosensitisation of SK-N-BE(2c) neuroblastoma cells or noradrenaline transporter gene-transfected glioma cells (UVW/NAT) was investigated using clonogenic assay. Propidium iodide staining and flow cytometry was used to analyse cell cycle progression. DNA damage was quantified by the phosphorylation of H2AX (γH2AX). By combining PARP-1 inhibition with radiation treatment, it was possible to reduce the X-radiation dose or (131)I-MIBG activity concentration required to achieve 50 % cell kill by approximately 50 %. Rucaparib and olaparib were equally effective inhibitors of PARP-1 activity. X-radiation-induced DNA damage was significantly increased 2 h after irradiation by combination with PARP-1 inhibitors (10-fold greater DNA damage compared to untreated controls; p Rucaparib and olaparib sensitise cancer cells to X-radiation or (131)I-MIBG treatment. It is likely that the mechanism of radiosensitisation entails the accumulation of unrepaired radiation-induced DNA damage. Our findings suggest that the administration of PARP-1 inhibitors and (131)I-MIBG to high risk neuroblastoma patients may be beneficial.

  10. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA. Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1 the mechanism by which frataxin deficiency activates microglia, 2 whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3 whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.

  11. Update on PARP1 inhibitors in ovarian cancer.

    Science.gov (United States)

    Sessa, C

    2011-12-01

    The clinical development of PARP inhibitors for the treatment of tumors deficient in BRCA1 or BRCA2 is based on the concept of synthetic lethality. From the initial proof of concept study with the PARP1 inhibitor olaparib (AZD2281) in BRCA mutation carriers, in which 28% of ovarian cancer patients achieved an objective response, the target population of ovarian patients potentially sensitive to treatment with PARP inhibitors has greatly increased. Objective responses have been observed in both platinum-sensitive and platinum-resistant BRCA mutation carriers but, more recently, also in BRCA negative 'BRCAness' patients, those with no BRCA mutations but with a dysfunction of the homologous recombination (HR) system, which makes them more sensitive to the antitumor agents which cause double strand breaks of DNA. The recent results achieved with olaparib, given as maintenance in platinum sensitive recurrent high grade serous ovarian cancer, in response after reinduction with platinum, confirm the antitumor effect of single agent olaparib in BRCAness patients. Main topics of investigations in this field are the identification of BRCAness phenotype and the definition of tests to identify BRCAness patients. More in general, additional preclinical studies are needed to further improve clinical results in order to define the optimal regimen of combination with PARP1 inhibitor and cytotoxics or molecular targeted agents (sequence of administration, interval between dosing of the agents, duration of treatment).

  12. High-Throughput Colorimetric Assay for Identifying PARP-1 Inhibitors Using a Large Small-Molecule Collection.

    Science.gov (United States)

    Kotova, Elena; Tulin, Alexei V

    2017-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) protein became a popular target for treatment of several types of cancer. A number of PARP-1 inhibitors are currently in clinical trials. Most of them were designed competitors with NAD for a binding site on PARP-1 molecule. This strategy resulted in a discovery of mainly nucleotide-like PARP-1 inhibitors, which may target not only PARP-1 but also other pathways involving NAD and other nucleotides. Many cancer types demonstrate rapid development of resistance to NAD-like PARP-1 inhibitors. Thus, identification and characterization of new small molecules inhibit PARP-1 with high specificity and efficacy is important for the clinical research. We have proposed a new approach to screen libraries for new PARP-1 inhibitors based on histone H4-dependent PARP-1 activation. Beside identification of NAD competitors in a small molecules collection, this approach allows finding other classes of PARP-1 inhibitors that specifically disrupt H4-based PARP-1 activation or arrest inactive allosteric conformation of PARP-1. Here, we present an adaptation of this approach for a large-scale high-throughput screen.

  13. PARP1 inhibitors: contemporary attempts at their use in anticancer therapy and future perspective

    Directory of Open Access Journals (Sweden)

    Ewelina Wiśnik

    2016-04-01

    Full Text Available Current cancer therapies are based mainly on the use of compounds that cause DNA damage. Unfortunately, even the combination therapies do not give rewarding effects, due to the high efficiency of DNA damage repair mechanisms in tumor cells. Therefore, the present studies should be focused on proteins that are involved in DNA repair systems. Poly(ADP-ribose polymerase-1 is an example of a protein commonly known as an enzyme that plays a role in the detection of DNA damage and repair. Activation of PARP1 in response to DNA damage leads to poly-ADP-ribosylation of proteins contributing to DNA repair systems, therefore facilitating the maintenance of genome stability. On the other hand, inhibition of PARP1 enzyme results in the accumulation of DNA damage, which in turn contributes to cell death. Studies on inhibitors of PARP1 are still ongoing, and some of them are currently in the third phase of clinical trials. To date, only one representative of the PARP1 inhibitors, called olaparib, has been approved for anti-cancer therapy in the EU and the USA. Moreover, a growing body of evidence indicates a role of this protein in various intracellular processes such as bioenergetics, proliferation, regulation of gene expression, cell death as well as immunoregulation. A number of different intracellular processes regulated by PARP1 give rise to potential wider use of PARP1 inhibitors in treatment of other diseases, including immune or autoimmune disorders.

  14. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy.

    Science.gov (United States)

    Wang, Ying-Qing; Wang, Ping-Yuan; Wang, Yu-Ting; Yang, Guang-Fu; Zhang, Ao; Miao, Ze-Hong

    2016-11-10

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.

  15. In Silico Investigation of Potential PARP-1 Inhibitors from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Kuan-Chung Chen

    2014-01-01

    Full Text Available Poly(ADP-ribose polymerases (PARPs are nuclear enzymes which catalyze the poly-ADP-ribosylation involved in gene transcription, DNA damage repair, and cell-death signaling. As PARP-1 protein contains a DNA-binding domain, which can bind to DNA strand breaks and repair the damaged DNA over a low basal level, the inhibitors of poly(ADP-ribose polymerase 1 (PARP-1 have been indicated as the agents treated for cancer. This study employed the compounds from TCM Database@Taiwan to identify the potential PARP-1 inhibitors from the vast repertoire of TCM compounds. The binding affinities of the potential TCM compounds were also predicted utilized several distinct scoring functions. Molecular dynamics simulations were performed to optimize the result of docking simulation and analyze the stability of interactions between protein and ligand. The top TCM candidates, isopraeroside IV, picrasidine M, and aurantiamide acetate, had higher potent binding affinities than control, A927929. They have stable H-bonds with residues Gly202 and, Ser243 as A927929 and stable H-bonds with residues Asp105, Tyr228, and His248 in the other side of the binding domain, which may strengthen and stabilize ligand inside the binding domain of PARP-1 protein. Hence, we propose isopraeroside IV and aurantiamide acetate as potential lead compounds for further study in drug development process with the PARP-1 protein.

  16. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors.

    Science.gov (United States)

    Passeri, Daniela; Camaioni, Emidio; Liscio, Paride; Sabbatini, Paola; Ferri, Martina; Carotti, Andrea; Giacchè, Nicola; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2016-06-20

    Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.

  17. Benzimidazole derivatives as potential dual inhibitors for PARP-1 and DHODH.

    Science.gov (United States)

    Abdullah, Iskandar; Chee, Chin Fei; Lee, Yean-Kee; Thunuguntla, Siva Sanjeeva Rao; Satish Reddy, K; Nellore, Kavitha; Antony, Thomas; Verma, Jitender; Mun, Kong Wai; Othman, Shatrah; Subramanya, Hosahalli; Rahman, Noorsaadah Abd

    2015-08-01

    Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.

  18. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  19. In Silico Screening Identifies a Novel Potential PARP1 Inhibitor Targeting Synthetic Lethality in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-02-01

    Full Text Available Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose polymerase (PARPs inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8 and amber score (−51.42. Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development.

  20. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism.

    Science.gov (United States)

    Mohamed, Junaith S; Wilson, Joseph C; Myers, Matthew J; Sisson, Kayla J; Alway, Stephen E

    2014-10-01

    Accumulation of reactive oxygen species (ROS) in skeletal muscles and the resulting decline in muscle performance are hallmarks of sarcopenia. However, the precise mechanism by which ROS results in a decline in muscle performance is unclear. We demonstrate that isometric-exercise concomitantly increases the activities of Silent information regulator 1 (SIRT-1) and Poly [ADP-ribose] polymerase (PARP-1), and that activated SIRT-1 physically binds with and inhibits PARP-1 activity by a deacetylation dependent mechanism in skeletal muscle from young mice. In contrast, skeletal muscle from aged mice displays higher PARP-1 activity and lower SIRT-1 activity due to decreased intracellular NAD+ content, and as a result reduced muscle performance in response to exercise. Interestingly, injection of PJ34, a PARP-1 inhibitor, in aged mice increased SIRT-1 activity by preserving intracellular NAD+ content, which resulted in higher skeletal muscle mitochondrial biogenesis and performance. We found that the higher activity of PARP-1 in H2O2-treated myotubes or in exercised-skeletal muscles from aged mice is due to an elevated level of PARP-1 acetylation by the histone acetyltransferase General control of amino acid synthesis protein 5-like 2 (GCN-5). These results suggest that activation of SIRT-1 and/or inhibition of PARP-1 may ameliorate skeletal muscle performance in pathophysiological conditions such as sarcopenia and disuse-induced atrophy in aging.

  1. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.

    Directory of Open Access Journals (Sweden)

    Michal Yalon

    Full Text Available Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR. However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi, become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi. Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG-a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.

  2. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment

    DEFF Research Database (Denmark)

    Oplustilova, L.; Wolanin, K.; Bartkova, J.

    2012-01-01

    resistance efux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53Bp1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53Bp1 in BRCA-defective and triple-negative breast carcinomas...

  3. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats.

    Science.gov (United States)

    Guzyk, Mykhailo M; Tykhomyrov, Artem A; Nedzvetsky, Victor S; Prischepa, Irina V; Grinenko, Tatiana V; Yanitska, Lesya V; Kuchmerovska, Tamara M

    2016-10-01

    Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin's levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR

  4. 抗肿瘤药物PARP-1抑制剂及其放射性核素标记的研究进展%Research Progress of PARP-1 Inhibitors in Antitumor Drugs and Radionuclide Markers

    Institute of Scientific and Technical Information of China (English)

    赵凌舟; 张华北

    2011-01-01

    聚(腺苷二磷酸-核糖)多聚酶( poly(ADP-ribose) polymerase,PARP)是当今癌症治疗的一个新靶点.PARP不但能修复DNA损伤和调控转录,维持细胞内环境与基因组稳定,调节细胞存活和死亡过程,同时也是肿瘤发展和炎症发生过程中的主要转录因子.抑制PARP活性能降低肿瘤细胞的DNA修复功能,增强其对DNA损伤因子的敏感性,从而提高肿瘤放疗和化疗疗效.大量的研究表明,无论单一用药或联合化疗药物,PARP抑制剂都显示了在抗肿瘤治疗领域的潜力.本文综述了PARP-1抑制剂在抗肿瘤方面的研究进展.根据PARP-1抑制剂的发展阶段进行分类,着重介绍几种有代表性的,处于临床试验阶段,且具有潜在临床应用价值的PARP-1抑制剂.正电子发射计算机断层扫描(Positron Emission Tomograph,PET)利用组成人体主要元素的短半衰期核素作示踪剂,在分子水平上,无创伤、定量、动态地观察代谢物或药物在人体内的各种变化,是当代最先进的影像诊断技术,本文也将简单介绍用放射性核素标记PARP-1抑制剂的研究进展.%Poly (ADP-ribose) polymerase ( PARP) is a new target in the cancer treatment nowadays. PARP not only can repair DNA damage, regulate and control transcription, maintain the stability of intracellular environment and genome, regulate the process of cell survival and death, but also is the main transcription factor in the development of inflammation and the process of cancer. To inhibit PARP activity can reduce the DNA repair function in tumor cells, and increase the sensibility to DNA damage agents, so as to improve the ef-ficacy of radiation therapy and chemotherapy for tumor. A number of studies have suggested that, whether used alone or combination with other chemotherapy drugs, PARP inhibitors show the potential in the anti-tumor therapeutic areas. In this paper, PARP-1 inhibitors were reviewed in antitumor research progress. According to the stage

  5. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    Science.gov (United States)

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  6. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency.

    Science.gov (United States)

    Shen, Yuqiao; Rehman, Farah L; Feng, Ying; Boshuizen, Julia; Bajrami, Ilirjana; Elliott, Richard; Wang, Bing; Lord, Christopher J; Post, Leonard E; Ashworth, Alan

    2013-09-15

    PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties. Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models. BMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN 673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs. BMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class. ©2013 AACR.

  7. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    Science.gov (United States)

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  8. Synthesis and SAR of novel tricyclic quinoxalinone inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1)

    Energy Technology Data Exchange (ETDEWEB)

    Miyashiro, Julie; Woods, Keith W.; Park, Chang H.; Liu, Xuesong; Shi, Yan; Johnson, Eric F.; Bouska, Jennifer J.; Olson, Amanda M.; Luo, Yan; Fry, Elizabeth H.; Giranda, Vincent L.; Penning, Thomas D.; (Abbott)

    2010-09-03

    Based on screening hit 1, a series of tricyclic quinoxalinones have been designed and evaluated for inhibition of PARP-1. Substitutions at the 7- and 8-positions of the quinoxalinone ring led to a number of compounds with good enzymatic and cellular potency. The tricyclic quinoxalinone class is sensitive to modifications of both the amine substituent and the tricyclic core. The synthesis and structure-activity relationship studies are presented.

  9. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  10. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    Science.gov (United States)

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  11. Effects of PARP-1 inhibitors AG-014699 and AZD2281 on proliferation and apoptosis of human hepatoma cell line HepG2

    Directory of Open Access Journals (Sweden)

    DU Senrong

    2015-06-01

    Full Text Available ObjectiveTo observe the inhibitory and pro-apoptotic effects of two poly(ADP-ribose polymerase (PARP-1 inhibitors, AG-014699 and AZD2281, on human hepatoma HepG2 cells and preliminarily explore the mechanism by which AG-014699 induces HepG2 cell apoptosis, and to provide a new therapeutic target for hepatoma. MethodsThe effects of different concentrations of AG-014699 and AZD2281 on HepG2 cell proliferation were determined by MTT assay. The cell apoptosis rate was measured by flow cytometry. The expression levels of caspase-3 and caspase-8 were measured by Western Blot. Inter-group comparison was made by t test. ResultsBoth AG-014699 and AZD2281 suppressed HepG2 cell proliferation in a time- and dose-dependent manner. However, the sensitivity of HepG2 cells to the two PARP-1 inhibitors was different. The half-maximal inhibitory concentrations of AG-014699 and AZD2281 at 48 h determined by MTT assay were about 20 μmol/L and 400 μmol/L, respectively. Flow cytometry and Western blot were not used to evaluate the apoptosis of HepG2 cells exposed to AZD2281 to which these cells were not sensitive. HepG2 cell apoptosis could be induced by 10, 30, and 50 μmol/L AG-014699, and the highest apoptosis rate at 48 h was significantly higher than that of the control group (3100%±2.13% vs 09%±0013%, P<0.01. Compared with those in the control group, the protein levels of caspase-3 and caspase-8 in HepG2 cells after 48-h exposure to 30, and 50 μmol/L AG-014699 increased. ConclusionThe two PARP-1 inhibitors AG-014699 and AZD2281 can inhibit the proliferation of HepG2 cells, which showed different sensitivities to the two inhibitors. AG-014699 can induce HepG2 cell apoptosis by up-regulating the protein expression of caspase-3 and caspase-8.

  12. Design and synthesis of N-substituted indazole-3-carboxamides as poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors(†).

    Science.gov (United States)

    Patel, Maulik R; Pandya, Kashyap G; Lau-Cam, Cesar A; Singh, Satyakam; Pino, Maria A; Billack, Blase; Degenhardt, Kurt; Talele, Tanaji T

    2012-04-01

    A group of novel N-1-substituted indazole-3-carboxamide derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy was applied to a weakly active unsubstituted 1H-indazole-3-carboxamide 2, by introducing a three carbon linker between 1H-indazole-3-carboxamide and different heterocycles, and led to compounds 4 [1-(3-(piperidine-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) =36μm] and 5 [1-(3-(2,3-dioxoindolin-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) = 6.8μm]. Compound 5 was evaluated in rats for its protective action against diabetes induced by a treatment with streptozotocin, a known diabetogenic agent. In addition to preserving the ability of the pancreas to secrete insulin, compound 5 was also able to attenuate the ensuing hyperglycemic response to a significant extent.

  13. Discovery and SAR study of 2-(1-propylpiperidin-4-yl)-3H-imidazo[4,5-c]pyridine-7-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) for the treatment of cancer.

    Science.gov (United States)

    Zhu, Qihua; Wang, Xueyan; Hu, Yan; He, Xiaorong; Gong, Guoqing; Xu, Yungen

    2015-10-15

    A series of imidazo[4,5-c]pyridine-7-carboxamide derivatives as poly(ADP-ribose) polymerase (PARP) inhibitors have been developed. All target compounds were evaluated for their PARP-1 inhibitory activity and some were further assessed for cellular potency. These efforts led to identification of a novel PARP-1 inhibitor 2-(1-propylpiperidin-4-yl)-3H-imidazo[4,5-c]pyridine-7-carboxamide 11a (XZ-120312). 11a displayed strong inhibition against the PARP-1 enzyme with an IC50 of 8.6±0.6 nM and excellent potentiation of temozolomide cytotoxicity in cancer cell lines SW-620, MDA-MB-468 and A549 by 4.0, 3.0 and 7.7 times, respectively.

  14. [Molecular mechanisms of regulaion of transcription by PARP1].

    Science.gov (United States)

    Maliuchenko, N V; Kulaeva, O I; Kotova, E; Chupyrkina, A A; Nikitin, D V; Kirpichnikov, M P; Studitskiĭ, V M

    2015-01-01

    Poly-ADP-ribosylation is a covalent post-translational modification of nuclear proteins that plays a key role in the immediate response of cells to genotoxic stress. Poly(ADP-ribose) polymerase (PARP) synthesizes long and branched polymers of ADP-ribose onto acceptor regulator proteins, and thereby change their activity. Metabolism of poly-ADP regulates DNA repair, cell cycle, replication, aging and death of cells, as well as remodeling of chromatin structure and gene transcription. PARP1 is one of the most common nuclear proteins; it is responsible for production of -90% of the polymers of ADP-ribose in the cell. PARP1 inhibitors are promising antitumor agents. At the same time, the current inhibitors target the catalytic domain of PARP1 that leads to.a number of side effects. Therefore, considering the potential benefits of PARP1 inhibitors for the treatment of multiple diseases, it is necessary to develop new strategies of PARP1 inhibition. PARP1 has a modular structure and has catalytic, transcription and DNA-binding activities. The review focuses primarily on the role of PARP1 in transcriptional regulation; the structure and functional organization of PARP1, as well as multiple ways of regulation of chromatin remodeling, DNA methylation and transcription are covered in detail. Studies of the molecular mechanisms of regulation of transcription factor PARP1 can serve as a basis for search and design of new inhibitors.

  15. 新型吲唑类PARP-1抑制剂的合成及其生物活性评价%Synthesis and Biological Evaluation of Novel PARP-1 Inhibitors with Indazole Skeleton

    Institute of Scientific and Technical Information of China (English)

    龙伟; 邱文革; 胡云雁; 宋丽云; 李海军; 何洪

    2016-01-01

    Methyl 1H-indazole-7-carboxylate(3) was obtained by two-step reaction from methyl 2-ni-tro-3-methylbenzoate.3-Halogenated-3(4b~4d) were prepared by halogenation of 3 with POCl3 , Br2 or I2, respectively.3-Fluoro(cyano)-3(4a, 4e) were prepared by fluorination or cyanation of 4d with selectflor or Zn(CN)2.3-Methyl(phenyl)-3(5a, 5b) were obtained by Suzuki coupling of 4d with methylboronic acid or phenylboronic acid catalyzed by Pd(PPh3)4.Indazole derivatives(6a ~6n) were synthesized by N-alkylation of 3, 4a~4c, 4e and 5.Fourteen novel indazole derivatives(7a~7n) were synthesized by aminolysis and deprotection from 6a~6n.The structures were characterized by 1 H NMR and ESI-MS.The results of biological evaluation indicated that seven target molecules dis-played inhibitory activities against PARP-1 with IC50 less than 30 nmol· L-1 .Moreover, the indazoles bearing pyrrolidinyl at 2-position and hydrogen ( 7 e ) or fluorin ( 7 f ) at 3-position displayed inhibitory activities against PARP-1 with IC50 of 4.2 nmol· L-1 and 4.6 nmol· L-1 , respectively.%以3-甲基-2-硝基苯甲酸甲酯为起始原料,经两步反应制得中间体1H-吲唑-7-甲酸甲酯(3);3分别与三氯氧磷、液溴和碘单质反应制得3的3-位卤代产物(4b~4d);4d与氟试剂或氰化锌反应制得3-氟(氰基)-3(4a和4e);4d与苯硼酸或甲基硼酸在四三苯基磷钯催化下反应制得3-甲基(苯基)-3(5a和5b);以氢化钠为碱,3,4a~4c,4e,5分别与4-甲烷磺酰氧基哌啶或3-甲烷磺酰氧基四氢吡咯经缩合反应制得3的2,3-位取代产物(6a~6n);6a~6n在甲醇中氨解,随后采用氯化氢气体脱去Boc保护基合成了14个新型吲唑类PARP-1抑制剂(7a~7n),其结构经1H NMR和ESI-MS表征.生物活性评价结果显示,有7个目标化合物对PARP-1酶活性抑制IC50低于30 nmol·L-1,其中2-(四氢吡咯-4-基)-2H-吲唑-7-甲酰胺(7e)和3-氟-2-(四氢吡咯-4-基)-2H-吲唑-7-甲酰胺(7f)的IC50分别为4.2 nmol·L-1和4.6 nmol·L-1.

  16. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    Directory of Open Access Journals (Sweden)

    Cian M McCrudden

    Full Text Available Therapeutic inhibition of poly(ADP-ribose polymerase (PARP, as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699, induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  17. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    Science.gov (United States)

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  18. Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C [Formula: see text] and poly (ADP-ribose) polymerase-1 (PARP-1).

    Science.gov (United States)

    Chadha, Navriti; Silakari, Om

    2016-08-01

    Current clinical studies have revealed that diabetic complications are multifactorial disorders that target two or more pathways. The majority of drugs in clinical trial target aldose reductase and protein kinase C ([Formula: see text]), while recent studies disclosed a significant role played by poly (ADP-ribose) polymerase-1 (PARP-1). In light of this, the current study was aimed to identify novel dual inhibitors of [Formula: see text] and PARP-1 using a pharmaco-informatics methodology. Pharmacophore-based 3D QSAR models for these two targets were generated using HypoGen and used to screen three commercially available chemical databases to identify dual inhibitors of [Formula: see text] and PARP-1. Overall, 18 hits were obtained from the screening process; the hits were filtered based on their drug-like properties and predicted binding affinities (docking analysis). Important amino acid residues were predicted by developing a fingerprint of the active site using alanine-scanning mutagenesis and molecular dynamics. The stability of the complexes (18 hits with both proteins) and their final binding orientations were investigated using molecular dynamics simulations. Thus, novel hits have been predicted to have good binding affinities for [Formula: see text] and PARP-1 proteins, which could be further investigated for in vitro/in vivo activity.

  19. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  20. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    Science.gov (United States)

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    into the clinical use of Parp-1 inhibitors.

  1. Design, synthesis and biological evaluation of novel 5-fluoro-1H-benzimidazole-4-carboxamide derivatives as potent PARP-1 inhibitors.

    Science.gov (United States)

    Wang, Junwei; Wang, Xuyan; Li, Hui; Ji, Dezhong; Li, Yuyan; Xu, Yungen; Zhu, Qihua

    2016-08-15

    A series of novel 5-fluorine-benzimidazole-4-carboxamide analogs were designed and synthesized. All target compounds were evaluated for their PARP-1 inhibitory activity. Compounds possessed high intrinsic PARP-1 inhibitory potency have been evaluated in vitro cellular assays to measure the potentiation effect of cytotoxic agents against cancer cell line. These efforts led to the identification of compound 10f, which displayed strong inhibition against the PARP-1 enzyme with an IC50 of 43.7nM, excellent cell inhibitory activity in HCT116 cells (IC50=7.4μM) and potentiation of temozolomide cytotoxicity in cancer cell line A549 (PF50=1.6).

  2. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms.

  3. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy.

    Science.gov (United States)

    Papeo, Gianluca; Posteri, Helena; Borghi, Daniela; Busel, Alina A; Caprera, Francesco; Casale, Elena; Ciomei, Marina; Cirla, Alessandra; Corti, Emiliana; D'Anello, Matteo; Fasolini, Marina; Forte, Barbara; Galvani, Arturo; Isacchi, Antonella; Khvat, Alexander; Krasavin, Mikhail Y; Lupi, Rosita; Orsini, Paolo; Perego, Rita; Pesenti, Enrico; Pezzetta, Daniele; Rainoldi, Sonia; Riccardi-Sirtori, Federico; Scolaro, Alessandra; Sola, Francesco; Zuccotto, Fabio; Felder, Eduard R; Donati, Daniele; Montagnoli, Alessia

    2015-09-10

    The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by). NMS-P118 proved to be a potent, orally available, and highly selective PARP-1 inhibitor endowed with excellent ADME and pharmacokinetic profiles and high efficacy in vivo both as a single agent and in combination with Temozolomide in MDA-MB-436 and Capan-1 xenograft models, respectively. Cocrystal structures of 20by with both PARP-1 and PARP-2 catalytic domain proteins allowed rationalization of the observed selectivity.

  4. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    Science.gov (United States)

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  5. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1

    Science.gov (United States)

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-01-01

    Summary Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins. PMID:26626479

  6. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    Science.gov (United States)

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  7. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer

    Science.gov (United States)

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation. PMID:27994514

  8. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1.

    Science.gov (United States)

    Dziaman, Tomasz; Ludwiczak, Hubert; Ciesla, Jaroslaw M; Banaszkiewicz, Zbigniew; Winczura, Alicja; Chmielarczyk, Mateusz; Wisniewska, Ewa; Marszalek, Andrzej; Tudek, Barbara; Olinski, Ryszard

    2014-01-01

    The ethiology of colon cancer is largely dependent on inflammation driven oxidative stress. The analysis of 8-oxodeoxyguanosine (8-oxodGuo) level in leukocyte DNA of healthy controls (138 individuals), patients with benign adenomas (AD, 137 individuals) and with malignant carcinomas (CRC, 169 individuals) revealed a significant increase in the level of 8-oxodGuo in leukocyte DNA of AD and CRC patients in comparison to controls. The counteracting mechanism is base excision repair, in which OGG1 and PARP-1 play a key role. We investigated the level of PARP-1 and OGG1 mRNA and protein in diseased and marginal, normal tissues taken from AD and CRC patients and in leukocytes taken from the patients as well as from healthy subjects. In colon tumors the PARP-1 mRNA level was higher than in unaffected colon tissue and in polyp tissues. A high positive correlation was found between PARP-1 and OGG1 mRNA levels in all investigated tissues. This suggests reciprocal influence of PARP-1 and OGG1 on their expression and stability, and may contribute to progression of colon cancer. PARP-1 and OGG1 proteins level was several fold higher in polyps and CRC in comparison to normal colon tissues. Individuals bearing the Cys326Cys genotype of OGG1 were characterized by higher PARP-1 protein level in diseased tissues than the Ser326Cys and Ser326Ser genotypes. Aforementioned result may suggest that the diseased cells with polymorphic OGG1 recruit more PARP protein, which is necessary to remove 8-oxodGuo. Thus, patients with decreased activity of OGG1/polymorphism of the OGG1 gene and higher 8-oxodGuo level may be more susceptible to treatment with PARP-1 inhibitors.

  9. Targeted Radiosensitization of ETS Fusion-Positive Prostate Cancer through PARP1 Inhibition

    Directory of Open Access Journals (Sweden)

    Sumin Han

    2013-10-01

    Full Text Available ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose polymerase 1 (PARP1 in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07 fold (mean ± SEM and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03 relative to ERG-negative cells (P < .05. Neutral and alkaline COMET assays and immunofluorescence microscopy assessing γ-H2AX foci showed increased short- and long-term efficiencies of DNA repair, respectively, following radiation that was preferentially reversed by PARP1 inhibition. These findings were verified in an in vivo xenograft model. Our findings demonstrate that ERG overexpression confers radiation resistance through increased efficiency of DNA repair following radiation that can be reversed through inhibition of PARP1. These results motivate the use of PARP1 inhibitors as radiosensitizers in patients with localized ETS fusion-positive cancers.

  10. Analysis list: Parp1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Parp1 Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Parp1.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Parp1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Parp...1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Parp1.Neural.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  11. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Antonella Cardinale

    Full Text Available Poly (ADP-ribose polymerase 1 (PARP-1 is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington's disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.

  12. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Directory of Open Access Journals (Sweden)

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  13. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Science.gov (United States)

    Ethier, Chantal; Tardif, Maxime; Arul, Laura; Poirier, Guy G

    2012-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG), we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose) (PAR) synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK) is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC) can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS) production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  14. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    Science.gov (United States)

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, pfisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1 interacted with DUX4 promoter and may be involved in modulating DUX4 expression in FSHD. PMID:27722032

  15. PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq).

    Science.gov (United States)

    Lodhi, Niraj; Tulin, Alexei V

    2011-01-01

    Poly(ADP-ribose) polymerase1 (PARP1) is a global regulator of different cellular mechanisms, ranging from DNA damage repair to control of gene expression. Since PARP1 protein and pADPr have been shown to persist in chromatin through cell cycle, they may both act as epigenetic markers. However, it is not known how many loci are occupied by PARP1 protein during mitosis genome-wide. To reveal the genome-wide PARP1 binding sites, we used the ChIP-seq approach, an emerging technique to study genome-wide PARP1 protein interaction with chromatin. Here, we describe how to perform ChIP-seq in the context of PARP1 binding sites identification in chromatin, using human embryonic kidney cell lines.

  16. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade.

    Science.gov (United States)

    Shang, Fenqing; Zhang, Jiao; Li, Zhao; Zhang, Jin; Yin, Yanjun; Wang, Yaqiong; Marin, Traci L; Gongol, Brendan; Xiao, Han; Zhang, You-Yi; Chen, Zhen; Shyy, John Y-J; Lei, Ting

    2016-01-01

    Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.

  17. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade.

    Directory of Open Access Journals (Sweden)

    Fenqing Shang

    Full Text Available Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose polymerase 1 (PARP1. Biguanides and angiotensin II receptor blockers (ARBs such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs, diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosylation (PARylation, but increased endothelial nitric oxide synthase (eNOS activity and silent mating type information regulation 2 homolog 1 (SIRT1 expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.

  18. Dual roles of PARP-1 promote cancer growth and progression

    National Research Council Canada - National Science Library

    Schiewer, Matthew J; Goodwin, Jonathan F; Han, Sumin; Brenner, J Chad; Augello, Michael A; Dean, Jeffry L; Liu, Fengzhi; Planck, Jamie L; Ravindranathan, Preethi; Chinnaiyan, Arul M; McCue, Peter; Gomella, Leonard G; Raj, Ganesh V; Dicker, Adam P; Brody, Jonathan R; Pascal, John M; Centenera, Margaret M; Butler, Lisa M; Tilley, Wayne D; Feng, Felix Y; Knudsen, Karen E

    2012-01-01

    ...)-positive prostate cancer cells, in both the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function...

  19. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington’s Disease

    Science.gov (United States)

    Cardinale, Antonella; Paldino, Emanuela; Giampà, Carmela; Bernardi, Giorgio; Fusco, Francesca R.

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD. PMID:26252217

  20. A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia.

    Science.gov (United States)

    Iwashita, Akinori; Tojo, Nobuteru; Matsuura, Shigeru; Yamazaki, Syunji; Kamijo, Kazunori; Ishida, Junya; Yamamoto, Hirofumi; Hattori, Kouji; Matsuoka, Nobuya; Mutoh, Seitaro

    2004-08-01

    The activation of poly(ADP-ribose) polymerase-1 (PARP-1) after exposure to nitric oxide or oxygen-free radicals can lead to cell injury via severe, irreversible depletion of NAD. Genetic deletion or pharmacological inhibition of PARP-1 attenuates brain injury after focal ischemia and neurotoxicity in several neurodegenerative models in animals. FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone) is a novel PARP-1 inhibitor that has recently been identified through structure-based drug design. In an enzyme kinetic analysis, FR247304 exhibits potent and competitive inhibition of PARP-1 activity, with a K(i) value of 35 nM. Here, we show that prevention of PARP activation by FR247304 treatment protects against both reactive oxygen species-induced PC12 cell injury in vitro and ischemic brain injury in vivo. In cell death model, treatment with FR247304 (10(-8)-10(-5) M) significantly reduced NAD depletion by PARP-1 inhibition and attenuated cell death after hydrogen peroxide (100 microM) exposure. After 90 min of middle cerebral artery occlusion in rats, poly(ADP-ribosy)lation and NAD depletion were markedly increased in the cortex and striatum from 1 h after reperfusion. The increased poly(ADP-ribose) immunoreactivity and NAD depletion were attenuated by FR247304 (32 mg/kg i.p.) treatment, and FR247304 significantly decreased ischemic brain damage measured at 24 h after reperfusion. Whereas other PARP inhibitors such as 3-aminobenzamide and PJ34 [N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylactamide] showed similar neuroprotective actions, they were less potent in in vitro assays and less efficacious in an in vivo model compared with FR247304. These results indicate that the novel PARP-1 inhibitor FR247304 exerts its neuroprotective efficacy in in vitro and in vivo experimental models of cerebral ischemia via potent PARP-1 inhibition and also suggest that FR247304 or its derivatives could be attractive therapeutic

  1. PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy.

    Science.gov (United States)

    Salvati, E; Scarsella, M; Porru, M; Rizzo, A; Iachettini, S; Tentori, L; Graziani, G; D'Incalci, M; Stevens, M F G; Orlandi, A; Passeri, D; Gilson, E; Zupi, G; Leonetti, C; Biroccio, A

    2010-11-25

    New anti-telomere strategies represent important goals for the development of selective cancer therapies. In this study, we reported that uncapped telomeres, resulting from pharmacological stabilization of quadruplex DNA by RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate), trigger specific recruitment and activation of poly-adenosine diphosphate (ADP) ribose polymerase I (PARP1) at the telomeres, forming several ADP-ribose polymers that co-localize with the telomeric repeat binding factor 1 protein and are inhibited by selective PARP(s) inhibitors or PARP1-specific small interfering RNAs. The knockdown of PARP1 prevents repairing of RHPS4-induced telomere DNA breaks, leading to increases in chromosome abnormalities and eventually to the inhibition of tumor cell growth both in vitro and in xenografts. More interestingly, the integration of a TOPO1 inhibitor on the combination treatment proved to have a high therapeutic efficacy ensuing a complete regression of the tumor as well as a significant increase in overall survival and cure of mice even when treatments started at a very late stage of tumor growth. Overall, this work reveals the unexplored link between the PARP1 and G-quadruplex ligands and demonstrates the excellent efficacy of a multi-component strategy based on the use of PARP inhibitors in telomere-based therapy.

  2. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  3. The Level of Ets-1 Protein Is Regulated by Poly(ADP-Ribose) Polymerase-1 (PARP-1) in Cancer Cells to Prevent DNA Damage

    Science.gov (United States)

    Legrand, Arnaud J.; Choul-Li, Souhaila; Spriet, Corentin; Idziorek, Thierry; Vicogne, Dorothée; Drobecq, Hervé; Dantzer, Françoise; Villeret, Vincent; Aumercier, Marc

    2013-01-01

    Ets-1 is a transcription factor that regulates many genes involved in cancer progression and in tumour invasion. It is a poor prognostic marker for breast, lung, colorectal and ovary carcinomas. Here, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel interaction partner of Ets-1. We show that Ets-1 activates, by direct interaction, the catalytic activity of PARP-1 and is then poly(ADP-ribosyl)ated in a DNA-independent manner. The catalytic inhibition of PARP-1 enhanced Ets-1 transcriptional activity and caused its massive accumulation in cell nuclei. Ets-1 expression was correlated with an increase in DNA damage when PARP-1 was inhibited, leading to cancer cell death. Moreover, PARP-1 inhibitors caused only Ets-1-expressing cells to accumulate DNA damage. These results provide new insight into Ets-1 regulation in cancer cells and its link with DNA repair proteins. Furthermore, our findings suggest that PARP-1 inhibitors would be useful in a new therapeutic strategy that specifically targets Ets-1-expressing tumours. PMID:23405229

  4. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  5. P21-PARP-1 Pathway Is Involved in Cigarette Smoke-Induced Lung DNA Damage and Cellular Senescence

    Science.gov (United States)

    Yao, Hongwei; Sundar, Isaac K.; Gorbunova, Vera; Rahman, Irfan

    2013-01-01

    Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21CDKN1A (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence. PMID:24244594

  6. P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence.

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    Full Text Available Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS-induced lung diseases. Both p21(CDKN1A (p21 and poly(ADP-ribose polymerase-1 (PARP-1 are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks as well as non-homologous end joining proteins (Ku70 and Ku80 in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence.

  7. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.

    Science.gov (United States)

    Domercq, Maria; Mato, Susana; Soria, Federico N; Sánchez-gómez, M Victoria; Alberdi, Elena; Matute, Carlos

    2013-03-01

    Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied

  8. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  9. Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress.

