WorldWideScience

Sample records for pixels aggregation part

  1. Toward Parts-Based Scene Understanding with Pixel-Support Parts-Sparse Pictorial Structures

    CERN Document Server

    Corso, Jason J

    2011-01-01

    Scene understanding remains a significant challenge in the computer vision community. The visual psychophysics literature has demonstrated the importance of interdependence among parts of the scene. Yet, the majority of methods in computer vision remain local. Pictorial structures have arisen as a fundamental parts-based model for some vision problems, such as articulated object detection. However, the form of classical pictorial structures limits their applicability for global problems, such as semantic pixel labeling. In this paper, we propose an extension of the pictorial structures approach, called pixel-support parts-sparse pictorial structures, or PS3, to overcome this limitation. Our model extends the classical form in two ways: first, it defines parts directly based on pixel-support rather than in a parametric form, and second, it specifies a space of plausible parts-based scene models and permits one to be used for inference on any given image. PS3 makes strides toward unifying object-level and pixel...

  2. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  3. Using information theory to determine optimum pixel size and shape for ecological studies: Aggregating land surface characteristics in arctic ecosystems

    NARCIS (Netherlands)

    Stoy, P.C.; Williams, M.; Spadavecchia, L.; Bell, R.A.; Prieto-Blanco, A.; Evans, J.G.; Wijk, van M.T.

    2009-01-01

    Quantifying vegetation structure and function is critical for modeling ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Land surface heterogeneity is commonly characterized using rectangular pixels, whose length scale reflects that of remote sensing meas

  4. replacement of the heart of the CMS experiment - the pixel #detector. Part2

    CERN Multimedia

    Brice, Maximilien

    2017-01-01

    This week, one of the Large Hadron Collider’s experiments gets a “heart transplant”. --- Physicists and engineers are replacing the heart of the CMS experiment - the pixel #detector. This will improve CMS’s ability to make precise measurements on aspects of the Standard Model, including the properties of the #HiggsBoson. The #LHC and its experiments are currently preparing to wake up this spring, when the accelerator will begin to collide particles once more at close to the speed of light. --- Today at 12:15 CET, join us live on #Facebook and ask us anything: https://www.facebook.com/cern/

  5. Widespread Protein Aggregation as an Inherent Part of Aging in C. elegans

    Science.gov (United States)

    David, Della C.; Ollikainen, Noah; Trinidad, Jonathan C.; Cary, Michael P.; Burlingame, Alma L.; Kenyon, Cynthia

    2010-01-01

    Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in β-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease. PMID:20711477

  6. Widespread protein aggregation as an inherent part of aging in C. elegans.

    Directory of Open Access Journals (Sweden)

    Della C David

    Full Text Available Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in beta-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease.

  7. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... design it became relevant to investigate the use of LEDs as the physical equivalent of a pixel as a design approach. In this book our interest has been in identifying how the qualities of LEDs can be used in lighting applications. With experiences in the planning and implementation of architectural...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  8. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  9. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, Timothy J., E-mail: tpennycook@gmail.com [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lupini, Andrew R. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37830 (United States); Yang, Hao [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Murfitt, Matthew F. [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Jones, Lewys [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D. [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-04-15

    We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. - Highlights: • Ptychographic high efficiency phase contrast imaging is demonstrated in STEM. • We rely on a hardware aberration corrector to eliminate aberrations. • High efficiency is achieved by collecting all the relevant interference. • Use of a pixelated detector allows comparison of bright field modes post acquisition. • Ptychography provides the clearest images among the STEM bright field modes tested.

  10. Platelet Aggregation Inhibitors from Aerial Parts of Ruta Chalepensis Grown in Jordan

    Directory of Open Access Journals (Sweden)

    Mayadah B. Shehadeh

    2007-01-01

    Full Text Available From the aerial parts of Ruta chalepensis L., grown in Jordan, two furanocoumarins (bergapten and chalepensin, one flavonoid glycoside (rutin as well as several minor compounds have been isolated. The structural elucidation of these compounds was established based on spectral data (UV, IR, MS,1H-NMR and 13C-NMR. In Jordan, R. chalepensis is recommended for the treatment of rheumatism, mental disorders and menstrual problems. Fresh and dried leaves are used as flavoring agent in food and beverages. Antiplatelet activities of the crude methanolic and ethylacetate extracts in addition to the three isolated major compounds were measured by the aggrometric method according to Beretz and Casenave. Optical aggregometer connected to dual channel recorder was used for measuring aggregation. Both, ethylacetate and methanol extracts inhibited ADP- induced platelet aggregation (ADP-IA of human blood. However, only ethylacetate extract was able to induce 50% inhibition of collagen-induced platelet aggregation (Co-IA platelet rich plasma. Bergapten was more active against ADP-IA compared to chalepensin while the latter was more active against Co-IA compared to bergapten.

  11. Assessment of soil erodibility and aggregate stability for different parts of a forest road

    Institute of Scientific and Technical Information of China (English)

    Aidin Parsakhoo; Majid Lotfalian; Ataollah Kavian; Seyed Ataollah Hosseini

    2014-01-01

    We measured erodibility and mean weight diameter (MWD) of soil aggregates in different parts of a forest road. Samples of topsoil were collected from cutslope, fillslope, road surface and forest ground to assess the texture, bulk density, moisture, CaCO3 and organic matter. Soil aggregate stability was determined by wet sieving. Soil erodibility on the road surface was 2.3 and 1.3 times higher than on the fillslope and cutslope, respectively. The forest soil had the lowest erodibility. Aggregate stability of cutslope and road surface were low and very low, respectively. There was a significant negative relationship between cutslope erodibility with CaCO3 and sand content. Cutslope erodibility increased with increasing silt, clay and moisture content. On fillslopes, MWD increased with in-creasing rock fragment cover, plant cover, litter cover, organic matter and sand. There was a strong negative correlation between fillslope erodibility and organic matter, sand and MWD. There was no significant difference between erodibility of bare soil and soils beneathRubus hyrcanusL. and Philonotis marchica (Hedw.) Brid.

  12. A novel embeddable spherical smart aggregate for structural health monitoring: part II. Numerical and experimental verifications

    Science.gov (United States)

    Kong, Qingzhao; Fan, Shuli; Mo, Y. L.; Song, Gangbing

    2017-09-01

    The newly developed spherical smart aggregate (SSA) based on a radially polarized spherical piezoceramic shell element has unique omnidirectional actuating and sensing capabilities that can greatly improve the detection aperture and provide additional functionalities in health monitoring applications in concrete structures. Detailed fabrication procedures and electrical characterization of the SSA have been previously studied (Part I). In this second paper (Part II), the functionalities of the SSA used in both active sensing and passive sensing approaches were investigated in experiments and numerical simulations. One SSA sample was embedded in a 1 ft3 concrete specimen. In the active sensing approach, the SSA was first utilized as an actuator to generate stress waves and six conventional smart aggregates (SA) mounted on the six faces of the concrete cube were utilized as sensors to detect the wave response. Conversely, the embedded SSA was then utilized as a sensor to successively detect the wave response from each SA. The experimentally obtained behavior of the SSA was then compared with the numerical simulation results. Further, a series of impact tests were conducted to verify the performance of the SSA in the detection of the impact events from different directions. Comparison with the wave response associated with different faces of the cube verified the omnidirectional actuating and sensing capabilities of the SSA.

  13. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization

    Science.gov (United States)

    Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing

    2017-09-01

    Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.

  14. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  15. On the radiative properties of soot aggregates - Part 2: Effects of coating

    Science.gov (United States)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption

  16. A Model to Partly but Reliably Distinguish DDOS Flood Traffic from Aggregated One

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Reliable distinguishing DDOS flood traffic from aggregated traffic is desperately desired by reliable prevention of DDOS attacks. By reliable distinguishing, we mean that flood traffic can be distinguished from aggregated one for a predetermined probability. The basis to reliably distinguish flood traffic from aggregated one is reliable detection of signs of DDOS flood attacks. As is known, reliably distinguishing DDOS flood traffic from aggregated traffic becomes a tough task mainly due to the effects of flash-crowd traffic. For this reason, this paper studies reliable detection in the underlying DiffServ network to use static-priority schedulers. In this network environment, we present a method for reliable detection of signs of DDOS flood attacks for a given class with a given priority. There are two assumptions introduced in this study. One is that flash-crowd traffic does not have all priorities but some. The other is that attack traffic has all priorities in all classes, otherwise an attacker cannot completely achieve its DDOS goal. Further, we suppose that the protected site is equipped with a sensor that has a signature library of the legitimate traffic with the priorities flash-crowd traffic does not have. Based on those, we are able to reliably distinguish attack traffic from aggregated traffic with the priorities that flash-crowd traffic does not have according to a given detection probability.

  17. Recycling of quarry waste as part of sustainable aggregate production: Norwegian and Italian point of view

    Science.gov (United States)

    Antonella Dino, Giovanna; Willy Danielsen, Svein; Chiappino, Claudia; Primavori, Piero; Engelsen, Christian John

    2016-04-01

    Resource preservation is one of the main challenges in Europe, together with waste management and recycling; recently several researchers are interested in the recovering of critical raw materials and secondary raw materials from landfill. Aggregate supply, even if it is not "critical" sensus stricto (s.s.), is one of the European priorities (low value but high volume needs). On the other side, the management of quarry waste , mainly from dimension stones, but also as fines from aggregate crushing, is still a matter of concern. Such materials are managed in different ways both locally and nationwide, and often they are landfilled, because of an unclear legislation and a general lack of data. Most of time the local authorities adopt the maximum precaution principle or the enterprises find it little profitable to recover them, so that the sustainable recycling of such material is not valued. Several studies have shown, depending on the material specific characteristics, the viability of recycling quarry waste into new raw materials used in glass and ceramic industries, precast concrete production, infrastructures etc. (Loudes et al. 2012, Dino&Marian 2015, Bozzola et al 2012, Dino et al. 2012, etc.). Thus, aggregate production may be one of the profitable ways to use quarry waste and is falling under the priority of EU (aggregate supply). Positive economic and environmental effects are likely to be achieved by systematic recycling of quarry waste planned by industries (industrial planning) and public authorities (national and local planning of aggregate exploitation). Today, the recycling level varies to a great extent and systematic recovery is not common among European Countries. In Italy and Norway no significant incentives on recycling or systematic approaches for local aggregate exploitation exist. The environmental consequences can be overexploitation of the natural resources, land take for the landfills, environmental contamination and landscape alteration by

  18. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  19. Aggregation of measures to produce an overall assessment of animal welfare. Part 2: analysis of constraints.

    Science.gov (United States)

    Botreau, R; Bracke, M B M; Perny, P; Butterworth, A; Capdeville, J; Van Reenen, C G; Veissier, I

    2007-09-01

    The overall assessment of animal welfare is a multicriterion evaluation problem that needs a constructive strategy to compound information produced by many measures. The construction depends on specific features such as the concept of welfare, the measures used and the way data are collected. Welfare is multidimensional and one dimension probably cannot fully compensate for another one (e.g. good health cannot fully compensate for behavioural deprivation). Welfare measures may vary in precision, relevance and their relative contribution to an overall welfare assessment. The data collected are often expressed on ordinal scales, which limits the use of weighted sums to aggregate them. A sequential aggregation is proposed in the Welfare Quality® project, first from measures to welfare criteria (corresponding to dimensions with pre-set objectives) and then to an overall welfare assessment, using rules determined at each level depending on the nature and number of variables to be considered and the level of compensation to be permitted. Scientific evidence and expert opinion are used to refine the model, and stakeholders' approval of general principles is sought. This approach could potentially be extended to other problems in agriculture such as the overall assessment of the sustainability of production systems.

  20. ATLAS IBL Pixel Upgrade

    CERN Document Server

    La Rosa, A

    2011-01-01

    The upgrade for ATLAS detector will undergo different phase towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module is presented in this paper

  1. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  2. Extracts from Trifolium pallidum and Trifolium scabrum aerial parts as modulators of blood platelet adhesion and aggregation.

    Science.gov (United States)

    Kolodziejczyk-Czepas, Joanna; Olas, Beata; Malinowska, Joanna; Wachowicz, Barbara; Szajwaj, Barbara; Kowalska, Iwona; Oleszek, Wieslaw; Stochmal, Anna

    2013-01-01

    A growing number of reports indicate that some species of clover (Trifolium) may have remarkable medical importance; however, the effects of these plants on blood platelets and hemostasis are inadequately recognized. This work was designed to study the effects of Trifolium pallidum and Trifolium scabrum extracts on the functions of human blood platelets in vitro. Platelet suspensions were preincubated with extracts from aerial parts of T. pallidum (phenolic fraction and clovamide fraction) and T. scabrum (phenolic fraction) at the final concentrations of 12.5, 25, and 50 µg/ml. Then, for platelet activation thrombin (0.1 U/ml), thrombin receptor activating peptide (TRAP; 20 µM), or adenosine diphosphate (ADP; 1 µM) were used. The effects of Trifolium extracts on adhesion of blood platelets to fibrinogen and collagen were determined by enzyme-linked immunosorbent assay (ELISA) method. Platelet aggregation was monitored on a dual-channel Chronolog aggregometer. In these studies, we also compared the action of tested plant extracts with the effects of another antiplatelet plant-derived compound - resveratrol (3,4',5-trihydroxystilbene). The performed assays demonstrated that the tested extracts might influence the platelet functions in vitro. The inhibitory, concentration-dependent effects of all tested extracts on adhesion of thrombin-stimulated platelets to collagen was found. Both extracts from T. pallidum and from T. scabrum reduced the thrombin-induced platelet adhesion to fibrinogen. Furthermore, in the presence of all three extracts, the platelet aggregation induced by thrombin was slightly inhibited. Our results also indicate that the tested plant extracts (at the highest concentrations used of 50 µg/ml), similar to purified resveratrol, inhibit selected steps of platelet activation stimulated by both proteolytic (thrombin) and nonproteolytic agonists (TRAP or ADP). In the comparative studies, T. pallidum and T. scabrum extracts was not found

  3. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview- Part II: Other clinical applications and complications.

    Science.gov (United States)

    Torabinejad, M; Parirokh, M; Dummer, P M H

    2017-08-28

    Mineral trioxide aggregate (MTA) is a dental material used extensively for vital pulp therapy (VPT), scaffold cover during regenerative endodontic procedures, apical barrier in teeth with necrotic pulps and open apices, perforation repair, and root canal filling and root-end filling during surgical endodontics. A number of bioactive endodontic cements (BECs) have recently been introduced to the market. Most of these materials had calcium and silicate in their compositions; however, the bioactivity is the common property of these cements. These materials include: BioAggregate, Biodentine, BioRoot RCS, calcium enriched mixture (CEM) cement, Endo-CPM, Endocem, EndoSequence, EndoBinder, EndoSeal MTA, iRoot, MicroMega MTA,, MTA Bio, MTA Fillapex, MTA Plus, Neo MTA Plus, Ortho MTA, Quick-Set, Retro MTA, Tech Biosealer, and TheraCal. It has been claimed that these materials have properties similar to those of MTA but without the drawbacks. In Part I of this discussion we extensively reviewed available information on the chemical composition of the materials listed above and reported their applications for VPT. In this article the clinical applications of MTA and other BECs will be reviewed for apexification, regenerative endodontics, perforation repair, root canal filling, root-end filling, restorative procedures, periodontal defects and treatment of vertical and horizontal root fractures. In addition, the literature regarding the possible drawbacks of these materials after their clinical applications is reviewed. These drawbacks are including the materials' discoloration potential, systemic effects, and retreatability following use as a root canal filling. Furthermore, the current levels of evidence of these materials are also reported. Based on selected keywords, all publications were searched regarding the use of MTA as well as BECs for the rest of clinical applications. Additionally, the levels of evidence for MTA's clinical applications and the newly introduced

  4. Lightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2013-12-01

    Full Text Available The mechanical characteristics of the lightweight aggregate concretes (LWAC strongly depend on the proportions of aggregates in the formulation. In particular, because of their strong porosity, the lightweight aggregates are much more deformable than the cementations matrix and their influence on concrete strength is complex. This paper focuses on studying the physical performance of concrete formulated with substitution of 30% of coarse aggregates by limestone dust. In this article an attempt is made to provide information on the elastic properties of lightweight concrete (LWC from tests carried out under uniaxial compression conditions. The results of Young modulus, Poisson's ratio, and compressive and flexural tensile strength tests on concrete are presented. The concretes obtained present good mechanical performances reaching 34.99 MPa compressive strength, 6.39 MPa flexural tensile strength and in front of 36 MPa Young modulus.

  5. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  6. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  7. Economic Stress and Suicide: Multilevel Analyses. Part 1: Aggregate Time-Series Analyses of Economic Stress and Suicide.

    Science.gov (United States)

    Dooley, David; And Others

    1989-01-01

    Conducted two studies on economic stress and suicide on same population. First study replicated aggregate time-series work using monthly data for 1975-82 for Los Angeles, California. Results do not support contention that economic contraction has strong, widespread effect on suicide in general population. Findings suggest effect that regional…

  8. Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash

    Science.gov (United States)

    Textor, C.; Graf, H. F.; Herzog, M.; Oberhuber, J. M.; Rose, William I.; Ernst, G. G. J.

    2006-02-01

    The aggregation of volcanic ash particles within the eruption column of explosive eruptions has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the umbrella cloud. However, the information on the processes leading to aggregate formation are still either lacking or very incomplete. We examine the fate of ash particles through numerical experiments with the plume model ATHAM (Active Tracer High resolution Atmospheric Model) in order to determine the conditions that promote ash particle aggregation. In this paper we describe the microphysics and parameterization of ash and hydrometeors. In a companion paper (this issue) we use this information in a series of numerical experiments. The parameterization includes the condensation of water vapor in the rising eruption column. The formation of liquid and solid hydrometeors and the effect of latent heat release on the eruption column dynamics are considered. The interactions of hydrometeors and volcanic ash within the eruption column that lead to aggregate formation are simulated for the first time within a rising eruption column. The microphysical parameterization follows a modal approach. The hydrometeors are described by two size classes, each of which is divided into a liquid and a frozen category. By analogy with the hydrometeor classification, we specify four categories of volcanic ash particles. We imply that volcanic particles are active as condensation nuclei for water and ice formation. Ash can be contained in all categories of hydrometeors, thus forming mixed particles of any composition reaching from mud rain to accretionary lapilli. Collisions are caused by gravitational capture of particles with different fall velocity. Coalescence of hydrometeor-ash aggregates is assumed to be a function of the hydrometeor mass fraction within the mixed particles. The parameterization also includes simplified descriptions of electrostatics and salinity

  9. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  10. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  11. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  12. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  13. Making a trillion pixels dance

    Science.gov (United States)

    Singh, Vivek; Hu, Bin; Toh, Kenny; Bollepalli, Srinivas; Wagner, Stephan; Borodovsky, Yan