    Science.gov (United States)

    Li, Xue; Erden, Ozlem; Li, Liang; Ye, Qidong; Wilson, Andrew; Du, Wei

    2014-04-20

    A component of the base excision repair pathway, poly(ADP-ribose) polymerase-1 (PARP1) functions in multiple cellular processes, including DNA repair and programmed cell death. We previously showed that Salidroside, a phenylpropanoid glycoside isolated from medicinal plants, prevented the loss of hematopoietic stem cells (HSCs) in native mice and rescued HSCs repopulating in transplanted recipients under oxidative stress. The aim of this study was to investigate the mechanism by which PARP1 activation by Salidroside maintains HSCs under oxidative stress. We found that although there were no spontaneous defects in hematopoiesis in Parp1(-/-) mice, oxidative stress compromised the repopulating capacity of Parp1(-/-) HSCs in transplanted recipient mice. A biochemical study using truncated proteins lacking the defined functional domains of PARP1 showed that the tryptophan-glycine-arginine-rich (WGR) domain of PARP1 was critical for Salidroside binding and subsequent PARP1 activation under oxidative stress. Functionally, complementation of Parp1(-/-) HSCs with full-length PARP1WT, but not the PARP1R591K mutant in WGR domain restored Salidroside-stimulated PARP1 activation in vitro. Mechanistically, activated PARP1 by Salidroside enhanced the repopulating capacity of the stressed HSCs by accelerating oxidative DNA damage repair. INNOVATIONS AND CONCLUSION: Our findings reveal the action of mechanism for Salidroside in PARP1 stimulation and a novel role of PARP1 activation in maintaining HSC function under oxidative stress.

  10. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C.; Chen,David J.

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.

  11. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Brace, Lear E

    2014-01-01

    with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition...

  12. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    Directory of Open Access Journals (Sweden)

    Daniel Sultanov

    2017-01-01

    Full Text Available DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose polymerase 1 increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA.

  13. PARP-1 inhibition influences the oxidative stress response of the human lens

    Directory of Open Access Journals (Sweden)

    Andrew J.O. Smith

    2016-08-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is best characterised for its involvement in DNA repair. PARP-1 activity is also linked to cell fate, confounding its roles in maintaining genome integrity. The current study assessed the functional roles of PARP-1 within human lens cells in response to oxidative stress. The human lens epithelial cell line FHL124 and whole human lens cultures were used as experimental systems. Hydrogen peroxide (H2O2 was employed to induce oxidative stress and cell death was assessed by LDH release. The functional influence of PARP-1 was assessed using targeted siRNA and chemical inhibition (by AG14361. Immunocytochemistry and western blotting were used to assess PARP-1 expression and the alkaline comet assay determined the levels of DNA strand breaks. PARP-1 was generally observed in the cell nucleus in both the FHL124 cell line and whole human lenses. PARP-1 inhibition rendered FHL124 cells more susceptible to H2O2-induced DNA strand breaks. Interestingly, reduction of PARP-1 activity significantly inhibited H2O2-induced cell death relative to control cells. Inhibition of PARP-1 in whole human lenses resulted in a reduced level of lens opacity and cell death following exposure to H2O2 relative to matched pair controls. Thus, we show that PARP-1 could play a role in the fate of human lens cells, and these first observations in human lenses suggest that it could impact on lens opacity. Further studies are required to elucidate the regulatory processes that give rise to these effects.

  14. Effects of poly (ADP-ribose polymerase-1 (PARP-1 inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2016-04-01

    Full Text Available Early studies with first-generation poly (ADP-ribose polymerase (PARP inhibitors have already indicated some therapeutic potential for sulfur mustard (SM injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD+/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139 after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage.

  15. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells

    Science.gov (United States)

    Nüske, Stefan; Scholz, Armin M.; Bogner, Jacqueline; Ruf, Benjamin; Zolghadr, Kourosh; Drexler, Sophie E.; Drexler, Guido A.; Girst, Stefanie; Greubel, Christoph; Reindl, Judith; Siebenwirth, Christian; Romer, Tina; Friedl, Anna A.; Rothbauer, Ulrich

    2016-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair. PMID:26950694

  16. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells.

    Science.gov (United States)

    Buchfellner, Andrea; Yurlova, Larisa; Nüske, Stefan; Scholz, Armin M; Bogner, Jacqueline; Ruf, Benjamin; Zolghadr, Kourosh; Drexler, Sophie E; Drexler, Guido A; Girst, Stefanie; Greubel, Christoph; Reindl, Judith; Siebenwirth, Christian; Romer, Tina; Friedl, Anna A; Rothbauer, Ulrich

    2016-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.

  17. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells.

    Directory of Open Access Journals (Sweden)

    Andrea Buchfellner

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP1 is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa, termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.

  18. Effects of PARP-1 Deficiency on Th1 and Th2 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    M. Sambucci

    2013-01-01

    Full Text Available T cell differentiation to effector Th cells such as Th1 and Th2 requires the integration of multiple synergic and antagonist signals. Poly(ADP-ribosylation is a posttranslational modification of proteins catalyzed by Poly(ADP-ribose polymerases (PARPs. Recently, many reports showed that PARP-1, the prototypical member of the PARP family, plays a role in immune/inflammatory responses. Consistently, its enzymatic inhibition confers protection in several models of immune-mediated diseases, mainly through an inhibitory effect on NF-κB (and NFAT activation. PARP-1 regulates cell functions in many types of immune cells, including dendritic cells, macrophages, and T and B lymphocytes. Our results show that PARP-1KO cells displayed a reduced ability to differentiate in Th2 cells. Under both nonskewing and Th2-polarizing conditions, naïve CD4 cells from PARP-1KO mice generated a reduced frequency of IL-4+ cells, produced less IL-5, and expressed GATA-3 at lower levels compared with cells from wild type mice. Conversely, PARP-1 deficiency did not substantially affect differentiation to Th1 cells. Indeed, the frequency of IFN-γ+ cells as well as IFN-γ production, in nonskewing and Th1-polarizing conditions, was not affected by PARP-1 gene ablation. These findings demonstrate that PARP-1 plays a relevant role in Th2 cell differentiation and it might be a target to be exploited for the modulation of Th2-dependent immune-mediated diseases.

  19. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells

    National Research Council Canada - National Science Library

    Buchfellner, Andrea; Yurlova, Larisa; Nüske, Stefan; Scholz, Armin M; Bogner, Jacqueline; Ruf, Benjamin; Zolghadr, Kourosh; Drexler, Sophie E; Drexler, Guido A; Girst, Stefanie; Greubel, Christoph; Reindl, Judith; Siebenwirth, Christian; Romer, Tina; Friedl, Anna A; Rothbauer, Ulrich

    2016-01-01

    .... To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells...

  20. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells: e0151041

    National Research Council Canada - National Science Library

    Andrea Buchfellner; Larisa Yurlova; Stefan Nüske; Armin M Scholz; Jacqueline Bogner; Benjamin Ruf; Kourosh Zolghadr; Sophie E Drexler; Guido A Drexler; Stefanie Girst; Christoph Greubel; Judith Reindl; Christian Siebenwirth; Tina Romer; Anna A Friedl

    2016-01-01

    .... To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells...

  1. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  2. Accelerated Aging during Chronic Oxidative Stress: A Role for PARP-1

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2013-01-01

    Full Text Available Oxidative stress plays a major role in the pathophysiology of chronic inflammatory disease and it has also been linked to accelerated telomere shortening. Telomeres are specialized structures at the ends of linear chromosomes that protect these ends from degradation and fusion. Telomeres shorten with each cell division eventually leading to cellular senescence. Research has shown that poly(ADP-ribose polymerase-1 (PARP-1 and subtelomeric methylation play a role in telomere stability. We hypothesized that PARP-1 plays a role in accelerated aging in chronic inflammatory diseases due to its role as coactivator of NF-κb and AP-1. Therefore we evaluated the effect of chronic PARP-1 inhibition (by fisetin and minocycline in human fibroblasts (HF cultured under normal conditions and under conditions of chronic oxidative stress, induced by tert-butyl hydroperoxide (t-BHP. Results showed that PARP-1 inhibition under normal culturing conditions accelerated the rate of telomere shortening. However, under conditions of chronic oxidative stress, PARP-1 inhibition did not show accelerated telomere shortening. We also observed a strong correlation between telomere length and subtelomeric methylation status of HF cells. We conclude that chronic PARP-1 inhibition appears to be beneficial in conditions of chronic oxidative stress but may be detrimental under relatively normal conditions.

  3. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription.

    Science.gov (United States)

    Vidaković, Melita; Gluch, Angela; Qiao, Junhua; Oumard, Andrè; Frisch, Matthias; Poznanović, Goran; Bode, Juergen

    2009-05-15

    This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.

  4. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Science.gov (United States)

    Piskunova, Tatiana S.; Yurova, Maria N.; Ovsyannikov, Anton I.; Semenchenko, Anna V.; Zabezhinski, Mark A.; Popovich, Irina G.; Wang, Zhao-Qi; Anisimov, Vladimir N.

    2008-01-01

    Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis. PMID:19415146

  5. Deficiency in Poly(ADP-ribose Polymerase-1 (PARP-1 Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Tatiana S. Piskunova

    2008-01-01

    Full Text Available Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosylation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosylation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; < .05. In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.

  6. Targeted radiosensitization of ETS fusion-positive prostate cancer through PARP1 inhibition.

    Science.gov (United States)

    Han, Sumin; Brenner, J Chad; Sabolch, Aaron; Jackson, Will; Speers, Corey; Wilder-Romans, Kari; Knudsen, Karen E; Lawrence, Theodore S; Chinnaiyan, Arul M; Feng, Felix Y

    2013-10-01

    ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose) polymerase 1 (PARP1) in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07) fold (mean ± SEM) and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03) relative to ERG-negative cells (P ETS fusion-positive cancers.

  7. Base excision repair pathway: PARP1 genotypes as modulators of therapy response in cervical cancer patients.

    Science.gov (United States)

    Nogueira, Augusto; Assis, Joana; Faustino, Ilda; Pereira, Deolinda; Catarino, Raquel; Medeiros, Rui

    2017-02-01

    Genetic polymorphisms in genes of the base excision repair (BER) pathway appear to modulate the therapy response of cancer patients. PARP1 protein recognizes the DNA strand damage and facilitates the subsequent recruitment of BER proteins. Few studies have reported an association between PARP1 Val762Ala polymorphism (rs1136410) and cancer therapy response. The purpose of our study was to determine whether PARP1 Val762Ala polymorphism have prognostic value in patients with cervical cancer. Two hundred and sixty adult patients, with histologically confirmed cervical cancer, at FIGO-stages IB2-IVA, primarily treated with concurrent chemotherapy (cisplatin) and radiotherapy. Overall survival (OS) and disease-free survival (DFS) were the primary end points of the analysis. The PARP1 Val762Ala genetic variants were analyzed by allelic discrimination by real-time PCR. We observed that peri- and postmenopausal women carrying the C-allele present a statistically significant lower OS and DFS (log-rank test, p = 0.008 and p = 0.006, respectively) among those with early stage cervical cancer. Cox regression analysis confirmed these results, after adjustment for other prognostic factors (for OS: HR, 3.70; 95%CI, 1.32-10.38; p = 0.013 and for DFS: HR, 3.97; 95%CI, 1.59-9.93; p = 0.003). This is the first study evaluating the effect of PARP1 Val762Ala polymorphism in treatment response in cervical cancer patients. PARP1 genotypes may contribute as an independent prognostic factor in cervical cancer, being useful in predicting the clinical outcome.

  8. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2010-01-05

    The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of {gamma}-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8 h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I-III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8 h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.

  9. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  10. PARP1 orchestrates variant histone exchange in signal-mediated transcriptional activation.

    Science.gov (United States)

    O'Donnell, Amanda; Yang, Shen-Hsi; Sharrocks, Andrew D

    2013-12-01

    Transcriptional activation is accompanied by multiple molecular events that remodel the local chromatin environment in promoter regions. These molecular events are often orchestrated in response to the activation of signalling pathways, as exemplified by the response of immediate early genes such as FOS to ERK MAP kinase signalling. Here, we demonstrate that inducible NFI recruitment permits PARP1 binding to the FOS promoter by a mutually reinforcing loop. PARP1 and its poly(ADP-ribosyl)ation activity are required for maintaining FOS activation kinetics. We also show that the histone variant H2A.Z associates with the FOS promoter and acts in a transcription-suppressive manner. However, in response to ERK pathway signalling, H2A.Z is replaced by H2A; PARP1 activity is required to promote this exchange. Thus, our work has revealed an additional facet of PARP1 function in promoting dynamic remodelling of promoter-associated nucleosomes to allow transcriptional activation in response to cellular signalling.

  11. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  12. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance.

    Science.gov (United States)

    Li, Xue; Sipple, Jared; Pang, Qishen; Du, Wei

    2012-05-03

    Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide-induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress-induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside.

  13. BZLF1 Expression of EBV is correlated with PARP1 Regulation on Nasopharyngeal Carcinoma Tissues

    Directory of Open Access Journals (Sweden)

    Wahyu nur laili fajri, Ahmad Rofi'i, Fatchiyah Fatchiyah

    2013-04-01

    Full Text Available Nasopharyngeal carcinomas (NPC is a cancer that arises in the epithelial tissue that covers the inside of the nasopharyngeal mucosa and nasopharynx. Infected Epstein Barr Virus (EBV cell in a latent infection associated with the expression of nine latent proteins. Latent Membrane Protein 1 (LMP1 is one of latent proteins, and mayor EBV oncoprotein, with functions including virus growth, and to activate BamHI-Z Leftward Reading Frame 1 (BZLF1-EBV, which can inhibit p53 to induce apoptotic resistance, metastasis, and immune modulation. The body will respond to the expansion of EBV infection with activation of Poly(ADP-ribosePolymerase-1 (PARP1. The objective of study is to observe the expression of BZLF1 and determine PARP1 regulation in nasopharyngeal tissues. NPC-T2, NPC-T3 and polyp tissues slides are from Ulin Hospital, Banjarmasin. To characterize the necrotic cells such as pyknosis, karyorrhexsis, and karyolysis, histological slides were stained by HE that the necrotic cells measured by using a BX-53 microscope (Olympus with CellSens Standard software. Tissues slides were stained by using immunofluorohistochemistry with EBV-BZLF1 antibody-Mouse anti-EBV monoclonal antibody against Goat anti-mouse IgG-FITC and anti-PARP1 antibody (MC-10 against Goat anti-mouse IgG labeled Rhodamin. The expression intensities were measured by Confocal Laser Scanning Microscope (Olympus. The percentage number of necrotic cells and BZLF1 and PARP1 expression intensity were analyzed using SPSS 16.0 by one-way ANOVA test with α = 0.05, beside that we use correlate and regression analyze. The research showed that the amount of karryorhexis higher than pyknosis and karyolysis in both tissues. BZLF1 expression 1.79 INT/sel (in polyp, 2.76 INT/sel (NPC Type 2 and 4.36 INT/sel (NPC Type 3, PARP1 expression 2.25 INT/sel (in polyp, 3.31 INT/sel (NPC Type 2, dan 5.93 INT/sel (NPC Type 3.The high of intensity of expression BZLF1 induced the increasing of PARP1 expression

  14. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy

    Institute of Scientific and Technical Information of China (English)

    José Manuel Rodríguez-Vargas; Abelardo López Rivas; Marja J(a)(a)ttela; F Javier Oliver; María José Ruiz-Maga(n)a; Carmen Ruiz-Ruiz; Jara Majuelos-Melguizo; Andreína Peralta-Leal; María Isabel Rodríguez; José Antonio Mu(n)oz-Gámez; Mariano Ruiz de Almodóvar; Eva Siles

    2012-01-01

    In response to nutrient stress,cells start an autophagy program that can lead to adaptation or death.The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood.In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy.We have found that DNA damage is an early event of starvation-induced autophagy as measured by γ-H2AX accumulation and comet assay,with PARP-1 knockout cells displaying a reduction in both parameters.During starvation,ROS-induced DNA damage activates PARP-1,leading to ATP depletion (an early event after nutrient deprivation).The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity,leading to a delay in autophagy.PARP-1 depletion favors apoptosis in starved cells,suggesting a pro-survival role of autophagy and PARP-1 activation after nutrient deprivation.In vivo results show that neonates of PARP-1 mutant mice subjected to acute starvation,also display deficient liver autophagy,implying a physiological role for PARP-1 in starvation-induced autophagy.Thus,the PARP signaling pathway is a key regulator of the initial steps of autophagy commitment following starvation.

  15. The role of hnRPUL1 involved in DNA damage response is related to PARP1.

    Directory of Open Access Journals (Sweden)

    Zehui Hong

    Full Text Available Heterogeneous nuclear ribonucleoprotein U-like 1 (hnRPUL1 -also known as adenovirus early region 1B-associated proteins 5 (E1B-AP5 - plays a role in RNA metabolism. Recently, hnRPUL1 has also been shown to be involved in DNA damage response, but the function of hnRPUL1 in response to DNA damage remains unclear. Here, we have demonstrated that hnRPUL1 is associated with PARP1 and recruited to DNA double-strand breaks (DSBs sites in a PARP1-mediated poly (ADP-ribosyl ation dependent manner. In turn, hnRPUL1 knockdown enhances the recruitment of PARP1 to DSBs sites. Specifically, we showed that hnRPUL1 is also implicated in the transcriptional regulation of PARP1 gene. Thus, we propose hnRPUL1 as a new component related to PARP1 in DNA damage response and repair.

  16. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition

    Directory of Open Access Journals (Sweden)

    de Murcia Gilbert

    2007-04-01

    Full Text Available Abstract ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after γ-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced γ-H2AX foci formation in response to γ-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced γ H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway and activates ATM kinase.

  17. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ji Yang eKim

    2015-09-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP1 plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE in the distinct brain regions. In addition, P2X7 receptor (P2X7R, an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death. Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths.

  18. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Jelena Marković

    Full Text Available Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12 transcription. The roles of poly(ADP-ribose polymerase-1 (PARP-1 and transcription factor Yin Yang 1 (YY1 in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the

  19. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  20. Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair.

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    Full Text Available The apurinic/apyrimidinic- (AP- site in genomic DNA arises through spontaneous base loss and base removal by DNA glycosylases and is considered an abundant DNA lesion in mammalian cells. The base excision repair (BER pathway repairs the AP-site lesion by excising and replacing the site with a normal nucleotide via template directed gap-filling DNA synthesis. The BER pathway is mediated by a specialized group of proteins, some of which can be found in multiprotein complexes in cultured mouse fibroblasts. Using a DNA polymerase (pol β immunoaffinity-capture technique to isolate such a complex, we identified five tightly associated and abundant BER factors in the complex: PARP-1, XRCC1, DNA ligase III, PNKP, and Tdp1. AP endonuclease 1 (APE1, however, was not present. Nevertheless, the complex was capable of BER activity, since repair was initiated by PARP-1's AP lyase strand incision activity. Addition of purified APE1 increased the BER activity of the pol β complex. Surprisingly, the pol β complex stimulated the strand incision activity of APE1. Our results suggested that PARP-1 was responsible for this effect, whereas other proteins in the complex had no effect on APE1 strand incision activity. Studies of purified PARP-1 and APE1 revealed that PARP-1 was able to stimulate APE1 strand incision activity. These results illustrate roles of PARP-1 in BER including a functional partnership with APE1.

  1. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    Energy Technology Data Exchange (ETDEWEB)

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  2. Non-NAD-Like poly(ADP-Ribose Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo

    Directory of Open Access Journals (Sweden)

    Colin Thomas

    2016-11-01

    Full Text Available The clinical potential of PARP-1 inhibitors has been recognized >10 years ago, prompting intensive research on their pharmacological application in several branches of medicine, particularly in oncology. However, natural or acquired resistance of tumors to known PARP-1 inhibitors poses a serious problem for their clinical implementation. Present study aims to reignite clinical interest to PARP-1 inhibitors by introducing a new method of identifying highly potent inhibitors and presenting the largest known collection of structurally diverse inhibitors. The majority of PARP-1 inhibitors known to date have been developed as NAD competitors. NAD is utilized by many enzymes other than PARP-1, resulting in a trade-off trap between their specificity and efficacy. To circumvent this problem, we have developed a new strategy to blindly screen a small molecule library for PARP-1 inhibitors by targeting a highly specific rout of its activation. Based on this screen, we present a collection of PARP-1 inhibitors and provide their structural classification. In addition to compounds that show structural similarity to NAD or known PARP-1 inhibitors, the screen identified structurally new non-NAD-like inhibitors that block PARP-1 activity in cancer cells with greater efficacy and potency than classical PARP-1 inhibitors currently used in clinic. These non-NAD-like PARP-1 inhibitors are effective against several types of human cancer xenografts, including kidney, prostate, and breast tumors in vivo. Our pre-clinical testing of these inhibitors using laboratory animals has established a strong foundation for advancing the new inhibitors to clinical trials.

  3. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia.

    Science.gov (United States)

    Hoch, Nicolas C; Hanzlikova, Hana; Rulten, Stuart L; Tétreault, Martine; Komulainen, Emilia; Ju, Limei; Hornyak, Peter; Zeng, Zhihong; Gittens, William; Rey, Stephanie A; Staras, Kevin; Mancini, Grazia M S; McKinnon, Peter J; Wang, Zhao-Qi; Wagner, Justin D; Yoon, Grace; Caldecott, Keith W

    2017-01-05

    XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.

  4. Effects of PARP-1 deficiency on airway inflammatory cell recruitment in response to LPS or TNF: differential effects on CXCR2 ligands and Duffy Antigen Receptor for Chemokines.

    Science.gov (United States)

    Zerfaoui, Mourad; Naura, Amarjit S; Errami, Youssef; Hans, Chetan P; Rezk, Bashir M; Park, Jiwon; Elsegeiny, Waleed; Kim, Hogyoung; Lord, Kevin; Kim, Jong G; Boulares, A Hamid

    2009-12-01

    We reported that PARP-1 exhibits differential roles in expression of inflammatory factors. Here, we show that PARP-1 deletion was associated with a significant reduction in inflammatory cell recruitment to mouse airways upon intratracheal administration of LPS. However, PARP-1 deletion exerted little effect in response to TNF exposure. LPS induced massive neutrophilia and moderate recruitment of macrophages, and TNF induced recruitment of primarily macrophages with smaller numbers of neutrophils in the lungs. Following either exposure, macrophage recruitment was blocked severely in PARP-1(-/-) mice, and this was associated with a marked reduction in MCP-1 and MIP-1alpha. This association was corroborated partly by macrophage recruitment in response to intratracheal administration of MCP-1 in PARP-1(-/-) mice. Surprisingly, although neutrophil recruitment was reduced significantly in LPS-treated PARP-1(-/-) mice, neutrophil numbers increased in TNF-treated mice, suggesting that PARP-1 deletion may promote a macrophagic-to-neutrophilic shift in the inflammatory response upon TNF exposure. Neutrophil-specific chemokines mKC and MIP-2 were reduced significantly in lungs of LPS-treated but only partially reduced in TNF-treated PARP-1(-/-) mice. Furthermore, the MIP-2 antagonist abrogated the shift to a neutrophilic response in TNF-exposed PARP-1(-/-) mice. Although CXCR2 expression increased in response to either stimulus in PARP-1(+/+) mice, the DARC increased only in lungs of TNF-treated PARP-1(+/+) mice; both receptors were reduced to basal levels in treated PARP-1(-/-) mice. Our results show that the balance of pro-neutrophilic or pro-macrophagic stimulatory factors and the differential influence of PARP-1 on these factors are critical determinants for the nature of the airway inflammatory response.

  5. Matrix Metalloproteinase-2 (MMP-2) Gene Deletion Enhances MMP-9 Activity, Impairs PARP-1 Degradation, and Exacerbates Hepatic Ischemia and Reperfusion Injury in Mice.

    Science.gov (United States)

    Kato, Hiroyuki; Duarte, Sergio; Liu, Daniel; Busuttil, Ronald W; Coito, Ana J

    2015-01-01

    Hepatic ischemia and reperfusion injury (IRI) is an inflammatory condition and a significant cause of morbidity and mortality after surgery. Matrix metalloproteinases (MMPs) have been widely implicated in the pathogenesis of inflammatory diseases. Among the different MMPs, gelatinases (MMP-2 and MMP-9) are within the most prominent MMPs detected during liver IRI. While the role of MMP-9 in liver damage has been fairly documented, direct evidence of the role for MMP-2 activity in hepatic IRI remains to be established. Due to the lack of suitable inhibitors to target individual MMPs in vivo, gene manipulation is as an essential tool to assess MMP direct contribution to liver injury. Hence, we used MMP-2-/- deficient mice and MMP-2+/+ wild-type littermates to examine the function of MMP-2 activity in hepatic IRI. MMP-2 expression was detected along the sinusoids of wild-type livers before and after surgery and in a small population of leukocytes post-IRI. Compared to MMP-2+/+ mice, MMP-2 null (MMP-2-/-) mice showed exacerbated liver damage at 6, 24, and 48 hours post-reperfusion, which was fatal in some cases. MMP-2 deficiency resulted in upregulation of MMP-9 activity, spontaneous leukocyte infiltration in naïve livers, and amplified MMP-9-dependent transmigration of leukocytes in vitro and after hepatic IRI. Moreover, complete loss of MMP-2 activity impaired the degradation of poly (ADP-ribose) polymerase (PARP-1) in extensively damaged livers post-reperfusion. However, the administration of a PARP-1 inhibitor to MMP-2 null mice restored liver preservation to almost comparable levels of MMP-2+/+ mice post-IRI. Deficient PARP-1 degradation in MMP-2-null sinusoidal endothelial cells correlated with their increased cytotoxicity, evaluated by the measurement of LDH efflux in the medium. In conclusion, our results show for the first time that MMP-2 gene deletion exacerbates liver IRI. Moreover, they offer new insights into the MMP-2 modulation of inflammatory responses

  6. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  7. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  8. Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology.

    Science.gov (United States)

    Liu, Long; Lear, Zoe; Hughes, David J; Wu, Weining; Zhou, En-min; Whitehouse, Adrian; Chen, Hongying; Hiscox, Julian A

    2015-03-23

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry and food security worldwide. The nucleocapsid (N) protein is a major structural protein of PRRSV. The primary function of this protein is to encapsidate the viral RNA genome, and it is also thought to participate in the modulation of host cell biology and recruitment of cellular factors to facilitate virus infection. In order to the better understand these latter roles the cellular interactome of PRRSV N protein was defined using label free quantitative proteomics. This identified several cellular factors that could interact with the N protein including poly [ADP-ribose] polymerase 1 (PARP-1), a cellular protein, which can add adenosine diphosphate ribose to a protein. Use of the PARP-1 small molecule inhibitor, 3-AB, in PRRSV infected cells demonstrated that PARP-1 was required and acted as an enhancer factor for virus biology. Serial growth of PRRSV in different concentrations of 3-AB did not yield viruses that were able to grow with wild type kinetics, suggesting that by targeting a cellular protein crucial for virus biology, resistant phenotypes did not emerge. This study provides further evidence that cellular proteins, which are critical for virus biology, can also be targeted to ablate virus growth and provide a high barrier for the emergence of drug resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells.

    Science.gov (United States)

    Castiel, Asher; Visochek, Leonid; Mittelman, Leonid; Zilberstein, Yael; Dantzer, Francoise; Izraeli, Shai; Cohen-Armon, Malka

    2013-08-21

    Phenanthrene derivatives acting as potent PARP1 inhibitors prevented the bi-focal clustering of supernumerary centrosomes in multi-centrosomal human cancer cells in mitosis. The phenanthridine PJ-34 was the most potent molecule. Declustering of extra-centrosomes causes mitotic failure and cell death in multi-centrosomal cells. Most solid human cancers have high occurrence of extra-centrosomes. The activity of PJ-34 was documented in real-time by confocal imaging of live human breast cancer MDA-MB-231 cells transfected with vectors encoding for fluorescent γ-tubulin, which is highly abundant in the centrosomes and for fluorescent histone H2b present in the chromosomes. Aberrant chromosomes arrangements and de-clustered γ-tubulin foci representing declustered centrosomes were detected in the transfected MDA-MB-231 cells after treatment with PJ-34. Un-clustered extra-centrosomes in the two spindle poles preceded their cell death. These results linked for the first time the recently detected exclusive cytotoxic activity of PJ-34 in human cancer cells with extra-centrosomes de-clustering in mitosis, and mitotic failure leading to cell death. According to previous findings observed by confocal imaging of fixed cells, PJ-34 exclusively eradicated cancer cells with multi-centrosomes without impairing normal cells undergoing mitosis with two centrosomes and bi-focal spindles. This cytotoxic activity of PJ-34 was not shared by other potent PARP1 inhibitors, and was observed in PARP1 deficient MEF harboring extracentrosomes, suggesting its independency of PARP1 inhibition. Live confocal imaging offered a useful tool for identifying new molecules eradicating cells during mitosis.

  10. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.

    Science.gov (United States)

    Gerace, E; Masi, A; Resta, F; Felici, R; Landucci, E; Mello, T; Pellegrini-Giampietro, D E; Mannaioni, G; Moroni, F

    2014-10-01

    An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting

  11. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy

    DEFF Research Database (Denmark)

    Rodríguez-Vargas, José Manuel; Ruiz-Magaña, María José; Ruiz-Ruiz, Carmen

    2012-01-01

    In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly ...... steps of autophagy commitment following starvation....

  12. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.

    Science.gov (United States)

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E; Iliakis, George

    2014-06-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Sulforaphane inhibits damage-induced poly (ADP-ribosyl)ation via direct interaction of its cellular metabolites with PARP-1.

    Science.gov (United States)

    Piberger, Ann Liza; Keil, Claudia; Platz, Stefanie; Rohn, Sascha; Hartwig, Andrea

    2015-11-01

    The isothiocyanate sulforaphane, a major breakdown product of the broccoli glucosinolate glucoraphanin, has frequently been proposed to exert anticarcinogenic properties. Potential underlying mechanisms include a zinc release from Kelch-like ECH-associated protein 1 followed by the induction of detoxifying enzymes. This suggests that sulforaphane may also interfere with other zinc-binding proteins, e.g. those essential for DNA repair. Therefore, we explored the impact of sulforaphane on poly (ADP-ribose)polymerase-1 (PARP-1), poly (ADP-ribosyl)ation (PARylation), and DNA single-strand break repair (SSBR) in cell culture. Immunofluorescence analyses showed that sulforaphane diminished H2 O2 -induced PARylation in HeLa S3 cells starting from 15 μM despite increased lesion induction under these conditions. Subcellular experiments quantifying the damage-induced incorporation of (32) P-ADP-ribose by PARP-1 displayed no direct impact of sulforaphane itself, but cellular metabolites, namely the glutathione conjugates of sulforaphane and its interconversion product erucin, reduced PARP-1 activity concentration dependently. Interestingly, this sulforaphane metabolite-induced PARP-1 inhibition was prevented by thiol compounds. PARP-1 is a stimulating factor for DNA SSBR-rate and we further demonstrated that 25 μM sulforaphane also delayed the rejoining of H2 O2 -induced DNA strand breaks, although this might be partly due to increased lesion frequencies. Sulforaphane interferes with damage-induced PARylation and SSBR, which implies a sulforaphane-dependent impairment of genomic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    Science.gov (United States)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-08-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.

  15. Effect of combination of poly(ADP-ribose)polymerase inhibitor and sildenafil on erectile function in diabetic rats%多聚ADP-核糖聚合酶抑制剂联合西地那非改善糖尿病大鼠勃起功能的研究

    Institute of Scientific and Technical Information of China (English)

    付桥; 张景宇; 张志超

    2012-01-01

    Objective To investigate the effect of combination of poly( ADP - ribose )polymerase ( PARP )inhibitor and sildenafil on erectile function in diabetic rats. Methods Forty male SD rats were randomly divided into four groups: normal control group, diabetic + sildenafil group, diabetic + PJ - 34 group and diabetic + PJ - 34 + sildenafil group. Sexual activity triggered by apomorphine was observed in each group. Mean arterial pressure( MAP )and intracavernous pressure( ICP )induced by electrostimulation of penile dorsal nerves were measured. The corporal tissue was obtained to detect the caspas - 3 activity. Results PARP blockade by PJ - 34 to some extent prevented diabetes - associated apoptosis. The caspas - 3 activity was significantly increased in diabetic rats. The sexual activity and ICP/MAP level in diabetic + sildenafil group and diabetic + PJ - 34 group were significantly lower than those in normal control group. The efficiency of combination of PARP inhibitor and sildenafil was significantly higher than single drug application. Conclusion Our results indicate that combination of PARP inhibitor and sildenafil can significantly improve erectile function in diabetic rats, providing experimental groundwork for a new therapeutic intervention for the treatment of diabetes - associated erectile dysfunction.%目的 探讨多聚ADP-核糖聚合酶抑制剂(PJ-34)联合西地那非对糖尿病大鼠勃起功能的影响.方法 40只雄性SD大鼠随机分为正常对照组、糖尿病+西地那非组、糖尿病+PJ-34组、糖尿病+PJ-34+西地那非组.测定各组大鼠阿扑吗啡诱导下的性行为变化;电刺激盆神经测定各组大鼠阴茎海绵体内压(ICP)及平均周围动脉压(MAP),然后取海绵体组织测定Caspase-3活性.结果 Caspase-3活性在糖尿病大鼠中显著升高,PJ-34治疗可有效抑制其活性.糖尿病+西地那非组、糖尿病+PJ-34组性行为能力及ICP/MA均低于正常对照组,PJ-34与西地那非联合应用疗效

  16. PARP-1基因Val762Ala多态性与乳腺癌易感性的关系%Relation between PARP-1 Val762Ala Polymorphisms and Susceptibility to Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    王昆鹏; 杨淋清; 刘建军; 庄志雄; 任泽舫

    2011-01-01

    [ Objective] To investigate the association between the Val762Ala polymorphisms of the poly( ADP-ribose) polymerase-1 (PARP-1) gene and susceptibility to breast cancer in a Chinese population. [ Methods] PARP-1 Val762Ala genotyping were conducted in 837 breast carcinoma patients and 865 cancer-free controls by Sequenom MassARRAY (SNP) genotype analysis technique. The associations between genotypes and breast cancer risk were estimated by computing the Ors and their 95% Cis from non-conditional logistic regression analyses. Experiment data was analyzed by using SPSS13.0 software. [Results]The differences of genotype IT, TC, Ccand TC + CC distributions between patients and controls were not significant, Off [95% CI] values were 1, 1. 07 (0.83 -1.39), 1.03 (0.70 ~ 1.467, 1.08 (0.82 ~ 1. 33). [ Conclusion ] Val762Ala is not obviously correlated with susceptibility to breast cancer. tThe PARP-1 Val762Ala polymorphisms may not play a role in the etiology of breast cancer.%目的 探讨DNA修复基因聚腺苷二磷酸核糖聚合酶-1(PARP-1)单核苷酸多态性位点Val762Ala基因多态性与中国人群乳腺癌易感性的关系.方法 采用Sequenom MassARRAY单核苷酸多态性(SNP)基因型分析技术对经病理确诊的原发性乳腺癌女性患者837例(病例组)和健康对照组865例进行PARP-1基因单核苷酸位点Val762Ala基因分型.以非条件logistic回归计算优势比(odds ratio,OR)及其95%可信区间(a)评价各基因型与乳腺癌发病风险的关系.数据均由SPSS13.0统计软件分析.结果 病例组和对照组中TT、TC、CC和TC+CC4种基因型的分布分别差异无统计学意义,OR[95%CI]值分别为1、1.07(0.83~1.39)、1.03(0.70~1.36)、1.08(0.82 ~1.33).结论 Val762Ala基因型与乳腺癌易感性无显著相关性.PARP-1基因Val762Ala多态性在乳腺癌发病过程中无作用.

  17. Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Edit, E-mail: edit.nagy@karolinska.se [Department of Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Cardiology, Karolinska University Hospital, Stockholm (Sweden); Caidahl, Kenneth [Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (Sweden); Department of Clinical Physiology, Karolinska University Hospital, Stockholm (Sweden); Franco-Cereceda, Anders [Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (Sweden); Department of Throracic Surgery, Karolinska University Hospital, Stockholm (Sweden); Baeck, Magnus [Department of Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Cardiology, Karolinska University Hospital, Stockholm (Sweden)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Oxidative stress has been implicated in the pathomechanism of calcific aortic valve stenosis. Black-Right-Pointing-Pointer We assessed the transcript levels for PARP-1 (poly(ADP-ribose) polymerase), acts as a DNA damage nick sensor in stenotic valves. Black-Right-Pointing-Pointer Early stage of diseased tricuspid valves exhibited higher mRNA levels for PARP-1 compared to bicuspid valves. Black-Right-Pointing-Pointer The mRNA levels for PARP-1 inversely correlated with the clinical stenosis severity in tricuspid valves. Black-Right-Pointing-Pointer Our data demonstrated that DNA damage pathways might be associated with stenosis severity only in tricuspid valves. -- Abstract: Oxidative stress may contribute to the hemodynamic progression of aortic valve stenosis, and is associated with activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) 1. The aim of the present study was to assess the transcriptional profile and the topological distribution of PARP-1 in human aortic valves, and its relation to the stenosis severity. Human stenotic aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery and used for mRNA extraction followed by quantitative real-time PCR to correlate the PARP-1 expression levels with the non invasive hemodynamic parameters quantifying the stenosis severity. Primary isolated valvular interstitial cells (VICs) were used to explore the effects of cytokines and leukotriene C{sub 4} (LTC{sub 4}) on valvular PARP-1 expression. The thickened areas of stenotic valves with tricuspid morphology expressed significantly higher levels of PARP-1 mRNA compared with the corresponding part of bicuspid valves (0.501 vs 0.243, P = 0.01). Furthermore, the quantitative gene expression levels of PARP-1 were inversely correlated with the aortic valve area (AVA) (r = -0.46, P = 0.0469) and AVA indexed for body surface area (BSA) (r = -0.498; P = 0.0298) only in tricuspid aortic valves

  18. PARP-1基因沉默的子宫内膜癌细胞Ishikawa放射敏感性观察

    Institute of Scientific and Technical Information of China (English)

    王静; 陆晓媛; 朱翔翡; 彭琼; 刘福民; 冯霞; 刘小云

    2016-01-01

    目的 观察PARP-1基因沉默的子宫内膜癌细胞Ishikawa的放射敏感性.方法 子宫内膜癌Ishikawa细胞分为Ishikawa/scramble组(细胞转染scramble-shRNA)、Ishikawa/shPARP-1组(细胞转染PARP-1-shRNA).采用CCK-8实验测算两组0、2、4、6、8Gy照射剂量下的细胞增殖率.采用平板克隆形成实验并利用Graphpad prism 5.0软件,根据单击多靶模型拟合细胞存活曲线,计算两组放射生物学相关参数(K、N、D0、Dq、SF2).结果 2、4、6、8Gy射线照射后,Ishikawa/shPARP-1组细胞增殖率较Ishikawa/scramble组低(P均<0.05).Ishikawa/shPARP-1组放射生物学参数K为0.863、N为3.987、D0为1.158、Dq为0.837、SF2为0.50,Ishikawa/scramble组分别为0.605、3.534、1.653、1.309、0.73;Ishikawa/scramble组与Ishikawa/shPARP-1组的放射增敏比为1.43(D0值比)和1.56(Dq值比).结论 PARP-1基因沉默的人子宫内膜癌细胞Ishikawa的放射敏感性增强.

  19. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway.

    Science.gov (United States)

    Xu, Ping; Cai, Xinhua; Zhang, Wenbo; Li, Yana; Qiu, Peiyong; Lu, Dandan; He, Xiaoyang

    2016-10-01

    The objective of our study was to assess the radioprotective effect of flavonoids extracted from Rosa roxburghii Tratt (FRT) and investigate the role of Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in radiation-induced apoptosis. Cells and mice were exposed to (60)Co γ-rays at a dose of 6 Gy. The radiation treatment induced significant effects on tissue pathological changes, apoptosis, Ca(2+), ROS, DNA damage, and expression levels of Bcl-2, Caspase-3 (C-Caspase-3), and PARP-1. The results showed that FRT acted as an antioxidant, reduced DNA damage, corrected the pathological changes of the tissue induced by radiation, promoted the formation of spleen nodules, resisted sperm aberration, and protected the thymus. FRT significantly reduced cell apoptosis compared with the irradiation group. The expression of Ca(2+) and C-Caspase-3 was decreased after FRT treatment compared with the radiation-treated group. At the same time, expression of prototype PARP-1 and Bcl-2 increased, leading to a decrease in the percentage of apoptosis cells in FRT treatment groups. We conclude that FRT acts as a radioprotector. Apoptosis signals were activated via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in irradiated cells and FRT inhibited this pathway of apoptosis by down-regulation of C-Caspase-3 and Ca(2+) and up-regulation of prototype PARP-1 and Bcl-2.

  20. Effect of APE1 T2197G (Asp148Glu Polymorphism on APE1, XRCC1, PARP1 and OGG1 Expression in Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Juliana C. Santos

    2014-09-01

    Full Text Available It has been hypothesized that genetic variation in base excision repair (BER might modify colorectal adenoma risk. Thus, we evaluated the influence of APE1 T2197G (Asp148Glu polymorphism on APE1, XRCC1, PARP1 and OGG1 expression in normal and tumor samples from patients with colorectal cancer. The results indicate a downregulation of OGG1 and an upregulation of XRCC1 expression in tumor tissue. Regarding the anatomical location of APE1, OGG1 and PARP-1, a decrease in gene expression was observed among patients with cancer in the rectum. In patients with or without some degree of tumor invasion, a significant downregulation in OGG1 was observed in tumor tissue. Interestingly, when taking into account the tumor stage, patients with more advanced grades (III and IV showed a significant repression for APE1, OGG1 and PARP-1. XRCC1 expression levels were significantly enhanced in tumor samples and were correlated with all clinical and histopathological data. Concerning the polymorphism T2197G, GG genotype carriers exhibited a significantly reduced expression of genes of the BER repair system (APE1, XRCC1 and PARP1. In summary, our data show that patients with colorectal cancer present expression changes in several BER genes, suggesting a role for APE1, XRCC1, PARP1 and OGG1 and APE1 polymorphism in colorectal carcinogenesis.

  1. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  2. Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia.

    Science.gov (United States)

    Suh, Sang Won; Aoyama, Koji; Chen, Yongmei; Garnier, Philippe; Matsumori, Yasuhiko; Gum, Elizabeth; Liu, Jialing; Swanson, Raymond A

    2003-11-19

    Severe hypoglycemia causes neuronal death and cognitive impairment. Evidence suggests that hypoglycemic neuronal death involves excitotoxicity and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but promotes cell death when extensively activated by DNA damage. Cortical neuron cultures were subjected to glucose deprivation to assess the role of PARP-1 in hypoglycemic neuronal death. PARP-1-/- neurons and wild-type, PARP-1+/+ neurons treated with the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone both showed increased resistance to glucose deprivation. A rat model of insulin-induced hypoglycemia was used to assess the therapeutic potential of PARP inhibitors after hypoglycemia. Rats subjected to severe hypoglycemia (30 min EEG isoelectricity) accumulated both nitrotyrosine and the PARP-1 product, poly(ADP-ribose), in vulnerable neurons. Treatment with PARP inhibitors immediately after hypoglycemia blocked production of poly(ADP-ribose) and reduced neuronal death by >80% in most brain regions examined. Increased neuronal survival was also achieved when PARP inhibitors were administered up to 2 hr after blood glucose correction. Behavioral and histological assessments performed 6 weeks after hypoglycemia confirmed a sustained salutary effect of PARP inhibition. These results suggest that PARP-1 activation is a major factor mediating hypoglycemic neuronal death and that PARP-1 inhibitors can rescue neurons that would otherwise die after severe hypoglycemia.

  3. Withania somnifera Improves Ischemic Stroke Outcomes by Attenuating PARP1-AIF-Mediated Caspase-Independent Apoptosis.

    Science.gov (United States)

    Raghavan, Aparna; Shah, Zahoor A

    2015-12-01

    Withania somnifera (WS), popularly known as "Ashwagandha" has been used for centuries as a nerve tonic. Its protective effect has been elucidated in many neurodegenerative pathologies, although there is a paucity of data regarding its effects in ischemic stroke. We examined the neuroprotective properties of an aqueous extract of WS in both pre- and poststroke treatment regimens in a mouse model of permanent distal middle cerebral artery occlusion (pMCAO). WS (200 mg/kg) improved functional recovery and significantly reduced the infarct volume in mice, when compared to those treated with vehicle, in both paradigms. We investigated the protective mechanism/s induced by WS using brain cortices by testing its ability to modulate the expression of key proteins in the ischemic-apoptotic cascade. The Western blots and immunofluorescence analyses of mice cortices revealed that WS upregulated the expression of hemeoxygenase 1 (HO1) and attenuated the expression of the proapoptotic protein poly (ADP-ribose) polymerase-1 (PARP1) via the PARP1-AIF pathway, thus preventing the nuclear translocation of apoptosis-inducing factor (AIF), and subsequent apoptosis. Semaphorin-3A (Sema3A) expression was reduced in WS-treated group, whereas Wnt, pGSK3β, and pCRMP2 expression levels were virtually unaltered. These results indicate the interplay of antioxidant-antiapoptic pathways and the possible involvement of angiogenesis in the protective mechanism of WS while emphasizing the noninvolvement of one of the prime pathways of neurogenesis. Our results suggest that WS could be a potential prophylactic as well as a therapeutic agent aiding stroke repair, and that part of its mechanism could be attributed to its antiapoptotic and antioxidant properties.

  4. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    Science.gov (United States)

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins.

  5. Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Bioisosteres.

    Science.gov (United States)

    Ekblad, Torun; Schüler, Herwig

    2016-03-01

    PARP-family ADP-ribosyltransferases (PARPs) and sirtuin deacetylases all use NAD(+) as cosubstrate for ADP-ribosyl transfer. PARP inhibitors are important research tools and several are being evaluated in cancer treatment. With the exception of a few tankyrase inhibitors, all current PARP inhibitors mimic the nicotinamide moiety in NAD(+) and block the nicotinamide binding pocket. We report here that while the activities of the four human sirtuin isoforms SIRT1, SIRT2, SIRT3 and SIRT6 are blocked by sirtuin inhibitor Ex527 in vitro, they are unaffected by the seven clinical and commonly used PARP inhibitors niraparib, olaparib, rucaparib, talazoparib, veliparib, PJ34, and XAV939. These findings indicate that PARP inhibitors containing planar nicotinamide mimetics do not bind to sirtuin cofactor sites. In conclusion, a simple commercially available assay can be used to rule out interference of novel PARP inhibitors with sirtuin NAD(+) binding. © 2015 John Wiley & Sons A/S.

  6. PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR

    Science.gov (United States)

    Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan; Wen, Jitao; Wang, Ke; Jiang, Xue; Tian, Xue; Ba, Xueqing; Boldogh, Istvan; Zeng, Xianlu

    2017-01-01

    Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding. Increases in mRNA level or stability of pro-inflammatory cytokines/chemokines are abolished by PARP1 ablation or inhibition, or blocked in D226A HuR-expressing cells. The present study demonstrates a mechanism to regulate gene expression at the post-transcriptional level, and suggests that blocking the interaction of PARP1 with HuR could be a strategy to treat inflammation-related diseases that involve increased mRNA stability. PMID:28272405

  7. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage

    Science.gov (United States)

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M.; Lage, Silvia L.; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P.; Hottiger, Michael O.; De Carvalho, Daniel D.; Bortoluci, Karina R.

    2017-01-01

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases. PMID:28150715

  8. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner

    Science.gov (United States)

    Xu, Zhu; Zhang, Lei; Zhang, Wenjun; Meng, Du; Zhang, Hongxia; Jiang, Ying; Xu, Xiaojun; Van Meter, Michael; Seluanov, Andrei; Gorbunova, Vera; Mao, Zhiyong

    2015-01-01

    In principle, a decline in base excision repair (BER) efficiency with age should lead to genomic instability and ultimately contribute to the onset of the aging phenotype. Although multiple studies have indicated a negative link between aging and BER, the change of BER efficiency with age in humans has not been systematically analyzed. Here, with foreskin fibroblasts isolated from 19 donors between 20 and 64 y of age, we report a significant decline of BER efficiency with age using a newly developed GFP reactivation assay. We further observed a very strong negative correlation between age and the expression levels of SIRT6, a factor which is known to maintain genomic integrity by improving DNA double strand break (DSB) repair. Our mechanistic study suggests that, similar to the regulatory role that SIRT6 plays in DNA DSB repair, SIRT6 regulates BER in a PARP1-depdendent manner. Moreover, overexpression of SIRT6 rescues the decline of BER in aged fibroblasts. In summary, our results uncovered the regulatory mechanisms of BER by SIRT6, suggesting that SIRT6 reactivation in aging tissues may help delay the process of aging through improving BER. PMID:25607651

  9. 3-aminobenzamide, one of poly(ADP-ribose)polymerase-1 inhibitors, rescuesapoptosisin rat models of spinal cord injury.

    Science.gov (United States)

    Meng, Xianqing; Song, Wenqi; Deng, Bin; Xing, Ziling; Zhang, Weihong

    2015-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is anubiquitous, DNA repair-associated enzyme, which participates in gene expression, cell death, central nerve system (CNS) disorders and oxidative stress. According to the previous studies, PARP-1 over-activation may lead to over-consumption of ATP and even cell apoptosis. Spinal cord injury (SCI) is an inducement towards PARP-1 over-activation due to its massive damage to DNA. 3-aminobenzamide (3-AB) is a kind of PARP-1 inhibitors. The relationship among PARP-1, 3-AB, SCI and apoptosis has not been fully understood. Hence, in the present study, we focused on the effects of 3-AB on cell apoptosis after SCI. Accordingly, SCI model was constructed artificially, and 3-AB was injected intrathecally into the Sprague-Dawley (SD) rats. The results demonstrated an increase in cell apoptosis after SCI. Furthermore, PARP-1 was over-activated after SCI but inhibited by 3-AB injection. In addition, apoptosis-inducing factor (AIF) was inhibited but B-cell lymphoma-2 (Bcl-2) was up-regulated by 3-AB. Interestingly, caspase-3 was not significantly altered with or without 3-AB. In conclusion, our experiments showed that 3-AB, as a PARP-1 inhibitor, could inhibit cell apoptosis after SCI in caspase-independent way, which could provide a better therapeutic target for the treatment of SCI.

  10. DNA double-strand breaks coupled with PARP1 and HNRNPA2B1 binding sites flank coordinately expressed domains in human chromosomes.

    Directory of Open Access Journals (Sweden)

    Nickolai A Tchurikov

    2013-04-01

    Full Text Available Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50-250 kb DNA domains. We found that about 30% of the domains (denoted forum domains possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites.

  11. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias.

    Science.gov (United States)

    Muvarak, Nidal; Kelley, Shannon; Robert, Carine; Baer, Maria R; Perrotti, Danilo; Gambacorti-Passerini, Carlo; Civin, Curt; Scheibner, Kara; Rassool, Feyruz V

    2015-04-01

    Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets. ©2015 American Association for Cancer Research.

  12. PARP inhibitors.

    Science.gov (United States)

    Anwar, Maheen; Aslam, Hafiz Muhammad; Anwar, Shahzad

    2015-01-01

    Poly (ADP-ribose) polymerases, abbreviated as PARPs, are a group of familiar proteins that play a central role in DNA repair employing the base excision repair (BER) pathway. There about 17 proteins in this family out of which the primary nuclear PARPs are PARP-1, PARP-2, PARP-3, and tankyrases 1 and 2 (PARP-5a and -5b) .The PARP family members are known to engage in a wide range of cellular activities, for example, DNA repair, transcription, cellular signaling, cell cycle regulation and mitosis amongst others. The chief functional units of PARP-1 are an amino terminal DNA binding domain (DBD), a central auto modification domain (AMD), and a carboxyl-terminal catalytic domain (CD). PARP inhibitors are currently undergoing clinical trials as targeted treatment modalities of breast, uterine, colorectal and ovarian cancer. This review summarizes current insights into the mechanism of action of PARP inhibitors, its recent clinical trials, and potential next steps in the evaluation of this promising class of anti-cancer drugs.

  13. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model.

    Science.gov (United States)

    Kuenzler, Michael B; Nuss, Katja; Karol, Agnieszka; Schär, Michael O; Hottiger, Michael; Raniga, Sumit; Kenkel, David; von Rechenberg, Brigitte; Zumstein, Matthias A

    2017-05-01

    Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Differential Potential of Pharmacological PARP Inhibitors for Inhibiting Cell Proliferation and Inducing Apoptosis in Human Breast Cancer Cells.

    Science.gov (United States)

    Węsierska-Gądek, Józefa; Mauritz, Matthias; Mitulovic, Goran; Cupo, Maria

    2015-12-01

    BRCA1/2-mutant cells are hypersensitive to inactivation of poly(ADP-ribose) polymerase 1 (PARP-1). We recently showed that inhibition of PARP-1 by NU1025 is strongly cytotoxic for BRCA1-positive BT-20 cells, but not BRCA1-deficient SKBr-3 cells. These results raised the possibility that other PARP-1 inhibitors, particularly those tested in clinical trials, may be more efficacious against BRCA1-deficient SKBr-3 breast cancer cells than NU1025. Thus, in the presented study the cytotoxicity of four PARP inhibitors under clinical evaluation (olaparib, rucaparib, iniparib and AZD2461) was examined and compared to that of NU1025. The sensitivity of breast cancer cells to the PARP-1 inhibition strongly varied. Remarkably, BRCA-1-deficient SKBr-3 cells were almost completely insensitive to NU1025, olaparib and rucaparib, whereas BRCA1-expressing BT-20 cells were strongly affected by NU1025 even at low doses. In contrast, iniparib and AZD2461 were cytotoxic for both BT-20 and SKBr-3 cells. Of the four tested PARP-1 inhibitors only AZD2461 strongly affected cell cycle progression. Interestingly, the anti-proliferative and pro-apoptotic potential of the tested PARP-1 inhibitors clearly correlated with their capacity to damage DNA. Further analyses revealed that proteomic signatures of the two studied breast cancer cell lines strongly differ, and a set of 197 proteins was differentially expressed in NU1025-treated BT-20 cancer cells. These results indicate that BT-20 cells may harbor an unknown defect in DNA repair pathway(s) rendering them sensitive to PARP-1 inhibition. They also imply that therapeutic applicability of PARP-1 inhibitors is not limited to BRCA mutation carriers but can be extended to patients harboring deficiencies in other components of the pathway(s). © 2015 Wiley Periodicals, Inc.

  15. In vivo repair of DNA damage induced by X-rays in the early stages of mouse fertilization, and the influence of maternal PARP1 ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pacchierotti, F., E-mail: francesca.pacchierotti@enea.it [Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Ranaldi, R. [Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Derijck, A.A.; Heijden, G.W. van der; Boer, P. de [Radboud University Nijmegen Medical Centre, Department of Obstetrics and Gynaecology, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2011-09-01

    Highlights: {yields} We measure {gamma}H2AX and chromosome aberrations in mouse zygotes irradiated in vivo. {yields} We compare effects between zygotes obtained from wild type or Parp1 knockout females. {yields} The rate of chromosome aberrations is as high as that previously induced in vitro. {yields} The rate of radiation-induced {gamma}H2AX foci is lower than that measured in other cells. {yields} Without Parp1 there are more {gamma}H2AX foci but chromosome aberration rate is unaffected. - Abstract: The early pronucleus stage of the mouse zygote has been characterised in vitro as radiosensitive, due to a high rate of induction of chromosome-type chromosome abnormalities (CA). We have investigated the repair of irradiation induced double strand DNA breaks in vivo by {gamma}H2AX foci and first cleavage metaphase analysis. Breaks were induced in sperm and in the early zygote stages comprising sperm chromatin remodelling and early pronucleus expansion. Moreover, the role of PARP1 in the formation and repair of spontaneous and radiation-induced double strand breaks in the zygote was evaluated by comparing observations in C57BL/6J and PARP1 genetically ablated females. The results confirmed in vivo that the rate of chromosome aberration induction by X-rays was approximately 3-fold higher in the zygote than in mouse lymphocytes. This finding was related to a diminished efficiency of double strand break signalling, as shown by a lower rate of {gamma}H2AX radiation-induced foci compared to that measured in most other somatic cell types. The spontaneous frequency of CA in PARP1 depleted zygotes was slightly but significantly higher than in wild type zygotes. Also, these zygotes showed some impairment of the radiation-induced DNA Damage Response when exposed closer to the start of S-phase, revealed by a higher number of {gamma}H2AX foci and a longer cell cycle delay. The rate of chromosome aberrations, however, was not elevated over that of wild type zygotes, possibly

  16. Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca(2+) Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?

    Science.gov (United States)

    Gerace, Elisabetta; Pellegrini-Giampietro, Domenico E; Moroni, Flavio; Mannaioni, Guido

    2015-01-01

    A significant number of laboratories observed that poly (ADP-ribose) polymerase (PARP) inhibitors, administered a few hours after ischemic or traumatic brain injury, may drastically reduce the subsequent neurological damage. It has also been shown that PARP inhibitors, administered for 24 hours to rats with permanent middle cerebral artery occlusion (MCAO), may reduce the number of dying neurons for a long period after surgery, thus suggesting that these agents could reduce the delayed brain damage and the neurological and cognitive impairment (dementia) frequently observed a few months after a stroke. In organotypic hippocampal slices exposed to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), an alkylating agent able to activate PARP, a selective and delayed degeneration of the CA1 pyramidal cells which was anatomically similar to that observed after a short period of oxygen and glucose deprivation (OGD) has been described. Biochemical and electrophysiological approaches showed that MNNG exposure caused an increased expression and function of the calcium permeable α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in the CA1 but not in the CA3 hippocampal region. PARP inhibitors prevented this increase and reduced CA1 cell death. The AMPA receptor antagonist 2,3-dihydroxy-6- nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione or the selective Ca(2+) permeable AMPA channel blocker 1-Naphthyl acetyl spermine (NASPM), also reduced the MNNG-induced CA1 pyramidal cell death. Since activation of PARP-1 facilitate the expression of Ca(2+) permeable channels and the subsequent delayed cell death, PARP inhibitors administered a few hours after a stroke may not only reduce the early post-ischemic brain damage but also the late neuronal death frequently occurring after severe stroke.

  17. Evaluation and Structural Basis for the Inhibition of Tankyrases by PARP Inhibitors.

    Science.gov (United States)

    Haikarainen, Teemu; Narwal, Mohit; Joensuu, Päivi; Lehtiö, Lari

    2014-01-09

    Tankyrases, an enzyme subfamily of human poly(ADP-ribosyl)polymerases, are potential drug targets especially against cancer. We have evaluated inhibition of tankyrases by known PARP inhibitors and report five cocrystal structures of the most potent compounds in complex with human tankyrase 2. The inhibitors include the small general PARP inhibitors Phenanthridinone, PJ-34, and TIQ-A as well as the more advanced inhibitors EB-47 and rucaparib. The compounds anchor to the nicotinamide subsite of tankyrase 2. Crystal structures reveal flexibility of the ligand binding site with implications for drug development against tankyrases and other ADP-ribosyltransferases. EB-47 mimics the substrate NAD(+) and extends from the nicotinamide to the adenosine subsite. The clinical ARTD1 inhibitor candidate rucaparib was the most potent tankyrase inhibitor identified (24 and 14 nM for tankyrases), which indicates that inhibition of tankyrases would affect the cellular responses of this compound.

  18. PARP Inhibitors for Cancer Therapy.

    Science.gov (United States)

    Lin, Ken Y; Kraus, W Lee

    2017-04-06

    Rucaparib is an inhibitor of nuclear poly (ADP-ribose) polymerases (inhibition of PARP-1 > PARP-2 > PARP-3), following a similar drug, Olaparib. It disrupts DNA repair and replication pathways (and possibly transcription), leading to selective killing of cancer cells with BRCA1/2 mutations. Rucaparib is approved for recurrent ovarian cancers with germline or somatic mutations in BRCA1/2. Copyright © 2017. Published by Elsevier Inc.

  19. Antagonistic crosstalk between SIRT1, PARP-1, and -2 in the regulation of chronic inflammation associated with aging and metabolic diseases

    Directory of Open Access Journals (Sweden)

    Hun Taeg Chung

    2014-12-01

    Full Text Available Current studies have indicated the association of chronic sterile inflammation (inflammation in the absence of pathogens with the pathogenesis of age-related and metabolic diseases. The inflammation is under the control of transcription factor NF-κB through an antagonistic crosstalk between SIRT1, PARP-1, and -2 signaling pathways. The transcriptional activity of NF-κB is increased in various tissues with aging and metabolic abnormalities and is related with various aging and metabolic diseases such as Alzheimer's disease, diabetes, and osteoporosis. Furthermore, NF-κB activation with chronic inflammation is connected with many known life span and metabolic regulators including DNA damage, obesity, SIRT, and PARP. Thus, the crossroads between PARP and SIRT signaling pathways represent efficient therapeutic targets for extending health span without metabolic diseases.

  20. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients

    Science.gov (United States)

    Park, See-Hyoung; Park, Hye Jeong; Wang, Sung Il; Park, Ho Sung; Lee, Ho; Kwon, Keun Sang; Moon, Woo Sung; Lee, Dong Geun; Kim, Jung Ryul; Jang, Kyu Yun

    2016-01-01

    DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS. PMID:27643881

  1. Role of Shh-PARP-1 signaling pathway in the protective effects of tea polyphenols against fatty acid-induced injury to islet microvessel endothelial function%Shh-PARP-1信号通路在茶多酚拮抗胰岛微血管内皮细胞脂毒性中的调控作用

    Institute of Scientific and Technical Information of China (English)

    田蜜; 雷琪; 鄢韵升; 李龙坤

    2016-01-01

    目的 探讨Sonic Hedgehog (Shh)-聚腙苷二磷酸核糖聚合酶1[poly(ADP-ribose) polymerase 1,PARP-1]信号通路在茶多酚拮抗胰岛微血管内皮细胞脂毒性中的调控作用.方法 以小鼠胰岛微血管内皮MS-1细胞为研究对象,分为正常对照组、溶剂对照组、脂肪酸(0.25 mmol/L软脂酸+0.5 mmol/L油酸)组、茶多酚(25μmol/L)组、脂肪酸十茶多酚组、PARP-1抑制剂(8μmol/L BYK204165)+脂肪酸组、PARP-1抑制剂十脂肪酸十茶多酚组、Shh抑制剂(2.5μmol/L环巴胺)+脂肪酸组、Shh抑制剂十脂肪酸十茶多酚组及Shh抑制剂+PARP-1抑制剂+脂肪酸+茶多酚组,分别检测各组细胞活力、凋亡水平、一氧化氮(NO)合成及氧化应激相关指标的改变.结果 脂肪酸处理后,MS-1细胞存活率下降,细胞凋亡率增高(P<0.05);同时,细胞内NO的含量及总一氧化氮合酶(tNOS)、诱导型NOS(iNOS)和结构型NOS(cNOS)的活性均升高(P<0.05);而且,脂质过氧化产物丙二醛(MDA)含量增加(P<0.05),抗氧化物质谷胱甘肽(GSH)和超氧化物歧化酶(SOD)的水平下降(P<0.05),并增强了PARP-1和磷酸化Shh的表达水平(P<0.05).茶多酚干预后,各项指标的水平均得以改善(P<0.05);而且,利用BYK204165和环巴胺预处理1h后,茶多酚对脂肪酸的拮抗效应更为显著,各项检测指标与正常对照组比较差异无统计学意义(P>0.05).结论 脂肪酸可诱发胰岛微血管内皮功能损伤,茶多酚具有拮抗脂肪酸毒性的作用,且抑制Shh-PARP-1信号通路能增强茶多酚的保护效应.

  2. Detection of ADP ribosylation in PARP-1 and bacterial toxins using a capillary-based western system.

    Science.gov (United States)

    Rustandi, Richard R; Hamm, Melissa; Loughney, John W; Ha, Sha

    2015-11-01

    Both poly and mono ADP-ribosylation are common posttranslational protein modifications. For example, poly ADP-ribosylation is involved in DNA repair mechanisms through the poly (ADP-ribose) polymerase (PARP) family of enzymes. While mono ADP-ribosylation has been known to trigger cell death exhibited by many bacterial toxins. Because of the wide role of ADP-ribosylation, the detection and analysis are very important for further understanding of the PARP family of enzymes and the molecular mechanisms leading to cell toxicity in the presence of bacterial enzymes. Here, we describe a novel technique utilizing a CE-based Western technology to detect and analyze ADP-ribosylated proteins. The method is based on a nanovolume size separation that is automated, quantitative, offers great sensitivity, and is high-throughput for potential use in PARP drug screening inhibitor assays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Treatment of BRCA1/2 Hereditary Breast Cancer and Sporadic Breast Cancer with Poly(ADP-ribose) PARP-1 Inhibitors and Chemotherapy

    Science.gov (United States)

    2008-09-01

    Pharmacogenomics and Cancer Pharmacology. C) In Sept of 2008 was named Chairman of the Faculty Senate Research Policy Committee...Title (Chair/Member) Service/Committee 2008-2009 Chair Research Policy Committee – Faculty Senate 2008-2009 Member USUHS Merit Review Committee...Senate- Comparability and faculty welfare committee 2007-2008 Member Research policy committee – Faculty Senate 2007-current Member Ph.D

  4. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself

    National Research Council Canada - National Science Library

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    ...), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK...

  5. Vasoactivity of Rucaparib, a PARP-1 Inhibitor, is a Complex Process that Involves Myosin Light Chain Kinase, P2 Receptors, and PARP Itself: e0118187

    National Research Council Canada - National Science Library

    Cian M McCrudden; Martin G O'Rourke; Kim E Cherry; Hiu-Fung Yuen; Declan O'Rourke; Muhammad Babur; Brian A Telfer; Huw D Thomas; Patrick Keane; Thiagarajan Nambirajan; Chris Hagan; Joe M O'Sullivan; Chris Shaw; Kaye J Williams; Nicola J Curtin; David G Hirst; Tracy Robson

    2015-01-01

    ...), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK...

  6. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    Science.gov (United States)

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-06

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  7. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  8. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    Science.gov (United States)

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  9. Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2

    Energy Technology Data Exchange (ETDEWEB)

    Quenet, Delphine [IREBS-FRE 3211, Ecole Superieure de Biotechnologie de Strasbourg, F-67412 Illkirch cedex (France); Mark, Manuel [Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Institut Clinique de la souris (ICS), F-67404 Illkirch cedex (France); Govin, Jerome [INSERM, U823, Grenoble, F-38706 (France); Universite Joseph Fourier, Institut Albert Bonniot, Grenoble, F-38706 (France); Dorsselear, A. van [Laboratoire de Spectrometrie de Masse Bio-organique, UMR7178, Ecole de Chimie, Polymeres et Materiaux, Strasbourg (France); Schreiber, Valerie [IREBS-FRE 3211, Ecole Superieure de Biotechnologie de Strasbourg, F-67412 Illkirch cedex (France); Khochbin, Saadi [INSERM, U823, Grenoble, F-38706 (France); Universite Joseph Fourier, Institut Albert Bonniot, Grenoble, F-38706 (France); Dantzer, Francoise, E-mail: francoise.dantzer@unistra.fr [IREBS-FRE 3211, Ecole Superieure de Biotechnologie de Strasbourg, F-67412 Illkirch cedex (France)

    2009-10-01

    Spermiogenesis is a complex male germ cell post-meiotic differentiation process characterized by dramatic changes in chromatin structure and function, including chromatin condensation, transcriptional inhibition and the sequential replacement of histones by transition proteins and protamines. Recent advances, in mammalian cells, suggest a possible role of poly(ADP-ribosyl)ation catalyzed by Parp1 and/or Parp2 in this process. We have recently reported severely compromised spermiogenesis in Parp2-deficient mice characterized by a marked delay in nuclear elongation whose molecular mechanisms remain however unknown. Here, using in vitro protein-protein interaction assays, we show that Parp2 interacts significantly with both the transition protein TP2 and the transition chaperone HSPA2, whereas Parp1 binds weakly to HSPA2. Parp2-TP2 interaction is partly mediated by poly(ADP-ribosyl)ation. Only Parp1 poly(ADP-ribosyl)ates HSPA2. In addition, a detailed analysis of spermatid maturation in Parp2-deficient mice, combining immunohistochemistry and electron microscopic approaches, reveals a loss of spermatids expressing TP2, a defect in chromatin condensation and abnormal formation of the manchette microtubules that, together, contribute to spermatid-specific cell death. In conclusion, we propose both Parps as new participants of a spermatid-specific protein complex involved in genome reorganization throughout spermiogenesis.

  10. 多聚ADP核糖聚合酶1Val762Ala基因多态性与胃癌易感性的关系%Polymorphisms Val762Ala in PARP-1 and gastric cancer

    Institute of Scientific and Technical Information of China (English)

    张全保; 李玉民; 李汛; 周文策; 石斌; 陈昊; 袁文臻

    2008-01-01

    目的 研究多聚ADP核糖聚合酶1(PARP-1)的Val762Ala(T2444C)在中国西北甘肃地区汉族人群胃癌患者和健康对照者中的基因型分布频率,并探讨其与胃癌发病风险的关系.方法 采用PCR-限制性片段长度多态性方法,对138例胃癌患者和110例健康体检者(排除肿瘤和消化系统疾病)进行病例-对照的基因分型研究.以logistic回归和X2检验计算比值比(OR)及其95%可信区间(CJ).结果 Val762Ala(T2444C)的Ala等位基因的分布频率在胃癌组(11.5%)明显高于对照组(4.5%),OR值为3.012(95% CI:1.054~8.603,P=0.033).结论 PARP-1 Val762Ala(T2444C)遗传变异与胃癌易感性相关,PARP-1762Ala等位基因型(2444CC)是胃癌的一个易感性标志.%Objective To investigate the frequency distribution of Val762Ala(T2444C)polymorphism among Han Chinese population in Gansu province,and to explore its relation to the suseeptibihty to gastric cancer. Methods A hospital-based,case-control study was performed involving 138 patients with gastric cancer and 110 healthy controls by PCR-RFLP method.Logistic regression and Chisquare analyses were used to assess OR and 95% CI. Results PARP-1762Ala allele was overexpressed in gastric cancer cases(11.5%)compared with controls(4.5%)(OR=3.012,95%CI 1.054-8.603,P=0.033).Statistic analysis showed increaged risk for gastric cancer patients with the 762Ala allele.Conclusion PARP-1 Val762Ala(T2444C)is related to the risk of gastric cancer,PARP-1762Ala allele could be used as a susceptibility marker for the development of gastric cancer.

  11. Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Restrict Oral Availability and Brain Accumulation of the PARP Inhibitor Rucaparib (AG-014699)

    NARCIS (Netherlands)

    Durmus, Selvi; Sparidans, Rolf W|info:eu-repo/dai/nl/075047144; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H|info:eu-repo/dai/nl/071919570; Schinkel, Alfred H

    2015-01-01

    BACKGROUND: Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations

  12. Strategies Employed for the Development of PARP Inhibitors.

    Science.gov (United States)

    Canan, Stacie; Maegley, Karen; Curtin, Nicola J

    2017-01-01

    This chapter describes the approaches taken in the development of the first PARP inhibitor to enter clinical trial, rucaparib (now called Rubraca), in 2003. We describe the general principles of crystal-based drug design, the purification and crystallization of the PARP-1 catalytic domain and how this was used to develop highly potent PARP inhibitors, based on the nicotinamide pharmacophore. Several methods have been used to determine the inhibitory potency in cell-free and whole cell assays, each described with reference to its advantages and disadvantages.

  13. PARP Inhibitors Synergize With Loss of Checkpoint Control to Kill Mammary Carcinoma Cells

    Science.gov (United States)

    2011-06-01

    ERK1/2. Stimulated histone H2AX phos- phorylation was ataxia telangiectasia -mutated protein-depen- dent. Multiple CHK1 inhibitors interacted in a greater...GAPDH, 10H ADP ribosylation, PARP1, phospho-/total-CHK1, ataxia telangiectasia - mutated (ATM), and phospho-/total-H2AX antibodies were all pur...regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67:1046–1053. Grant S and Dent P (2007

  14. PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

    Science.gov (United States)

    Karpel-Massler, Georg; Pareja, Fresia; Aimé, Pascaline; Shu, Chang; Chau, Lily; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Crary, John F.; Canoll, Peter; Siegelin, Markus D.

    2014-01-01

    Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM. PMID:25531448

  15. Poly (ADP-ribose) polymerase inhibitor:an evolving paradigm in the treatment of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Jingsong Zhang

    2014-01-01

    Recent phase I studies have reported single-agent activities of poly (ADP-ribose) polymerase (PARP) inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR) and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.

  16. Poly (ADP-ribose polymerase inhibitor: an evolving paradigm in the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Jingsong Zhang

    2014-06-01

    Full Text Available Recent phase I studies have reported single-agent activities of poly (ADP-ribose polymerase (PARP inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.

  17. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin.

    Science.gov (United States)

    Lugo, Miguel R; Merrill, A Rod

    2015-09-01

    Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived.

  18. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS.

    Science.gov (United States)

    Almeida, Gilberto S; Bawn, Carlo M; Galler, Martin; Wilson, Ian; Thomas, Huw D; Kyle, Suzanne; Curtin, Nicola J; Newell, David R; Maxwell, Ross J

    2017-09-01

    Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy ((1) H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD(+) ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. (1) H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD(+) levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD(+) levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD(+) levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD(+) depletion caused by temozolomide treatment. The (1) H-MRS results show that NAD(+) levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD(+) would be valuable. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport.

    Science.gov (United States)

    Peng, Hui; Zhu, Qin-shi; Zhong, Shuping; Levy, Daniel

    2015-01-01

    Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.

  20. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1.

    Science.gov (United States)

    Bakr, Ali; Köcher, Sabrina; Volquardsen, Jennifer; Petersen, Cordula; Borgmann, Kerstin; Dikomey, Ekkehard; Rothkamm, Kai; Mansour, Wael Y

    2016-09-06

    End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur. We show that defective 53BP1/RIF1-mediated DSB end-protection in G1-phase stimulates CtIP/MRE11-dependent end-resection, which requires Polo-like kinase 3. This end resection activity in G1 was shown to produce only short tracks of ssDNA overhangs, as evidenced by the findings that in 53BP1 depleted cells, (i) RPA focus intensity was significantly lower in G1 compared to that in S/G2 phase, and (ii) EXO1 knockdown did not alter either number or intensity of RPA foci in G1 but significantly decreased the RPA focus intensity in S/G2 phase. Importantly, we report that the observed DSB end resection in G1 phase inhibits DNA-PK-dependent nonhomologous end joining but is not sufficient to stimulate HR. Instead, it switches the repair to the alternative PARP1-dependent end joining pathway.

  1. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi-Scharber, Mika, E-mail: maoyagi@bmrn.com [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States); Gardberg, Anna S. [Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110 (United States); Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A. [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States)

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  2. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  3. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy

    OpenAIRE

    Jenner, Zachary B; Sood, Anil K.; Coleman, Robert L

    2016-01-01

    Rucaparib camsylate (CO-338; 8-fluoro-2-{4-[(methylamino)methyl]phenyl}-1,3,4,5-tetrahydro-6H-azepino[5,4,3-cd]indol-6-one ((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]hept-1-yl)methanesulfonic acid salt) is a PARP1, 2 and 3 inhibitor. Phase I studies identified a recommended Phase II dose of 600 mg orally twice daily. ARIEL2 Part 1 established a tumor genomic profiling test for homologous recombination loss of heterozygosity quantification using a next-generation sequencing companion diagnostic ...

  4. Glycyrrhetinic acid and its derivatives as inhibitors of poly(ADP-ribosepolymerases 1 and 2, apurinic/apyrimidinic endonuclease 1 and DNA polymerase β

    Directory of Open Access Journals (Sweden)

    Salakhutdinov N. F.

    2012-06-01

    Full Text Available Aim. For strengthening the efficiency of monofunctional alkylating antineoplastic drugs it is important to lower the capacity of base excision repair (BER system which corrects the majority of DNA damages caused by these reagents. The objective was to create inhibitors of the key BER enzymes (PARP1, PARP2, DNA polymerase β, and APE1 by the directed modification of glycyrrhetinic acid (GA. Methods. Amides of GA were produced from the GA acetate by formation of the corresponding acyl chloride, amidation with the appropriate amine and subsequent deacylation. Small library of 2-cyano substituted derivatives of GA methyl esters was obtained by the structural modification of GA framework and carboxylic acid group. The inhibitory capacity of the compounds was estimated by comparison of the enzyme activities in specific tests in the presence of compounds versus their absence. Results. None of tested compounds inhibits PARP1 significantly. Unmodified GA and its morpholinic derivative were shown to be weak inhibitors of PARP2. The derivatives of GA containing keto-group in 11 triterpene framework were shown to be moderate inhibitors of pol β. Compound 3, containing 12-oxo-9(11-en moiety in the ring C, was shown to be a single inhibitor of APE1 among all compounds studied. Conclusions. The class of GA derivatives, selective pol β inhibitors, was found out. The selective inhibitor of APE1 and weak selective inhibitor of PARP2 were also revealed.