    2008-03-01

    In June 2007, Intel announced a new pixelated mask technology. This technology was created to address the problem caused by the growing gap between the lithography wavelength and the feature sizes patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade ago, Optical Proximity Correction (OPC) was introduced to bridge this gap, but as this gap continued to increase, one could not rely on the same basic set of techniques to maintain image quality. The computational lithography group at Intel sought to alleviate this problem by experimenting with additional degrees of freedom within the mask. This paper describes the resulting pixelated mask technology, and some of the computational methods used to create it. The first key element of this technology is a thick mask model. We realized very early in the development that, unlike traditional OPC methods, the pixelated mask would require a very accurate thick mask model. Whereas in the traditional methods, one can use the relatively coarse approximations such as the boundary layer method, use of such techniques resulted not just in incorrect sizing of parts of the pattern, but in whole features missing. We built on top of previously published domain decomposition methods, and incorporated limitations of the mask manufacturing process, to create an accurate thick mask model. Several additional computational techniques were invoked to substantially increase the speed of this method to a point that it was feasible for full chip tapeout. A second key element of the computational scheme was the comprehension of mask manufacturability, including the vital issue of the number of colors in the mask. While it is obvious that use of three or more colors will give the best image, one has to be practical about projecting mask manufacturing capabilities for such a complex mask. To circumvent this serious issue, we eventually settled on a two color mask - comprising plain glass and etched

  14. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  15. Lightweight concrete with Algerian limestone dust. Part II: study on 50% and 100% replacement to normal aggregate at timely age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2015-12-01

    Full Text Available Abstract A control lightweight concrete (LWC mixture made with 50% and 100% of limestone as a replacement of coarse aggregates in weight was prepared. Limestone is used for economical and environmental concern. The concrete samples were cured at 65% relative humidity at 20 ºC. The compressive and flexural tensile strengths, elastic modulus and Poisson's ratio of hardened concrete were measured. Laboratory compressive and tensile strength tests results showed that LWC can be produced by the use of limestone. The aim of this study is twofold: one is to design a lightweight concrete with the use of limestone that will provide an advantage of reduction in dead weight of a structure; and second is to obtain a more economical LWC mixture with the use of limestone.

  16. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  17. The Kepler Pixel Response Function

    CERN Document Server

    Bryson, Stephen T; Jenkins, Jon M; Chandrasekaran, Hema; Klaus, Todd; Caldwell, Douglas A; Gilliland, Ronald L; Haas, Michael R; Dotson, Jessie L; Koch, David G; Borucki, William J

    2010-01-01

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurement...

  18. ATLAS-IBL Pixel Upgrade

    CERN Document Server

    LaRosa, A; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phase towards Super-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (SLHC Phase I). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reduction of the pixel size and of the material budget. Three different promising sensor technologies (Planar-Si, 3D-Si and Diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module studies, irradiation and beam test plans will be presented.

  19. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  20. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  1. Pixelated gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  2. Planar Pixelations and Image Recognition

    CERN Document Server

    Rowekamp, Brandon

    2011-01-01

    Any subset of the plane can be approximated by a set of square pixels. This transition from a shape to its pixelation is rather brutal since it destroys geometric and topological information about the shape. Using a technique inspired by Morse Theory, we algorithmically produce a PL approximation of the original shape using only information from its pixelation. This approximation converges to the original shape in a very strong sense: as the size of the pixels goes to zero we can recover important geometric and topological invariants of the original shape such as Betti numbers, area, perimeter and curvature measures.

  3. Diamond pixel modules

    CERN Document Server

    Gan, K K; Robichaud, A; Potenza, R; Kuleshov, S; Kagan, H; Kass, R; Wermes, N; Dulinski, W; Eremin, V; Smith, S; Sopko, B; Olivero, P; Gorisek, A; Chren, D; Kramberger, G; Schnetzer, S; Weilhammer, P; Martemyanov, A; Hugging, F; Pernegger, H; Lagomarsino, S; Manfredotti, C; Mishina, M; Trischuk, W; Dobos, D; Cindro, V; Belyaev, V; Duris, J; Claus, G; Wallny, R; Furgeri, A; Tuve, C; Goldstein, J; Sciortino, S; Sutera, C; Asner, D; Mikuz, M; Lo Giudice, A; Velthuis, J; Hits, D; Griesmayer, E; Oakham, G; Frais-Kolbl, H; Bellini, V; D'Alessandro, R; Cristinziani, M; Barbero, M; Schaffner, D; Costa, S; Goffe, M; La Rosa, A; Bruzzi, M; Schreiner, T; de Boer, W; Parrini, G; Roe, S; Randrianarivony, K; Dolenc, I; Moss, J; Brom, J M; Golubev, A; Mathes, M; Eusebi, R; Grigoriev, E; Tsung, J W; Mueller, S; Mandic, I; Stone, R; Menichelli, D

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10(16) protons/cm(2) illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel m...

  4. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  5. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  6. Bump bonding of pixel systems

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, M. E-mail: manuel.lozano@cnm.es; Cabruja, E.; Collado, A.; Santander, J.; Ullan, M

    2001-11-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  7. Bump bonding of pixel systems

    CERN Document Server

    Lozano, M; Collado, A; Santander, J; Ullán, M

    2001-01-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  8. CMS Barrel Pixel Detector Overview

    CERN Document Server

    Kästli, H C; Erdmann, W; Gabathuler, K; Hörmann, C; Horisberger, Roland Paul; König, S; Kotlinski, D; Meier, B; Robmann, P; Rohe, T; Streuli, S

    2007-01-01

    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.

  9. Efficient defect pixel cluster detection and correction for Bayer CFA image sequences

    Science.gov (United States)

    Tajbakhsh, Touraj

    2011-01-01

    Image sensor arrays may have defect pixels, either originating from manufacturing or being developed over the lifetime of the image sensor array. Continuous defect pixel detection and correction performing during camera runtime is desirable. On-the-fly detection and correction is challenging since edges and high-frequency image content might get identified as defect pixel regions and intact pixels become corrupted during defect pixel replacement. We propose a table-based detection and correction method which by and by fills the non-volatile table during normal camera operation. In this work we model defect pixels and pixel clusters to be stuck to fixed values or at least fixed to a narrow value range whereas the local neighborhood of these pixels indicate a normal behavior. The idea is to temporally observe the value ranges of small group of pixels (e.g. 4x4 pixel blocks) and to decide about their defective condition depending on their variability with respect to their neighbor pixels. Our method is computationally efficient, requires no frame buffer, requires modest memory, and therefore is appropriate to operate in line-buffer based image signal processing (ISP) systems. Our results indicate high reliability in terms of detection rates and robustness against high-frequency image content. As part of the defect pixel replacement system we also propose a simple and efficient defect pixel correction method based on the mean of medians operating on the Bayer CFA image domain.

  10. Baryon Acoustic Oscillations reconstruction with pixels

    CERN Document Server

    Obuljen, Andrej; Castorina, Emanuele; Viel, Matteo

    2016-01-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease ...

  11. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  12. Molecular aggregation of humic substances

    Science.gov (United States)

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  13. WFC3 Pixel Area Maps

    Science.gov (United States)

    Kalirai, J. S.; Cox, C.; Dressel, L.; Fruchter, A.; Hack, W.; Kozhurina-Platais, V.; Mack, J.

    2010-04-01

    We present the pixel area maps (PAMs) for the WFC3/UVIS and WFC3/IR detectors, and discuss the normalization of these images. HST processed flt images suffer from geometric distortion and therefore have pixel areas that vary on the sky. The counts (electrons) measured for a source on these images depends on the position of the source on the detector, an effect that is implicitly corrected when these images are multidrizzled into drz files. The flt images can be multiplied by the PAMs to yield correct and uniform counts for a given source irrespective of its location on the image. To ensure consistency between the count rate measured for sources in drz images and near the center of flt images, we set the normalization of the PAMs to unity at a reference pixel near the center of the UVIS mosaic and IR detector, and set the SCALE in the IDCTAB equal to the square root of the area of this reference pixel. The implications of this choice for photometric measurements are discussed.

  14. VNR CMS Pixel detector replacement

    CERN Document Server

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  15. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  16. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  17. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  18. Construction aggregates

    Science.gov (United States)

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  19. Effect of Pixel's Spatial Characteristics on Recognition of Isolated Pixelized Chinese Character.

    Science.gov (United States)

    Yang, Kun; Liu, Shuang; Wang, Hong; Liu, Wei; Wu, Yaowei

    2015-01-01

    The influence of pixel's spatial characteristics on recognition of isolated Chinese character was investigated using simulated prosthestic vision. The accuracy of Chinese character recognition with 4 kinds of pixel number (6*6, 8*8, 10*10, and 12*12 pixel array) and 3 kinds of pixel shape (Square, Dot and Gaussian) and different pixel spacing were tested through head-mounted display (HMD). A captured image of Chinese characters in font style of Hei were pixelized with Square, Dot and Gaussian pixel. Results showed that pixel number was the most important factor which could affect the recognition of isolated pixelized Chinese Chartars and the accuracy of recognition increased with the addition of pixel number. 10*10 pixel array could provide enough information for people to recognize an isolated Chinese character. At low resolution (6*6 and 8*8 pixel array), there were little difference of recognition accuracy between different pixel shape and different pixel spacing. While as for high resolution (10*10 and 12*12 pixel array), the fluctuation of pixel shape and pixel spacing could not affect the performance of recognition of isolated pixelized Chinese Character.

  20. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  1. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  2. CMOS digital pixel sensors: technology and applications

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  3. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  4. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  5. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  6. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    In the immediate vicinity of the collision point, CMS will be equipped with pixel detectors consisting of no fewer than 50 million pixels measuring 150 microns along each side. Each of the pixels, which receive the signal, is connected to its own electronic circuit by a tiny sphere (seen here in the electron microscope image) measuring 15 to 20 microns in diameter.

  7. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  8. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    Science.gov (United States)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  9. Sequence-dependent internalization of aggregating peptides.

    Science.gov (United States)

    Couceiro, José R; Gallardo, Rodrigo; De Smet, Frederik; De Baets, Greet; Baatsen, Pieter; Annaert, Wim; Roose, Kenny; Saelens, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2015-01-02

    Recently, a number of aggregation disease polypeptides have been shown to spread from cell to cell, thereby displaying prionoid behavior. Studying aggregate internalization, however, is often hampered by the complex kinetics of the aggregation process, resulting in the concomitant uptake of aggregates of different sizes by competing mechanisms, which makes it difficult to isolate pathway-specific responses to aggregates. We designed synthetic aggregating peptides bearing different aggregation propensities with the aim of producing modes of uptake that are sufficiently distinct to differentially analyze the cellular response to internalization. We found that small acidic aggregates (≤500 nm in diameter) were taken up by nonspecific endocytosis as part of the fluid phase and traveled through the endosomal compartment to lysosomes. By contrast, bigger basic aggregates (>1 μm) were taken up through a mechanism dependent on cytoskeletal reorganization and membrane remodeling with the morphological hallmarks of phagocytosis. Importantly, the properties of these aggregates determined not only the mechanism of internalization but also the involvement of the proteostatic machinery (the assembly of interconnected networks that control the biogenesis, folding, trafficking, and degradation of proteins) in the process; whereas the internalization of small acidic aggregates is HSF1-independent, the uptake of larger basic aggregates was HSF1-dependent, requiring Hsp70. Our results show that the biophysical properties of aggregates determine both their mechanism of internalization and proteostatic response. It remains to be seen whether these differences in cellular response contribute to the particular role of specific aggregated proteins in disease.

  10. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  11. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  12. Operational Experience with the ALICE Pixel detector

    CERN Document Server

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  13. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

    Science.gov (United States)

    Kirchner, J. W.

    2016-01-01

    Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous

  14. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  15. Improving Charge-Collection Efficiency of Kyoto's SOI Pixel Sensors

    CERN Document Server

    Matsumura, Hideaki; Tanaka, Takaaki; Takeda, Ayaki; Ito, Makoto; Ohmura, Syunichi; Arai, Yasuo; Mori, Koji; Nishioka, Yusuke; Takenaka, Ryota; Kohmura, Takayoshi

    2015-01-01

    We have been developing X-ray SOIPIXs for next-generation satellites for X-ray astronomy. Their high time resolution ($\\sim10~\\mu$s) and event-trigger-output function enable us to read out without pile-ups and to use anti-coincidence systems. Their performance in imaging spectroscopy is comparable to that in the CCDs. A problem in our previous model was degradation of charge-collection efficiency (CCE) at pixel borders. We measured the response in the sub-pixel scale, using finely collimated X-ray beams at $10~\\mu$m\\Phi$ at SPring-8, and investigated the non-uniformity of the CCE within a pixel. We found that the X-ray detection efficiency and CCE degrade in the sensor region under the pixel circuitry placed outside the buried p-wells (BPW). A 2D simulation of the electric fields shows that the isolated pixel-circuitry outside the BPW creates local minimums in the electric potentials at the interface between the sensor and buried oxide layers. Thus, a part of signal charge is trapped there and is not collecte...

  16. The framework for simulation of dynamics of mechanical aggregates

    OpenAIRE

    Ivankov, Petr R.; Ivankov, Nikolay P.

    2007-01-01

    A framework for simulation of dynamics of mechanical aggregates has been developed. This framework enables us to build model of aggregate from models of its parts. Framework is a part of universal framework for science and engineering.

  17. Data Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2014-07-01

    Full Text Available Skin segmentation is the process of the identifying the skin pixels in a image in a particular color model and dividing the images into skin and non-skin pixels. It is the process of find the particular skin of the image or video in a color model. Finding the regions of the images in human images to say these pixel regions are part of the image or videos is typically a preprocessing step in skin detection in computer vision, face detection or multi-view face detection. Skin pixel detection model converts the images into appropriate format in a color space and then classification process is being used for labeling of the skin and non-skin pixels. A skin classifier identifies the boundary of the skin image in a skin color model based on the training dataset. Here in this paper, we present the survey of the skin pixel segmentation using the learning algorithms.

  18. The ALICE pixel detector upgrade

    Science.gov (United States)

    Reidt, F.

    2016-12-01

    The ALICE experiment at the CERN LHC is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma, using proton-proton, proton-nucleus and nucleus-nucleus collisions. The ALICE collaboration is preparing a major upgrade of the experimental apparatus to be installed during the second long LHC shutdown in the years 2019-2020. A key element of the ALICE upgrade is the new, ultra-light, high-resolution Inner Tracking System. With respect to the current detector, the new Inner Tracking System will significantly enhance the pointing resolution, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a Monolithic Active Pixel Sensor with a pixel pitch of about 30×30 μm2. A key feature of the new Inner Tracking System, which is optimised for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material budget of 0.3% X0 per layer. This contribution presents the design goals and layout of the upgraded ALICE Inner Tracking System, summarises the R&D activities focussing on the technical implementation of the main detector components, and the projected detector performance.

  19. Serial powering of pixel modules

    CERN Document Server

    Stockmanns, Tobias; Hügging, Fabian Georg; Peric, I; Runólfsson, O; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub- micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In par...

  20. Integrated risk assessment for WFD ecological status classification applied to Llobregat river basin (Spain). Part I-Fuzzy approach to aggregate biological indicators.

    Science.gov (United States)

    Gottardo, S; Semenzin, E; Giove, S; Zabeo, A; Critto, A; de Zwart, D; Ginebreda, A; Marcomini, A

    2011-10-15

    Water Framework Directive (WFD) requirements and recommendations for Ecological Status (ES) classification of surface water bodies do not address all issues that Member States have to face in the implementation process, such as selection of appropriate stressor-specific environmental indicators, definition of class boundaries, aggregation of heterogeneous data and information and uncertainty evaluation. In this context the "One-Out, All-Out" (OOAO) principle is the suggested approach to lead the entire classification procedure and ensure conservative results. In order to support water managers in achieving a more comprehensive and realistic evaluation of ES, an Integrated Risk Assessment (IRA) methodology was developed. It is based on the Weight of Evidence approach and implements a Fuzzy Inference System in order to hierarchically aggregate a set of environmental indicators, which are grouped into five Lines of Evidence (i.e. Biology, Chemistry, Ecotoxicology, Physico-chemistry and Hydromorphology). The whole IRA methodology has been implemented as an individual module into a freeware GIS (Geographic Information System)-based Decision Support System (DSS), named MODELKEY DSS. The paper focuses on the conceptual and mathematical procedure underlying the evaluation of the most complex Line of Evidence, i.e. Biology, which identifies the biological communities that are potentially at risk and the stressors that are most likely responsible for the observed alterations. The results obtained from testing the procedure through application of the MODELKEY DSS to the Llobregat case study are reported and discussed.

  1. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  2. Serial Pixel Analog-to-Digital Converter

    Energy Technology Data Exchange (ETDEWEB)

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  3. Familial Aggregation and Childhood Blood Pressure

    NARCIS (Netherlands)

    Wang, Xiaoling; Xu, Xiaojing; Su, Shaoyong; Snieder, Harold

    2015-01-01

    There is growing concern about elevated blood pressure (BP) in children. The evidence for familial aggregation of childhood BP is substantial. Twin studies have shown that a large part of the familial aggregation of childhood BP is due to genes. The first part of this review provides the latest prog

  4. Familial Aggregation and Childhood Blood Pressure

    NARCIS (Netherlands)

    Wang, Xiaoling; Xu, Xiaojing; Su, Shaoyong; Snieder, Harold

    There is growing concern about elevated blood pressure (BP) in children. The evidence for familial aggregation of childhood BP is substantial. Twin studies have shown that a large part of the familial aggregation of childhood BP is due to genes. The first part of this review provides the latest

  5. ATLAS Pixel Opto-Electronics

    CERN Document Server

    Arms, K E; Gan, K K; Holder, M; Jackson, P; Johnson, M; Kagan, H; Kass, R; Rahimi, A M; Roggenbuck, A; Rush, C; Schade, P; Smith, S; Ter-Antonian, R; Ziolkowski, M; Zoeller, M M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results of the performance of these chips, including irradiation with 24 GeV protons up to 61 Mrad (2.3 x 10e15 p/cm^2).