  5. Optimize radiochemotherapy in pancreatic cancer: PARP inhibitors a new therapeutic opportunity.

    Science.gov (United States)

    Porcelli, Letizia; Quatrale, Anna E; Mantuano, Paola; Leo, Maria G; Silvestris, Nicola; Rolland, Jean F; Carioggia, Enza; Lioce, Marco; Paradiso, Angelo; Azzariti, Amalia

    2013-06-01

    Cancer cells may use PARP enzymes and Homologous Recombination to repair single and double strand breaks caused by genotoxic insults. In this study, the PARP-1 inhibitor Rucaparib was utilized to increase the sensitivity to chemoradiotherapy treatment in BRCA-2-deficient and -proficient pancreatic cancer cells. We used the pancreatic cancer cell lines, Capan-1 with mutated BRCA-2 and Panc-1, AsPC-1 and MiaPaCa-2 with BRCA-1/2 wild type. Cells were treated with Rucaparib and/or radiotherapy (4-10 Gy) plus Gemcitabine then the capability to proliferate was evaluated by colony formation, cell counting and MTT assays. Flow cytometry, immunocytochemistry and western blotting were utilized to assess cell response to Rucaparib plus irradiation. The antitumour effectiveness of combining the PARP-1 inhibitor before, together and after radiotherapy evidenced the first as the optimal schedule in blocking cell growth. Pre-exposure to Rucaparib increased the cytotoxicity of Gemcitabine plus radiotherapy by heavily inducing the accumulation of cells in G2/M phase, impairing mitosis and finally inducing apoptosis and authophagy. The upregulation of p-Akt and downregulation of p53 were evidenced in MiaPaCa-2 which displayed replication stress features. For the first time, the rationale of using a PARP inhibitor as chemoradiosensitizer in pancreatic cancer models has been hypothesized and demonstrated. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Neuroprotective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, MP-124, in in vitro and in vivo models of cerebral ischemia.

    Science.gov (United States)

    Egi, Yasuhiro; Matsuura, Shigeru; Maruyama, Tomoyuki; Fujio, Masakazu; Yuki, Satoshi; Akira, Toshiaki

    2011-05-10

    Cerebral ischemia induces excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), leading to neuronal cell death and the development of post-ischemic dysfunction. Blockade of PARP-related signals during cerebral ischemia has become a focus of interest as a new therapeutic approach for acute stroke treatment. The purpose of the present study was to examine the pharmacological profiles of MP-124, a novel water-soluble PARP-1 inhibitor, and its neuroprotective effects on ischemic injury in vitro and in vivo. MP-124 demonstrated competitive inhibition of the PARP-1 activity of human recombinant PARP-1 enzyme (Ki=16.5nmol/L). In P388D(1) cells, MP-124 inhibited the LDH leakage induced by H(2)O(2) in a concentration-dependent manner. (IC(50)=20.8nmol/L). In rat primary cortical neurons, MP-124 also inhibited the NAD depletion and polymerized ADP-ribose formation induced by H(2)O(2) exposure. Moreover, we investigated the neuroprotective effects of MP-124 in rat permanent and transient stroke models. In the rat permanent middle cerebral artery occlusion (MCAO) model, MP-124 was administered intravenously for 24h from 5min after the onset of MCAO. MP-124 (1, 3 and 10mg/kg/h) significantly inhibited the cerebral infarction in a dose-dependent manner (18, 42 and 48%). In rat transient MCAO model, MP-124 was administered intravenously from 30min after the onset of MCAO. MP-124 (3 and 10mg/kg/h) significantly reduced the infarct volume (53% and 50%). The present findings suggest that MP-124 acts as a potent neuroprotective agent in focal ischemia and its actions can be attributed to a reduction in NAD depletion and PAR formation.

  7. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

    Directory of Open Access Journals (Sweden)

    Hsueh Chung-Tsen

    2011-04-01

    Full Text Available Abstract We reviewed preclinical data and clinical development of MDM2 (murine double minute 2, ALK (anaplastic lymphoma kinase and PARP (poly [ADP-ribose] polymerase inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC. Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.

  8. Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors.

    Science.gov (United States)

    Huang, Xiumei; Motea, Edward A; Moore, Zachary R; Yao, Jun; Dong, Ying; Chakrabarti, Gaurab; Kilgore, Jessica A; Silvers, Molly A; Patidar, Praveen L; Cholka, Agnieszka; Fattah, Farjana; Cha, Yoonjeong; Anderson, Glenda G; Kusko, Rebecca; Peyton, Michael; Yan, Jingsheng; Xie, Xian-Jin; Sarode, Venetia; Williams, Noelle S; Minna, John D; Beg, Muhammad; Gerber, David E; Bey, Erik A; Boothman, David A

    2016-12-12

    Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition. In NQO1(+) cancers, such as non-small-cell lung, pancreatic, and breast cancers, cell death mechanism switches from PARP1 hyperactivation-mediated programmed necrosis with β-lapachone monotherapy to synergistic tumor-selective, caspase-dependent apoptosis with PARP inhibitors and β-lapachone. Synergistic antitumor efficacy and prolonged survival were noted in human orthotopic pancreatic and non-small-cell lung xenograft models, expanding use and efficacy of PARP inhibitors for human cancer therapy. Published by Elsevier Inc.

  9. The Elephant and the Blind Men: Making Sense of PARP Inhibitors in Homologous Recombination Deficient Tumor Cells

    Directory of Open Access Journals (Sweden)

    Silvana eDe Lorenzo

    2013-09-01

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP1 is an important component of the base excision repair (BER pathway as well as a regulator of homologous recombination (HR and nonhomologous end-joining (NHEJ. Previous studies have demonstrated that treatment of HR-deficient cells with PARP inhibitors results in stalled and collapsed replication forks. Consequently, HR-deficient cells are extremely sensitive to PARP inhibitors. Several explanations have been advanced to explain this so-called synthetic lethality between HR deficiency and PARP inhibition: i inhibition of base excision repair leading to enhanced DNA double-strand breaks, which cannot be repaired in the absence of HR; ii trapping of inhibited PARP1 at sites of DNA damage, which inhibits access of other repair proteins; iii failure to synthesize poly(ADP-ribose polymer, which is required to recruit mutant BRCA1 to sites of DNA damage; and iv activation of the NHEJ pathway, which selectively induces error-prone repair in HR-deficient cells. Here we review evidence regarding these various explanations for the ability of PARP inhibitors to selectively kill HR-deficient cancer cells.

  10. A novel and orally active poly(ADP-ribose) polymerase inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl) methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], attenuates injury in in vitro model of cell death and in vivo model of cardiac ischemia.

    Science.gov (United States)

    Oh, Kwang-Seok; Lee, Sunkyung; Yi, Kyu Yang; Seo, Ho Won; Koo, Hyun-Na; Lee, Byung Ho

    2009-01-01

    Blocking of poly(ADP-ribose) polymerase (PARP)-1 has been expected to protect the heart from ischemia-reperfusion injury. We have recently identified a novel and orally active PARP-1 inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl)-methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], and its major metabolite, KR-34285 [2-[carboxy(4-methoxyphenyl)methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide]. KR-33889 potently inhibited PARP-1 activity with an IC(50) value of 0.52 +/- 0.10 microM. In H9c2 myocardial cells, KR-33889 (0.03-30 microM) showed a resistance to hydrogen peroxide (2 mM)-mediated oxidative insult and significantly attenuated activation of intracellular PARP-1. In anesthetized rats subjected to 30 min of coronary occlusion and 3 h of reperfusion, KR-33889 (0.3-3 mg/kg i.v.) dose-dependently reduced myocardial infarct size. KR-34285, a major metabolite of KR-33889, exerted similar patterns to the parent compound with equi- or weaker potency in the same studies described above. In separate experiments for the therapeutic time window study, KR-33889 (3 mg/kg i.v.) given at preischemia, at reperfusion or in both, in rat models also significantly reduced the myocardial infarction compared with their respective vehicle-treated group. Furthermore, the oral administration of KR-33889 (1-10 mg/kg p.o.) at 1 h before occlusion significantly reduced myocardial injury. The ability of KR-33889 to inhibit PARP in the rat model of ischemic heart was confirmed by immunohistochemical detection of poly(ADP-ribose) activation. These results indicate that the novel PARP inhibitor KR-33889 exerts its cardioprotective effect in in vitro and in vivo studies of myocardial ischemia via potent PARP inhibition and also suggest that KR-33889 could be an attractive therapeutic candidate with oral activity for several cardiovascular disorders, including myocardial infarction.

  11. From polypharmacology to target specificity: the case of PARP inhibitors.

    Science.gov (United States)

    Liscio, Paride; Camaioni, Emidio; Carotti, Andrea; Pellicciari, Roberto; Macchiarulo, Antonio

    2013-01-01

    Poly(ADP-ribose)polymerases (PARPs) catalyze a post-transcriptional modification of proteins, consisting in the attachment of mono, oligo or poly ADP-ribose units from NAD+ to specific polar residues of target proteins. The scientific interest in members of this superfamily of enzymes is continuously growing since they have been implicated in a range of diseases including stroke, cardiac ischemia, cancer, inflammation and diabetes. Despite some inhibitors of PARP-1, the founder member of the superfamily, have advanced in clinical trials for cancer therapy, and other members of PARPs have recently been proposed as interesting drug targets, challenges exist in understanding the polypharmacology of current PARP inhibitors as well as developing highly selective chemical tools to unravel specific functions of each member of the superfamily. Beginning with an overview on the molecular aspects that affect polypharmacology, in this article we discuss how these may have an impact on PARP research and drug discovery. Then, we review the most selective PARP inhibitors hitherto reported in literature, giving an update on the molecular aspects at the basis of selective PARP inhibitor design. Finally, some outlooks on current issues and future directions in this field of research are also provided.

  12. PARP inhibitors – theoretical basis and clinical application

    Directory of Open Access Journals (Sweden)

    Sylwia Dębska

    2012-05-01

    Full Text Available  Poly-ADP-ribose polymerases (PARP are involved in a number of processes that are vital for every living cell. Once activated by the presence of DNA damage they trigger poly-ADP-ribosylation of various proteins which are crucial for DNA repair, preserving of genom integrity, regulation of transcription, proliferation and apoptosis. PARP1, which is the best known enzyme of PARP protein family, plays a role in single-strand breaks (SSB repair. Decrease of its activity results in accumulation of single strand DNA breaks (SSB which leads as a consequence to double- strand breaks (DSBs. This disorder is particularly harmful to cells with deficiency of BRCA1/2 protein which is involved in repair of DNA double-strand breaks.This phenomenon is an example of “synthetic lethality” concept and contributes to research on application of PARP inhibitors in treatment of cancers associated with BRCA1/2 protein defect (breast or ovarian cancer.Noticed synergism between PARP inhibitors and genotoxic chemotherapy or radiotherapy determined another direction of research on application of these medicaments.After promising results of phase I and II trials with most commonly investigated PARP inhibitors – iniparib and olaparib- which recruited patients with triple negative breast cancer and ovarian cancer, further studies started.This paper presents theoretical basis of PARP inhibitors action as well as critical review of most important clinical trials of these medicaments.

  13. PARP inhibition delays progression of mitochondrial encephalopathy in mice.

    Science.gov (United States)

    Felici, Roberta; Cavone, Leonardo; Lapucci, Andrea; Guasti, Daniele; Bani, Daniele; Chiarugi, Alberto

    2014-07-01

    Mitochondrial disorders are deadly childhood diseases for which therapeutic remedies are an unmet need. Given that genetic suppression of the nuclear enzyme poly (adenine diphosphate-ribose) polymerase(PARP)-1 improves mitochondrial functioning, we investigated whether pharmacological inhibition of the enzyme affords protection in a mouse model of a mitochondrial disorder. We used mice lacking the Ndufs4 subunit of the respiratory complex I (Ndufs4 knockout [ KO] mice); these mice undergo progressive encephalopathy and die around postnatal day 50. Mice were treated daily with the potent PARP inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride (PJ34); neurological parameters, PARP activity, and mitochondrial homeostasis were evaluated. We found that mice receiving N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride from postnatal day 30 to postnatal day 50 show reduced neurological impairment, and increased exploratory activity and motor skills compared with vehicle-treated animals. However, drug treatment did not delay or reduce death. We found no evidence of increased PARP activity within the brain of KO mice compared with heterozygous, healthy controls. Conversely, a 10-day treatment with the PARP inhibitor significantly reduced basal poly(ADP-ribosyl)ation in different organs of the KO mice, including brain, skeletal muscle, liver, pancreas, and spleen. In keeping with the epigenetic role of PARP-1, its inhibition correlated with increased expression of mitochondrial respiratory complex subunits and organelle number. Remarkably, pharmacological targeting of PARP reduced astrogliosis in olfactory bulb and motor cortex, but did not affect neuronal loss of KO mice. In light of the advanced clinical development of PARP inhibitors, these data emphasize their relevance to treatment of mitochondrial respiratory defects.

  14. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy.

    Science.gov (United States)

    Jenner, Zachary B; Sood, Anil K; Coleman, Robert L

    2016-06-01

    Rucaparib camsylate (CO-338; 8-fluoro-2-{4-[(methylamino)methyl]phenyl}-1,3,4,5-tetrahydro-6H-azepino[5,4,3-cd]indol-6-one ((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]hept-1-yl)methanesulfonic acid salt) is a PARP1, 2 and 3 inhibitor. Phase I studies identified a recommended Phase II dose of 600 mg orally twice daily. ARIEL2 Part 1 established a tumor genomic profiling test for homologous recombination loss of heterozygosity quantification using a next-generation sequencing companion diagnostic (CDx). Rucaparib received US FDA Breakthrough Therapy designation for treatment of platinum-sensitive BRCA-mutated advanced ovarian cancer patients who received greater than two lines of platinum-based therapy. Comparable to rucaparib development, other PARP inhibitors, such as olaparib, niraparib, veliparib and talazoparib, are developing CDx tests for targeted therapy. PARP inhibitor clinical trials and CDx assays are discussed in this review, as are potential PARP inhibitor combination therapies and likely resistance mechanisms.

  15. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Thomas D.; Zhu, Gui-Dong; Gong, Jianchun; Thomas, Sheela; Gandhi, Viraj B.; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F.; Park, Chang H.; Fry, Elizabeth H.; Donawho, Cherrie K.; Frost, David J.; Buchanan, Fritz G.; Bukofzer, Gail T.; Rodriguez, Luis E.; Bontcheva-Diaz, Velitchka; Bouska, Jennifer J.; Osterling, Donald J.; Olson, Amanda M.; Marsh, Kennan C.; Luo, Yan; Giranda, Vincent L. (Abbott)

    2010-06-21

    We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K{sub i} of 1 nM and an EC{sub 50} of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.

  16. γ-secretase inhibitor DAPT prevents neuronal death and memory impairment in sepsis associated encephalopathy in septic rats

    Institute of Scientific and Technical Information of China (English)

    Huang Man; Liu chunhui; Hu Yueyu; Wang Pengfei; Ding Meiping

    2014-01-01

    Background Brain dysfunction is a frequent complication of sepsis,usually defined as sepsis-associated encephalopathy (SAE).Although the Notch signaling pathway has been proven to be involved in both ischemia and neuronal proliferation,its role in SAE is still unknown.Here,the effect of the Notch signaling pathway involved γ-secretase inhibitor DAPT on SAE in septic rats was investigated in a cecal ligation and puncture (CLP) model.Methods Fifty-nine Sprague-Dawley rats were randomly divided into four groups,with the septic group receiving the CLP operation.Twenty-four hours after CLP or sham treatment,rats were sacrificed and their hippocampus was harvested for Western blot analysis.TNF-αexpression was determined using an enzyme-linked immunosorbent assay (ELISA) kit.Neuronal apoptosis was assessed by TUNEL staining,and neuronal cell death was detected by H&E staining.Finally,a novel object recognition experiment was used to evaluate memory impairment.Results Our data showed that sepsis can increase the expression of hippocampal Notch receptor intracellular domain (NICD) and poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1),as well as the inflammatory response,neuronal apoptosis,neuronal death,and memory dysfunction in rats.The γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT) can significantly decrease the level of NICD and PARP-1,reduce hippocampal neuronal apoptosis and death,attenuate TNF-α release and rescue cognitive impairment caused by CLP.Conclusion The neuroprotective effect of DAPT on neuronal death and memory impairment in septic rats,which could be a new therapeutic approach for treating SAE in the future.

  17. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  18. Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dockery LE

    2017-06-01

    Full Text Available LE Dockery, CC Gunderson, KN Moore Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA Abstract: Rucaparib camsylate (CO-338, AG-014699, PF-01367338 is a potent PARP-1, PARP-2, and PARP-3 inhibitor. Phase I and II studies demonstrated clinical efficacy in both BRCA-mutated (inclusive of germline and somatic ovarian tumors and ovarian tumors with homologous recombination deficiency (HRD loss of heterozygosity (LOH. Rucaparib has received the US Food and Drug Administration (FDA approval for patients with deleterious BRCA mutation (germline and/or somatic-associated advanced ovarian cancer who have been treated with two or more chemotherapies. There is evidence to suggest that rucaparib has clinical efficacy against ovarian tumors with high HRD-LOH. Rucaparib’s companion diagnostic FoundationFocus™ CDxBRCA test is the first FDA-approved next-generation sequencing-based companion diagnostic test designed to identify patients likely to respond to rucaparib. This article reviews the mechanisms of action, safety, approval, and indications for use of the PARP inhibitor rucaparib as well as future trials and use of rucaparib’s companion diagnostic test. Keywords: rucaparib, PARP inhibitor, ovarian cancer, companion diagnostic, loss of heterozy­gosity

  19. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors.

    Science.gov (United States)

    Donà, Francesca; Chiodi, Ilaria; Belgiovine, Cristina; Raineri, Tatiana; Ricotti, Roberta; Mondello, Chiara; Scovassi, Anna Ivana

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribosylation) play essential roles in several biological processes, among which neoplastic transformation and telomere maintenance. In this paper, we review the poly(ADP-ribosylation) process together with the highly appealing use of PARP inhibitors for the treatment of cancer. In addition, we report our results concerning poly(ADP-ribosylation) in a cellular model system for neoplastic transformation developed in our laboratory. Here we show that PARP-1 and PARP-2 expression increases during neoplastic transformation, together with the basal levels of poly(ADP-ribosylation). Furthermore, we demonstrate a greater effect of the PARP inhibitor 3-aminobenzamide (3AB) on cellular viability in neoplastically transformed cells compared to normal fibroblasts and we show that prolonged 3AB administration to tumorigenic cells causes a decrease in telomere length. Taken together, our data support an active involvement of poly(ADP-ribosylation) in neoplastic transformation and telomere length maintenance and confirm the relevant role of poly(ADP-ribosylation) inhibition for the treatment of cancer.

  20. Differential effect of EGFR inhibitors on tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Oh, Soo Jin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    Although tamoxifen is the most common and effective therapy for treatment of estrogen receptor-α (ER-α) breast cancer patients, resistance of endocrine therapy occurs, either de novo or acquired during therapy. Here, we investigated the clinical value of epidermal growth factor receptor (EGFR) in tamoxifen-resistant (TamR) patients and the differential effect of EGFR inhibitors, neratinib and gefitinib, on TamR breast cancer cell model. The morphology of TamR MCF7 cells showed mesenchymal phenotypes and did not induce cell death by tamoxifen treatment compared with tamoxifen‑sensitive (TamS) MCF7 cells. In addition, mesenchymal marker proteins, including N-cadherin (N-cad), fibronectin (FN), and Slug, significantly increased in TamR cells. In contrast, ER-α and E-cadherin (E-cad) were greatly decreased. We also found that the levels of EGFR and HER2 expression were increased in TamR cells. Furthermore, we observed that EGFR expression was directly involved with poor prognosis of tamoxifen-treated breast cancer patients using the GSE1378 date set. Thus, we treated TamR and TamS cells with EGFR inhibitors, neratinib and gefitinib, respectively. Interestingly, neratinib induced apoptotic cell death of TamR but not gefitinib. Cleaved PARP-1 expression was also increased by neratinib treatment in TamR cells. Therefore, we suggest that neratinib may be a potential therapeutic drug for treating TamR breast cancer.

  1. Activity of trabectedin and the PARP inhibitor rucaparib in soft-tissue sarcomas.

    Science.gov (United States)

    Laroche, Audrey; Chaire, Vanessa; Le Loarer, François; Algéo, Marie-Paule; Rey, Christophe; Tran, Kevin; Lucchesi, Carlo; Italiano, Antoine

    2017-04-11

    Trabectedin has recently been approved in the USA and in Europe for advanced soft-tissue sarcoma patients who have been treated with anthracycline-based chemotherapy without success. The mechanism of action of trabectedin depends on the status of both the nucleotide excision repair (NER) and homologous recombination (HR) DNA repair pathways. Trabectedin results in DNA double-strand breaks. We hypothesized that PARP-1 inhibition is able to perpetuate trabectedin-induced DNA damage. We explored the effects of combining a PARP inhibitor (rucaparib) and trabectedin in a large panel of soft-tissue sarcoma (STS) cell lines and in a mouse model of dedifferentiated liposarcoma. The combination of rucaparib and trabectedin in vitro was synergistic, inhibited cell proliferation, induced apoptosis, and accumulated in the G2/M phase of the cell cycle with higher efficacy than either single agent alone. The combination also resulted in enhanced γH2AX intranuclear accumulation as a result of DNA damage induction. In vivo, the combination of trabectedin and rucaparib significantly enhanced progression-free survival with an increased percentage of tumor necrosis. The combination of PARP inhibitor and trabectedin is beneficial in pre-clinical models of soft-tissue sarcoma and deserves further exploration in the clinical setting.

  2. Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer.

    Science.gov (United States)

    Dockery, L E; Gunderson, C C; Moore, K N

    2017-01-01

    Rucaparib camsylate (CO-338, AG-014699, PF-01367338) is a potent PARP-1, PARP-2, and PARP-3 inhibitor. Phase I and II studies demonstrated clinical efficacy in both BRCA-mutated (inclusive of germline and somatic) ovarian tumors and ovarian tumors with homologous recombination deficiency (HRD) loss of heterozygosity (LOH). Rucaparib has received the US Food and Drug Administration (FDA) approval for patients with deleterious BRCA mutation (germline and/or somatic)-associated advanced ovarian cancer who have been treated with two or more chemotherapies. There is evidence to suggest that rucaparib has clinical efficacy against ovarian tumors with high HRD-LOH. Rucaparib's companion diagnostic FoundationFocus™ CDx BRCA test is the first FDA-approved next-generation sequencing-based companion diagnostic test designed to identify patients likely to respond to rucaparib. This article reviews the mechanisms of action, safety, approval, and indications for use of the PARP inhibitor rucaparib as well as future trials and use of rucaparib's companion diagnostic test.

  3. The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells

    DEFF Research Database (Denmark)

    Cuesta, Elena Pedraz; Christensen, Sandra; Jensen, Anders A.

    2015-01-01

    BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer death globally and new biomarkers and treatments are severely needed. METHODS: Here, we employed HCT116 and LoVo human CRC cells made resistant to either SN38 or oxaliplatin, to investigate whether altered expression of the high...... cell resistance per se correlated with increased cellular GSH. DL-TBOA did not significantly alter cellular levels of p21, cleaved PARP-1, or phospho-Retinoblastoma protein, yet altered SLC1A1 subcellular localization, and reduced chemotherapy-induced p53 induction. CONCLUSIONS: SLC1A1 expression...... and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments CRC cell death induced by SN38, while attenuating that induced by oxaliplatin. These findings may point...

  4. Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets.

    Science.gov (United States)

    Knezevic, Claire E; Wright, Gabriela; Rix, Lily L Remsing; Kim, Woosuk; Kuenzi, Brent M; Luo, Yunting; Watters, January M; Koomen, John M; Haura, Eric B; Monteiro, Alvaro N; Radu, Caius; Lawrence, Harshani R; Rix, Uwe

    2016-12-22

    Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we generated a comparative proteome-wide target map of the four clinical PARPi, olaparib, veliparib, niraparib, and rucaparib. PARPi as a class displayed high target selectivity. However, in addition to the canonical targets PARP1, PARP2, and several of their binding partners, we also identified hexose-6-phosphate dehydrogenase (H6PD) and deoxycytidine kinase (DCK) as previously unrecognized targets of rucaparib and niraparib, respectively. Subsequent functional validation suggested that inhibition of DCK by niraparib could have detrimental effects when combined with nucleoside analog pro-drugs. H6PD silencing can cause apoptosis and further sensitize cells to PARPi, suggesting that H6PD may be, in addition to its established role in metabolic disorders, a new anticancer target. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Clinical Trials of Poly(ADP-Ribose) Polymerase Inhibitors for Cancer Therapy: A Review.

    Science.gov (United States)

    Buege, Michael; Mahajan, Pramod B

    2015-01-01

    Poly(ADP-Ribose) Polymerase (PARP) is a family of enzymes involved in DNA repair, genome stability, cellular energy metabolism and cell division. Inhibition of PARP-1, the well characterized member of this family, has been explored as a strategy for enhancing anti-cancer activity of existing drugs and for developing new drugs. Recently unique enzymatic properties and biological functions of PARP-2 and PARP-3 have been discovered, further expanding the utility of PARP as a target for cancer pharmacotherapy. We compare and contrast the structural and enzymatic properties of these three members of the PARP family. Interactions of these enzymes with proteins specific to different DNA repair pathways are summarized. Further, we evaluate progress on development of PARP inhibitors as anticancer agents. Results of Phase I and Phase II clinical trials of seven PARP inhibitors, used alone or in combination with known anticancer agents are reviewed highlighting common observations regarding the maximum tolerable dose, adverse reactions profile, PARP inhibition and anticancer effects. While further clinical studies are warranted, based on current data, Olaparib (Ola), Veliparib (Veli) and Rucaparib (Ruca) offer considerable potential. Prolonged exposure to Ola and Veli leads to resistant cancer cells, primarily through restoration of the HR pathway, overexpression of the P-glycoprotein efflux pump or modulation of PARP expression. Some resistant cancer cells continue to respond to platinum based drugs, encouraging further development of PARP inhibitors for cancer treatment. Future course of this research, specifically focusing on use of PARP inhibition as a strategy for personalized cancer therapy, is discussed.

  6. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chung Hyo [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Yun, Jeong In [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Lee, Kwangho [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Lee, Chong Ock; Lee, Heung Kyoung [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Jeong, Hye Gwang [College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kim, Hyoung Rae, E-mail: hyungrk@krict.re.kr [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Park, Chi Hoon, E-mail: chpark@krict.re.kr [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.

  7. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699).

    Science.gov (United States)

    Durmus, Selvi; Sparidans, Rolf W; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2015-01-01

    Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations in the breast cancer associated (BRCA) genes. We aimed to establish whether the multidrug efflux transporters ABCG2 (BCRP) and ABCB1 (P-gp, MDR1) affect the oral availability and brain penetration of rucaparib in mice. In vitro, rucaparib was efficiently transported by both human ABCB1 and ABCG2, and very efficiently by mouse Abcg2. Transport could be inhibited by the small-molecule ABCB1 and ABCG2 inhibitors zosuquidar and Ko143, respectively. In vivo, oral availability (plasma AUC0-1 and AUC0-24) and brain levels of rucaparib at 1 and 24 h were increased by the absence of both Abcg2 and Abcb1a/1b after oral administration of rucaparib at 10 mg/kg. Our data show to our knowledge for the first time that oral availability and brain accumulation of a PARP inhibitor are markedly and additively restricted by Abcg2 and Abcb1a/1b. This may have clinical relevance for improvement of rucaparib therapy in PARP inhibitor-resistant tumors with ABCB1 and/or ABCG2 expression and in patients with brain (micro)metastases positioned behind a functional blood-brain barrier.

  8. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  9. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy); Caligo, Maria Adelaide [Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa (Italy); Galli, Alvaro, E-mail: alvaro.galli@ifc.cnr.it [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy)

    2015-04-15

    Highlights: • The human poly (ADP-ribose) polymerase 1 (PARP-1) gene affects growth and UV-induced homologous recombination in yeast. • PARP-1 chemical inhibition impacts yeast growth and UV-induced recombination. • A genome-wide screen identifies 99 yeast genes that suppress the growth defect inferred by PARP-1. • Bioinformatics analysis identifies 41 human orthologues that may have a role in PARP-1 intracellular localization. • The findings suggest that PARP-1 nuclear localization may affect the response to PARP inhibitors in cancer therapy. - Abstract: The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the

  10. Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors in vitro.

    Science.gov (United States)

    Paine, Helen A; Nathubhai, Amit; Woon, Esther C Y; Sunderland, Peter T; Wood, Pauline J; Mahon, Mary F; Lloyd, Matthew D; Thompson, Andrew S; Haikarainen, Teemu; Narwal, Mohit; Lehtiö, Lari; Threadgill, Michael D

    2015-09-01

    Tankyrases-1 and -2 (TNKS-1 and TNKS-2) have three cellular roles which make them important targets in cancer. Using NAD(+) as a substrate, they poly(ADP-ribosyl)ate TRF1 (regulating lengths of telomeres), NuMA (facilitating mitosis) and axin (in wnt/β-catenin signalling). Using molecular modelling and the structure of the weak inhibitor 5-aminoiso quinolin-1-one, 3-aryl-5-substituted-isoquinolin-1-ones were designed as inhibitors to explore the structure-activity relationships (SARs) for binding and to define the shape of a hydrophobic cavity in the active site. 5-Amino-3-arylisoquinolinones were synthesised by Suzuki-Miyaura coupling of arylboronic acids to 3-bromo-1-methoxy-5-nitro-isoquinoline, reduction and O-demethylation. 3-Aryl-5-methylisoquinolin-1-ones, 3-aryl-5-fluoroisoquinolin-1-ones and 3-aryl-5-methoxyisoquinolin-1-ones were accessed by deprotonation of 3-substituted-N,N,2-trimethylbenzamides and quench with an appropriate benzonitrile. SAR around the isoquinolinone core showed that aryl was required at the 3-position, optimally with a para-substituent. Small meta-substituents were tolerated but groups in the ortho-positions reduced or abolished activity. This was not due to lack of coplanarity of the rings, as shown by the potency of 4,5-dimethyl-3-phenylisoquinolin-1-one. Methyl and methoxy were optimal at the 5-position. SAR was rationalised by modelling and by crystal structures of examples with TNKS-2. The 3-aryl unit was located in a large hydrophobic cavity and the para-substituents projected into a tunnel leading to the exterior. Potency against TNKS-1 paralleled potency against TNKS-2. Most inhibitors were highly selective for TNKSs over PARP-1 and PARP-2. A range of highly potent and selective inhibitors is now available for cellular studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    Directory of Open Access Journals (Sweden)

    Francisco O'Valle

    Full Text Available UNLABELLED: Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD transplantation. Ischemia-reperfusion (IR injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1 activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN. MATERIALS AND METHODS: Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls and in murine Parp-1 knockout model of IR injury. RESULTS: PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603, time to effective diuresis (r = 0.770, serum creatinine levels at biopsy (r = 0.649, and degree of ATN (r = 0.810 (p = 0.001, Pearson test. In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  12. Cleaved PARP-1, an Apoptotic Marker, can be Detected in Ram Spermatozoa.

    Science.gov (United States)

    Casao, A; Mata-Campuzano, M; Ordás, L; Cebrián-Pérez, J A; Muiño-Blanco, T; Martínez-Pastor, F

    2015-08-01

    The presence of apoptotic features in spermatozoa has been related to lower quality and functional impairment. Members of the poly-ADP-ribose polymerases (PARP) familyare involved in both DNA repair and apoptosis, playing important roles in spermatogenesis. Poly-ADP-ribose polymerase can be cleaved by caspases, and the presence of its cleavage product (cPARP) in spermatozoa has been related to chromatin remodelling during spermatogenesis and to the activation of apoptotic pathways. There are no reports on immunodetection of cPARP in ram spermatozoa; thus, we have tested a commercially available antibody for this purpose. cPARP was microscopically detected in the acrosomal ridge of some spermatozoa (indirect immunofluorescence). A preliminary study was carried out by flow cytometry (direct immunofluorescence, FITC). Ram semen was extended in TALP and incubated for 4 h with apoptosis inducers staurosporine (10 μm) or betulinic acid (200 μm). Both inducers and incubation caused a significant increase in cPARP spermatozoa (0 h, control: 21.4±3.3%, inducers: 44.3±1.4%; 4 h, control: 44.3±2.4%, inducers: 53.3±1.4%). In a second experiment, we compared the sperm fractions after density gradient separation (pellet and interface). The pellet yielded a slightly lower proportion of cPARP spermatozoa (28.5±1.2% vs 36.2±2.0% in the interface; p ram semen, although its presence in untreated samples was weakly related to worse quality (pellet/interface). We suggest to study the relationship of PARP and cPARP levels with between-male differences on sperm fertility.

  13. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance

    OpenAIRE

    Li, Xue; Sipple, Jared; Pang, Qishen; DU, Wei

    2012-01-01

    Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide–induce...

  14. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  15. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model.

    Science.gov (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma.

  16. Inhibition of NOS-2 induction in LPS-stimulated J774.2 cells by 1, 5-isoquinolinediol, an inhibitor of PARP.

    Science.gov (United States)

    Olszanecki, R; Gebska, A; Jawień, J; Jakubowski, A; Korbut, R

    2006-03-01

    Activation of both poly (ADP-ribose) polymerase (PARP) and inducible nitric oxide synthase (NOS-2) have been implicated in the pathogenesis of various forms of inflammation, therefore compounds which may simultaneously inhibit both pathways are of potential therapeutic interest. We tested the influence of potent inhibitor of PARP, 1, 5-isoquinolinediol (ISO), on NOS-2 induction in model of mouse macrophages (cell line J774.2) stimulated with lipopolysaccharide (1 microg/ml). Pretreatment with ISO (1-300 microM) resulted in dose-dependent inhibition of accumulation of NOS-2-derived nitrite in culture medium (IC(50) = 9,3 microM) as well as inhibition of NOS-2 protein induction in cultured J774.2 cells; ISO given 10 hours after LPS did not influence activity of NOS-2. Interestingly, another PARP inhibitor, 3-aminobenzamide (3-AB, 10-3000 microM), did not influence 24-hr nitrite accumulation in J774.2 cell culture, either administered 15 minutes prior to LPS or 10 hrs after LPS. Scavenging of reactive oxygen species by use of mixture of SOD and catalase (SOD/Cat, 100/300 - 1000/3000 U/ml) as well as cell permeable SOD-mimetic [Mn(III)TBAP, 1- 100 microM], did not influence NOS-2 induction in J774.2 cells. In summary, we identified 1, 5-isoquinoline as potent inhibitor of induction of NOS-2 in LPS-treated mouse macrophages. The exact mechanism of inhibitory action of this compound on NOS-2 induction requires further investigation.

  17. Cholinesterase inhibitors from botanicals

    Directory of Open Access Journals (Sweden)

    Faiyaz Ahmed

    2013-01-01

    Full Text Available Alzheimer′s disease (AD is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh, appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com are also presented and the scope for future research is discussed.

  18. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    of the invention are useful for treating, alleviating, and/or preventing various conditions, including for example, a metabolic disorder such as type 1 or type 2 diabetes, dyslipidemias, lipodystrophies, liver disease associated with metabolic syndrome, polycystic ovarian syndrome, or obesity; inflammatory disease...... of making and using them. In one aspect, the invention relates to selective HDAC3 inhibitors useful for protecting beta-cells and improving insulin resistence. The selective HDAC3 inhibitors are also useful for promoting cognitive function and enhancing learning and memory formation. Compounds...

  19. 3-aminobenzamide, a poly (ADP ribose) polymerase inhibitor, enhances wound healing in whole body gamma irradiated model.

    Science.gov (United States)

    El-Hamoly, Tarek; El-Denshary, Ezzeddin S; Saad, Shokry Mohamed; El-Ghazaly, Mona A

    2015-09-01

    The custom use of radiotherapy was found to participate in the development of chronic unhealed wounds. In general, exposure to gamma radiation stimulates the production of reactive oxygen species (ROS) that eventually leads to damaging effect. Conversely, overexpression of a nuclear poly (ADP-ribose) polymerase enzyme (PARP) after oxidative insult extremely brings about cellular injury due to excessive consumption of NAD and ATP. Here, we dedicated our study to investigate the role of 3-aminobenzamide (3-AB), a PARP inhibitor, on pregamma irradiated wounds. Two full-thickness (6 mm diameter) wounds were created on the dorsum of Swiss albino mouse. The progression of wound contraction was monitored by capturing daily photo images. Exposure to gamma radiation (6Gy) exacerbated the normal healing of excisional wounds. Remarkably, topical application of 3-AB cream (50 µM) revealed a marked acceleration in the rate of wound contraction. Likewise, PARP inhibition ameliorated the unbalanced oxidative/nitrosative status of granulated skin tissues. Such effect was significantly revealed by the correction of the reduced antioxidant capacity and the enhanced lipid peroxidation, hydrogen peroxide, and myeloperoxidase contents. Moreover, application of 3-AB modified the cutaneous nitrite content throughout healing process. Conversely, the expressions of pro-inflammatory cytokines were down-regulated by PARP inhibition. The mitochondrial ATP content showed a lower consumption rate on 3-AB-treated wound bed as well. In parallel, the mRNA expressions of Sirt-1 and acyl-COA oxidase-2 (ACOX-2) were up-regulated; whom functions control the mitochondrial ATP synthesis and lipid metabolism. The current data suggested that inhibition of PARP-1 enzyme may accelerate the delayed wound healing in whole body gamma irradiated mice by early modifying the oxidative stress as well as the inflammatory response.