  6. How big is an OMI pixel?

    Science.gov (United States)

    de Graaf, Martin; Sihler, Holger; Tilstra, Lieuwe G.; Stammes, Piet

    2016-08-01

    The Ozone Monitoring Instrument (OMI) is a push-broom imaging spectrometer, observing solar radiation backscattered by the Earth's atmosphere and surface. The incoming radiation is detected using a static imaging CCD (charge-coupled device) detector array with no moving parts, as opposed to most of the previous satellite spectrometers, which used a moving mirror to scan the Earth in the across-track direction. The field of view (FoV) of detector pixels is the solid angle from which radiation is observed, averaged over the integration time of a measurement. The OMI FoV is not quadrangular, which is common for scanning instruments, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels. This has consequences for pixel-area-dependent applications, like cloud fraction products, and visualisation.The shapes and sizes of OMI FoVs were determined pre-flight by theoretical and experimental tests but never verified after launch. In this paper the OMI FoV is characterised using collocated MODerate resolution Imaging Spectroradiometer (MODIS) reflectance measurements. MODIS measurements have a much higher spatial resolution than OMI measurements and spectrally overlap at 469 nm. The OMI FoV was verified by finding the highest correlation between MODIS and OMI reflectances in cloud-free scenes, assuming a 2-D super-Gaussian function with varying size and shape to represent the OMI FoV. Our results show that the OMPIXCOR product 75FoV corner coordinates are accurate as the full width at half maximum (FWHM) of a super-Gaussian FoV model when this function is assumed. The softness of the function edges, modelled by the super-Gaussian exponents, is different in both directions and is view angle dependent.The optimal overlap function between OMI and MODIS reflectances is scene dependent and highly dependent on time differences between overpasses, especially with clouds in the scene. For partially clouded scenes, the optimal overlap function was

  7. Pixel readout chip for the ATLAS experiment

    CERN Document Server

    Ackers, M; Blanquart, L; Bonzom, V; Comes, G; Fischer, P; Keil, M; Kühl, T; Meuser, S; Delpierre, P A; Treis, J; Raith, B A; Wermes, N

    1999-01-01

    Pixel detectors with a high granularity and a very large number of sensitive elements (cells) are a very recent development used for high precision particle detection. At the Large Hadron Collider LHC at CERN (Geneva) a pixel detector with 1.4*10/sup 8/ individual pixel cells is developed for the ATLAS detector. The concept is a hybrid detector. Consisting of a pixel sensor connected to a pixel electronics chip by bump and flip chip technology in one-to-one cell correspondence. The development and prototype results of the pixel front end chip are presented together with the physical and technical requirements to be met at LHC. Lab measurements are reported. (6 refs).

  8. Penrose Pixels for Super-Resolution.

    Science.gov (United States)

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  9. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  10. Dead pixel replacement in LWIR microgrid polarimeters.

    Science.gov (United States)

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  11. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  12. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    Science.gov (United States)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  13. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  14. Land Cover Heterogeneity Effects on Sub-Pixel and Per-Pixel Classifications

    Directory of Open Access Journals (Sweden)

    Trung V. Tran

    2014-04-01

    Full Text Available Per-pixel and sub-pixel are two common classification methods in land cover studies. The characteristics of a landscape, particularly the land cover itself, can affect the accuracies of both methods. The objectives of this study were to: (1 compare the performance of sub-pixel vs. per-pixel classification methods for a broad heterogeneous region; and (2 analyze the impact of land cover heterogeneity (i.e., the number of land cover classes per pixel on both classification methods. The results demonstrated that the accuracy of both per-pixel and sub-pixel classification methods were generally reduced by increasing land cover heterogeneity. Urban areas, for example, were found to have the lowest accuracy for the per-pixel method, because they had the highest heterogeneity. Conversely, rural areas dominated by cropland and grassland had low heterogeneity and high accuracy. When a sub-pixel method was used, the producer’s accuracy for artificial surfaces was increased by more than 20%. For all other land cover classes, sub-pixel and per-pixel classification methods performed similarly. Thus, the sub-pixel classification was only advantageous for heterogeneous urban landscapes. Both creators and users of land cover datasets should be aware of the inherent landscape heterogeneity and its potential effect on map accuracy.

  15. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  16. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2015-01-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...

  17. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  18. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Manolopoulos, S.; Bates, R.; Campbell, M.; Snoeys, W.; Heijne, E.; Pernigotti, E.; Raine, C.; Smith, K. E-mail: k.smith@physics.gla.ac.uk; Watt, J.; O' Shea, V.; Ludwig, J.; Schwarz, C

    1999-09-11

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the {omega}3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  19. Metal flux and dynamic speciation at (bio)interfaces. Part VI: The roles of simple, fulvic and aggregate complexes on computed metal flux in freshwater ligand mixtures; comparison of Pb, Zn and Ni at planar and microspherical interfaces

    Science.gov (United States)

    Zhang, Zeshi; Buffle, Jacques

    2009-03-01

    The computations of metal flux in aquatic systems, at consuming interfaces like microorganism surfaces are of major importance in ecotoxicology and dynamic risk assessment. In this paper, the flux of Zn(II) and Ni(II), at a planar consuming interface in a typical natural freshwater, are studied. The system includes (a) simple ligands (OH -, CO32-); (b) fulvics; (c) aggregates, as complexants, i.e., those which play the major roles in controlling the metal distribution and/or metal flux in aquatic media. The above two metals are chosen because they participate, respectively, to intermediate and very slow chemical reactions with complexing sites, and are thus complementary to Pb(II) and Cu(II) (two metals with very fast reactions) studied in Parts III-V of this series. The effects of the various physico-chemical factors, in particular, the diffusion layer thickness, the stability constants and complexing site distribution of fulvics and the size distribution of aggregates, are studied in details. The contribution to the flux, of each complex type, is computed. This paper also compares the dynamic behaviour of Pb(II), Zn(II) and Ni(II) as well as the labilities and flux contributions of their various complexes at planar and microspherical interfaces. This enables to make predictions on biouptake by microorganisms.

  20. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  1. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    Science.gov (United States)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  2. It's not the pixel count, you fool

    Science.gov (United States)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  3. Segmentation and intensity estimation for microarray images with saturated pixels

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2011-11-01

    Full Text Available Abstract Background Microarray image analysis processes scanned digital images of hybridized arrays to produce the input spot-level data for downstream analysis, so it can have a potentially large impact on those and subsequent analysis. Signal saturation is an optical effect that occurs when some pixel values for highly expressed genes or peptides exceed the upper detection threshold of the scanner software (216 - 1 = 65, 535 for 16-bit images. In practice, spots with a sizable number of saturated pixels are often flagged and discarded. Alternatively, the saturated values are used without adjustments for estimating spot intensities. The resulting expression data tend to be biased downwards and can distort high-level analysis that relies on these data. Hence, it is crucial to effectively correct for signal saturation. Results We developed a flexible mixture model-based segmentation and spot intensity estimation procedure that accounts for saturated pixels by incorporating a censored component in the mixture model. As demonstrated with biological data and simulation, our method extends the dynamic range of expression data beyond the saturation threshold and is effective in correcting saturation-induced bias when the lost information is not tremendous. We further illustrate the impact of image processing on downstream classification, showing that the proposed method can increase diagnostic accuracy using data from a lymphoma cancer diagnosis study. Conclusions The presented method adjusts for signal saturation at the segmentation stage that identifies a pixel as part of the foreground, background or other. The cluster membership of a pixel can be altered versus treating saturated values as truly observed. Thus, the resulting spot intensity estimates may be more accurate than those obtained from existing methods that correct for saturation based on already segmented data. As a model-based segmentation method, our procedure is able to identify inner

  4. Design Optimization of Pixel Structure for α-Si based Uncooled Infrared Detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-11-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.

  5. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  6. LISe pixel detector for neutron imaging

    Science.gov (United States)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  7. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  8. Anode readout for pixellated CZT detectors

    Science.gov (United States)

    Narita, Tomohiko; Grindlay, Jonathan E.; Hong, Jaesub; Niestemski, Francis C.

    2004-02-01

    Determination of the photon interaction depth offers numerous advantages for an astronomical hard X-ray telescope. The interaction depth is typically derived from two signals: anode and cathode, or collecting and non-collecting electrodes. We present some preliminary results from our depth sensing detectors using only the anode pixel signals. By examining several anode pixel signals simultaneously, we find that we can estimate the interaction depth, and get sub-pixel 2-D position resolution. We discuss our findings and the requirements for future ASIC development.

  9. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart mobile...

  10. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart mobile...

  11. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart...

  12. Compressive sensing spectroscopy with a single pixel camera.

    Science.gov (United States)

    Starling, David J; Storer, Ian; Howland, Gregory A

    2016-07-01

    Spectrometry requires high spectral resolution and high photometric precision while also balancing cost and complexity. We address these requirements by employing a compressive-sensing camera capable of improving signal acquisition speed and sensitivity in limited signal scenarios. In particular, we implement a fast single pixel spectrophotometer with no moving parts and measure absorption and emission spectra comparable with commercial products. Our method utilizes Hadamard matrices to sample the spectra and then minimizes the total variation of the signal. The experimental setup includes standard optics and a grating, a low-cost digital micromirror device, and an intensity detector. The resulting spectrometer produces a 512 pixel spectrum with low mean-squared error and up to a 90% reduction in data acquisition time when compared with a standard spectrophotometer.

  13. Signal variations in high granularity Si pixel detectors

    CERN Document Server

    Tlustos, L; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Fixed pattern noise is one of the limiting factors of image quality and degrades the achievable spatial resolution. In the case of silicon sensors non-uniformities due to doping inhomogeneities can be limited by operating the sensor in strong overdepletion. For high granularity photon counting pixel detectors an additional high frequency interpixel signal variation is an important factor for the achievable signal to noise ratio (SNR). It is common practice to apply flatfield corrections to increase the SNR of the detector system. For the case of direct conversion detectors it can be shown that the Poisson limit can be reached for floodfield irradiation. However when used for imaging with spectral X-ray sources flatfield corrections are less effective. This is partly a consequence of charge sharing between adjacent pixels, which gives rise to an effective energy spectrum seen by the readout, which is different from the spectral content of the incident beam. In this paper we present simulations and measurements...