  20. A Phase 1 Study of the PARP Inhibitor Veliparib in Combination with Temozolomide in Acute Myeloid Leukemia.

    Science.gov (United States)

    Gojo, Ivana; Beumer, Jan H; Pratz, Keith W; McDevitt, Michael A; Baer, Maria R; Blackford, Amanda L; Smith, B Douglas; Gore, Steven D; Carraway, Hetty E; Showel, Margaret M; Levis, Mark J; Dezern, Amy E; Gladstone, Douglas E; Ji, Jiuping Jay; Wang, Lihua; Kinders, Robert J; Pouquet, Marie; Ali-Walbi, Ismail; Rudek, Michelle A; Poh, Weijie; Herman, James G; Karnitz, Larry M; Kaufmann, Scott H; Chen, Alice; Karp, Judith E

    2017-02-01

    In preclinical studies, the PARP inhibitor veliparib enhanced the antileukemic action of temozolomide through potentiation of DNA damage. Accordingly, we conducted a phase 1 study of temozolomide with escalating doses of veliparib in patients with relapsed, refractory acute myeloid leukemia (AML) or AML arising from aggressive myeloid malignancies. Patients received veliparib [20-200 mg once a day on day 1 and twice daily on days 4-12 in cycle 1 (days 1-8 in cycle ≥2)] and temozolomide [150-200 mg/m(2) daily on days 3-9 in cycle 1 (days 1-5 in cycle ≥2)] every 28 to 56 days. Veliparib pharmacokinetics and pharmacodynamics [ability to inhibit poly(ADP-ribose) polymer (PAR) formation and induce H2AX phosphorylation] were assessed. Pretreatment levels of MGMT and PARP1 protein, methylation of the MGMT promoter, and integrity of the Fanconi anemia pathway were also examined. Forty-eight patients were treated at seven dose levels. Dose-limiting toxicities were oral mucositis and esophagitis lasting >7 days. The MTD was veliparib 150 mg twice daily with temozolomide 200 mg/m(2) daily. The complete response (CR) rate was 17% (8/48 patients). Veliparib exposure as well as inhibition of PAR polymer formation increased dose proportionately. A veliparib-induced increase in H2AX phosphorylation in CD34(+) cells was observed in responders. Three of 4 patients with MGMT promoter methylation achieved CR. Veliparib plus temozolomide is well tolerated, with activity in advanced AML. Further evaluation of this regimen and of treatment-induced phosphorylation of H2AX and MGMT methylation as potential response predictors appears warranted. Clin Cancer Res; 23(3); 697-706. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H;

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  2. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to compounds of formula (I) or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein X1, X2, X3, X4, X5, W1, W2, W3, and W4 are as described. The present invention relates generally to inhibitors of histone deacetylase and to methods...

  3. ACE inhibitors and proteinuria

    NARCIS (Netherlands)

    Gansevoort, RT; deZeeuw, D; deJong, PE

    1996-01-01

    This review discusses the clinical consequences of urinary protein loss and the effects of inhibitors of the angiotensin converting enzyme (ACE) on this clinical finding. Proteinuria appears to be an important risk factor for renal function deterioration and for cardiovascular mortality. ACE inhibit

  4. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of tra

  5. Thrombin inhibitor design.

    Science.gov (United States)

    Sanderson, P E; Naylor-Olsen, A M

    1998-08-01

    Recently, iv formulated direct thrombin inhibitors have been shown to be safe and efficacious alternatives to heparin. These results have fueled the hopes for an orally active compound. Such a compound could be a significant advance over warfarin if it had predictable pharmacokinetics and a duration of action sufficient for once or twice a day dosing. In order to develop an orally active compound which meets these criteria, the deficiencies of the prototype inhibitor efegatran have had to be addressed. First, using a combination of structure based design and empirical structure optimization, more selective compounds have been identified by modifying the P1 group or by incorporating different peptidomimetic P2/P3 scaffolds. Secondly, this optimization has resulted in the development of potent and selective non-covalent inhibitors, thus bypassing the liabilities of the serine trap. Thirdly, oral bioavailability has been achieved while maintaining selectivity and efficacy through the incorporation of progressively less basic P1 groups. The duration of action of these compounds remains to be optimized. Other advances in thrombin inhibitor design have included the development of uncharged P1 groups and the discovery of two non-peptide templates.

  6. In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma☆,☆☆

    Science.gov (United States)

    AlHilli, Mariam M.; Becker, Marc A.; Weroha, S. John; Flatten, Karen S.; Hurley, Rachel M.; Harrell, Maria I.; Oberg, Ann L.; Maurer, Matt J.; Hawthorne, Kieran M.; Hou, Xiaonan; Harrington, Sean C.; McKinstry, Sarah; Meng, X. Wei; Wilcoxen, Keith M.; Kalli, Kimberly R.; Swisher, Elizabeth M.; Kaufmann, Scott H.; Haluska, Paul

    2017-01-01

    Objective Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo. Methods Massively parallel sequencing was performed on HGSOCs to identify mutations contributing to HR deficiency. HR pathway integrity was assessed using fluorescence microscopy-based RAD51 focus formation assays. Effects of niraparib (MK-4827) on treatment-naïve PDX tumor growth as monotherapy, in combination with carboplatin/paclitaxel, and as maintenance therapy were assessed by transabdominal ultrasound. Niraparib responses were correlated with changes in levels of poly(ADP-ribose), PARP1, and repair proteins by western blotting. Results Five PDX models were evaluated in vivo. Tumor regressions were induced by single-agent niraparib in one of two PDX models with deleterious BRCA2 mutations and in a PDX with RAD51C promoter methylation. Diminished formation of RAD51 foci failed to predict response, but Artemis loss was associated with resistance. Niraparib generally failed to enhance responses to carboplatin/paclitaxel chemotherapy, but maintenance niraparib therapy delayed progression in a BRCA2-deficient PDX. Conclusions Mutations in HR genes are neither necessary nor sufficient to predict response to niraparib. Assessment of repair status through multiple complementary assays is needed to guide PARP inhibitor therapy, design future clinical trials and identify ovarian cancer patients most likely to benefit from PARP inhibition. PMID:27614696

  7. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  8. Sequencing of aromatase inhibitors

    OpenAIRE

    2005-01-01

    Since the development of the third-generation aromatase inhibitors (AIs), anastrozole, letrozole and exemestane, these agents have been the subject of intensive research to determine their optimal use in advanced breast cancer. Not only have they replaced progestins in second-line therapy and challenged the role of tamoxifen in first-line, but there is also evidence for a lack of cross-resistance between the steroidal and nonsteroidal AIs, meaning that they may be used in sequence to obtain p...

  9. Update on Aromatase Inhibitors

    Directory of Open Access Journals (Sweden)

    Seifert-Klauss V

    2015-01-01

    Full Text Available Aromatase inhibitors (AI block the last phase of estrogen production in many types of tissues which express the enzym aromatase, among them muscle, liver, adrenal, brain and fat. The enzyme catalyzes the last step of the biosynthesis of the estrogens, i. e. the aromatisation of testosterone to estradiol and of androstendion to estrone. Aromatase is localized in the membrane of the endoplasmatic reticulum and is also produced in the placenta and the gonads. Mutations in the gene CYP19A1, which codes for aromatase, can lead either to lack or excess of aromatase. Gene polymorphisms also influence the amount of bioavailable estrogen and bone density.br Indications: AI are approved for the treatment of postmenopausal women with hormone receptor positive breast cancer, both in the adjuvant setting as well as after recurrence and in progressive disease. In premenopausal and in perimenopausal women AI cause an increased sensitivity of the ovaries to follicle stimulating hormone (FSH and can thereby lead to a boosted estrogen answer – this effect is particularly pronounced in early perimenopausal women – so that these situations demand a combination with GnRH-analogue if AI treatment is to be initiated. Alternatively, tamoxifene may be used in premenopausal patients, with or without GnRH analogues. Treatment of premenopausal patients with hormone receptor positive breast cancer with aromatase inhibiting therapy alone constitutes an absolute contraindication. Aromatase inhibitors do not lead to estrogen receptor downregulation or block the receptor such as tamoxifene. An exceptional application is the application in reproductive medicine in women who do not have hormone receptor positive breast cancer: because of the higher sensitivity induced by AI-co-therapy, FSH-doses and -costs for assisted reproduction are reduced, and ovarian hyperstimulation syndrome (OHSS may be avoided. For premenopausal diseases which are said to be positively affected by

  10. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats

    Science.gov (United States)

    Das, Arabinda; Guyton, M. Kelly; Smith, Amena; Wallace, Gerald; McDowell, Misty L.; Matzelle, Denise D.; Ray, Swapan K.; Banik, Naren L.

    2012-01-01

    Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca2+-activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX-2, NF-κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1-related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl-2 ratio, production of tBid, PARP-1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de-NFP), and also

  11. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib

    National Research Council Canada - National Science Library

    Murai, Junko; Huang, Shar-Yin N; Renaud, Amèlie; Zhang, Yiping; Ji, Jiuping; Takeda, Shunichi; Morris, Joel; Teicher, Beverly; Doroshow, James H; Pommier, Yves

    2014-01-01

    .... Here, we evaluated the novel PARP inhibitor, BMN 673, and compared its effects on PARP1 and PARP2 with two other clinical PARP inhibitors, olaparib and rucaparib, using biochemical and cellular...

  12. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  13. Exploiting Novel-Calcium-Mediated Apoptotic Processes for the Treatment of Human Breast Cancers with Elevated NQO1 Levels

    Science.gov (United States)

    2007-03-01

    filter. Three basal images were collected before drug addition (5–8 M -lap, 5 M BAPTA-AM or 40 M dicoumarol). Subsequent images were taken after the...mediated since PARP inhibitors (e.g. 3-AB and DPQ) partially abrogated nucleo - tide loss (Fig. 3, B and C). Chemical inhibition of PARP-1, or PARP-1

  14. A phase I followed by a randomized phase II trial of two cycles carboplatin-olaparib followed by olaparib monotherapy versus capecitabine in BRCA1- or BRCA2-mutated HER2-negative advanced breast cancer as first line treatment (REVIVAL) : Study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Schouten, Philip C.; Dackus, Gwen M H E; Marchetti, Serena; van Tinteren, Harm; Sonke, Gabe S.; Schellens, Jan H M; Linn, Sabine C.

    2016-01-01

    Background: Preclinical studies in breast cancer models showed that BRCA1 or BRCA2 deficient cell lines, when compared to BRCA proficient cell lines, are extremely sensitive to PARP1 inhibition. When combining the PARP1 inhibitor olaparib with cisplatin in a BRCA1-mutated breast cancer mouse model,

  15. A phase I followed by a randomized phase II trial of two cycles carboplatin-olaparib followed by olaparib monotherapy versus capecitabine in BRCA1- or BRCA2-mutated HER2-negative advanced breast cancer as first line treatment (REVIVAL) : study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Schouten, Philip C.; Dackus, Gwen M.H.E.; Marchetti, Serena; van Tinteren, Harm; Sonke, Gabe S.; Schellens, J.H.M.; Linn, S.C.

    2016-01-01

    BACKGROUND: Preclinical studies in breast cancer models showed that BRCA1 or BRCA2 deficient cell lines, when compared to BRCA proficient cell lines, are extremely sensitive to PARP1 inhibition. When combining the PARP1 inhibitor olaparib with cisplatin in a BRCA1-mutated breast cancer mouse model,

  16. ACE INHIBITORS: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Arora* and Ashish Chauhan

    2013-02-01

    Full Text Available Hypertension is a chronic increase in blood pressure, characterized as primary and secondary hypertension. The disorder is associated with various risk factors like obesity, diabetes, age, lack of exercise etc. Hypertension is being treated since ancient times by Ayurvedic, Chinese and Unani medicine. Now various allopathic drugs are available which include diuretics, calcium channel blockers, α-blockers, β-blockers, vasodilators, central sympatholytics and ACE-inhibitors. Non-pharmacological treatments include weight reduction, dietary sodium reduction, increased potassium intake and reduction in alcohol consumption. ACE-inhibitors are widely used in the treatment of hypertension by inhibiting the angiotensin converting enzyme responsible for the conversion of angiotensin I to angiotensin II (responsible for vasoconstriction. Various structure activity relationship studies led to the synthesis of ACE-inhibitors, some are under clinical development. This comprehensive review gives various guidelines on classification of hypertension, hypertension therapy including ancient, pharmacological, non-pharmacological therapies, pharmacoeconomics, historical perspectives of ACE, renin, renin angiotensin system (circulating vs local RAS, mechanism of ACE inhibitors, and development of ACE inhibitors. Review also emphasizes on the recent advancements on ACE inhibitors including drugs in clinical trials, computational studies on ACE-inhibitors, peptidomimetics, dual, natural, multi-functional ACE inhibitors, and conformational requirements for ACE-inhibitors.

  17. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  18. Synthesis and evaluation of benzimidazole derivatives as poly(ADP-ribose) polymerase inhibitors%苯并咪唑类聚腺苷二磷酸核糖聚合酶抑制剂的合成及初步活性研究

    Institute of Scientific and Technical Information of China (English)

    沈超; 王慧源; 柳军; 赵娜; 张陆勇; 吴晓明; 孙宏斌

    2011-01-01

    Poly (ADP-ribose) polymerases(PARPs) are a large enzyme family which consists of at least 17 members. These enzymes are implicated in multiple cellular processes through catalysis of the addition of ADP-ribose polymers on various acceptor proteins. PARP-1, the most abundant isoform which can be activated by DNA damage,plays an important role in the repair of DNA single strand breaks(SSBs) under normal circumstances. However,PARP-1 can also contribute to resistance after cancer therapy due to its DNA repair activity. Thus PARP inhibitors have been pursued for many years as chemo/radiotherapy sensitizers in cancer treatment. Besides being used in combination, PARP inhibitors may also be applied as monotherapy in some specific cancer types with synthetic lethality as the main mechanism of action. There are currently at least six compounds being investigated in clinical trials,including BSI201 ,AZD2281, ABT888, MK4827, AG014699,and INO1001. NU1085 ,developed by the University of Newcastle,has been used as a benchmark of PARP inhibitors due to its potent activity and other good features. We used NU1085 as the lead compound,attempting to find more desirable PARP inhibitors through structural modification. Docking between PARP-1 and the designed molecules showed that introduction of lipid soluble groups at 4'-position might improve the PARP inhibitory activity. In addition, a series of 4-carborsylate derivatives were also designed and synthesized to find novel PARP inhibitors. Twenty-two benzimidazole derivatives were synthesized in all, starting with 3-nitrophthalic anhydride which underwent ring-opening, Hofmann rearrangement, amidation or esterification,and reduction to give diamino compounds. Condensation of the diamino compounds with benzaldehyde or its derivatives afforded the target compounds. All the target compounds were structurally confirmed by 1H-NMR, IR and MS and seventeen compounds were novel ones. The following poly (ADP-ribose) polymerase inhibitory

  19. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    Science.gov (United States)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evaluation of DNA Repair Function as a Predictor of Response in a Clinical Trial of PARP Inhibitor Monotherapy for Recurrent Ovarian Carcinoma

    Science.gov (United States)

    2014-10-01

    DNA ligase IV, XRCC4 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...nonhomologous end-joining (NHEJ) pathway (53BP1, Ku70, Ku80, DNA-PKcs, XRCC4, DNA ligase IV) as well as PARP1. This group of proteins was chosen based on our...recombination, nonhomologous end-joining (NHEJ), immunohistochemistry, poly(ADP-ribose) polymerase, Ku70, Ku80, PARP1, 53BP1, DNA-PK, Artemis, DNA ligase IV

  1. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    OpenAIRE

    Čolović, Mirjana B.; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are appl...

  2. Proteinase inhibitors in Brazilian leguminosae

    Directory of Open Access Journals (Sweden)

    C. A. M. Sampaio

    1991-01-01

    Full Text Available Serine proteinase inhitors, in the seeds of several Leguminosae from the Pantanal region (West Brazil, were studied using bovine trypsin, a digestive enzyme, Factor XIIa and human plasma Kallikrein, two blood clotting factors. The inhibitors were purified from Enterolobium contortisiliquum (Mr=23,000, Torresea cearensis (Mr = 13,000, Bauhinia pentandra (Mr = 20,000 and Bauhinia bauhinioides (Mr = 20,000. E. contortisiliquum inhibitor inactivates all three enzymes, whereas the T. cearensis inhibitor inactivates trypsin and Factor XSSa, but does nor affect plasma kallikrein; both Bauhinia inhibitors, on the other hand, inactivate trypsin and plasma kallikrein but only the Bpentandra inhibitor affects Factor XIIa. Ki values were calculated between 10 [raised to the power of] -7 and 10 [raised to the power of] -8 M.

  3. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous a-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase...... inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases...... in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological...

  4. Cholinesterase inhibitors and memory.

    Science.gov (United States)

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2010-09-06

    A consensus exists that cholinesterase inhibitors (ChEIs) are efficacious for mild to moderate Alzheimer's Disease (AD). Unfortunately, the number of non-responders is large and the therapeutic effect is usually short-lasting. In experimental animals, ChEIs exert three main actions: inhibit cholinesterase (ChE), increase extracellular levels of brain acetylcholine (ACh), improve cognitive processes, particularly when disrupted in models of AD. In this overview we shall deal with the cognitive processes that are improved by ChEI treatment because they depend on the integrity of brain cholinergic pathways and their activation. The role of cholinergic system in cognition can be investigated using different approaches. Microdialysis experiments demonstrate the involvement of the cholinergic system in attention, working, spatial and explicit memory, information encoding, sensory-motor gating, skill learning. No involvement in long-term memory has yet been demonstrated. Conversely, memory consolidation is facilitated by low cholinergic activity. Experiments on healthy human subjects, notwithstanding caveats concerning age, dose, and different memory tests, confirm the findings of animal experiments and demonstrate that stimulation of the cholinergic system facilitates attention, stimulus detection, perceptual processing and information encoding. It is not clear whether information retrieval may be improved but memory consolidation is reduced by cholinergic activation. ChEI effects in AD patients have been extensively investigated using rating scales that assess cognitive and behavioural responses. Few attempts have been made to identify which scale items respond better to ChEIs and therefore, presumably, depend on the activity of the cholinergic system. Improvement in attention and executive functions, communication, expressive language and mood stability have been reported. Memory consolidation and retrieval may be impaired by high ACh levels. Therefore, considering

  5. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  6. [Cancer therapy by PARP inhibitors].

    Science.gov (United States)

    Seimiya, Hiroyuki

    2015-08-01

    Poly(ADP-ribose) polymerases(PARP) synthesize the ADP-ribose polymers onto proteins and play a role in DNA repair. PARP inhibitors block the repair of single-strand breaks, which in turn gives rise to double-strand breaks during DNA replication. Thus, PARP inhibitors elicit synthetic lethality in cancer with BRCA1/2 loss-of-function mutations that hamper homologous recombination repair of double-strand breaks. Olaparib, the first-in-class PARP inhibitor, was approved for treatment of BRCA-mutated ovarian cancer in Europe and the United States in 2014. Other PARP inhibitors under clinical trials include rucaparib, niraparib, veliparib, and the "PARP-trapping" BMN-673. BRCA1/2 sequencing is an FDA-approved companion diagnostics, which predicts the cancer vulnerability to PARP inhibition. Together, synthetic lethal PARP inhibition is a novel promising strategy for cancer intervention even in cases without prominent driver oncogenes.

  7. [Trypsin inhibitor from Gleditsia triacanthos L. seeds].

    Science.gov (United States)

    Mosolov, V V; Kolosova, G V; Valueva, T A; Dronova, L A

    1982-05-01

    The trypsin inhibitor from Gleditsia triacanthos (L.) seeds was purified by affinity chromatography on a column with trypsin-Sepharose 4B. The isolated inhibitor is a single-chain protein with molecular weight of about 20 000. The inhibitor suppresses bovine trypsin at a molar rate of 1 : 1, but weakly inhibits chymotrypsin in a non-stoichiometric manner. Some properties of the isolated inhibitor closely resembled those of soybean trypsin inhibitor (Kunitz).

  8. Diverse inhibitors of aflatoxin biosynthesis.

    Science.gov (United States)

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  9. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  10. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C;

    1997-01-01

    Fibrinolytic enzyme inhibitors hamper the determination of the specific fibrinolytic serine protease activity. Reportedly, chemical anti-inhibitors eliminate the influence of fibrinolytic inhibitors, but it remains unclear to what extent they change the specific activity of fibrinolytic serine pr...

  11. Biocatalysts with enhanced inhibitor tolerance

    Science.gov (United States)

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  12. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.

    2008-01-01

    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within tub

  13. Biocatalysts with enhanced inhibitor tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  14. Proton pump inhibitors and gastroenteritis

    NARCIS (Netherlands)

    R.J. Hassing (Robert); A. Verbon (Annelies); H. de Visser (Herman); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2016-01-01

    textabstractAn association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam Study

  15. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.

    2008-01-01

    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within

  16. Proteasome Inhibitors with Photocontrolled Activity

    NARCIS (Netherlands)

    Hansen, Mickel J.; Velema, Willem A.; de Bruin, Gerjan; Overkleeft, Herman S.; Szymanski, Wiktor; Feringa, Ben L.

    2014-01-01

    Proteasome inhibitors are widely used in cancer treatment as chemotherapeutic agents. However, their employment often results in severe side effects, due to their non-specific cytotoxicity towards healthy tissue. This problem might be overcome by using a photopharmacological approach, that is, by

  17. CORROSION INHIBITOR FOR CARBON STEELS

    African Journals Online (AJOL)

    corrosion inhibitor for carbon steel in 3% ac]neon.s' NaCl solution (pH 6) ... compared to stainless steels (Buchweishaija & Hagen 1997). Organic compounds are ... resistant dust for break and clutch linings, wood binders and mould (Gedam.

  18. Corrosion Inhibitors for Reinforced Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Steel corrosion in reinforced concrete structures has been a major problem across the U.S. Steel-reinforced concrete structures are continually subject to attack by corrosion brought on by naturally occurring environmental conditions. FerroGard, a corrosion inhibitor, developed by Sika Corporation, penetrates hardened concrete to dramatically reduce corrosion by 65% and extend the structure's service life.

  19. PARP inhibitors in ovarian cancer.

    Science.gov (United States)

    Ledermann, J A

    2016-04-01

    Slow progress in improving the outcome of ovarian cancer with chemotherapy over the last decade has stimulated research into molecularly targeted therapy. Poly(ADP-ribose) polymerase (PARP) inhibitors target DNA repair and are specifically active in cells that have impaired repair of DNA by the homologous recombination (HR) pathway. Cells with mutated BRCA function have HR deficiency (HRD), which is also present in a significant proportion of non-BRCA-mutated ovarian cancer. In the last decade, olaparib, the first and most-investigated oral PARP inhibitor, has undergone phase I-III trials as a single agent, in comparison with and in addition to chemotherapy, and as a maintenance therapy following chemotherapy. The greatest benefit to-date has been in the maintenance setting, prolonging the progression-free survival of high-grade serous ovarian cancer with a BRCA1/2 mutation. In this group of patients, olaparib has received approval as maintenance following chemotherapy from the EMA, and accelerated approval as a single agent in women who have had three or more lines of therapy. Olaparib can be given for a prolonged period with few significant side-effects in most patients. Similar trials with other PARP inhibitors (rucaparib, niraparib and veliparib) are in progress and include non-BRCA-mutated ovarian cancer. Second-generation studies are exploring the combination of PARP inhibitors with anti-angiogenic drugs. PARP inhibitors represent a step change in the management of ovarian cancer. BRCA mutations are the first genotypic predictive markers in ovarian cancer and can be used to select patients who will most likely benefit from PARP inhibitors. BRCA testing is now becoming a routine part of the evaluation of women with ovarian cancer, and tests for HRD are being used to evaluate PARP inhibitors in an extended population of non-BRCA-mutated ovarian cancer. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical

  20. Phosphodiesterase inhibitors: history of pharmacology.

    Science.gov (United States)

    Schudt, Christian; Hatzelmann, Armin; Beume, Rolf; Tenor, Hermann

    2011-01-01

    The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.

  1. DNA repair in plants studied by comet assay

    Directory of Open Access Journals (Sweden)

    Karel J Angelis

    2015-06-01

    Fig. 2B. Effect of mutation and of inhibitors of PARP1 on SSB repair kinetics. SSBs induced by 1 hr treatment with 2 mM MMS in atparp1 (red and in Arabidopsis wt in presence of 3 mM 3-aminobenzamide (3-ABA, turquoise and 10 μM HsPARP1 specific AG14361 (green inhibitors. (Angelis and Kozák, unpublished data

  2. Nicotinamide phosphoribosyltransferase inhibitors, design, preparation and SAR

    DEFF Research Database (Denmark)

    Christensen, Mette Knak; Erichsen, Kamille Dumong; Olesen, Uffe Hogh;

    2013-01-01

    Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. Using medicinal and computational chemistry methods, the structure-activity relationship for novel classes of NAMPT inhibitors is described and compounds optimized....... Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives the new analogues exhibit an equally potent anti-proliferative activity in vitro and comparable activity in vivo. The best performing compounds from...

  3. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  4. Proteasome inhibitors in cancer therapy

    Directory of Open Access Journals (Sweden)

    Wioletta Romaniuk

    2015-12-01

    Full Text Available Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238, delanzomib (CEP-18770, oprozomib (ONX0912/PR-047 and marizomib (NPI-0052.

  5. Nelfinavir: fourth protease inhibitor approved.

    Science.gov (United States)

    1997-01-01

    The Food and Drug Administration (FDA) has granted accelerated approval to nelfinavir in both adult and pediatric formulations. Agouron, the manufacturer, used innovative computerized drug design techniques to discover, design, and refine the nelfinavir molecule. Nelfinavir is marketed under the trade name Viracept, and costs $5,000 per year. Early clinical trials find it to be as powerful as the other protease inhibitors, but with a different resistance profile. The drug has relatively few drug indications; however, several compounds have been contraindicated.

  6. Notch Inhibitors for Cancer Treatment

    OpenAIRE

    Espinoza, Ingrid; Miele, Lucio

    2013-01-01

    Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been de...

  7. Conversion of calcineurin inhibitors with mammalian target of rapamycin inhibitors after kidney transplant.

    Science.gov (United States)

    Nikoueinejad, Hassan; Soleimani, Alireza; Mirshafiey, Abbas; Amirzargar, Aliakbar; Sarrafnejad, Abdolfattah; Kamkar, Ideh; Einollahi, Behzad

    2013-02-01

    One way to overcome chronic allograft nephropathy induced by calcineurin inhibitors in immunosuppression protocols for organ transplants is to replace such inhibitors with mammalian target of rapamycin inhibitors, which are not clinically nephrotoxic because they have better renal function. If patients tolerate replacement, there could be a clear preference for mammalian target of rapamycin inhibitors as a maintenance immunosuppressant after renal transplant. This replacement could be sufficient if it were used for a certain time after calcineurin inhibitors. This review considers the conversion effects of calcineurin inhibitors with mammalian target of rapamycin inhibitors from the view point of kidney function during different periods after a kidney transplant.

  8. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen

    2005-01-01

    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  9. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported.

  10. Substituted androstanes as aromatase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Levina, Inna S [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    1998-11-30

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C{sub 19}-steroids into C{sub 18}-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  11. Substituted androstanes as aromatase inhibitors

    Science.gov (United States)

    Levina, Inna S.

    1998-11-01

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C19-steroids into C18-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  12. Conformation-specific inhibitors of Raf kinases.

    Science.gov (United States)

    Wang, Xiaolun; Schleicher, Kristin

    2013-01-01

    Since the discovery linking B-Raf mutations to human tumors in 2002, significant advances in the development of Raf inhibitors have been made, leading to the recent approval of two Raf inhibitor drugs. This chapter includes a brief introduction to B-Raf as a validated target and focuses on the three different binding modes observed with Raf small-molecule inhibitors. These various binding modes lock the Raf kinase in different conformations that impact the toxicity profiles of the inhibitors. Possible solutions to mitigate the side effects caused by inhibitor-induced dimerization are also discussed.

  13. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  14. Inhibitors

    Science.gov (United States)

    ... Project (CHAMP) mutation list: a new online resource. Human Mutation. 2012; E2382-E2392. Li T, Miller CH, Payne AB, Hooper CW. The CDC Hemophilia B mutation project mutation list: a new online resource. Molecular Genetics and Genomic Medicine. 2013; 1(4):238-245. ...

  15. Tissue factor pathway inhibitor endocytosis.

    Science.gov (United States)

    Schwartz, A L; Broze, G J

    1997-10-01

    Tissue factor pathway inhibitor (TFPI), a 42 kD protein, provides the physiological inhibition of tissue factor initiated coagulation by inhibition of both factor Xa and factor VIIa/tissue factor. In plasma, most TFPI is lipoprotein bound with an additional "releasable" pool bound to the endothelial cell surface. TFPI clearance is via receptor mediated endocytosis into liver. Heparin sulfate proteoglycans and LRP (low density lipoprotein receptor-related protein), an extremely large (∼600 kD) cell surface protein, primarily mediate this clearance, although additional TFPI binding sites and endocytosis pathways exist. (Trends Cardiovasc Med 1997; 7:234-239). © 1997, Elsevier Science Inc.

  16. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  17. Myeloperoxidase Inhibitors as Potential Drugs.

    Science.gov (United States)

    Lazarević-Pasti, Tamara; Leskovac, Andreja; Vasić, Vesna

    2015-01-01

    Myeloperoxidase (MPO) is an important member of the haem peroxidase - cyclooxygenase superfamily. This enzyme is physiologically expressed in circulating neutrophils, monocytes and some tissue macrophages including microglia. MPO plays an essential role in the antimicrobial and antiviral system of humans. The microbicidal activity of MPO exists due to its capability to oxidize halide and pseudohalide ions (CI(-), Br(-), I(-) and SCN(-)) by H2O2, thereby producing respective hypohalous acids (HOX). During the phagocytosis of pathogens, azurophilic granules release their content together with MPO into phagolysosomes. On the other hand, MPO can be discharged outside the phagocytes. Due to this, tissue damage during inflammation is greatly promoted by MPO-derived oxidants. Regarding its activity, MPO is a key factor in a great number of conditions within the group of cardiovascular diseases, inflammatory diseases, neurodegenerative diseases, kidney diseases and immune-mediated diseases. Therefore, MPO and its downstream inflammatory pathways might be attractive targets for both prognostic and therapeutic intervention in the prophylaxis of all mentioned illnesses. Nowadays, structure and reaction mechanism of MPO are known, which enable rational strategy in the development of specific MPO inhibitors that still preserve MPO activity during host defense from bacteria, but hinder pathophysiologically persistent activation of MPO. Various methods for MPO activity inhibition and unfavorable effects of MPO-derived oxidants remodeling will be discussed. Emphasis will be put on various known inhibitors, as well as on newly investigated natural products, which can also inhibit MPO activity.

  18. Aromatase inhibitors and bone loss.

    Science.gov (United States)

    Perez, Edith A; Weilbaecher, Katherine

    2006-08-01

    The aromatase inhibitors (AIs) anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin) are significantly more effective than the selective estrogen-receptor modulator (SERM) tamoxifen in preventing recurrence in estrogen receptor-positive early breast cancer. Aromatase inhibitors are likely to replace SERMs as first-line adjuvant therapy for many patients. However, AIs are associated with significantly more osteoporotic fractures and greater bone mineral loss. As antiresorptive agents, oral and intravenous bisphosphonates such as alendronate (Fosamax), risedronate (Actonel), ibandronate (Boniva), pamidronate (Aredia), and zoledronic acid (Zometa) have efficacy in preventing postmenopausal osteoporosis, cancer treatment-related bone loss, or skeletal complications of metastatic disease. Clinical practice guidelines recommend baseline and annual follow-up bone density monitoring for all patients initiating AI therapy. Bisphosphonate therapy should be prescribed for patients with osteoporosis (T score vitamin D intake, weight-bearing exercise, and smoking cessation should be addressed. Adverse events associated with bisphosphonates include gastrointestinal toxicity, renal toxicity, and osteonecrosis of the jaw. These safety concerns should be balanced with the potential of bisphosphonates to minimize or prevent the debilitating effects of AI-associated bone loss in patients with early, hormone receptor-positive breast cancer.

  19. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  20. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    -molecule allosteric inhibitor trametinib in 2013, the progress of more than 10 other allosteric inhibitors in clinical trials, and the emergence of a pipeline of highly selective and potent preclinical molecules, have been reported in the past decade. In this article, we present the current knowledge on allosteric...... inhibition in terms of conception, classification, potential advantages, and summarized debatable topics in the field. Recent progress and allosteric inhibitors that were identified in the past three years are highlighted in this paper....

  1. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer.

    Science.gov (United States)

    Drew, Yvette; Ledermann, Jonathan; Hall, Geoff; Rea, Daniel; Glasspool, Ros; Highley, Martin; Jayson, Gordon; Sludden, Julieann; Murray, James; Jamieson, David; Halford, Sarah; Acton, Gary; Backholer, Zoe; Mangano, Raffaella; Boddy, Alan; Curtin, Nicola; Plummer, Ruth

    2016-03-29

    Rucaparib is an orally available potent selective small-molecule inhibitor of poly(ADP-ribose) polymerase (PARP) 1 and 2. Rucaparib induces synthetic lethality in cancer cells defective in the homologous recombination repair pathway including BRCA-1/2. We investigated the efficacy and safety of single-agent rucaparib in germline (g) BRCA mutation carriers with advanced breast and ovarian cancers. Phase II, open-label, multicentre trial of rucaparib in proven BRCA-1/2 mutation carriers with advanced breast and or ovarian cancer, WHO PS 0-1 and normal organ function. Intravenous (i.v.) and subsequently oral rucaparib were assessed, using a range of dosing schedules, to determine the safety, tolerability, dose-limiting toxic effects and pharmacodynamic (PD) and pharmacokinetic (PK) profiles. Rucaparib was well tolerated in patients up to doses of 480 mg per day and is a potent inhibitor of PARP, with sustained inhibition ⩾24 h after single doses. The i.v. rucaparib (intermittent dosing schedule) resulted in an objective response rate (ORR) of only 2% but with 41% (18 out of 44) patients achieved stable disease for ⩾12 weeks and 3 patients maintaining disease stabilisation for >52 weeks. The ORR for oral rucaparib (across all six dose levels) was 15%. In the oral cohorts, 81% (22 out of 27) of the patients had ovarian cancer and 12 out of 13, who were dosed continuously, achieved RECIST complete response/partial response (CR/PR) or stable disease (SD) ⩾12 weeks, with a median duration of response of 179 days (range 84-567 days). Rucaparib is well tolerated and results in high levels of PARP inhibition in surrogate tissues even at the lowest dose levels. Rucaparib is active in gBRCA-mutant ovarian cancer and this activity correlates with platinum-free interval. The key lessons learned from this study is that continuous rucaparib dosing is required for optimal response, the recommended phase 2 dose (RP2D) for continuous oral scheduling has not been established

  2. TYROSINE KINASE INHIBITORS AND PREGNANCY

    Directory of Open Access Journals (Sweden)

    Elisabetta Abruzzese

    2014-04-01

    Full Text Available The management of patients with chronic myeloid leukemia (CML during pregnancy has became recently a matter of continuous debate.  The introduction of the Tyrosine Kinase Inhibitors (TKIs in clinical practice has dramatically changed the prognosis of CML patients.  Patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy.  This fact has come the necessity to address issues relating to fertility and pregnancy. Physicians are not infrequently being asked for advice regarding the need for, and or the appropriateness of, stopping treatment in order to conceive. In this report we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs, as well as suggest how to manage a planned and/or unplanned pregnancy.

  3. Glycine Transporters and Their Inhibitors

    Science.gov (United States)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  4. A proteasome inhibitor confers cardioprotection.

    Science.gov (United States)

    Lüss, Hartmut; Schmitz, Wilhelm; Neumann, Joachim

    2002-04-01

    In several cell types, proteasome inhibitors like carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132) induce the 72 kDa heat shock protein (Hsp72) and exert cell protective effects. However, data in cardiomyocytes are currently lacking. We investigated the effects of MG132 in cultured neonatal rat cardiomyocytes. MG132 time- and concentration-dependently induced Hsp72 and Hsp32 at mRNA and protein levels. Although Hsp60 mRNA was induced, Hsp60 protein levels were not altered. MG132 activated p38 MAP kinase already after 0.5 h. Hsp mRNA induction started after 2 h of MG132 treatment. Subsequently, Hsp72 and Hsp32 protein levels were increased after 4 h. SB202190, an inhibitor of p38 MAP kinase, concentration-dependently attenuated MG132-induced Hsp72-and Hsp32-elevations (by 59% and 41%, respectively, at 1 microM SB202190). In contrast, herbimycin A, a known inductor of Hsp72 in cardiomyocytes, enhanced the MG132-induced Hsp72 and Hsp32 expression even further: additionally applied 2 microM herbimycin A induced Hsp72 and Hsp32 about 2-fold higher than 1 microM MG132 alone. MG132 (1 microM) decreased the hyperthermia- or hydrogen peroxide-induced release of lactate dehydrogenase by 45% and by 35%, respectively (P<0.05, n=5). MG132 (1 microM) prolonged the spontaneous beating time of cardiomyocytes at 46 degrees C from 5+/-2 min (control hyperthermia) to 28+/-5 min (P<0.05, n=4). Thus, inhibition of the proteasome function by MG132 protects cardiomyocytes against hyperthermic or oxidative injury. This protective effect and Hsp induction were abolished by 1 microM SB202190. Proteasome inhibition results in p38 MAP kinase-dependent induction of Hsp72 and Hsp32 and might be a novel cardioprotective modality.

  5. Aromatase inhibitors in gynecologic cancers.

    Science.gov (United States)

    Krasner, Carolyn

    2007-01-01

    The female genital tract is hormonally responsive, and consequently some tumors, which arise within in it, may be treated at least in part, with hormonal manipulation. The range of responses in clinical trials and case reports will be reviewed. Many of these diseases are too rare for clinical trial testing, and in some cases evidence is anecdotal at best. Recurrences of ovarian cancer have been treated with tamoxifen and megesterol acetate with variable response rates from 0 to 56%. The favorable toxicity profile of aromatase inhibitors led to trials of these agents for the treatment of relapsed epithelial ovarian cancer. These agents have proved tolerable with minor response rates but a significant disease stabilization rate, which may be prolonged in a minority of cases. It is unclear if these responses may be predicted by estrogen receptor expression or aromatase expression. Anastrazole has also been tried in combination with an EGFR receptor-inhibitor, again showing minor responses but possibly an increase in TTT in some patients. Granulosa cell tumors of the ovary are rare, hormonally sensitive tumors, with reported responses to a variety of hormonal manipulations, including aromatase inhibition. In addition, combined endocrine blockade, including aromatase inhibition, has been tried with reports of success. Endometrial cancers, particularly type I lesions, are often treated with hormonal manipulation, most commonly with progestins, but also with antiestrogens such as tamoxifen. A trial of aromatase inhibition in the treatment of recurrent endometrial cancer showed minimal responses. Endometrial stromal sarcoma, an uncommon uterine malignancy, has shown response to hormonal treatments, with multiple case reports of efficacy of aromatase inhibition. Despite the rarity of some of these tumor types, rare tumor study groups, such as within the Gynecologic Oncology Group, should make an effort to prospectively define the utility of these treatments.