  14. Optimisation of ROB mapping for SCT and Pixel detectors

    CERN Document Server

    Wheeler, S

    1999-01-01

    A simple object-oriented program has been written to simulate the SCT and Pixel detectors in order to determine the suitability of various ROB mapping schemes in the context of the Level 2 trigger. Layer and tower mappings have been investigated separately for the SCT barrel and endcap and for the Pixel barrel and endcap. Events containing one RoI were fired at each detector part and the number of ROBs hit determined. As a result, plots of ROB output data rates and ROB hit frequency as a function of ROB ID were obtained. In general it was found that layer mapping schemes might result in unacceptably high data rates and frequencies. This result would have to be confirmed with more detailed modelling. The tower mappings investigated, in general produced acceptable rates.

  15. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  16. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    Science.gov (United States)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post

  17. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  18. Role of multicellular aggregates in biofilm formation

    DEFF Research Database (Denmark)

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin

    2016-01-01

    In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However......, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm...... initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends...

  19. Aggregation kinetics of a simulated telechelic polymer

    Science.gov (United States)

    Wilson, Mark; Rabinovitch, Avinoam; Baljon, Arlette R. C.

    2011-12-01

    We investigate the aggregation kinetics of a simulated telechelic polymer gel. In the hybrid molecular dynamics (MD)/Monte Carlo (MC) algorithm, aggregates of associating end groups form and break according to MC rules, while the position of the polymers in space is dictated by MD. As a result, the aggregate sizes change over time. In order to describe this aggregation process, we employ master equations. They define changes in the number of aggregates of a certain size in terms of reaction rates. These reaction rates indicate the likelihood that two aggregates combine to form a large one, or that a large aggregate splits into two smaller parts. The reaction rates are obtained from the simulations for a range of temperatures. Our results indicate that the rates are not only temperature dependent, but also a function of the sizes of the aggregates involved in the reaction. Using the measured rates, solutions to the master equations are shown to be stable and in agreement with the aggregate size distribution, as obtained directly from simulation data. Furthermore, we show how temperature-induced variations in these rates give rise to the observed changes in the aggregate distribution that characterizes the sol-gel transition.

  20. Focal plane array with modular pixel array components for scalability

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  1. Region based elimination of noise pixels towards optimized classifier models for skin pixel detection

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2015-03-01

    Full Text Available The extraction of the skin pixels in a human image and rejection of non-skin pixels is called the skin segmentation. Skin pixel detection is the process of extracting the skin pixels in a human image which is typically used as a pre-processing step to extract the face regions from human image. In past, there are several computer vision approaches and techniques have been developed for skin pixel detection. In the process of skin detection, given pixels are been transformed into an appropriate color space such as RGB, HSV etc. And then skin classifier model have been applied to label the pixel into skin or non-skin regions. Here in this research a “Region based elimination of noise pixels and performance analysis of classifier models for skin pixel detection applied on human images” would be performed which involve the process of image representation in color models, elimination of non-skin pixels in the image, and then pre-processing and cleansing of the collected data, feature selection of the human image and then building the model for classifier. In this research and implementation of skin pixels classifier models are proposed with their comparative performance analysis. The definition of the feature vector is simply the selection of skin pixels from the human image or stack of human images. The performance is evaluated by comparing and analysing skin colour segmentation algorithms. During the course of research implementation, efforts are iterative which help in selection of optimized skin classifier based on the machine learning algorithms and their performance analysis.

  2. The barrel sector assembly system of the ALICE silicon pixel detector

    CERN Document Server

    Antinori, F; Cinausero, M; Dima, R; Fabris, D; Fioretto, E; Lunardon, M; Moretto, S; Pepato, Adriano; Prete, G; Scarlassara, F; Segato, G F; Soramel, F; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    The Silicon Pixel Detector is the inner part of the ITS tracking system of the ALICE experiment at LHC. The 240 silicon modules, hosting almost 10 million pixel cells with dimension 50 . 425 mu m /sup 2/, have to be assembled on a carbon fiber support with micrometric precision. To reach this result, a dedicated high- precision computer-controlled tooling system has been developed at the INFN Padova. The assembly system and the mounting procedures are presented. (10 refs).

  3. First operation of a pixel imaging matrix based on DEPFET pixels

    CERN Document Server

    Fischer, P; Klein, P; Löcker, M; Lutz, Gerhard; Neeser, W; Strüder, L; Wermes, N

    2000-01-01

    In the DEPFET pixel concept the detected incident radiation is directly sensed and amplified by a JFET integrated in every pixel cell. While the DEPFET detector principle has already been demonstrated previously on single pixel structures, we present here the first successful operation of a large $32 \\times 32$ DEPFET pixel matrix as an imaging device. The matrix has been exposed to 60 keV gamma rays of a $^{241}$Am source and has been scanned using an IR laser. The principle of operation as well as the charge collection in the structure and possible improvements are discussed.

  4. Spatial clustering of pixels of a multispectral image

    Energy Technology Data Exchange (ETDEWEB)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  5. Spatial clustering of pixels of a multispectral image

    Science.gov (United States)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  6. Fast distributed large-pixel-count hologram computation using a GPU cluster.

    Science.gov (United States)

    Pan, Yuechao; Xu, Xuewu; Liang, Xinan

    2013-09-10

    Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

  7. Testbeam and laboratory characterization of 3D CMS pixel sensors

    Science.gov (United States)

    Bubna, Mayur; Krzwyda, Alex; Alagoz, Enver; Bortoletto, Daniela

    2013-04-01

    Future generations of colliders, like High Luminosity Large Hadron Collider (HL-LHC) at CERN will deliver much higher radiation doses to the particle detectors, specifically those closer to the beam line. Inner tracker detectors will be the most affected part, causing increased occupancy and radiation damage to Silicon detectors. Planar Silicon sensors have not shown enough radiation hardness for the innermost layers where the radiation doses can reach values around 10^16 neq/cm^2. As a possible replacement of planar pixel sensors, 3D Silicon technology is under consideration as they show higher radiation hardness, and efficiencies comparable to planar sensors. Several 3D CMS pixel designs were fabricated at FBK, CNM, and SINTEF. They were bump bonded to the CMS pixel readout chip and characterized in the laboratory using radioactive source (Sr90), and at Fermilab MTEST beam test facility. Sensors were also irradiated with 800 MeV protons at Los Alamos National Lab to study post-irradiation behavior. In addition, several diodes and test structures from FBK were studied before and after irradiation. We report the laboratory and testbeam measurement results for the irradiated 3D devices.

  8. A logarithmic low dark current CMOS pixel

    Science.gov (United States)

    Brunetti, Alessandro Michel; Choubey, Bhaskar

    2016-04-01

    High dynamic range pixels are required in a number of automotive and scientific applications. CMOS pixels provide different approaches to achieve this. However, these suffer from poor performance under low light conditions due to inherently high leakage current that is present in CMOS processes, also known as dark current. The typical approach to reduce this dark current involves process modifications. Nevertheless, energy considerations suggest that the leakage current will be close to zero at a close to zero voltage on the photodiode. Hence, the reduction in dark current can be achieved by forcing a zero voltage across the photodiode. In this paper, a novel logarithmic CMOS pixel design capable of reducing dark current without any process modifications is proposed. This pixel is also able to produce a wide dynamic range response. This circuit utilizes two current mirrors to force the in-pixel photodiode at a close to zero voltage. Additionally, a bias voltage is used to reduce a higher order effect known as Drain Induced Barrier Lowering (DIBL). In fact, the contribution of this effect can be compensated by increasing the body effect. In this paper, we studied the consequences of a negative bias voltage applied to the body of the current mirror pair to compensate for the DIBL effect thereby achieving a very small voltage drop on the photodiode and consequently, a higher sensitivity in low light conditions.

  9. Are All Pixels Equally Important?

    CERN Document Server

    CERN. Geneva

    2015-01-01

    When we look at our environment, we primarily pay attention to visually distinctive objects. We refer to these objects as visually important or salient. For efficient visual processing, the human visual system identifies salients objects and dedicates most of its processing resources to them. An analogous resource allocation can be performed by salient-object detection algorithms, which identify objects of interest in an image. Consequently, thanks to salient-object detection, complex visual computing operations can focus on the important parts of the visual data and can save time and resources. About the speaker Dr. Gokhan Yildirim is a research assistant in the School of Computer and Communication Sciences (IC) at the École Polytechnique Fédérale de Lausanne (EPFL). His research interests include image understanding, multimedia, pattern recognition, machine learning, salient-object detection on images & videos and its applications on image proces...

  10. Distinguishing aggregate formation and aggregate clearance using cell based assays

    NARCIS (Netherlands)

    E. Eenjes, E.; J.M. Dragich; H. Kampinga (Harm); A. Yamamoto, A.

    2016-01-01

    textabstractThe accumulation of ubiquitinated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to diminished aggrega

  11. Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels

    CERN Document Server

    Deveaux, M; Besson, A; Claus, G; Colledani, C; Dorokhov, M; Dritsa, C; Dulinski, W; Fröhlich, I; Goffe, M; Grandjean, D; Heini, S; Himmi, A; Hu, C; Jaaskelainen, K; Müntz, C; Shabetai, A; Stroth, J; Szelezniak, M; Valin, I; Winter, M

    2009-01-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad

  12. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners

    OpenAIRE

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-01-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-...

  13. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    Science.gov (United States)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  14. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  15. Infrared single-pixel imaging utilising microscanning

    CERN Document Server

    Sun, Ming-Jie; Phillips, David B; Gibson, Graham M; Padgett, Miles J

    2015-01-01

    Since the invention of digital cameras there has been a concerted drive towards detector arrays with higher spatial resolution. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply the microscanning approach to an infrared single-pixel camera. For the same final resolution and measurement resource, we show that microscanning improves the signal-to-noise ratio (SNR) of reconstructed images by approximately 50%. In addition, this strategy also provides access to a stream of low-resolution 'preview' images throughout each high-resolution acquisition. Our work demonstrates an additional degree of flexibility in the trade-off between SNR and spatial resolution in single-pixel imaging techniques.

  16. Towards spark-proof gaseous pixel detectors

    Science.gov (United States)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  17. Per-Pixel Lighting Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  18. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  19. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  20. MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels

    Science.gov (United States)

    Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome

    2014-01-01

    Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.

  1. The DC-DC conversion power system of the CMS Phase-1 pixel upgrade

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, St.; Wlochal, M.

    2015-01-01

    The pixel detector of the CMS experiment will be exchanged during the year-end technical stop in 2016/2017, as part of the experiment's Phase-1 upgrade. The new device will feature approximately twice the number of readout channels, and consequently the power consumption will be doubled. By moving to a DC-DC conversion powering scheme, it is possible to power the new pixel detector with the existing power supplies and cable plant. The power system of the Phase-1 pixel detector is described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, is detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance is discussed.

  2. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  3. Physics performance of the ATLAS pixel detector

    Science.gov (United States)

    Tsuno, S.

    2017-01-01

    In preparation for LHC Run-2 the ATLAS detector introduced a new pixel detector, the Insertable B-Layer (IBL). This detector is located between the beampipe and what was the innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level objects such a b-quark jet tagging. This in turn, leads to better physics results. This note summarizes the impact of the IBL detector on physics results, especially focusing on the analyses using b-quark jets throughout 2016 summer physics program.

  4. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  5. Physics performance of the ATLAS Pixel Detector

    CERN Document Server

    Tsuno, Soshi; The ATLAS collaboration

    2016-01-01

    One noticeable upgrade from Run-1 to Run-2 with ATLAS detector in proton-proton collisions at LHC is the introduction of the new pixel detector, IBL, located on the beam pipe as the extra innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level object such a $b$-quark jet tagging, in turn, it leads the better physics results. This note summarizes what is the impact on the IBL detector to the physics results especially focusing on the analyses using the $b$-quark jets throughout 2016 summer physics program.

  6. ATLAS Phase-II-Upgrade Pixel Data Transmission Development

    CERN Document Server

    Wensing, Marius; The ATLAS collaboration

    2016-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbps per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  7. ATLAS Phase-II Upgrade Pixel Data Transmission Development

    CERN Document Server

    Nielsen, Jason; The ATLAS collaboration

    2017-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbps per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  8. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    important for quality assurance and constancy checks in hospitals. The second part of the thesis is about the imaging properties of the Medipix detectors. Images of samples (cash card, human bone) were taken with the Medipix3 chip in Single Pixel Mode (equivalent to the counting mode of the Medipix2 detector) and in Charge Summing Mode. The images in Single Pixel Mode were sharper than the ones taken in Charge Summing Mode. The latter show high granularity. This is due to high pixel-to-pixel variation in threshold in Charge Summing Mode. A redesign of the Medipix3 detector is proposed in order to correct for this problem. The determination of the spatial resolution confirms that Single Pixel Mode is better for imaging. Energy resolved material reconstruction was also performed with Medipix3 programmed in Single Pixel Mode and Charge Summing Mode. The combination method was applied to determine the concentration of elements in a compound object. The Downhill Simplex and Simulated Annealing methods were used to minimize the likelihood function delivered by the combination method. In a first step, the reconstruction method was tested using simulated data. The results of the reconstruction show that the reconstruction is better in Charge Summing Mode than in Single Pixel Mode. The method of material reconstruction was also applied with success to data taken with the Medipix3 detector programmed in Single Pixel Mode. In summary, the Medipix detectors were successfully used in spectroscopy and imaging. An improvement of Charge Summing Mode of Medipix3 is necessary in order to reach at least the same image quality as in Single Pixel Mode. (orig.)

  9. Role of multicellular aggregates in biofilm formation

    DEFF Research Database (Denmark)

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin;

    2016-01-01

    response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.IMPORTANCE During the past decades, there has been a consensus around the model of development of a biofilm......In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However......, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm...

  10. Pixels simultaneous detection probabilities and spatial resolution determination of pixelized detectors by means of correlation measurements

    CERN Document Server

    Grabskii, V

    2007-01-01

    A novel method to estimate the pixels simultaneous detection probability and the spatial resolution of pixelized detectors is proposed, which is based on the determination of the statistical correlations between detector neighbor pixels. The correlations are determined by means of noise variance measurement for a isolated pixels and the difference between neighbor pixels. The method is validated using images from the two different GE Senographe 2000D mammographic units. The pixelized detector has been irradiated using x-rays along its entire surface. It is shown that the pixel simultaneous detection probabilities can be estimated within accuracy 0.001 - 0.003, where the systematic error is estimated to be smaller than 0.005. The presampled two-dimensional point-spread function (PSF0) is determined using a single Gaussian and a sum of two Gaussian approximations. The obtained results for the presampled PSF0 show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximatio...

  11. From Hybrid to CMOS Pixels ... a possibility for LHC's pixel future?

    CERN Document Server

    Wermes, Norbert

    2015-01-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R\\&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R\\&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers t...

  12. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  13. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  14. Dense Iterative Contextual Pixel Classification using Kriging

    DEFF Research Database (Denmark)

    Ganz, Melanie; Loog, Marco; Brandt, Sami

    2009-01-01

    have been proposed to this end, e.g., iterative contextual pixel classification, iterated conditional modes, and other approaches related to Markov random fields. A problem of these methods, however, is their computational complexity, especially when dealing with high-resolution images in which...

  15. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    At the core of CMS, particles will come into contact with tiny detector components, known as pixels, which are almost invisible to the naked eye. With these elementary cells measuring a mere 150 microns (or about 1/10 of a millimetre) along each side, a real technological leap has been made.

  16. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  17. Performance of active edge pixel sensors

    CERN Document Server

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; D'Eramo, Louis; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola; Rummler, Andre; Weingarten, Jens

    2017-01-01

    this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  18. Dynamic holography using pixelated light modulators.

    Science.gov (United States)

    Zwick, Susanne; Haist, Tobias; Warber, Michael; Osten, Wolfgang

    2010-09-01

    Dynamic holography using spatial light modulators is a very flexible technique that offers various new applications compared to static holography. We give an overview on the technical background of dynamic holography focusing on pixelated spatial light modulators and their technical restrictions, and we present a selection of the numerous applications of dynamic holography.

  19. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    Science.gov (United States)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  20. Familial aggregation and childhood blood pressure.

    Science.gov (United States)

    Wang, Xiaoling; Xu, Xiaojing; Su, Shaoyong; Snieder, Harold

    2015-01-01

    There is growing concern about elevated blood pressure (BP) in children. The evidence for familial aggregation of childhood BP is substantial. Twin studies have shown that a large part of the familial aggregation of childhood BP is due to genes. The first part of this review provides the latest progress in gene finding for childhood BP, focusing on the combined effects of multiple loci identified from the genome-wide association studies on adult BP. We further review the evidence on the contribution of the genetic components of other family risk factors to the familial aggregation of childhood BP including obesity, birth weight, sleep quality, sodium intake, parental smoking, and socioeconomic status. At the end, we emphasize the promise of using genomic-relatedness-matrix restricted maximum likelihood (GREML) analysis, a method that uses genome-wide data from unrelated individuals, in answering a number of unsolved questions in the familial aggregation of childhood BP.

  1. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  2. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  3. Design optimization of Pixel Structure for α-Si based uncooled Infrared detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-12-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.Defence Science Journal, 2013, 63(6, pp.581-588, DOI:http://dx.doi.org/10.14429/dsj.63.5758

  4. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  5. PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding

    OpenAIRE

    Kim, Minjeong; Choi, Minsuk; Lee, Sunwoong; Tang, Jian; Park, Haesun; Choo, Jaegul

    2016-01-01

    Embedding and visualizing large-scale high-dimensional data in a two-dimensional space is an important problem since such visualization can reveal deep insights out of complex data. Most of the existing embedding approaches, however, run on an excessively high precision, ignoring the fact that at the end, embedding outputs are converted into coarse-grained discrete pixel coordinates in a screen space. Motivated by such an observation and directly considering pixel coordinates in an embedding ...

  6. ACS/WFC Pixel Stability - Bringing the Pixels Back to the Science

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  7. Aggregations in Flatworms.

    Science.gov (United States)

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  8. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  9. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  10. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  11. Towards third generation pixel readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@lbl.gov; Mekkaoui, A.; Ganani, D.

    2013-12-11

    We present concepts and prototyping results towards a third generation pixel readout chip. We consider the 130 nm feature size FE-I4 chip, in production for the ATLAS IBL upgrade, to be a second generation chip. A third generation chip would have to go significantly further. A possible direction is to make the IC design generic so that different experiments can configure it to meet significantly different requirements, without the need for everybody to develop their own ASIC from the ground up. In terms of target technology, a demonstrator 500-pixel matrix containing analog front ends only (no complex functionality), was designed and fabricated in 65 nm CMOS and irradiated with protons in December 2011 and May 2012.