  6. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    Science.gov (United States)

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  7. MAO inhibitors: risks, benefits, and lore.

    Science.gov (United States)

    Wimbiscus, Molly; Kostenko, Olga; Malone, Donald

    2010-12-01

    Monoamine oxidase (MAO) inhibitors were the first antidepressants introduced, but their use has dwindled because of their reported side effects, their food and drug interactions, and the introduction of other classes of agents. However, interest in MAO inhibitors is reviving. Here, we discuss their use, risks, and benefits in clinical medicine.

  8. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  9. Inhibitors targeting two-component signal transduction.

    Science.gov (United States)

    Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro

    2008-01-01

    A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.

  10. [Interaction between clopidogrel and proton pump inhibitors

    NARCIS (Netherlands)

    Harmsze, A.M.; Boer, A. de; Boot, H.; Deneer, V.H.; Heringa, M.; Mol, P.G.; Schalekamp, T.; Verduijn, M.M.; Verheugt, F.W.A.; Comte, M. le

    2011-01-01

    The drug interaction between proton pump inhibitors and clopidogrel has been the subject of much study in recent years. Contradictory results regarding the effect of proton pump inhibitors on platelet reactivity and on clinical outcome in clopidogrel-treated patients have been reported in literature

  11. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  12. Exploring the scaffold universe of kinase inhibitors.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2015-01-08

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  13. COX-2 Inhibitors and Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-01-01

    Full Text Available The evidence that cyclooxygenase-2 (COX-2 is upregulated and plays an important role in carcinogenesis of gastric cancer has triggered the topic of COX-2 inhibitors as chemopreventive agents for gastric cancer. Studies find that COX-2 inhibitors are associated not only with chemoprophylactic effects, but also with chemotherapeutic potentials in gastric cancer. Both COX-dependent and COX-independent pathways have a role in the anticancer efficiency of COX-2 inhibitors. However, enthusiasm is thwarted by the potential toxicity, that is, gastrointestinal toxicity of nonselective COX-2 inhibitors and cardiovascular risk of selective COX-2 inhibitors. Therefore, more studies are needed to develop new targeted antitumor agents (such as prostaglandin E receptor antagonist and to define fundamental questions such as optimal treatment regimens, integration of cotherapy, and careful selection of candidates.

  14. Designing Inhibitors of Anthrax Toxin

    Science.gov (United States)

    Nestorovich, Ekaterina M.; Bezrukov, Sergey M.

    2014-01-01

    Introduction Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates, and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded “for the development of multiscale models for complex chemical systems” once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial and error approach to a minimum. The “rational drug design” term is rather comprehensive as it includes all contemporary methods of drug discovery where serendipity and screening are substituted by the information-guided search for new and existing compounds. Successful implementation of these innovative drug discovery approaches is inevitably preceded by learning the physics, chemistry, and physiology of functioning of biological structures under normal and pathological conditions. Areas covered This article provides an overview of the recent rational drug design approaches to discover inhibitors of anthrax toxin. Some of the examples include small-molecule and peptide-based post-exposure therapeutic agents as well as several polyvalent compounds. The review also directs the reader to the vast literature on the recognized advances and future possibilities in the field. Expert opinion Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (PA-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, in our view, the situation is still insecure. The FDA’s animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Besides, unlike PA, which is known to be unstable, LF remains active in cells and in animal tissues for days. Therefore, the effectiveness of the post-exposure treatment of the individuals

  15. Vascular calcification: Inducers and inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} Types of vascular calcification processes. {center_dot} Inducers of vascular calcification. {center_dot} Inhibitors of vascular calcifications. {center_dot} Clinical utility for vascular calcification therapy. {center_dot} Implications for the development of new tissue engineering strategies. - Abstract: Unlike the traditional beliefs, there are mounting evidences suggesting that ectopic mineral depositions, including vascular calcification are mostly active processes, many times resembling that of the bone mineralization. Numbers of agents are involved in the differentiation of certain subpopulation of smooth muscle cells (SMCs) into the osteoblast-like entity, and the activation and initiation of extracellular matrix ossification process. On the other hand, there are factors as well, that prevent such differentiation and ectopic calcium phosphate formation. In normal physiological environments, activities of such procalcific and anticalcific regulatory factors are in harmony, prohibiting abnormal calcification from occurring. However, in certain pathophysiological conditions, such as atherosclerosis, chronic kidney disease (CKD), and diabetes, such balances are altered, resulting in abnormal ectopic mineral deposition. Understanding the factors that regulate the formation and inhibition of ectopic mineral formation would be beneficial in the development of tissue engineering strategies for prevention and/or treatment of such soft-tissue calcification. Current review focuses on the factors that seem to be clinically relevant and/or could be useful in developing future tissue regeneration strategies. Clinical utilities and implications of such factors are also discussed.

  16. ALK inhibitors, a pharmaceutical perspective

    Directory of Open Access Journals (Sweden)

    Arturo eGalvani

    2012-02-01

    Full Text Available In 2007, the ALK tyrosine kinase, already known to be translocated and activated in Anaplastic Large Cell Lymphoma, and a few other rare cancers, was described as a potential therapeutic target for a subset of non small-cell lung cancer (NSCLC patients. Clinical proof of concept, culminating in the recent approval by the FDA of the Pfizer drug Xalkori (crizotinib, formerly known as PF-02341066 followed in record time. The drug was approved together with a companion diagnostic, the Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Inc. for detection of eligible patients. This remarkable example of the coming of age of personalized medicine in cancer therapy is hopefully only an auspice of things to come in this rapidly developing field. Perhaps unsurprisingly, however, the appearance of clinical acquired resistance to crizotinib has already been observed early on in clinical testing, with the identification of several ALK secondary point mutations which diminish drug efficacy, and which open the way for development of second-generation inhibitors. It is also emerging that acquired resistance to crizotinib may also occur through ALK-independent mechanisms, which still need to be elucidated in detail.

  17. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    Science.gov (United States)

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function.

  18. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  19. Design and Synthesis of Caspase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    BAI; Xu

    2001-01-01

    Apoptosis (programmed cell death) is an evolutionarily conserved process of cell suicide. It requires specialized machinery which involving a family of proteases named caspases. Manipulation of apoptosis through inhibiting or activating caspases has been of great therapeutic interests in the pharmaceutical industry.  Using substrate based approach, a systematic investigation of conformationally constrained peptidomimetic inhibitors has led to the discovery of highly selective ones against selected members of the caspase family. It also resulted novel dipeptide inhibitors as useful tools and possible therapeutic agents against diseases caused by excessive apoptotic cell death. This presentation will focus on the design, synthesis and application of novel caspase inhibitors.  ……

  20. Design and Synthesis of Caspase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    BAI Xu

    2001-01-01

    @@ Apoptosis (programmed cell death) is an evolutionarily conserved process of cell suicide. It requires specialized machinery which involving a family of proteases named caspases. Manipulation of apoptosis through inhibiting or activating caspases has been of great therapeutic interests in the pharmaceutical industry. Using substrate based approach, a systematic investigation of conformationally constrained peptidomimetic inhibitors has led to the discovery of highly selective ones against selected members of the caspase family. It also resulted novel dipeptide inhibitors as useful tools and possible therapeutic agents against diseases caused by excessive apoptotic cell death. This presentation will focus on the design, synthesis and application of novel caspase inhibitors.

  1. Migrating corrosion inhibitor protection of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  2. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  3. The primary structure of Vipera ammodytes venom trypsin inhibitor I.

    Science.gov (United States)

    Ritonja, A; Meloun, B; Gubensek, F

    1983-11-14

    The primary structure of Vipera ammodytes venom trypsin inhibitor I consists of 61 amino acid residues [sequence in text]. The N-terminal group of the inhibitor is pyrrolidonecarboxylic acid. The sequential data were obtained by analysis of peptides isolated from tryptic and chymotryptic digests and by analysis of peptides derived from the hydrolysis of the aspartyl-prolyl bond of the carboxymethylated inhibitor. The primary structure of trypsin inhibitor I presented shows approximately 80% sequence homology with chymotrypsin inhibitor isolated from the venom of the same snake, and nearly 50% homology with bovine basic pancreatic trypsin inhibitor. It belongs to the Kunitz-pancreatic trypsin inhibitor family of inhibitors.

  4. Musical hallucinations treated with acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Jan Dirk eBlom

    2015-04-01

    Full Text Available Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss.

  5. Strategies for discontinuation of proton pump inhibitors

    DEFF Research Database (Denmark)

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M

    2014-01-01

    PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...

  6. Musical hallucinations treated with acetylcholinesterase inhibitors.

    Science.gov (United States)

    Blom, Jan Dirk; Coebergh, Jan Adriaan F; Lauw, René; Sommer, Iris E C

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss.

  7. Drug design from the cryptic inhibitor envelope.

    Science.gov (United States)

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J; Zhou, Pei

    2016-02-25

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC--an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target--access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics.

  8. Drug design from the cryptic inhibitor envelope

    Science.gov (United States)

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  9. Kinase inhibitors for advanced medullary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Martin Schlumberger

    2012-01-01

    Full Text Available The recent availability of molecular targeted therapies leads to a reconsideration of the treatment strategy for patients with distant metastases from medullary thyroid carcinoma. In patients with progressive disease, treatment with kinase inhibitors should be offered.

  10. Polypeptide Inhibitors of Mineral Scaling and Corrosion

    Science.gov (United States)

    1989-06-01

    peptides are based on natural protein inhibitors of mineral formation and generally are enriched in aspartic acid and phosphoserine. Specifically, the...the protein inhibitors of mineral formation , we evaluated several methods of preparation of phosphopeptides. These included direct polymerization of 2...number of assays have been developed to measure the ability of the peptides to inhibit mineral formation . These include methods for assessing effects on

  11. Inhibitor development in nonsevere hemophilia A

    OpenAIRE

    2014-01-01

    Hemophilia A is an X-linked inherited bleeding disorder that affects approximately 1 in 5000 male live births. It is caused by a deficient plasma level of clotting factor VIII and can be treated by the intravenous administration of factor VIII concentrates. A severe complication of the treatment with factor VIII concentrates is the development of inhibiting antibodies against factor VIII, also called inhibitors. Inhibitors challenge the treatment of hemophilia A as they inactivate factor VIII...

  12. Enzyme-inhibitor mediated red cell labelling

    Energy Technology Data Exchange (ETDEWEB)

    Ackery, D.M.; Singh, J.; Wyeth, P. (Southampton Univ. (UK). Dept. of Chemistry)

    Red blood cells contain 90% of the body's enzyme carbonic anhydrase to which aromatic sulphonamide inhibitors bind tightly. P-iodo-benzene sulphonamide (PIBS) is a lipophilic inhibitor which would afford rapid cell labelling. Radioiodinated PIBS was prepared, in high yield, by radio ion exchange in the presence of ammonium sulphate. After intravenous injection of /sup 131/I-PIBS the radiolabel was found in the blood pool.

  13. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  14. Discovering anti-platelet drug combinations with an integrated model of activator-inhibitor relationships, activator-activator synergies and inhibitor-inhibitor synergies.

    Directory of Open Access Journals (Sweden)

    Federica Lombardi

    2015-04-01

    Full Text Available Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators; inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling.

  15. Selective serotonin reuptake inhibitor exposure.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  16. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J. (Schering-Plough)

    2008-08-18

    Based on lead compound 1 identified from the patent literature, we developed novel patentable BACE-1 inhibitors by introducing a cyclic amine scaffold. Extensive SAR studies on both pyrrolidines and piperidines ultimately led to inhibitor 2f, one of the most potent inhibitors synthesized to date. The discovery and development of novel BACE-1 inhibitors incorporating a cyclic amine scaffold is described.

  17. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  18. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  19. The therapeutic potential of aromatase inhibitors.

    Science.gov (United States)

    Miller, W R; Jackson, J

    2003-03-01

    The third generation aromatase inhibitors are both remarkably potent and specific endocrine agents inhibiting aromatase activity and reducing circulating oestrogen levels in postmenopausal women to levels never previously seen. Their therapeutic potential is consequently much greater than the earlier prototype drugs. Their excellent side-effect profile also allows for potential wider indications in the treatment of oestrogen-related diseases, including breast cancer. It still remains to determine whether their potent endocrine effects translate into increased therapeutic benefit. In advanced breast cancer, aromatase inhibitors have been shown to have improved efficacy and toxicity profiles when compared with progestins, aminoglutethimide and tamoxifen. Aromatase inhibitors have also been used in the neoadjuvant setting, where they have been shown to achieve higher response rates than tamoxifen and to be more successful at downstaging tumours. Early results comparing an aromatase inhibitor with tamoxifen in the adjuvant setting in early breast cancer show anastrozole to be superior to tamoxifen in terms of both disease-free survival and a lower incidence of new contralateral tumours. There was also a more favourable side-effect profile, which has implications for potential future prophylactic treatment. Additionally, since aromatase inhibitors have different mechanisms of action, unlike antioestrogens, they may be particularly useful as chemopreventive agents if oestrogens are themselves genotoxic. Aromatase inhibitors have been used to date almost exclusively in postmenopausal women. The potential of combining them with luteinising hormone-releasing hormone analogues allows the possibility of treating premenopausal women with either oestrogen receptor-positive breast cancer or benign conditions such as cyclical breast pain, fibroadenomata, recurrent cystic disease or endometriosis. There is also the potential for their use in men with conditions such as

  20. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2011-01-01

    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  1. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    NARCIS (Netherlands)

    Bladergroen, B.A.; Strik, M.C.; Wolbink, A.M.; Wouters, D.; Broekhuizen, R.; Kummer, J.A.; Hack, C.E.

    2005-01-01

    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells

  2. Protease Inhibitors from Plants with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2009-06-01

    Full Text Available Antimicrobial proteins (peptides are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides. Plants produce a variety of proteins (peptides that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins. Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents.

  3. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  4. Resistance to AHAS inhibitor herbicides: current understanding.

    Science.gov (United States)

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  5. Evolutionary mechanisms acting on proteinase inhibitor variability.

    Science.gov (United States)

    Christeller, John T

    2005-11-01

    The interaction of proteinase inhibitors produced, in most cases, by host organisms and the invasive proteinases of pathogens or parasites or the dietary proteinases of predators, results in an evolutionary 'arms race' of rapid and ongoing change in both interacting proteins. The importance of these interactions in pathogenicity and predation is indicated by the high level and diversity of observable evolutionary activity that has been found. At the initial level of evolutionary change, recruitment of other functional protein-folding families has occurred, with the more recent evolution of one class of proteinase inhibitor from another, using the same mechanism and proteinase contact residues. The combination of different inhibitor domains into a single molecule is also observed. The basis from which variation is possible is shown by the high rate of retention of gene duplication events and by the associated process of inhibitory domain multiplication. At this level of reorganization, mutually exclusive splicing is also observed. Finally, the major mechanism by which variation is achieved rapidly is hypervariation of contact residues, an almost ubiquitous feature of proteinase inhibitors. The diversity of evolutionary mechanisms in a single class of proteins is unlikely to be common, because few systems are under similar pressure to create variation. Proteinase inhibitors are therefore a potential model system in which to study basic evolutionary process such as functional diversification.

  6. Acrosin inhibitor detection along the boar epididymis.

    Science.gov (United States)

    Maňásková-Postlerová, Pavla; Cozlová, Nina; Dorosh, Andriy; Šulc, Miroslav; Guyonnet, Benoit; Jonáková, Věra

    2016-01-01

    Epididymal sperm maturation represents a key step in the reproduction process. Spermatozoa are exposed to epididymal fluid components representing the natural environment essential for their post-testicular maturation. Changes in sperm membrane proteins are influenced by proteolytic, glycosylation and deglycosylation enzymes present in the epididymal fluid. Accordingly, the occurrence of inhibitors of these enzymes in the epididymis is very important for the regulation of sperm membrane protein processing. In the present study, we monitored acrosin inhibitor distribution in boar epididymal fluid and in spermatozoa from different segments of the organ. Using specific polyclonal antibody we registered increasing signal of the acrosin inhibitor (AI) from caput to cauda epididymis. Mass spectroscopy examination of the immunoprecipitated acrosin inhibitor (12 kDa) unequivocally identified sperm-associated acrosin inhibitor (SAAI) in the epididymal tissue. Lectin staining showed N-glycosylation in AI from boar epididymis. Protein detection of AI was supported by the results of semi-quantitative RT-PCR showing the presence of mRNA specifically coding for SAAI and similarly increasing throughout the epididymal duct, from its proximal to distal part. Additionally, the immunofluorescence technique showed the AI localization in the secretory tissue of caput, corpus and cauda epididymis, and in the acrosome region and midpiece of the sperm.

  7. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa.

    Science.gov (United States)

    Bertapelle, Carla; Polese, Gianluca; Di Cosmo, Anna

    2017-03-02

    Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis.

  8. SHH inhibitors for the treatment of medulloblastoma.

    Science.gov (United States)

    Samkari, Ayman; White, Jason; Packer, Roger

    2015-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. It is currently stratified into four molecular variants through the advances in transcriptional profiling. They include: wingless, sonic hedgehog (SHH), Group III, and Group IV. The SHH group is characterized by constitutive activation of the SHH signaling pathway, and genetically characterized by mutations in patched homolog 1 (PTCH1) or other downstream pathway mutations. SHH inhibitors have become of great clinical interest in treating SHH-driven medulloblastoma. Many inhibitors are currently in different stages of development, some already approved for other SHH-driven cancers, such as basal cell carcinoma. In vitro and in vivo medulloblastoma studies have shown efficacy and these findings have been translated into Phase I and II clinical trials. In this review, we present an overview of SHH medulloblastoma, as well as a discussion of currently available SHH inhibitors, and the challenges associated with their use.

  9. Corrosion inhibitors; Los inhibidores de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, L. A.; Meas, Y.; Ortega-Borges, R.; Corona, A.

    2003-07-01

    In this paper, we briefly describe the characteristics, cost and electrochemical nature of the corrosion phenomena as well as some of the technologies that are currently employed to minimize its effect. The main subject of the paper however, deals with the description, classification and mechanism of protection of the so-called corrosion inhibitors. Examples of the use of these substances in different aggressive environments are also presented as means to show that these compounds, or their combination, can in fact be used as excellent and relatively cheap technologies to control the corrosion of some metals. In the last part of the paper, the most commonly used techniques to evaluate the efficiency and performance of corrosion inhibitors are presented as well as some criteria to make a careful and proper selection of a corrosion inhibitor technology in a given situation. (Author) 151 refs.

  10. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    Science.gov (United States)

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  11. Drug screening for influenza neuraminidase inhibitors

    Institute of Scientific and Technical Information of China (English)

    LIU; Ailin; CAO; Hongpeng; DU; Guanhua

    2005-01-01

    Neuraminidase (NA) is one of the most important targets to screen the drugs of anti-influenza virus A and B. After virtual screening approaches were applied to a compound database which possesses more than 10000 compound structures, 160 compounds were selected for bioactivity assay, then a High Throughput Screening (HTS) model established for influenza virus NA inhibitors was applied to detect these compounds. Finally, three compounds among them displayed higher inhibitory activities, the range of their IC50 was from 0.1 μmol/L to 3μmol/L. Their structural scaffolds are novel and different from those of NA inhibitors approved for influenza treatment, and will be useful for the design and research of new NA inhibitors. The resuit indicated that the combination of virtual screening with HTS was very significant to drug screening and drug discovery.

  12. Hereditary angioedema with normal C1 inhibitor.

    Science.gov (United States)

    Bork, Konrad

    2013-11-01

    Until recently it was assumed that hereditary angioedema was a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity, and protein in plasma were described. Since then, numerous patients and families with that condition have been reported. Most of the patients were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. In some families mutations in the coagulation factor XII (Hageman factor) gene were detected.

  13. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.

    2013-07-01

    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  14. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6.

    Science.gov (United States)

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L

    2004-05-15

    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  15. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available BACKGROUND: Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear. METHODOLOGY AND PRINCIPAL FINDINGS: Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the

  16. [Application of process engineering to remove lignocellulose fermentation inhibitors].

    Science.gov (United States)

    Wang, Lan; Xia, Menglei; Chen, Hongzhang

    2014-05-01

    Fermentation inhibitors are toxic to cells, which is one of the bottlenecks for lignocellulose bio-refinery process. How to remove those inhibitors serves a key role in the bioconversion of lignocellulose. This article reviews the sources and the types of the inhibitors, especially the updated removal strategies including physical methods, chemical methods, biological methods and inhibitor-tolerant strain construction strategies. Based on these, we introduce a new bio-refinery model named "fractional conversion", which reduces the production of inhibitors at pretreatment stage, and a novel in situ detoxification method named "fermentation promoter exploitation technology". This review could provide new research ideas on the removal of fermentation inhibitors.

  17. Developmental expression of a catalase inhibitor in maize

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, J.C.; Scandalios, J.G.

    1976-01-01

    The expression of an endogenous catalase inhibitor has been studied during development of Zea mays. In the 3-day seedling, the inhibitor is expressed primarily in the scutellum and in the aleurone layer of the endosperm. These tissues also show the highest catalase activity at this stage. Inhibitor expression has also been studied temporally in the scutellum, roots, and shoot over the first 12 days of germination. Inhibitor expression shows an inverse relationship with catalase activity in the scutellum and in the shoot. The relationship is less rigid in the root, due probably to the low levels of inhibitor found in that tissue. The role of the inhibitor in catalase regulation is discussed.

  18. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  19. TLC bioautographic method for detecting lipase inhibitors.

    Science.gov (United States)

    Hassan, Abdel Moniem Sadek

    2012-01-01

    Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC bioautographic assay has previously been established for the detection of acetylcholinesterase inhibitors but not for lipases. Development of a TLC bioautographic method for detecting lipase inhibitors in plant extracts. After migration of the plant extracts, the TLC plate was sprayed with α-naphtyl acetate and enzyme solutions before incubation at 37°C for 20 min. Finally, the solution of Fast Blue B salt was sprayed onto the TLC plate giving a purple background colouration. Lipase inhibitors were visualised as white spots on the TLC plates. Orlistat (a known lipase inhibitor) inhibited lipase down to 0.01 µg. Methanolic extracts of Camellia sinensis (L.) kuntz and Rosmarinus officinalis L after migration on TLC gave enzymatic inhibition when applied in amounts of 82 and 56 µg, respectively. On the other hand the methanolic extract of Morus alba leaves did not exhibit any lipase inhibitory activity. The screening test was able to detect lipase inhibition by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Protease inhibitor mediated resistance to insects

    NARCIS (Netherlands)

    Outchkourov, N.S.

    2003-01-01

    Protease inhibitors (PIs) are among the defensive molecules that plants produce in order to defend themselves against herbivores. A major aim of this thesis is to develop novel insect resistance traits usingheterologous, non-plant PIs. Prerequisite for the success of the th

  1. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases

    Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based dru

  2. Inhibitors of p21-activated kinases (PAKs).

    Science.gov (United States)

    Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Wang, Weiru

    2015-01-08

    The p21-activated kinase (PAK) family of serine/threonine protein kinases plays important roles in cytoskeletal organization, cellular morphogenesis, and survival, and members of this family have been implicated in many diseases including cancer, infectious diseases, and neurological disorders. Owing to their large and flexible ATP binding cleft, PAKs, particularly group I PAKs (PAK1, -2, and -3), are difficult to drug; hence, few PAK inhibitors with satisfactory kinase selectivity and druglike properties have been reported to date. Examples are a recently discovered group II PAK (PAK4, -5, -6) selective inhibitor series based on a benzimidazole core, a group I PAK selective series based on a pyrido[2,3-d]pyrimidine-7-one core, and an allosteric dibenzodiazepine PAK1 inhibitor series. Only one compound, an aminopyrazole based pan-PAK inhibitor, entered clinical trials but did not progress beyond phase I trials. Clinical proof of concept for pan-group I, pan-group II, or PAK isoform selective inhibition has yet to be demonstrated.

  3. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases

    Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based

  4. Aromatase inhibitors in stimulated IVF cycles

    DEFF Research Database (Denmark)

    Papanikolaou, Evangelos G; Polyzos, Nikolaos P; Al Humaidan, Peter Samir Heskjær

    2011-01-01

    Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are ava...

  5. Novel proteinase inhibitor promotes resistance to insects

    Science.gov (United States)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  6. The Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Pedersen, Katrine Egelund; Christensen, Anni

    Plasminogen activator inhibitor type-1 (PAI-1) has three potential sites for N-linked glycosylation, including Asn209Tyr210Thr211, Asn265Met266Thr267, and Asn329Glu330Ser331. Using a HEK293 expression system, we have made mutants with Asp or Gln substitutions of the Asn residue in each of these s...

  7. Corrosion inhibitors for intermediate cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I.; Suhr, L.

    1985-04-01

    The selected inhibitors were tested for heat and radiation stability and corrosion protection on the bench scale. Based on the results from these tests two of the products were selected, Bycoguard 81 and Bycoguard MP4S for continuing corrosion tests in an autoclave loop at 90 degrees C and 120 degrees C. Oxygen saturated deionized water with an addition of 1 ppm chloride was recirculated in the loop. Samples of copper and carbon steel were exposed to the water in the autoclave for periods up to 10 weeks. The purpose of this project was to find a substitute for hydrazine and chromates. Besides good corrosion protection qualities the toxic and environmental effect of the inhibitors should be minimal. The investigation has shown that the copper inhibitor BTA (benzotriazole) loses its corrosion protection qualities at a water temperature of 120 degrees C. The protection effects at 90 degrees C were satisfactory for both of the materials. The corrosion rates measured were 0.01 mm/y or less for the copper and carbon steel samples. The environment in the autoclave during the testing was more corrosive than is to be found in intermediate cooling systems. Due to the low corrosion rates measured the two inhibitors are to be recommended as alternatives to hydrazine and chromates.

  8. Novel bis-arylalkylamines as myeloperoxidase inhibitors

    DEFF Research Database (Denmark)

    Aldib, Iyas; Gelbcke, Michel; Soubhye, Jalal;

    2016-01-01

    Human myeloperoxidase (MPO) plays an important role in innate immunity but also aggravates tissue damage by oxidation of biomolecules at sites of inflammation. As a result from a recent high-throughput virtual screening approach for MPO inhibitors, bis-2,2'-[(dihydro-1,3(2H,4H) pyrimidinediyl)bis...

  9. A Fluorescent Broad-Spectrum Proteasome Inhibitor

    NARCIS (Netherlands)

    Verdoes, Martijn; Florea, Bogdan I.; Menendez-Benito, Victoria; Maynard, Christa J.; Witte, Martin D.; Linden, Wouter A. van der; Nieuwendijk, Adrianus M.C.H. van den; Hofmann, Tanja; Berkers, Celia R.; Leeuwen, Fijs W.B. van; Groothuis, Tom A.; Leeuwenburgh, Michiel A.; Ovaa, Huib; Neefjes, Jacques J.; Filippov, Dmitri V.; Marel, Gijs A. van der; Dantuma, Nico P.; Overkleeft, Herman S.

    2006-01-01

    The proteasome is an essential evolutionary conserved protease involved in many regulatory systems. Here, we describe the synthesis and characterization of the activity-based, fluorescent, and cell-permeable inhibitor Bodipy TMR-Ahx3L3VS (MV151), which specifically targets all active subunits of the

  10. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    mortality after heart attack (6), and RU486, which is used as emergency birth control (7). New NR inhibitors would most likely be useful for...mifepristone and levonorgestrel when used for emergency contraception. Hum Reprod Update 10:341-348 8. Webb P NN, Chiellini G, Yoshihara HA, Cunha Lima ST

  11. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2015-01-01

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  12. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp) 3 scarcely dissolves

  13. Bolstering your armamentarium with SGLT2 inhibitors.

    Science.gov (United States)

    Novak, Lucia M; Kruger, Davida F

    2017-10-18

    Sodium-glucose cotransporter-2 inhibitors have a unique mechanism of action in the kidneys that causes glucosuria, which lowers plasma glucose. They are also associated with reduced body weight and BP, and a low incidence of hypoglycemia. This article reviews the pharmacologic profiles and clinical implications of canagliflozin, dapagliflozin, and empagliflozin.

  14. Structure-Based Design of Ricin Inhibitors

    Directory of Open Access Journals (Sweden)

    Jon D. Robertus

    2011-10-01

    Full Text Available Ricin is a potent cytotoxin easily purified in large quantities. It presents a significant public health concern due to its potential use as a bioterrorism agent. For this reason, extensive efforts have been underway to develop antidotes against this deadly poison. The catalytic A subunit of the heterodimeric toxin has been biochemically and structurally well characterized, and is an attractive target for structure-based drug design. Aided by computer docking simulations, several ricin toxin A chain (RTA inhibitors have been identified; the most promising leads belonging to the pterin family. Development of these lead compounds into potent drug candidates is a challenging prospect for numerous reasons, including poor solubility of pterins, the large and highly polar secondary binding pocket of RTA, as well as the enzyme’s near perfect catalytic efficiency and tight binding affinity for its natural substrate, the eukaryotic ribosome. To date, the most potent RTA inhibitors developed using this approach are only modest inhibitors with apparent IC50 values in the 10−4 M range, leaving significant room for improvement. This review highlights the variety of techniques routinely employed in structure-based drug design projects, as well as the challenges faced in the design of RTA inhibitors.

  15. Phenyltriazolinones as potent factor Xa inhibitors.

    Science.gov (United States)

    Quan, Mimi L; Pinto, Donald J P; Rossi, Karen A; Sheriff, Steven; Alexander, Richard S; Amparo, Eugene; Kish, Kevin; Knabb, Robert M; Luettgen, Joseph M; Morin, Paul; Smallwood, Angela; Woerner, Francis J; Wexler, Ruth R

    2010-02-15

    We have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate.

  16. Cost of care of haemophilia with inhibitors.

    Science.gov (United States)

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  17. Dermatologic adverse events to chemotherapeutic agents, Part 2: BRAF inhibitors, MEK inhibitors, and ipilimumab.

    Science.gov (United States)

    Choi, Jennifer Nam

    2014-03-01

    The advent of novel targeted chemotherapeutic agents and immunotherapies has dramatically changed the arena of cancer treatment in recent years. BRAF inhibitors, MEK inhibitors, and ipilimumab are among the newer chemotherapy drugs that are being used at an increasing rate. Dermatologic adverse events to these medications are common, and it is important for dermatologists and oncologists alike to learn to recognize and treat such side effects in order to maintain both patients' quality of life and their anticancer treatment. This review describes the cutaneous side effects seen with BRAF inhibitors (eg, maculopapular eruption, photosensitivity, squamoproliferative growths, melanocytic proliferations), MEK inhibitors (eg, papulopustular eruption), and ipilimumab (eg, maculopapular eruption, vitiligo), with a mention of vismodegib and anti-PD-1 agents.

  18. Calcineurin inhibitor minimisation versus continuation of calcineurin inhibitor treatment for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, Andre; Chan, An-Wen;

    2012-01-01

    The therapeutic success of liver transplantation has been largely attributable to the development of effective immunosuppressive treatment regimens. In particular, calcineurin inhibitors were essential in reducing acute rejection and improving early survival. Currently, more than 90% of all liver...

  19. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    Science.gov (United States)

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.

  20. Comparative Study on the Protease Inhibitors from Fish Eggs

    Institute of Scientific and Technical Information of China (English)

    Ustadi; K.Y.Kim; S.M.Kim

    2005-01-01

    The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and 16.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 U mg-1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50 - 65 ℃ and pH 8,which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant (Ki) of 4.44 nmol L-1.

  1. Identification of neuron selective androgen receptor inhibitors.

    Science.gov (United States)

    Otto-Duessel, Maya; Tew, Ben Yi; Vonderfecht, Steven; Moore, Roger; Jones, Jeremy O

    2017-05-26

    To identify neuron-selective androgen receptor (AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease, a neuromuscular disorder in which deterioration of motor neurons leads to progressive muscle weakness. Cell lines representing prostate, kidney, neuron, adipose, and muscle tissue were developed that stably expressed the CFP-AR-YFP FRET reporter. We used these cells to screen a library of small molecules for cell type-selective AR inhibitors. Secondary screening in luciferase assays was used to identify the best cell-type specific AR inhibitors. The mechanism of action of a neuron-selective AR inhibitor was examined in vitro using luciferase reporter assays, immunofluorescence microscopy, and immunoprecipitations. Rats were treated with the most potent compound and tissue-selective AR inhibition was examined using RT-qPCR of AR-regulated genes and immunohistochemistry. We identified the thiazole class of antibiotics as compounds able to inhibit AR signaling in a neuronal cell line but not a muscle cell line. One of these antibiotics, thiostrepton is able to inhibit the activity of both wild type and polyglutamine expanded AR in neuronal GT1-7 cells with nanomolar potency. The thiazole antibiotics are known to inhibit FOXM1 activity and accordingly, a novel FOXM1 inhibitor FDI-6 also inhibited AR activity in a neuron-selective fashion. The selective inhibition of AR is likely indirect as the varied structures of these compounds would not suggest that they are competitive antagonists. Indeed, we found that FOXM1 expression correlates with cell-type selectivity, FOXM1 co-localizes with AR in the nucleus, and that shRNA-mediated knock down of FOXM1 reduces AR activity and thiostrepton sensitivity in a neuronal cell line. Thiostrepton treatment reduces FOXM1 levels and the nuclear localization of beta-catenin, a known co-activator of both FOXM1 and AR, and reduces the association between beta

  2. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  3. SGLT inhibitors: a novel target for diabetes.

    Science.gov (United States)

    Kanwal, Abhinav; Banerjee, Sanjay K

    2013-01-01

    Inhibiting sodium-glucose co-transporters (SGLT1/SGLT2), which have a key role in the absorption of glucose in the kidney and/or GI tract has been proposed as a novel therapeutic strategy for diabetes. Thus, screening and patenting of chemical compounds for SGLT1/SGLT2 gets more importance in the development of new drugs in diabetes. Several companies are developing SGLT inhibitors, some of which are now in various stages of clinical development. Some molecules in the pipeline, including dapagliflozin, canagliflozin, ASP1941, BI10773, LX4211, RG7201 and TS071, are at various stages of drug development. This patent review presents the overall progress carried out in the development of SGLT inhibitors over the last decade with the active participation of various pharmaceutical companies. This class of drug is anticipated to have a large impact on diabetes field and predicting to attain a blockbuster status.

  4. New potential AChE inhibitor candidates.

    Science.gov (United States)

    de Paula, A A N; Martins, J B L; dos Santos, M L; Nascente, L de C; Romeiro, L A S; Areas, T F M A; Vieira, K S T; Gambôa, N F; Castro, N G; Gargano, R

    2009-09-01

    We have theoretically studied new potential candidates of acetylcholinesterase (AChE) inhibitors designed from cardanol, a non-isoprenoid phenolic lipid of cashew Anacardium occidentale nut-shell liquid. The electronic structure calculations of fifteen molecule derivatives from cardanol were performed using B3LYP level with 6-31G, 6-31G(d), and 6-311+G(2d,p) basis functions. For this study we used the following groups: methyl, acetyl, N,N-dimethylcarbamoyl, N,N-dimethylamine, N,N-diethylamine, piperidine, pyrrolidine, and N,N-methylbenzylamine. Among the proposed compounds we identified that the structures with substitution by N,N-dimethycarbamoyl, N,N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine, and represent possible AChE inhibitors against Alzheimer disease.

  5. Raltegravir: first in class HIV integrase inhibitor

    Directory of Open Access Journals (Sweden)

    Zelalem Temesgen

    2008-06-01

    Full Text Available Zelalem Temesgen1, Dawd S Siraj21Mayo Clinic, Rochester, MN, USA; 2East Carolina University Greenville, NC, USAAbstract: On October 16, 2007, the US Food and Drug Administration (FDA approved raltegravir for treatment of human immunodeficiency virus (HIV-1 infection in combination with other antiretroviral agents in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. Raltegravir is first in a novel class of antiretroviral drugs known as integrase inhibitors. It has demonstrated potent anti HIV activity in both antiretroviral treatment-naïve and experienced patients. The most common adverse events reported with raltegravir during phase 2 and 3 clinical trials were diarrhea, nausea, and headache. Laboratory abnormalities include mild elevations in liver transaminases and creatine phosphokinase.Keywords: raltegravir, HIV, antiretroviral agents, integrase inhibitors

  6. Simplified captopril analogues as NDM-1 inhibitors.

    Science.gov (United States)

    Li, Ningning; Xu, Yintong; Xia, Qiang; Bai, Cuigai; Wang, Taiyi; Wang, Lei; He, Dingdi; Xie, Nannan; Li, Lixin; Wang, Jing; Zhou, Hong-Gang; Xu, Feng; Yang, Cheng; Zhang, Quan; Yin, Zheng; Guo, Yu; Chen, Yue

    2014-01-01

    Captopril is a New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor with an IC50 value of 7.9μM. It is composed of two units: a 3-mercapto-2-methylpropanoyl fragment and a proline residue. In this study, we synthesized simple amide derivatives of 3-mercapto-2-methylpropanoic acid, and then tested them as NDM-1 inhibitors in order to identify the pharmacophore for NDM-1 inhibition. We found that the lead compound 22 had an IC50 value of 1.0μM. Further structure simplification provided compounds 31 and 32, which had IC50 values of 15 and 10μM, respectively. As compound 32 is a clinically used antidote for metal poisoning, it has great potential to be repurposed to treat bacterial infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Inhibitors of the Cellular Trafficking of Ricin

    Directory of Open Access Journals (Sweden)

    Daniel Gillet

    2012-01-01

    Full Text Available Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress.

  8. SGLT2 Inhibitors: Benefit/Risk Balance.

    Science.gov (United States)

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  9. Design and characterization of bivalent BET inhibitors.

    Science.gov (United States)

    Tanaka, Minoru; Roberts, Justin M; Seo, Hyuk-Soo; Souza, Amanda; Paulk, Joshiawa; Scott, Thomas G; DeAngelo, Stephen L; Dhe-Paganon, Sirano; Bradner, James E

    2016-12-01

    Cellular signaling is often propagated by multivalent interactions. Multivalency creates avidity, allowing stable biophysical recognition. Multivalency is an attractive strategy for achieving potent binding to protein targets, as the affinity of bivalent ligands is often greater than the sum of monovalent affinities. The bromodomain and extraterminal domain (BET) family of transcriptional coactivators features tandem bromodomains through which BET proteins bind acetylated histones and transcription factors. All reported antagonists of the BET protein BRD4 bind in a monovalent fashion. Here we describe, to our knowledge for the first time, a bivalent BET bromodomain inhibitor-MT1-which has unprecedented potency. Biophysical and biochemical studies suggest MT1 is an intramolecular bivalent BRD4 binder that is more than 100-fold more potent, in cellular assays, than the corresponding monovalent antagonist, JQ1. MT1 significantly (P BET bromodomains and a rationale for further development of multidomain inhibitors of epigenetic reader proteins.

  10. SGLT-2 inhibitors: the glucosuric antidiabetics

    OpenAIRE

    Rekha Thaddanee; Ajeet Kumar Khilnani; Gurudas Khilnani

    2013-01-01

    Despite availability of a number of oral antidiabetics, a sizeable population of diabetics remains uncontrolled. Thus there is growing need of new group of drugs for diabetic control. Understanding renal conservation of glucose by efficient reabsorption through sodium glucose cotransporter-2 (SGLT-2) has paved way for development of an entirely new group of drugs, the SGLT-2 inhibitors. These glucosuric antidiabetic agents have shown promise in early clinical studies. Canagliflozin is recentl...

  11. Transition State Analog Inhibitors for Esterases.

    Science.gov (United States)

    1983-06-02

    Propanones." SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED DURING THIS REPORTING PERIOD Dr. Alan Dafforn Dr. Antoon Brouwer Dr. John P...294, Raven Press, New York. 11. Hansch, C. and Leo , A., (1979) "Substituent Constants for Correlation Analysis in Chemistry and Biology," pp. 69-70...BORONIC ACIDS AS 1INSITION STATE ANALOG INHIBITORS OF ACTYLCHOLINESTERASE by Alan Dafforn and Antoon C. Brouwer Department of Chemistry Bowling Green

  12. Inhibitors of the AAA+ Chaperone p97

    Directory of Open Access Journals (Sweden)

    Eli Chapman

    2015-02-01

    Full Text Available It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®, which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+ chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and

  13. Inhibitors of the AAA+ chaperone p97.

    Science.gov (United States)

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J

    2015-02-12

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology.

  14. A new "brew" of MALT1 inhibitors.

    Science.gov (United States)

    Young, Ryan M; Staudt, Louis M

    2012-12-11

    The activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL) is an aggressive lymphoma that is addicted to NF-κB signaling through the CARD11-BCL10-MALT1 complex. In this issue of Cancer Cell, Nagel and colleagues and Fontan and colleagues describe MALT1 inhibitors suitable for clinical use that are selectively toxic to this malignancy.

  15. Quinoxaline derivatives: novel and selective butyrylcholinesterase inhibitors.

    Science.gov (United States)

    Zeb, Aurang; Hameed, Abdul; Khan, Latifullah; Khan, Imran; Dalvandi, Kourosh; Choudhary, M Iqbal; Basha, Fatima Z

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder which occurs due to lower levels of acetylcholine (ACh) neurotransmitters, and results in a gradual decline in memory and other cognitive processes. Acetycholinesterase (AChE) and butyrylcholinesterase (BChE) are considered to be primary regulators of the ACh levels in the brain. Evidence shows that AChE activity decreases in AD, while activity of BChE does not change or even elevate in advanced AD, which suggests a key involvement of BChE in ACh hydrolysis during AD symptoms. Therefore, inhibiting the activity of BChE may be an effective way to control AD associated disorders. In this regard, a series of quinoxaline derivatives 1-17 was synthesized and biologically evaluated against cholinesterases (AChE and BChE) and as well as against α- chymotrypsin and urease. The compounds 1-17 were found to be selective inhibitors for BChE, as no activity was found against other enzymes. Among the series, compounds 6 (IC50 = 7.7 ± 1.0 µM) and 7 (IC50 = 9.7 ± 0.9 µM) were found to be the most active inhibitors against BChE. Their IC50 values are comparable to the standard, galantamine (IC50 = 6.6 ± 0.38 µM). Their considerable BChE inhibitory activity makes them selective candidates for the development of BChE inhibitors. Structure-activity relationship (SAR) of this new class of selective BChE inhibitors has been discussed.

  16. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  17. Cyclooxygenase (COX) Inhibitors and the Newborn Kidney

    OpenAIRE

    Wei Qi; Smith, Francine G.; Megan L. Lewis; Wade, Andrew W

    2012-01-01

    This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI) in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2) plays a more important role...

  18. A Bacterial Cell Shape-Determining Inhibitor.

    Science.gov (United States)

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  19. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  20. DABIGATRAN ETEXILATE: NEW DIRECT THROMBIN INHIBITORS ANTICOAGULANTS

    OpenAIRE

    Patel Kinjal B; Galani Varsha; Patel Paresh B; Mehta Hiren R

    2011-01-01

    Thrombin plays a key role in thrombotic events, and therefore thrombin inhibition represents a therapeutic target for numerous thromboembolic diseases. Thrombin is responsible for the conversion of soluble fibrinogen to fibrin; clot stabilization through activation of factor XIII and the formation of cross-linkage among fibrin molecules; and the generation of additional thrombin through activation of factors V, VIII, and XI. Direct thrombin inhibitors are an innovative class of anticoagulant...

  1. Protein Aggregation Inhibitors for ALS Therapy

    Science.gov (United States)

    2013-07-01

    irritated by the HCl salt, mildly irritated by the tartrate salt, but not irritated by the citrate salt. However, citric acid was not sufficiently acidic to... cycles were incorporated in place of the pyrazolone ring (2-4); none of these were active. These results support the importance of N2-H in its activity...experimental studies using 3-nitropropionic acid as a mitochondrial inhibitor resulting in mitochondrial dysfunction. We have furthered these

  2. A Novel SERCA Inhibitor Demonstrates Synergy with Classic SERCA Inhibitors and Targets Multidrug-Resistant AML

    Science.gov (United States)

    Bleeker, Nicholas P.; Cornea, Razvan L.; Thomas, David D.; Xing, Chengguo

    2013-01-01

    Drug resistance exists as a major obstacle in the treatment of cancer and drug molecules that retain effectiveness against resistant cancers are a high clinical priority. Ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) was recently identified as a promising lead for the treatment of multidrug-resistant leukemia, which elicits its cytotoxic effect, in part, through inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Herein initial experiments with SERCA1a, CXL017 demonstrated no significant effect on calcium affinity, competed with ATP, and induced a dose-dependent decrease in ATPase activity. Among all CXLs tested, (−)-CXL017 exhibited the greatest SERCA inhibition with an IC50 = 13.5 ± 0.5 μM. Inhibitor combination studies were used to assess potential interactions between (−)-CXL017 and well-known SERCA inhibitors: thapsigargin, cyclopiazonic acid, and 2, 5-di-tert-butylhydroquinone. Surprisingly, (−)-CXL017 exhibited marked synergy with each of the known SERCA inhibitors whereas all combinations of the known inhibitors yielded additive effects, indicating that (−)-CXL017 may bind at a unique allosteric site. Treatment of parental (HL60) and multidrug-resistant (HL60/MX2) acute myeloid leukemia cells with the known SERCA inhibitors revealed that all of these inhibitors demonstrate selective cytotoxicity (7.7 to 400 fold) for the resistant cell line. Within the CXL series, a positive correlation exists between SERCA inhibition and cytotoxicity in HL60/MX2 but not HL60. (−)-CXL017 was also shown to enhance the cytotoxicity of thapsigargin in HL60/MX2 cells. Given the elevated SERCA levels and ER calcium content in HL60/MX2, SERCA likely plays a significant role in the collateral sensitivity of this multidrug-resistance cell line to CXL molecules as well as known SERCA inhibitors. PMID:24079514

  3. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  4. SGLT inhibitors in management of diabetes.

    Science.gov (United States)

    Tahrani, Abd A; Barnett, Anthony H; Bailey, Clifford J

    2013-10-01

    The two main sodium-glucose cotransporters (SGLTs), SGLT1 and SGLT2, provide new therapeutic targets to reduce hyperglycaemia in patients with diabetes. SGLT1 enables the small intestine to absorb glucose and contributes to the reabsorption of glucose filtered by the kidney. SGLT2 is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors with varying specificities for these transporters (eg, dapagliflozin, canagliflozin, and empagliflozin) can slow the rate of intestinal glucose absorption and increase the renal elimination of glucose into the urine. Results of randomised clinical trials have shown the blood glucose-lowering efficacy of SGLT inhibitors in type 2 diabetes when administered as monotherapy or in addition to other glucose-lowering therapies including insulin. Increased renal glucose elimination also assists weight loss and could help to reduce blood pressure. Effective SGLT2 inhibition needs adequate glomerular filtration and might increase risk of urinary tract and genital infection, and excessive inhibition of SGLT1 can cause gastro-intestinal symptoms. However, the insulin-independent mechanism of action of SGLT inhibitors seems to offer durable glucose-lowering efficacy with low risk of clinically significant hypoglycaemia at any stage in the natural history of type 2 diabetes. SGLT inhibition might also be considered in conjunction with insulin therapy in type 1 diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Translating HDAC inhibitors in Friedreich's ataxia.

    Science.gov (United States)

    Soragni, Elisabetta; Gottesfeld, Joel M

    2016-01-01

    Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.

  6. Therapeutic Innovations: Tyrosine Kinase Inhibitors in Cancer

    Directory of Open Access Journals (Sweden)

    Nikolaos Dervisis

    2016-01-01

    Full Text Available Conventional cytotoxic chemotherapy involving DNA-interacting agents and indiscriminate cell death is no longer the future of cancer management. While chemotherapy is not likely to completely disappear from the armamentarium; the use of targeted therapies in combination with conventional treatment is becoming the standard of care in human medicine. Tyrosine kinases are pivotal points of functional cellular pathways and have been implicated in malignancy, inflammatory, and immune-mediated diseases. Pharmaceutical interventions targeting aberrant tyrosine kinase signaling has exploded and is the second most important area of drug development. The “Valley of Death” between drug discovery and approval threatens to blunt the enormous strides in cancer management seen thus far. Kinase inhibitors, as targeted small molecules, hold promise in the treatment and diagnosis of cancer. However, there are still many unanswered questions regarding the use of kinase inhibitors in the interpretation and management of cancer. Comparative oncology has the potential to address restrictions and limitations in the advancement in kinase inhibitor therapy.

  7. Functional Stability of Plasminogen Activator Inhibitor-1

    Directory of Open Access Journals (Sweden)

    Songul Yasar Yildiz

    2014-01-01

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1 is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA and urokinase-type plasminogen activator (u-PA, and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT and myocardial infarction (MI. The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.

  8. The hunt for HIV-1 integrase inhibitors.

    Science.gov (United States)

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  9. Scale Inhibition of Green Inhibitor Polyepoxysuccinic Sodium

    Institute of Scientific and Technical Information of China (English)

    Feng Hui-xia; Wang Yi; Yu Shu-rong; Liang Bao-feng

    2004-01-01

    Polyepoxysuccinic acid (PESA) is the green water treatment agents recognized all over the world[1-3]. It is found that when PESA is used alone, it had good scale inhibition. PESA should be included in the category of green scale inhibitor.PESA is synthesized with maleicanhydride in the presence of catalysts. The effect on scale-in-hibiting property of the product from amount and feed times of catalyst, the reaction temperature, the reaction time were investigated. The optimum reaction conditions are as follows:n(maleic anhydride):n(Ca(OH)2):n(NaOH)=1:0.05-0.2:0.5, reaction temperature 95C, reaction time 4h.In all the references about PESA, PESA is researched as a kind of highly effective scale inhibitor or chelate. In this paper, the performance of scale inhibition of PESA is evaluated by scale static inhibitor.The results are shown in Figture1.It is evident from our experimental data (Figture1) that when inhibition for CaCO3.With the increase of PESA dosage, scale inhibition increases. When dosage is more than 6mg/L, inhibition efficiency is over 50%. The formulas give scale inhibition efficiency more than 95% at 12mg/L of total dosage.

  10. Knipholone, a selective inhibitor of leukotriene metabolism.

    Science.gov (United States)

    Wube, A A; Bucar, F; Asres, K; Gibbons, S; Adams, M; Streit, B; Bodensieck, A; Bauer, R

    2006-06-01

    Inhibition of leukotriene formation is one of the approaches to the treatment of asthma and other inflammatory diseases. We have investigated knipholone, isolated from the roots of Kniphofia foliosa, Hochst (Asphodelaceae), for inhibition of leukotriene biosynthesis in an ex vivo bioassay using activated human neutrophile granulocytes. Moreover, activities on 12-lipoxygenase from human platelets and cycloxygenase (COX)-1 and -2 from sheep cotyledons and seminal vesicles, respectively, have been evaluated. Knipholone was found to be a selective inhibitor of leukotriene metabolism in a human blood assay with an IC(50) value of 4.2microM. However, at a concentration of 10microg/ml, the compound showed weak inhibition of 12(S)-HETE production in human platelets and at a concentration of 50microM it produced no inhibition of COX-1 and -2. In our attempt to explain the mechanism of inhibition, we examined the antioxidant activity of knipholone using various in vitro assay systems including free radical scavenging, non-enzymatic lipid peroxidation, and metal chelation. Knipholone was found to be a weak dose-independent free radical scavenger and lipid peroxidation inhibitor, but not a metal chelator. Therefore, the leukotriene biosynthesis inhibitory effect of knipholone was evident by its ability either to inhibit the 5-lipoxygenase activating protein (FLAP) or as a competitive (non-redox) inhibitor of the enzyme. Cytotoxicity results also provided evidence that knipholone exhibits less toxicity for a mammalian host cell.

  11. Functional analysis of Hsp70 inhibitors.

    Directory of Open Access Journals (Sweden)

    Rainer Schlecht

    Full Text Available The molecular chaperones of the Hsp70 family have been recognized as targets for anti-cancer therapy. Since several paralogs of Hsp70 proteins exist in cytosol, endoplasmic reticulum and mitochondria, we investigated which isoform needs to be down-regulated for reducing viability of cancer cells. For two recently identified small molecule inhibitors, VER-155008 and 2-phenylethynesulfonamide (PES, which are proposed to target different sites in Hsp70s, we analyzed the molecular mode of action in vitro. We found that for significant reduction of viability of cancer cells simultaneous knockdown of heat-inducible Hsp70 (HSPA1 and constitutive Hsc70 (HSPA8 is necessary. The compound VER-155008, which binds to the nucleotide binding site of Hsp70, arrests the nucleotide binding domain (NBD in a half-open conformation and thereby acts as ATP-competitive inhibitor that prevents allosteric control between NBD and substrate binding domain (SBD. Compound PES interacts with the SBD of Hsp70 in an unspecific, detergent-like fashion, under the conditions tested. None of the two inhibitors investigated was isoform-specific.

  12. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  13. [Development of alpha-glucosidase inhibitor from medicinal herbs].

    Science.gov (United States)

    Ji, Fang; Xiao, Guochun; Dong, Li; Ma, Zijiao; Ni, Jingman

    2010-06-01

    Alpha-glucosidase inhibitor can reduce the postprandial hyperglycemia and have good effect on preventing and treating the diabetes and diabetic complication. Along with the application of acarbose which is a kind of alpha-glucosidase inhibitor, many research groups pay attention to the crude alpha-glucosidase inhibitor screened from the medicinal herbs in order to find new, safe, and effective medicine. The development of alpha-glucosidase inhibitor screened from the medicinal herbs and its evaluation in vivo and vitro as well as the varieties of the medicinal herbs that contain alpha-glucosidase inhibitor in recent 30 years were summarized in this paper.

  14. Histone Deacetylase Inhibitors: Synthesis of Tetrapeptide Analogue SAHA/TPX

    Directory of Open Access Journals (Sweden)

    Lynda Ekou

    2011-01-01

    Full Text Available The inhibition of HDAC (histone deacetylase activity by specific inhibitors induces growth arrest, differentiation and apoptosis of transformed or several cancer cells. Some of these inhibitors are in clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy. In this paper we describe the synthesis of simple inhibitor B hybrid analogue suberoylanilide hydroxamic acid (SAHA, trapoxin B (TPX B in as little as five steps. This compound is interesting lead for the design of potent inhibitors of histone deacetylase.

  15. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.

    Science.gov (United States)

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka

    2016-12-01

    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR.

  16. Recent advances in designing substrate-competitive protein kinase inhibitors.

    Science.gov (United States)

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  17. Chemical origins of isoform selectivity in histone deacetylase inhibitors.

    Science.gov (United States)

    Butler, Kyle V; Kozikowski, Alan P

    2008-01-01

    Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.

  18. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  19. [Treatment of endometriosis by aromatase inhibitors: efficacy and side effects].

    Science.gov (United States)

    Racine, A-C; Legrand, E; Lefebvre-Lacoeuille, C; Hoppe, E; Catala, L; Sentilhes, L; Descamps, P

    2010-05-01

    The recent demonstration that aromatase is expressed at higher levels in endometriosis implants than in normal endometrium has led to pilot studies using inhibitor aromatasis in patients with endometriosis. We conducted a systematic review of the literature and studied the efficacy of aromatase inhibitors on endometriosis. There were seventeen studies (case reports/series) evaluating outcomes of aromatase inhibitors. Studies suggest that aromatase inhibitors alone or co-administered with progestins, oral contraceptives or gonadotrophin releasing hormone (GnRH) agonist could reduce pain and endometriosis. There is only one randomized controlled trial comparing aromatase inhibitor+GnRH agonist and GnRH agonist and one study with eighty patients. Side-effects profiles of aromatase inhibitor regimens are favorable; it does not appear a significant bone loss. Aromatase inhibitors seem to have a promising effect on endometriosis but randomized controlled trials are needed to prove their effects and their safety.

  20. xtraction and Characterization of Cathepsin Inhibitor from Milkfish

    Directory of Open Access Journals (Sweden)

    Tati Nurhayati

    2015-06-01

    Full Text Available Abstract Proteolytic enzyme is distributed acros all organism including fish. Cysteine proteases are the largest group of proteolytic enzyme. Lysosomal cathepsin, one of cysteine protease enzyme, cause softening and degradation of myofibril protein and it’s activity is regulated by endogenous inhibitors. The purposes of this study were to optimize the extraction cathepsin inhibitors from the skin, muscles, and viscera of fish, to partially purify the cathepsin inhibitors of selected sources, and to study the characteristics of the cathepsin inhibitor. The cathepsin inhibitor could be extracted from muscle fish and partially purified using ammonium sulfate of 70%. The purified cathepsin inhibitor had optimum temperature at 40°C and the optimum at pH 8. Metal ions decreased the activity of the protease inhibitor, except 1 mM of metal ion Mn2+ and Na+.

  1. Docking and scoring of metallo-beta-lactamases inhibitors

    DEFF Research Database (Denmark)

    Olsen, Lars; Pettersson, Ingrid; Hemmingsen, Lars

    2004-01-01

    The performance of the AutoDock, GOLD and FlexX docking programs was evaluated for docking of dicarboxylic acid inhibitors into metallo-beta-lactamases (MBLs). GOLD provided the best overall performance, with RMSDs between experimental and docked structures of 1.8-2.6 A and a good correlation...... between the experimentally determined MBL-inhibitor affinities and the GOLD scores. GOLD was selected for a test including a broad spectrum of inhibitors for which experimental MBL-inhibitor binding affinities are available. This study revealed that (1) for most compound classes (dicarboxylic acids...... and descriptors associated with binding of the IMP-1 inhibitors to the enzyme. The external Q2 for the test set is 0.73. This final model for prediction of IMP-1 MBL-inhibitor affinity handled all known classes of MBL-inhibitors, except small sulphur compounds....

  2. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  3. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1

    Science.gov (United States)

    Pautus, Stéphane; Alami, Mouad; Adam, Fréderic; Bernadat, Guillaume; Lawrence, Daniel A.; de Carvalho, Allan; Ferry, Gilles; Rupin, Alain; Hamze, Abdallah; Champy, Pierre; Bonneau, Natacha; Gloanec, Philippe; Peglion, Jean-Louis; Brion, Jean-Daniel; Bianchini, Elsa P.; Borgel, Delphine

    2016-11-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.

  4. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen.

    Science.gov (United States)

    Kuntz, Douglas A; Tarling, Chris A; Withers, Stephen G; Rose, David R

    2008-09-23

    The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.

  5. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors.

    Science.gov (United States)

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie

    2013-10-01

    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  6. Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors.

    Directory of Open Access Journals (Sweden)

    Shigeki Nanjo

    Full Text Available PURPOSE: Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. EXPERIMENTAL DESIGN: Lung cancer cell lines made resistant to EGFR-TKIs by the gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression and mice with tumors induced by these cells were treated with crizotinib and a new generation EGFR-TKI. RESULTS: The new generation EGFR-TKI inhibited the growth of lung cancer cells containing the gatekeeper EGFR-T790M mutation, but did not inhibit the growth of cells with Met amplification or HGF overexpression. In contrast, combined therapy with crizotinib plus afatinib or WZ4002 was effective against all three types of cells, inhibiting EGFR and Met phosphorylation and their downstream molecules. Crizotinib combined with afatinib or WZ4002 potently inhibited the growth of mouse tumors induced by these lung cancer cell lines. However, the combination of high dose crizotinib and afatinib, but not WZ4002, triggered severe adverse events. CONCLUSIONS: Our results suggest that the dual blockade of mutant EGFR and Met by crizotinib and a new generation EGFR-TKI may be promising for overcoming resistance to reversible EGFR-TKIs but careful assessment is warranted clinically.

  7. Sifuvirtide, a potent HIV fusion inhibitor peptide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Pang, Wei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Tam, Siu-Cheung [Department of Physiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Tien, Po [Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Zheng, Yong-Tang, E-mail: zhengyt@mail.kiz.ac.cn [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  8. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    Directory of Open Access Journals (Sweden)

    Alireza Nematollahi

    2016-06-01

    Full Text Available Kynurenine aminotransferase isozymes (KATs 1–4 are members of the pyridoxal-5’-phosphate (PLP-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN to kynurenic acid (KYNA, a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70% in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies.

  9. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    Directory of Open Access Journals (Sweden)

    Paul Smith

    2016-02-01

    Full Text Available Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1 is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s. We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae. Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition.

  10. Homologous inhibitors from potato tubers of serine endopeptidases and metallocarboxypeptidases.

    Science.gov (United States)

    Hass, C M; Venkatakrishnan, R; Ryan, C A

    1976-06-01

    A potent polypeptide inhibitor of chymotrypsin has been purified from Russett Burbank potatoes. The inhibitor has no effect on bovine carboxypeptidases A or B but exhibits homology with a carboxypeptidase inhibitor that is also present in potato tubers. The chymotrypsin inhibitor has a molecular weight of approximately 5400 as estimated by gel filtration, amino acid analysis, and titration with chymotrypsin. The polypeptide chain consists of 49 amino acid residues, of which six are half-cystine, forming three disulfide bonds. Its size is similar to that of the carboxypeptidase inhibitor, which contains 39 amino acid residues and also has three disulfide bridges. In immunological double diffusion assays, the chymotrypsin inhibitor and the carboxypeptidase inhibitor do not crossreact; however, automatic Edman degradation of reduced and alkylated derivatives of the chymotrypsin inhibitor, yielding a partial sequence of 18 amino acid residues at the NH2-terminus, reveals a similarity in sequence to that of the carboxypeptidase inhibitor. Thus, inhibitors directed toward two distinct classes of proteases, the serine endopeptidases and the metallocarboxypeptidases, appear to have evolved from a common ancestor.

  11. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    Science.gov (United States)

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  12. A new urease inhibitor from Viola betonicifolia.

    Science.gov (United States)

    Muhammad, Naveed; Saeed, Muhammad; Khan, Ajmal; Adhikari, Achyut; Wadood, Abdul; Khan, Khalid Mohammed; De Feo, Vincenzo

    2014-10-17

    Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  13. Patient compliance with MAO inhibitor therapy.

    Science.gov (United States)

    Walker, J I; Davidson, J; Zung, W W

    1984-07-01

    Exaggerated fears of monoamine oxidase inhibitors (MAOIs) and of their interactions with foods often restrict their use. A review of the literature reveals seven food items most likely to produce a hypertensive crisis in combination with MAOI administration: aged cheeses, smoked or pickled fish, beef or chicken liver, dry fermented sausage, pods of broad beans, brewer's yeast products, and certain alcoholic beverages. Improved understanding of the dietary restrictions, benefits, and mechanism of action of the MAOIs can enhance cooperation with the prescribed treatment program.

  14. Proton Pump Inhibitors in Cardiovascular Disease

    DEFF Research Database (Denmark)

    Würtz, Morten; Grove, Erik L

    2016-01-01

    prescribed.PPIs provide gastroprotection by changing the intragastric milieu, essentially by raising intragastric pH. In recent years, it has been heavily discussed whether PPIs may reduce the cardiovascular protection by aspirin and, even more so, clopidogrel. Pharmacodynamic and pharmacokinetic studies......-treatment.Given the large number of patients treated with antithrombotic drugs and PPIs, even a minor reduction of platelet inhibition potentially carries considerable clinical impact. The present book chapter summarizes the evidence regarding the widespread use of platelet inhibitors and PPIs in combination. Moreover...

  15. Improving cancer immunotherapy with DNA methyltransferase inhibitors.

    Science.gov (United States)

    Saleh, Mohammad H; Wang, Lei; Goldberg, Michael S

    2016-07-01

    Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity.

  16. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    Science.gov (United States)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  17. Carbocyclic Carbohydrate Mimics as Potential Glycosidase Inhibitors

    DEFF Research Database (Denmark)

    Fanefjord, Mette; Lundt, Inge

    It has been proven that aminocyclopentanols having the aminogroup adjacent to a carbon sidechain could be potential anomer-selective glycosidase inhibitors [1]. A successful pathway for synthesising mimics to L-carbohydrates 2, by introducing nitrogen to the C6 position in compound 1, has been...... developed in our group. A similar strategy has been used for synthesising mimics of D-carbohydrates. The α,β-unsaturated lactone 3 was cyclised to compound 4 which was further transformed into 5. The nitrogen functionality in compound 7 is introduced by an Overman rearrangement of 6 and the hydroxyl...

  18. A New Urease Inhibitor from Viola betonicifolia

    Directory of Open Access Journals (Sweden)

    Naveed Muhammad

    2014-10-01

    Full Text Available Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  19. Development of effective combined kinetic hydrate inhibitor/corrosion inhibitor (KHI/CI) products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Len. W.; Anderson, Joh.

    2006-03-15

    Low Dosage Hydrate Inhibitors (LDHIs) are gaining worldwide acceptance as a viable alternative to the more conventional methods of hydrate flow assurance control. Use of this LDHI technology in combination with Corrosion Inhibitors (CI) in production systems such as sub sea developments enables operating companies to further significantly reduce capital costs. CI can have a significant impact of the efficacy of Kinetic Hydrate Inhibitors (KHI). This paper will review the experience of developing combined KHI and CI products (KHI/CI) with the aim of producing effective products whilst also incorporating the goal of the use of more environmentally friendly CI. Relevant KHI/CI product case histories will be considered. The development of KHI to be used in the presence of CI will also be considered in different production scenarios. This relates to the typical situation of continuous CI usage with the seasonal application of KHI. Experience is also shown of how the incorporation of Thermodynamic Hydrate Inhibitors (THI) to KHI/CI products, in order to enable the combined product to control hydrates in higher subcooling systems, can also have a role to play in the influence that the CI has on the efficiency of the KHI. (author) (tk)

  20. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  1. Lonafarnib is a potential inhibitor for neovascularization.

    Directory of Open Access Journals (Sweden)

    Linlin Sun

    Full Text Available Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization.

  2. Replication and Inhibitors of Enteroviruses and Parechoviruses

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-08-01

    Full Text Available The Enterovirus (EV and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV. They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  3. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  4. Peptidomimetics and metalloprotease inhibitors as anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomimetics with three types, as the structural or functional mimetics of natural active peptides, can preserve the bioactivity and improve the bioavailability and the specificity towards the targets of the lead peptides. Peptidomimetics of high bioactivity can be designed through various ways including conformation restriction, modification and non-peptide design. Recently the concentration on the de-velopment of cancer chemotherapeutic drugs was transferred from cytotoxic drugs to target-based drugs, and many proteases and peptidases that play key roles in the process of tumor genesis and development was discovered, which means that peptidomimetics as potential cancer chemotherapeu-tic drugs should be paid close attention to. Our laboratory has focused on the development of small-molecule peptidomimetic inhibitors of APN, MMPs and HDACs as target-based anticancer agents. These three zinc-dependent metalloproteinases play very important roles in the process of tumor genesis, invasion, metastasis, angiogenesis and matrix degradation, so small-molecule peptidomimetic inhibitors based on them would be quite potential in the development of chemotherapeutic drugs with high selectivity.

  5. Endocrine dysfunction following immune checkpoint inhibitor therapy.

    Science.gov (United States)

    Konda, Bhavana; Nabhan, Fadi; Shah, Manisha H

    2017-10-01

    Immune checkpoint inhibitors (ICI) represent an important milestone in the modern era of antineoplastic therapy and have ushered optimism amongst oncologists and patients alike. These agents, however, are associated with significant potential toxicities, the importance of which cannot be overstated. The clinical presentation, diagnosis, and management strategies of immune-related endocrinopathies associated with ICI use are described in this case-based review. An increasing number of ICI have shown promise in the management of various malignancies in the recent years. These include cytotoxic T lymphocyte antigen-4 inhibitors, programmed cell death 1 (PD-1) antibodies, and PD-ligand 1 (PD-L1) antibodies. Several endocrinopathies, including hypophysitis, thyroid dysfunction, hyperglycemia, and primary adrenal insufficiency, have been associated with the use of these agents. Toxicities may range from mild transient laboratory abnormalities to potentially life-threatening ones, warranting immediate therapeutic intervention. Combination ICI therapies may be associated with a greater risk of endocrine dysfunction when compared with monotherapy. The clinical presentation and laboratory assessment of these patients often pose a diagnostic challenge as they may be confused by the symptoms related to their underlying malignancy or potential associated acute illnesses. ICI use is associated with serious endocrinopathies that may have a nonspecific initial presentation. A constant eye for these symptoms and a systematic approach to diagnosis are essential for prompt initiation of therapy and prevention of significant complications.

  6. DABIGATRAN ETEXILATE: NEW DIRECT THROMBIN INHIBITORS ANTICOAGULANTS

    Directory of Open Access Journals (Sweden)

    Patel Kinjal B

    2011-04-01

    Full Text Available Thrombin plays a key role in thrombotic events, and therefore thrombin inhibition represents a therapeutic target for numerous thromboembolic diseases. Thrombin is responsible for the conversion of soluble fibrinogen to fibrin; clot stabilization through activation of factor XIII and the formation of cross-linkage among fibrin molecules; and the generation of additional thrombin through activation of factors V, VIII, and XI. Direct thrombin inhibitors are an innovative class of anticoagulants that bind directly to thrombin to inhibit its actions and impede the clotting process. Dabigatran is the first direct thrombin inhibitor, orally available first approval by US Food and Drugs Administration in 2010. Specifically and reversibly inhibits thrombin, so the duration of action is predictable. The anticoagulant effect correlates well with plasma drug concentrations, which implies an effective anticoagulation with low bleeding risk without major problems of interactions with other drugs. The predictable pharmacokinetics and pharmacodynamics characteristics of dabigatran may facilitate dental management of patients who until now have been in treatment with traditional anticoagulants, given that it doesn’t require routine laboratory monitoring in the vast majority of patients treated. They also present a profile of drug interactions very favorable.

  7. CRM1 Inhibitors for Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Cynthia Mathew

    2017-06-01

    Full Text Available Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1 is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review.

  8. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  9. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2016-07-01

    Full Text Available A new series of benzylaminochalcone derivatives with different substituents on ring B were synthesized and evaluated as inhibitors of acetylcholinesterase. The study is aimed at identification of novel benzylaminochalcones capable of blocking acetylcholinesterase activity for further development of an approach to Alzheimer’s disease treatment. These compounds were produced in moderate to good yields via Claisen-Schmidt condensation and subjected to an in vitro acetylcholinesterase inhibition assay, using Ellman’s method. The in silico docking procedure was also employed to identify molecular interactions between the chalcone compounds and the enzyme. Compounds with ring B bearing pyridin-4-yl, 4-nitrophenyl, 4-chlorophenyl and 3,4-dimethoxyphenyl moieties were discovered to exhibit significant inhibitory activities against acetylcholinesterase, with IC50 values ranging from 23 to 39 µM. The molecular modeling studies are consistent with the hypothesis that benzylaminochalcones could exert their effects as dual-binding-site acetylcholinesterase inhibitors, which might simultaneously enhance cholinergic neurotransmission and inhibit β-amyloid aggregation through binding to both catalytic and peripheral sites of the enzyme. These derivatives could be further developed to provide novel leads for the discovery of new anti-Alzheimer drugs in the future.

  10. Inhibitors and pathways of hepatocytic protein degradation.

    Science.gov (United States)

    Seglen, P O; Gordon, P B; Grinde, B; Solheim, A; Kovács, A L; Poli, A

    1981-01-01

    On the basis of experiments using amino acids and various inhibitors (lysosomotropic amines, leupeptin, chymostatin, vanadate, vinblastine, anoxia, methylaminopurines), five different modes of endogenous protein degradation in isolated rat hepatocytes can be distinguished. The two non-lysosomal (amine-resistant) mechanisms preferentially degrade relatively labile (short-lived) proteins: one of these mechanisms is energy-dependent and chymostatin-sensitive, the other is not. Of the three lysosomal (amine-sensitive) mechanisms, one--quantitatively minor--is amino acid-resistant and preferentially degrades labile proteins. The two amino acid-sensitive mechanisms each seen account for about one-half of the degradation of relatively stable (long-lived) proteins; one of them is suppressed by leucine and apparently corresponds to the formation of electron microscopically visible autophagosomes; the other may represent a different type of autophagy, inhibited by asparagine and glutamine. A new class of inhibitors, the purine derivatives (methylated 6-aminopurines, and 6-mercaptopurines) appear to specifically suppress autophagic/lysosomal protein degradation, and may help to further elucidate the mechanisms of autophagy.

  11. Corrosion inhibitor for aqueous ammonia absorption system

    Science.gov (United States)

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  12. The Place of protease inhibitors in antiretroviral treatment

    Directory of Open Access Journals (Sweden)

    S.B. Tenore

    2009-10-01

    Full Text Available With the introduction of highly active antiretroviral therapy, a number of drugs have been developed. The best choice concerning which antiretroviral analogs to start is always under discussion, especially in the choice between non-nucleoside reverse transcriptase inhibitors-based therapies and ritonavir-boosted protease inhibitors. Both are proven to control viral replication and lead to immunological gain. The choice between a non-nucleoside analog reverse transcriptase inhibitor and a protease inhibitor as a third antiretroviral drug in the therapy should consider factors related to the individual, as well as the inclusion of the best therapy in the patient's daily activities and potential adherence. The protease inhibitor-based therapies showed similar efficacy among the various inhibitors with characteristics concerning the adverse events from each medicine. For the treatment of protease-resistant patients, darunavir and tipranavir showed good efficacy with higher genetic barrier to resistance.

  13. Internet Selling Expansion Inhibitors: A Mixed Method Approach

    Directory of Open Access Journals (Sweden)

    Shahriar Azizi

    2013-01-01

    Full Text Available This research based on providing five questions has tried to identify and prioritize the main and sub inhibitors of internet selling boosting in Iran. A mixed method research (QUAN has been used in this research. In the qualitative phase, individual in-depth interviews have been done with seven e-shop managers. In this phase, 45 detailed inhibitors have been detected. These 45 inhibitors have been categorized in nine sub categories and four main categories. In the quantitative phase a 51-items questionnaires has been designed including six demographical and 45 specialized questions. Findings of the quantitative phase reveal that the main obstacles include legal, cultural, infrastructural and managerial inhibitors. In addition, sub category inhibitors include legal, governmental, telecommunication, society, human resource, transportation, financial and customer related.     Keywords: e-selling, Iran, Inhibitors, Mixed method.

  14. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    Directory of Open Access Journals (Sweden)

    Raimond Gordienko

    Full Text Available The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs possess the ability to modify structure II (sII tetrahydrofuran (THF hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP. The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  15. Cross talk between poly(ADP-ribose polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bai W

    2015-09-01

    Full Text Available Wenlin Bai,1,2 Yujiao Chen,1,2 Ai Gao1,2 1Department of Occupational Health and Environmental Health, School of Public Health, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China Abstract: Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs, concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose polymerase 1 (PARP-1, a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs

  16. Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects

    Directory of Open Access Journals (Sweden)

    Pravin O. Patil

    2014-12-01

    Full Text Available The present review highlights the synthetic methods of monoamine oxidase inhibitors (MAO belonging to a group of nitrogen heterocycles such as pyrazoline, indole, xanthine, oxadiazole, benzimidazole, pyrrole, quinoxaline, thiazole and other related compounds (1990–2012. Moreover, it emphasizes salient findings related to chemical structures and the bioactivities of these heterocycles as MAO inhibitors. The aim of this review is to find out different methods for the synthesis of nitrogen containing heterocycles and their bioactivity related aspects as MAO inhibitors.

  17. Aromatase inhibitors in men: effects and therapeutic options

    Directory of Open Access Journals (Sweden)

    de Jong Frank H

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended.

  18. Engineering Performance of a New Siloxane-Based Corrosion Inhibitor

    OpenAIRE

    Holmes, Niall; O'Brien, R.; Basheer, P. A.M.

    2013-01-01

    This paper presents an evaluation of a new non-toxic corrosion inhibitor on selected engineering properties of concrete mixes with different cementitious materials following a corrosion and durability study on concrete samples. Corrosion inhibitors consist of powders or solutions which are added to concrete when mixed to prevent or delay corrosion of steel by their reaction with ferrous ions to form a stable and passive ferric oxide film on the steel surface. The new inhibitor functions sligh...

  19. Natural compounds as corrosion inhibitors for highly cycled systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. [Corrosion Research Lab., Aligarh (India)

    1999-11-01

    Strict environmental legislations have led to the development of green inhibitors in recent years. In continuation of the authors` research work on development of green inhibitors, they have investigated the aqueous extracts of three plants namely: Azadirachta indica, Punica Granatum and Momordica charantia as corrosion inhibitors for mild steel in 3% NaCl using weight loss and electrochemical methods. All the investigated compounds exhibited excellent corrosion inhibition properties comparable to that of HEDP. Azadirachta showed better scale inhibition effect than HEDP.

  20. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    Science.gov (United States)

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  1. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  2. Achievements, challenges and unmet needs for haemophilia patients with inhibitors

    Science.gov (United States)

    DARGAUD, Y.; PAVLOVA, A.; LACROIX-DESMAZES, S.; FISCHER, K.; SOUCIE, M.; CLAEYSSENS, S.; SCOTT, D.W.; d’OIRON, R.; LAVIGNE-LISSALDE, G.; KENET, G.; ETTINGSHAUSEN, C. ESCURIOLA; BOREL-DERLON, A.; LAMBERT, T.; PASTA, G.; NÉGRIER, C.

    2016-01-01

    Summary Over the past 20 years, there have been many advances in haemophilia treatment that have allowed patients to take greater control of their disease. However, the development of factor VIII (FVIII) inhibitors is the greatest complication of the disease and a challenge in the treatment of haemophilia making management of bleeding episodes difficult and surgical procedures very challenging. A meeting to discuss the unmet needs of haemophilia patients with inhibitors was held in Paris on 20 November 2014. Topics discussed were genetic and non-genetic risk factors for the development of inhibitors, immunological aspects of inhibitor development, FVIII products and inhibitor development, generation and functional properties of engineered antigen-specific T regulatory cells, suppression of immune responses to FVIII, prophylaxis in haemophilia patients with inhibitors, epitope mapping of FVIII inhibitors, current controversies in immune tolerance induction therapy, surgery in haemophilia patients with inhibitors and future perspectives for the treatment of haemophilia patients with inhibitors. A summary of the key points discussed is presented in this paper. PMID:26728503

  3. Behaviour of tetramine inhibitors during pickling of hot rolled steels

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, Marie-José, E-mail: marie-jose.cornu@arcelormittal.com [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Koltsov, Alexey, E-mail: alexey.koltsov@arcelormittal.com [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Nicolas, Sabrina, E-mail: sabrina_nicolas@live.fr [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) – UMR 7564 CNRS – Université de Lorraine, 405 rue de Vandoeuvre, 54602 Villers-lès-Nancy (France); Colom, Lydia, E-mail: Lydia.colom@sfr.fr [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Dossot, Manuel, E-mail: manuel.dossot@univ-lorraine.fr [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) – UMR 7564 CNRS – Université de Lorraine, 405 rue de Vandoeuvre, 54602 Villers-lès-Nancy (France)

    2014-02-28

    To avoid the dissolution of steel in industrial pickling process, tetramine inhibitors are added to the pickling bath. This study is devoted to the understanding of the action mechanism of these inhibitors in hydrochloric and sulphuric baths on non-alloyed and alloyed steels. Pickling experiments and characterization with XPS, Raman and infrared spectroscopies have shown that inhibitors work only in acid media and leached out from the steel surfaces during the rinsing operation just after pickling. The effectiveness of inhibitors depends on the acid media and the temperature. Experimental data are consistent with a surface mechanism, i.e., the so-called “outer-sphere” adsorption.

  4. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  5. Solderability preservation through the use of organic inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, N.R.; Hosking, F.M.

    1994-12-01

    Organic inhibitors can be used to prevent corrosion of metals and have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper, but provides a vast improvement relative to oxidized copper.

  6. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-02-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  7. Discovery of a selective irreversible BMX inhibitor for prostate cancer.

    Science.gov (United States)

    Liu, Feiyang; Zhang, Xin; Weisberg, Ellen; Chen, Sen; Hur, Wooyoung; Wu, Hong; Zhao, Zheng; Wang, Wenchao; Mao, Mao; Cai, Changmeng; Simon, Nicholas I; Sanda, Takaomi; Wang, Jinhua; Look, A Thomas; Griffin, James D; Balk, Steven P; Liu, Qingsong; Gray, Nathanael S

    2013-07-19

    BMX is a member of the TEC family of nonreceptor tyrosine kinases. We have used structure-based drug design in conjunction with kinome profiling to develop a potent, selective, and irreversible BMX kinase inhibitor, BMX-IN-1, which covalently modifies Cys496. BMX-IN-1 inhibits the proliferation of Tel-BMX-transformed Ba/F3 cells at two digit nanomolar concentrations but requires single digit micromolar concentrations to inhibit the proliferation of prostate cancer cell lines. Using a combinatorial kinase inhibitor screening strategy, we discovered that the allosteric Akt inhibitor, MK2206, is able to potentiate BMX inhibitor's antiproliferation efficacy against prostate cancer cells.

  8. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  9. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

    Science.gov (United States)

    Barnard, Sunelle A.; Loots, Du Toit; Rijken, Dingeman C.

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of

  10. Cyclooxygenase (COX Inhibitors and the Newborn Kidney

    Directory of Open Access Journals (Sweden)

    Wei Qi

    2012-10-01

    Full Text Available This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2 plays a more important role in during fetal development and influences kidney function early in life is not known, though evidence points to a predominant role for COX-2. Clinical implications of the use of COXI in pregnancy and in the newborn infant are also evaluated herein, with specific reference to the potential effects of COXI on nephronogenesis as well as newborn kidney function.

  11. Development of Inhibitors of Salicylic Acid Signaling.

    Science.gov (United States)

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  12. Renal effects of immune checkpoint inhibitors.

    Science.gov (United States)

    Izzedine, Hassan; Mateus, Christine; Boutros, Céline; Robert, Caroline; Rouvier, Philippe; Amoura, Zahir; Mathian, Alexis

    2016-12-26

    Recent advances in immune checkpoint inhibitor (ICPI) development have led to major improvements in oncology patient outcomes. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are two essential immune checkpoint receptors. Ipilimumab and tremelimumab (anti-CTLA-4-blocking antibodies) and pembrolizumab and nivolumab (antibodies targeting PD-1 receptors) have already been approved by US Food and Drug Administration in several malignancies. Two different forms of ICPI-induced renal damage have been identified, including acute (granulomatous) tubulointerstitial nephritis and immune complex glomerulonephritis. The observed acute renal damage can be reversed upon ICPI drug discontinuation and renal function can recover back to normal following the introduction of systemic corticosteroid treatment. Any delay in treating this complication could result in definitive and irreversible renal injury.

  13. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  14. Insect response to plant defensive protease inhibitors.

    Science.gov (United States)

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  15. Efficacy of topical calcineurin inhibitors in vitiligo.

    Science.gov (United States)

    Wong, Russell; Lin, Andrew N

    2013-04-01

    Topical tacrolimus and pimecrolimus are indicated for the treatment of atopic dermatitis, but they have been studied in many off-label uses. We reviewed the English language literature to define their roles in treatment of vitiligo. Double-blind studies show that tacrolimus 0.1% ointment combined with excimer laser is superior to placebo, especially for UV resistant areas, such as bony prominences of the extremities. When used alone, tacrolimus 0.1% ointment is almost as effective as clobetasol propionate 0.05% ointment. Other studies suggest it can also be effective for facial lesions. Double blind studies show that pimecrolimus 1% cream combined with narrow band UVB is superior to placebo, especially for facial lesions. Additional studies would further clarify the role of topical calcineurin inhibitors in vitiligo. © 2013 The International Society of Dermatology.

  16. [Progress in c-di-GMP inhibitors].

    Science.gov (United States)

    Xiang, Xuwen; Liu, Xingyu; Tao, Hui; Cui, Zining; Zhang, Lianhui

    2017-09-25

    The cyclic dinucleotide c-di-GMP is known as an important second messenger in bacteria, which controls various important cellular processes, such as cell differentiation, biofilm formation and virulence factors production. It is extremely vital for the development of new antibacterial agents by virtue of blocking c-di-GMP signal conduction. Current research indicates that there are three potential targets for discovering new antibacterial agents based on c-di-GMP regulated signal pathway, which are c-di-GMP synthases, c-di-GMP degrading enzymes and c-di-GMP receptors. Herein, we review small molecules that have been developed to inhibit c-di-GMP related enzymes and indicate perspectives of c-di-GMP inhibitors.

  17. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  18. The new factor Xa inhibitor: Apixaban

    Directory of Open Access Journals (Sweden)

    Sangeeta Bhanwra

    2014-01-01

    Full Text Available Cardiovascular diseases are still the most important cause of morbidity and mortality worldwide and anti-thrombotic treatment is widely used as a result. The currently used drugs include heparin and its derivatives, vitamin K antagonists, though efficacious, have their own set of limitations like unpredictable pharmacokinetic profile, parenteral route (with heparin and its derivatives only, narrow therapeutic window, and constant laboratory monitoring for their efficacy and safety. This lead to the development of novel factor Xa inhibitors which could be given orally, have predictable dose response relationship and are associated with lesser hemorrhagic complications. They include rivaroxaban, apixaban, and edoxaban among others. Apixaban has currently been approved for use in patients undergoing total knee or hip replacement surgery and to prevent stroke in patients with atrial fibrillation. Many trials are ongoing for apixaban to firmly establish its place in future, among the anti-thrombotic drugs.

  19. The INHIBITOR OF MERISTEM ACTIVITY (IMA) protein

    Science.gov (United States)

    Sicard, Adrien; Hernould, Michel

    2008-01-01

    The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene from tomato regulates the processes of flower and ovule development. 1 IMA encodes a Mini Zinc Finger (MIF) protein that is characterized by a very short sequence containing an unusual zinc-finger domain. IMA acts as a repressor of WUSCHEL expression which controls the meristem organizing centre and the determinacy of the nucellus during ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and participates in the initiation of ovule primordia by activating D-type gene expression. In addition IMA is involved in a multiple hormonal signalling pathway like its Arabidopsis homolog MIF1.2 We thus propose that IMA, as a representative of this new family of zinc finger proteins, is an important effector in the regulatory pathway controlling meristem activity linking cell division, differentiation and hormonal control of development. PMID:19704478

  20. Chemical Inhibitors of Epigenetic Methyllysine Reader Proteins.

    Science.gov (United States)

    Milosevich, Natalia; Hof, Fraser

    2016-03-22

    Protein methylation is a common post-translational modification with diverse biological functions. Methyllysine reader proteins are increasingly a focus of epigenetics research and play important roles in regulating many cellular processes. These reader proteins are vital players in development, cell cycle regulation, stress responses, oncogenesis, and other disease pathways. The recent emergence of a small number of chemical inhibitors for methyllysine reader proteins supports the viability of these proteins as targets for drug development. This article introduces the biochemistry and biology of methyllysine reader proteins, provides an overview of functions for those families of readers that have been targeted to date (MBT, PHD, tudor, and chromodomains), and reviews the development of synthetic agents that directly block their methyllysine reading functions.

  1. a -Glucosidase Inhibitors from Dendrobium tortile

    Directory of Open Access Journals (Sweden)

    Rachawadee Limpanit

    2016-03-01

    Full Text Available From the whole plant of Dendrobium tortile, a new compound, namely 4-(2-hydroxypropyl-2(5H-furanone, was isolated, together with six known compounds, which included trans-tetracosylferulate (2, cis-docosylferulate (3, p-hydroxybenzaldehyde (4, 3,4-dihydroxy-3,4 ¢ -dimethoxybibenzyl (5, (2S-eriodictyol (6 and dendrofalconerol A (7. The structures of these compounds were determined through analysis of 1-D and 2-D NMR and HR-ESI-MS data. All of the isolates were evaluated for their a -glucosidase inhibitory activity. Compound 7 showed strong a -glucosidase inhibitory activity when compared with the positive control acarbose, whereas compounds 5 and 6 exhibited appreciable effects. An enzyme kinetic study revealed that compound 7 is a non-competitive inhibitor of a -glucosidase. This is the first report of the chemical constituents with biological activity from D. tortile.

  2. Bisarylmaleimides & the Corresponding Indolocarbazoles as Kinase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Zhu Guoxin; Cathy Ogg; Bharvin Patel; Richard M. Schultz; Charles D. Spencer; Beverly Teicher; Scou A. Watkins; Scott E. Conner; Zhou Xun; Chuan Shih; Li Tiechao; Harold B. Brooks; Eileen Considine; Jack A. Dempsey; Margaret M. Faul

    2004-01-01

    Cyclin dependent kinases (CDKs) have recently raised considerable attention because of their central role in the regulation of cell cycle progression. A high incidence of genetic mutation of CDK substrates and deregulaton of CDK modulators were found in a number of disease states,particularly in cancer. A novel series of unsymmetrical substituted indolocarbazoles were synthesized and their kinase inhibitory capability was evaluated in vitro. 6-Substtuted indolocarbazoles were found to be highly potent and selective D1/CDK4 inhibitors. These indolocarbazoles exhibited ATP competitive D1/CDK4 activity and inhibited tumor cell growth,arrested tumor cell at G1 phase. These molecules demonstrated potent anti-tumor activity and inhibited pRb phosphorylation at S780 in the human lung carcinoma (Calu6) and non-small cell lung carcinoma (NCI-H460) xenograft models. The results indicate that these small molecules have potential as therapeutic agents in cancer chemotherapeutc agents.

  3. Different Pathways Leading to Integrase Inhibitors Resistance

    Science.gov (United States)

    Thierry, Eloïse; Deprez, Eric; Delelis, Olivier

    2017-01-01

    Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information. PMID:28123383

  4. New Acetylcholinesterase Inhibitors for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Mona Mehta

    2012-01-01

    Full Text Available Acetylcholinesterase (AChE remains a highly viable target for the symptomatic improvement in Alzheimer's disease (AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AchE for myasthenia gravis had effectively proven that AchE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEI continue to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs in development and their respective mechanisms of actions. This pharmacological approach continues to be active with many promising compounds.

  5. Randomized controlled trials of COX-2 inhibitors

    DEFF Research Database (Denmark)

    Stefansdottir, Gudrun; De Bruin, Marie L; Knol, Mirjam J

    2011-01-01

    BACKGROUND: Naproxen, ibuprofen and diclofenac are frequently used as comparators in randomized controlled trials (RCTs) on the safety and efficacy of cyclooxygenase (COX)-2 inhibitors. Different comparator doses may influence the results of RCTs. It has been hypothesized that RCTs of COX-2...... 1995 and 2009 in which celecoxib or rofecoxib were compared with naproxen, ibuprofen or diclofenac. All articles labelled as RCTs mentioning rofecoxib or celecoxib and one or more of the comparator drugs in the title and/or abstract were included. We extracted information on doses of both non...... dose trends in the case of rofecoxib. CONCLUSIONS: Although the dose trends over time differed for RCTs comparing rofecoxib and celecoxib with diclofenac, ibuprofen or naproxen, the results of our study do not support the hypothesis that dose trends influenced the decision to continue marketing...

  6. Developing BACE-1 inhibitors for FXS

    Directory of Open Access Journals (Sweden)

    Cara J Westmark

    2013-05-01

    Full Text Available Fragile X syndrome (FXS is a debilitating genetic disorder with no cure and few therapeutic options. Excessive signaling through metabotropic glutamate receptor 5 (mGluR5 in FXS leads to increased translation of numerous synaptic proteins and exaggerated long-term depression (LTD. Two of the overexpressed proteins are amyloid-beta protein precursor (APP and its metabolite amyloid-beta (Aβ, which have been well-studied in Alzheimer’s disease (AD. Here we discus the possibility that pharmaceuticals under study for the modulation of these proteins in AD might be viable therapeutic strategies for FXS. Specifically, a recently identified acetyltransferase (ATase inhibitor that reduces the levels and activity of β-site APP cleaving enzyme (BACE-1 has strong potential to attenuate BACE-1 activity and maintain homeostatic levels APP catabolites in FXS.

  7. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly......, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent...... increased. Finally, the effect of multivalent display of upain-2 was investigated. Several dimers of upain-2 were made and the attachment of upain-2 via the Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) onto an alkyne functionalized carbohydrate scaffold was investigated. Besides the synthesis...

  8. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.

    Science.gov (United States)

    Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr

    2012-02-01

    A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Skottrup, Peter; Pedersen, Katrine Egelund; Christensen, Anni

    2002-01-01

    spectrometry and monosaccharide composition analysis and compared to that of natural and recombinant PAI-1 from other sources. These results contribute to a structural basis for previous observations of a different functional importance of the N-linked glycosylation at each of the 2 sequences.......Plasminogen activator inhibitor type-1 (PAI-1) has three potential sites for N-linked glycosylation, including Asn209Tyr210Thr211, Asn265Met266Thr267, and Asn329Glu330Ser331. Using a HEK293 expression system, we have made mutants with Asp or Gln substitutions of the Asn residue in each...... of these sequences. Analyses of these mutants for the content of N-acetyl glucosamine showed that Asn209 and Asn265, but not Asn329, are glycosylated, in agreement with previous suggestions made on the basis of X-ray crystal structure analysis of PAI-1 expressed in CHO cells (Xue et al. (1998) Structure 6, 627...

  10. The Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Skottrup, Peter; Pedersen, Katrine Egelund; Christensen, Anni

    spectrometry and monosaccharide composition analysis and compared to that of natural and recombinant PAI-1 from other sources. These results contribute to a structural basis for previous observations of a different functional importance of the N-linked glycosylation at each of the 2 sequences.......Plasminogen activator inhibitor type-1 (PAI-1) has three potential sites for N-linked glycosylation, including Asn209Tyr210Thr211, Asn265Met266Thr267, and Asn329Glu330Ser331. Using a HEK293 expression system, we have made mutants with Asp or Gln substitutions of the Asn residue in each...... of these sequences. Analyses of these mutants for the content of N-acetyl glucosamine showed that Asn209 and Asn265, but not Asn329, are glycosylated, in agreement with previous suggestions made on the basis of X-ray crystal structure analysis of PAI-1 expressed in CHO cells (Xue et al. (1998) Structure 6, 627...

  11. Inherent formulation issues of kinase inhibitors.

    Science.gov (United States)

    Herbrink, M; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-10-10

    The small molecular Kinase Inhibitor (smKI) drug class is very promising and rapidly expanding. All of these drugs are administered orally. The clear relationship between structure and function has led to drugs with a general low intrinsic solubility. The majority of the commercial pharmaceutical formulations of the smKIs are physical mixtures that are limited by the low drug solubility of a salt form. This class of drugs is therefore characterized by an impaired and variable bioavailability rendering them costly and their therapies suboptimal. New formulations are sparingly being reported in literature and patents. The presented data suggests that continued research into formulation design can help to develop more efficient and cost-effective smKI formulation. Moreover, it may also be of help in the future design of the formulations of new smKIs.

  12. Adnectin-targeted inhibitors: rationale and results.

    Science.gov (United States)

    Sachdev, Esha; Gong, Jun; Rimel, Bobbie; Mita, Monica

    2015-08-01

    Adnectins are a family of binding proteins derived from the 10th type III domain of human fibronectin (10Fn3), which is part of the immunoglobulin superfamily and normally binds integrin. The 10Fn3 has the potential for broad therapeutic applications given its structural stability, ability to be manipulated, and its abundance in the human body. The most commonly studied adnectin is CT-322, which is an inhibitor of vascular endothelial growth factor receptor-2. A bispecific adnectin, El-Tandem, has also been developed and binds to epidermal growth factor receptor and insulin-like growth factor-1 receptor simultaneously. Pre-clinical studies have shown promising results in relation to reducing tumor growth, decreasing microvessel density, and promoting normalization of tumor architecture. The phase I trial with CT-322 demonstrates relatively low toxicities. However, the phase II study done with CT-322 in recurrent glioblastoma does not reveal as promising results.

  13. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  14. Use of proteasome inhibitors in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Sara M. Schmitt

    2011-10-01

    Full Text Available The importance of the ubiquitin-proteasome pathway to cellular function has brought it to the forefront in the search for new anticancer therapies. The ubiquitin-proteasome pathway has proven promising in targeting various human cancers. The approval of the proteasome inhibitor bortezomib for clinical treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma has validated the ubiquitin-proteasome as a rational target. Bortezomib has shown positive results in clinical use but some toxicity and side effects, as well as resistance, have been observed, indicating that further development of novel, less toxic drugs is necessary. Because less toxic drugs are necessary and drug development can be expensive and time-consuming, using existing drugs that can target the ubiquitin-proteasome pathway in new applications, such as cancer therapy, may be effective in expediting the regulatory process and bringing new drugs to the clinic. Toward this goal, previously approved drugs, such as disulfiram, as well as natural compounds found in common foods, such as green tea polyphenol (--EGCG and the flavonoid apigenin, have been investigated for their possible proteasome inhibitory and cell death inducing abilities. These compounds proved quite promising in preclinical studies and have now moved into clinical trials, with preliminary results that are encouraging. In addition to targeting the catalytic activity of the proteasome pathway, upstream regulators, such as the 19S regulatory cap, as well as E1, E2, and E3, are now being investigated as potential drug targets. This review outlines the development of novel proteasome inhibitors from preclinical to clinical studies, highlighting their abilities to inhibit the tumor proteasome and induce apoptosis in several human cancers.

  15. Ezetimibe: a selective cholesterol absorption inhibitor.

    Science.gov (United States)

    Nutescu, Edith A; Shapiro, Nancy L

    2003-11-01

    Ezetimibe is the first agent of a novel class of selective cholesterol absorption inhibitors recently approved by the Food and Drug Administration for treatment in the United States. Ezetimibe inhibits the absorption of biliary and dietary cholesterol from the small intestine without affecting the absorption of fat-soluble vitamins, triglycerides, or bile acids. Ezetimibe localizes at the brush border of the small intestine and decreases cholesterol uptake into the enterocytes. Preclinical studies demonstrated lipid-lowering properties of ezetimibe as monotherapy and showed a synergistic effect in combination with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). The efficacy and safety of ezetimibe 10 mg/day have been established in phase III clinical trials. In these trials, ezetimibe was investigated as monotherapy, as an add-on to ongoing statin therapy, and as combination therapy with statins in patients with primary hypercholesterolemia. In addition, ezetimibe has been evaluated in patients with homozygous and heterozygous familial hypercholesterolemia and in those with sitosterolemia. When given as monotherapy or in combination with statins or fenofibrate, ezetimibe reduces low-density lipoprotein cholesterol (LDL) by 15-20% while increasing high-density lipoprotein cholesterol by 2.5-5%. Unlike other intestinally acting lipid-lowering agents, ezetimibe does not adversely affect triglyceride levels and, due to its minimal systemic absorption, drug interactions are few. Ezetimibe's side-effect profile resembles that of placebo when given as monotherapy or in combination with statins. In clinical practice, ezetimibe has a role as monotherapy for patients who require modest LDL reductions or cannot tolerate other lipid-lowering agents. In combination therapy with a statin, ezetimibe is used in patients who cannot tolerate high statin doses or in those who need additional LDL reductions despite maximum statin doses.

  16. [Non-nucleoside reverse transcriptase inhibitors].

    Science.gov (United States)

    Joly, V; Yeni, P

    2000-06-01

    The non-nucleoside reverse transcriptase inhibitors (NNRTIs) directly inhibit the HIV-1 reverse transcriptase (RT) by binding in a reversible and non-competitive manner to the enzyme. The currently available NNRTIs are nevirapine, delavirdine, and efavirenz; other compounds are under evaluation. NNRTIs are extensively metabolized in the liver through cytochrome P450, leading to pharmacokinetic interactions with compounds utilizing the same metabolic pathway, particularly PIs, whose plasma levels are altered in the presence of NNRTIs. NNRTIs are drugs with a low genetic barrier, i.e. a single mutation in RT genoma induces a high-level of phenotypic resistance, preventing the use of NNRTIs as monotherapy. In naive patients, several trials have shown the value of NNRTIs in combination with nucleosides and/or protease inhibitors. Small pilot studies have shown that NNRTIs may be useful as second-line therapy. However, due to the rapid emergence of resistant virus to these compounds in case of incomplete viral suppression, NNRTIs should not be added to current failing antiretroviral regimen. The most common side-effect reported with nevirapine and delavirdine is rash. The incidence of rash is rather similar under these two compounds, but severe rash is less frequent with delavirdine. The most common adverse reactions reported with efavirenz are central nervous system complaints such as dizziness. Rash is reported less frequently than with nevirapine or delavirdine, and is usually mild. NNRTIs resistance mutations are located in the amino acid residues aligning the NNRTI-binding "pocket" site. High-level resistance is often associated with a single point mutation which develops within this site (especially codon groups 100 - 108 and 181 - 190). Patients failing on one NNRTI are very likely to possess multiple NNRTI resistance mutations. NNRTIs should always be used as part of a potent antiretroviral therapy to insure suppression of viral replication, thus circumventing

  17. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  18. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which

  19. Aryl tetrahydropyridine inhibitors of farnesyltransferase: glycine, phenylalanine and histidine derivatives.

    Science.gov (United States)

    Gwaltney, Stephen L; O'Connor, Stephen J; Nelson, Lissa T J; Sullivan, Gerard M; Imade, Hovis; Wang, Weibo; Hasvold, Lisa; Li, Qun; Cohen, Jerome; Gu, Wen-Zhen; Tahir, Stephen K; Bauch, Joy; Marsh, Kennan; Ng, Shi-Chung; Frost, David J; Zhang, Haiying; Muchmore, Steve; Jakob, Clarissa G; Stoll, Vincent; Hutchins, Charles; Rosenberg, Saul H; Sham, Hing L

    2003-04-07

    Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered a series of aryl tetrahydropyridines that incorporate substituted glycine, phenylalanine and histidine residues. The design, synthesis, SAR and biological properties of these compounds will be discussed.

  20. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors.

    Science.gov (United States)

    Snihirova, D; Lamaka, S V; Taryba, M; Salak, A N; Kallip, S; Zheludkevich, M L; Ferreira, M G S; Montemor, M F

    2010-11-01

    This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings.

  1. Rational design of an organometallic glutathione transferase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.; (ISIC)

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  2. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells.

    Science.gov (United States)

    Llobet, David; Eritja, Nuria; Encinas, Mario; Sorolla, Anabel; Yeramian, Andree; Schoenenberger, Joan Antoni; Llombart-Cussac, Antonio; Marti, Rosa M; Matias-Guiu, Xavier; Dolcet, Xavier

    2008-02-01

    We have recently demonstrated that proteasome inhibitors can be effective in inducing apoptotic cell death in endometrial carcinoma cell lines and primary culture explants. Increasing evidence suggests that reactive oxygen species are responsible for proteasome inhibitor-induced cell killing. Antioxidants can thus block apoptosis (cell death) triggered by proteasome inhibition. Here, we have evaluated the effects of different antioxidants (edaravone and tiron) on endometrial carcinoma cells treated with aldehyde proteasome inhibitors (MG-132 or ALLN), the boronic acid-based proteasome inhibitor (bortezomib) and the epoxyketone, epoxomicin. We show that tiron specifically inhibited the cytotoxic effects of bortezomib, whereas edaravone inhibited cell death caused by aldehyde-based proteasome inhibitors. We have, however, found that edaravone completely inhibited accumulation of ubiquitin and proteasome activity decrease caused by MG-132 or ALLN, but not by bortezomib. Conversely, tiron inhibited the ubiquitin accumulation and proteasome activity decrease caused by bortezomib. These results suggest that edaravone and tiron rescue cells of proteasome inhibitors from cell death, by inhibiting blockade of proteasome caused by MG-132 and ALLN or bortezomib, respectively. We also tested other antioxidants, and we found that vitamin C inhibited bortezomib-induced cell death. Similar to tiron, vitamin C inhibited cell death by blocking the ability of bortezomib to inhibit the proteasome. Until now, all the antioxidants that blocked proteasome inhibitor-induced cell death also blocked the proteasome inhibitor mechanism of action.

  3. Corrosion inhibitors for solar-heating and cooling

    Science.gov (United States)

    Humphries, T. S.

    1979-01-01

    Report describes results of tests conducted to evaluate abilities of 12 candidate corrosion inhibitors to protect aluminum, steel, copper, or stainless steel at typical conditions encountered in solar heating and cooling systems. Inhibitors are based on sodium salts including nitrates, borates, silicates, and phosphates.

  4. Urea Transporter Inhibitors: En Route to New Diuretics

    Science.gov (United States)

    Sands, Jeff M.

    2013-01-01

    Summary A selective urea transporter UT-A1 inhibitor would be a novel type of diuretic, likely with less undesirable side-effects than conventional diureticssince it acts on the last portion of the nephron. Esteva-Font et al. (2013) develop suchan inhibitor by using a clever high-throughput screening assay, and document its selectivity. . PMID:24210002

  5. Mammalian target of rapamycin inhibitor-associated stomatitis

    NARCIS (Netherlands)

    Boers-Doets, C.B.; Raber-Durlacher, J.E.; Treister, N.S.; Epstein, J.B.; Arends, A.B.P.; Wiersma, D.R.; Lalla, R.V.; Logan, R.M.; van Erp, N.R.P.; Gelderblom, H.

    2013-01-01

    With the recent introduction of inhibitors of mammalian target of rapamycin (mTOR) in oncology, distinct cutaneous and oral adverse events have been identified. In fact, stomatitis and rash are documented as the most frequent and potentially dose-limiting side effects. Clinically, mTOR inhibitor-ass

  6. Detecting and treating breast cancer resistance to EGFR inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Moonlee, Sun-Young; Bissell, Mina J.; Furuta, Saori; Meier, Roland; Kenny, Paraic A.

    2016-04-05

    The application describes therapeutic compositions and methods for treating cancer. For example, therapeutic compositions and methods related to inhibition of FAM83A (family with sequence similarity 83) are provided. The application also describes methods for diagnosing cancer resistance to EGFR inhibitors. For example, a method of diagnosing cancer resistance to EGFR inhibitors by detecting increased FAM83A levels is described.

  7. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    NARCIS (Netherlands)

    Gubser, C.; Bergamaschi, D.; Hollinshead, M.; Lu, X.; Kuppeveld, F.J.M. van; Smith, G.L.

    2007-01-01

    A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein). Stable expression of both viral GAAP (v-GAAP) and human GAA

  8. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequentl

  9. Calpains: attractive targets for the development of synthetic inhibitors.

    Science.gov (United States)

    Pietsch, Markus; Chua, Krystle C H; Abell, Andrew D

    2010-01-01

    The physiological roles of calpains are discussed, as are the associated pathological disorders that result from their over-activation. We also present practical information for establishing functional inhibition assays and an overview of X-ray crystal structures of calpain-inhibitor complexes to aid inhibitor design. These structures reveal the expected extended beta-strand conformation for the inhibitor backbone, a geometry that has been engineered into inhibitors with the introduction of either an N-terminal heterocycle or a macrocycle that links the P(1) and P(3) residues. The structure and function of all the main classes of inhibitors are reviewed, with most examples being classified according to the nature of the C-terminal reactive warhead group that reacts with the active site cysteine of calpains. These inhibitor classes include epoxysuccinate derivatives, aldehydes, aldehyde prodrugs (hemiacetals) and alpha-keto carbonyl compounds. Inhibitors derived from the endogenous inhibitor calpastatin and examples lacking a warhead, are now known and these are also discussed.

  10. Antiplatelet agents and proton pump inhibitors – personalizing treatment

    Directory of Open Access Journals (Sweden)

    Eugene Lin

    2010-06-01

    Full Text Available Eugene Lin, Rajiv Padmanabhan, Majaz MoonisDepartment of Neurology, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, Massachusetts, USAIntroduction: Antiplatelet therapy remains one of the cornerstones in the management of noncardioembolic ischemic stroke. However, a significant percentage of patients have concomitant gastroesophageal reflux or peptic ulcer disease that requires acid-reducing medications, the most powerful and effective being the proton pump inhibitors (PPIs. Antiplatelet efficacy, at least in vivo, and particularly for clopidogrel, has been shown to be reduced with concomitant proton pump inhibitor use. Whether this is clinically relevant is not clear from the limited studies available.Methods: We conducted an extensive review of studies available on Medline related to pharmacodynamic interactions between the antiplatelet medications and proton pump inhibitors as well as clinical studies that addressed this potential interaction.Results: Based on the present pharmacodynamic and clinical studies we did not find a significant interaction that would reduce the efficacy of antiplatelet agents with concomitant user of proton pump inhibitors.Conclusions: Patients on antiplatelet agents after a transient ischemic attack or ischemic stroke can safely use aspirin, and extended release dipyridamole/aspirin with proton pump inhibitors. Patients on clopidogrel may use other acid-reducing drugs besides proton pump inhibitors. In rare cases where proton pump inhibitors and clopidogrel have to be used concurrently, careful close monitoring for recurrent vascular events is required.Keywords: proton pump inhibitors, antiplatelet medications, clopidogrel, ischemic stroke, cardiovascular events

  11. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  12. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors

    Science.gov (United States)

    Cifuentes-Pagano, M. Eugenia; Meijles, Daniel N.; Pagano, Patrick J.

    2016-01-01

    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow. PMID:26510437

  13. The safety of proton pump inhibitors in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Lauge; Sørensen, Henrik Toft; Thulstrup, Ane Marie

    1999-01-01

    AIM: To assess the safety of proton pump inhibitors during pregnancy. METHODS: Fifty-one pregnant women exposed to proton pump inhibitors around the time of conception or during pregnancy were compared with 13 327 controls without exposure to any prescribed drug in a population-based study based...... on The Pharmaco-Epidemiological Prescription Database of North Jutland and the Danish Hospital Discharge Registry. RESULTS: Three babies with malformations were found among 38 women exposed to proton pump inhibitors from 30 days before conception to the end of the first trimester. No cases of stillbirth were...... birth weight or number of preterm deliveries in pregnancies exposed to proton pump inhibitors. However, further monitoring is warranted in order to establish or rule out a potential association between the use of proton pump inhibitors and increased risk of either cardiac malformations or preterm birth....

  14. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  15. [Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain].

    Science.gov (United States)

    Islamov, R A; Furusov, O V

    2007-01-01

    A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.

  16. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  17. Immunotherapy against endocrine malignancies: immune checkpoint inhibitors lead the way.

    Science.gov (United States)

    Cunha, Lucas Leite; Marcello, Marjory Alana; Rocha-Santos, Vinicius; Ward, Laura Sterian

    2017-09-11

    Immune checkpoint inhibitors are agents that act by inhibiting the mechanisms of immune escape displayed by various cancers. The success of immune checkpoint inhibitors against several tumors has promoted a new treatment strategy in clinical oncology, and this has encouraged physicians to increase the number of patients who receive the immune checkpoint therapy. In the present article, we review the main concepts regarding immune checkpoint mechanisms and how cancer disrupts them to undergo immune escape. In addition, we describe the most essential concepts related to immune checkpoint inhibitors. We critically review the literature on preclinical and clinical studies of the immune checkpoint inhibitors as a treatment option for thyroid cancer, ovarian carcinoma, pancreatic adenocarcinoma, adrenocortical carcinoma and neuroendocrine tumors. We present the challenges and the opportunities of using immune checkpoint inhibitors against these endocrine malignancies, highlighting the breakthroughs and pitfalls that have recently emerged.

  18. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    Science.gov (United States)

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  19. Isolation and characterization of a proteinase inhibitor from marama beans.

    Science.gov (United States)

    Elfant, M; Bryant, L; Starcher, B

    1985-11-01

    A protease inhibitor was purified from the African marama bean (Tylosema esculenturm). The inhibitor is present in large amounts, representing about 10.5% of the total protein. The molecular weight is slightly larger than soybean trypsin inhibitor and was estimated at 23,000 by SDS-gel electrophoresis or 24,500 by amino acid analysis. The amino acid composition was atypical of most other plant inhibitors with a cysteine content of only one or possibly two residues/mole and a blocked amino terminus. Inhibition studies indicated virtually no inhibition of chymotrypsin activity. Elastase, however, was inhibited to the same extent as trypsin, requiring about 2 moles of inhibitor for complete inhibition of the enzyme.

  20. Molecular Dynamic Screening Sesquiterpenoid Pogostemon Herba as Suggested Cyclooxygenase Inhibitor.

    Science.gov (United States)

    Raharjo, Sentot Joko; Kikuchi, Takeshi

    2016-10-01

    Virtual molecular dynamic sesquiterpenoid Pogostemon Herba (CID56928117, CID94275, CID107152, and CID519743) have screening as cyclooxygenase (COX-1/COX-2) selective inhibitor. Molecular interaction studies sesquiterpenoid compounds with COX-1 and COX-2 were using the molecular docking tools by Hex 8.0 and interactions were further visualized using by Discovery Studio Client 3.5 software tool and Virtual Molecular Dynamic 1.9.1 software. The binding energy calculation of molecular dynamic interaction was calculated by AMBER12 software. The analysis of the sesquiterpenoid compounds showed that CID56928117, CID94275, CID107152, and CID519743 have suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) sesquiterpenoid compounds: CID519743 had suggested as candidate for non-selective inhibitor; CID56928117 and CID94275 had suggested as candidate for a selective COX-1 inhibitor; and CID107152 had suggested as candidate for a selective COX-2 inhibitor.

  1. Classification of Cytochrome P450 1A2 Inhibitors and Non-Inhibitors by Machine Learning Techniques

    DEFF Research Database (Denmark)

    Vasanthanathan, Poongavanam; Taboureau, Olivier; Oostenbrink, Chris

    2009-01-01

    of CYP1A2 inhibitors and non-inhibitors. Training and test sets consisted of about 400 and 7000 compounds, respectively. Various machine learning techniques, like binary QSAR, support vector machine (SVM), random forest, kappa nearest neighbors (kNN), and decision tree methods were used to develop...

  2. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Directory of Open Access Journals (Sweden)

    Melissa Dumble

    Full Text Available Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  3. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Science.gov (United States)

    Dumble, Melissa; Crouthamel, Ming-Chih; Zhang, Shu-Yun; Schaber, Michael; Levy, Dana; Robell, Kimberly; Liu, Qi; Figueroa, David J; Minthorn, Elisabeth A; Seefeld, Mark A; Rouse, Meagan B; Rabindran, Sridhar K; Heerding, Dirk A; Kumar, Rakesh

    2014-01-01

    Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  4. Nonnucleoside Reverse-transcriptase Inhibitor- vs Ritonavir-boosted Protease Inhibitor-based Regimens for Initial Treatment of HIV Infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Lundh, Andreas; Tendal, Britta;

    2016-01-01

    BACKGROUN