  12. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  13. Noise in a CMOS digital pixel sensor

    Institute of Scientific and Technical Information of China (English)

    Zhang Chi; Yao Suying; Xu Jiangtao

    2011-01-01

    Based on the study of noise performance in CMOS digital pixel sensor (DPS),a mathematical model of noise is established with the pulse-width-modulation (PWM) principle.Compared with traditional CMOS image sensors,the integration time is different and A/D conversion is implemented in each PWM DPS pixel.Then,the quantitative calculating formula of system noise is derived.It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region.In this model,photodiode shot noise does not vary with luminance,but dark current shot noise does.According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator,the total noise can be reduced.These results serve as a guideline for the design of PWM DPS.

  14. ATLAS Pixel IBL: Stave Quality Assurance

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    For Run 2 of the LHC a fourth innermost Pixel Detector layer on a smaller radius beam pipe has been installed in the ATLAS Detector to add redundancy against radiation damage of the current Pixel Detector and to ensure a high quality tracking and b-tagging performance of the Inner Detector over the coming years until the High Luminosity Upgrade. State of the art components have been produced and assembled onto support structures known as staves over the last two years. In total, 20 staves have been built and qualified in a designated Quality Assurance setup at CERN of which 14 have been integrated onto the beam pipe. Results from the testing are presented.

  15. Marine Synechococcus Aggregation

    Science.gov (United States)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  16. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  17. Pixel Dynamics Analysis of Photospheric Spectral Data

    Science.gov (United States)

    2014-11-13

    corresponding Doppler blueshift (redshift) integrated over the pixel. Variations in the line width δλm may indicate variations in temperature or changes in...skewness of their absorption line redshift/ blueshift and asymmetry PFDs, as well as by the spatial average for each region. These three time-varying... blueshift PFD variance and skewness plots). These oscillations, associated with the AR regions exhibiting solar eruptions, occur with a period of ∼ 10

  18. Efficient segmentation by sparse pixel classification

    DEFF Research Database (Denmark)

    Dam, Erik B; Loog, Marco

    2008-01-01

    Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived......, and they are demonstrated on real 3-D magnetic resonance imaging and 2-D radiograph data. We show that each algorithm is optimal for specific tasks, and that both algorithms allow a speedup of one or more orders of magnitude on typical segmentation tasks....

  19. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  20. Electrical Characteristics of Silicon Pixel Sensors

    CERN Document Server

    Gorelov, I; Hoeferkamp, M; Mata-Bruni, V; Santistevan, G; Seidel, S C; Ciocio, A; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Klaiber Lodewigs, Jonas M; Krasel, O; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Caso, Carlo; Cervetto, M; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Netchaeva, P; Osculati, B; Rossi, L; Charles, E; Fasching, D; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Andreazza, A; Caccia, M; Citterio, M; Lari, T; Meroni, C; Ragusa, F; Troncon, C; Vegni, G; Lutz, Gerhard; Richter, R H; Rohe, T; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; Cauz, D; Cobal-Grassmann, M; D'Auria, S; De Lotto, B; del Papa, C; Grassmann, H; Santi, L; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  1. Production chain of CMS pixel modules

    CERN Document Server

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  2. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  3. Radiation hardness studies of silicon pixel detectors

    CERN Document Server

    Lari, T

    2006-01-01

    At the LHC silicon vertex detectors will be exposed to hadron fluences of the order of . In order to study the effects of radiation damage on the performances of the ATLAS Pixel Vertex Detector, several full-size detector modules were irradiated to a fluence of and tested in a beam at CERN. After irradiation only a modest degradation of the detector performances is observed. At the operating ATLAS bias voltage of 600 V the average signal is still 80% of the pre-irradiation value, the spatial resolution is and the detection efficiency is 98.2%. The LHC luminosity upgrade will increase the radiation hardness requirements by a factor of 10 and will require the development of new ultra-radiation hard vertex detectors. A detailed simulation of silicon pixel detectors irradiated to very high fluence is presented and used to study the possibility to use silicon pixel detectors at the LHC after the luminosity upgrade. The charge collection properties and the detector response were computed for different silicon mater...

  4. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  5. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  6. Signal height in silicon pixel detectors irradiated with pions and protons

    CERN Document Server

    Rohe, T.; Bean, A.; Dambach, S.; Erdmann, W.; Langenegger, U.; Martin, C.; Meier, B.; Radicci, V.; Sibille, J.; Trub, P.

    2009-01-01

    Pixel detectors are used in the innermost part of multi purpose experiments at the Large Hadron Collider (LHC) and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of the detectors has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade the fluence will be much higher and it is not yet clear up to which radii the present pixel technology can be used. In order to establish such a limit, pixel sensors of the size of one CMS pixel readout chip (PSI46V2.1) have been bump bonded and irradiated with positive pions up to 6E14 Neq/cm^2 at PSI and with protons up to 5E15 Neq/cm^2. The sensors were taken from production wafers of the CMS barrel pixel detector. They use n-type DOFZ material with a resistance of about 3.7kOhm cm and an n-side read out. As the performance of silicon sensors is limited by trapping, the response to a Sr-90 source was investigated. The highly e...

  7. Sky pixelization for the analysis of extended emission

    Science.gov (United States)

    Verkhodanov, O. V.; Doroshkevich, A. G.

    2013-08-01

    Spherical pixelization schemes are reviewed that allow analyzing extended emission and, in particular, the cosmic microwave background. Problems with implementing different schemes are considered. The nonhierarchical Gauss-Legendre sky pixelization (GLESP) approach is discussed in detail.

  8. A PFM based digital pixel with off-pixel residue measurement for 15μm pitch MWIR FPAs

    Science.gov (United States)

    Abbasi, Shahbaz; Shafique, Atia; Galioglu, Arman; Ceylan, Omer; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    Digital pixels based on pulse frequency modulation (PFM) employ counting techniques to achieve very high charge handling capability compared to their analog counterparts. Moreover, extended counting methods making use of leftover charge (residue) on the integration capacitor help improve the noise performance of these pixels. However, medium wave infrared (MWIR) focal plane arrays (FPAs) having smaller pixel pitch are constrained in terms of pixel area which makes it difficult to add extended counting circuitry to the pixel. Thus, this paper investigates the performance of digital pixels employing off-pixel residue measurement. A circuit prototype of such a pixel has been designed for 15μm pixel pitch and fabricated in 90nm CMOS. The prototype is composed of a pixel front-end based on a PFM loop. The frontend is a modified version of conventional design providing a means for buffering the signal that needs to be converted to a digital value by an off-pixel ADC. The pixel has an integration phase and a residue measurement phase. Measured integration performance of the pixel has been reported in this paper for various detector currents and integration times.

  9. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    Science.gov (United States)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  10. Protein aggregate myopathies

    Directory of Open Access Journals (Sweden)

    Sharma M

    2005-01-01

    Full Text Available Protein aggregate myopathies (PAM are an emerging group of muscle diseases characterized by structural abnormalities. Protein aggregate myopathies are marked by the aggregation of intrinsic proteins within muscle fibers and fall into four major groups or conditions: (1 desmin-related myopathies (DRM that include desminopathies, a-B crystallinopathies, selenoproteinopathies caused by mutations in the, a-B crystallin and selenoprotein N1 genes, (2 hereditary inclusion body myopathies, several of which have been linked to different chromosomal gene loci, but with as yet unidentified protein product, (3 actinopathies marked by mutations in the sarcomeric ACTA1 gene, and (4 myosinopathy marked by a mutation in the MYH-7 gene. While PAM forms 1 and 2 are probably based on impaired extralysosomal protein degradation, resulting in the accumulation of numerous and diverse proteins (in familial types in addition to respective mutant proteins, PAM forms 3 and 4 may represent anabolic or developmental defects because of preservation of sarcomeres outside of the actin and myosin aggregates and dearth or absence of other proteins in these actin or myosin aggregates, respectively. The pathogenetic principles governing protein aggregation within muscle fibers and subsequent structural sarcomeres are still largely unknown in both the putative catabolic and anabolic forms of PAM. Presence of inclusions and their protein composition in other congenital myopathies such as reducing bodies, cylindrical spirals, tubular aggregates and others await clarification. The hitherto described PAMs were first identified by immunohistochemistry of proteins and subsequently by molecular analysis of their genes.

  11. Charged Dust Aggregate Interactions

    Science.gov (United States)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  12. The Phase-II ATLAS ITk pixel upgrade

    Science.gov (United States)

    Terzo, S.

    2017-07-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase-II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 m2 of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| carbon-based materials cooled by evaporative carbon dioxide circulated in thin-walled titanium pipes embedded in the structures. Planar, 3D, and CMOS sensors are being investigated to identify the optimal technology, which may be different for the various layers. The RD53 Collaboration is developing the new readout chip. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gb/s per data link will be needed in the innermost layers going down to 640 Mb/s for the outermost. Because of the very high radiation level inside the detector, the first part of the transmission has to be implemented electrically, with signals converted for optical transmission at larger radii. Extensive tests are being carried out to prove the feasibility of implementing serial powering, which has been chosen as the baseline for the ITk pixel system due to the reduced material in the servicing cables foreseen for this option.

  13. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  14. ATLAS Pixel-Optoboard Production and Simulation Studies

    CERN Document Server

    Nderitu, Simon

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total productio...

  15. Image Reconstruction Using Pixel Wise Support Vector Machine SVM Classification.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmudul Alam Mia

    2015-02-01

    Full Text Available Abstract Image reconstruction using support vector machine SVM has been one of the major parts of image processing. The exactness of a supervised image classification is a function of the training data used in its generation. In this paper we studied support vector machine for classification aspects and reconstructed an image using support vector machine. Firstly value of the random pixels is used as the SVM classifier. Then the SVM classifier is trained by using those values of the random pixels. Finally the image is reconstructed after cross-validation with the trained SVM classifier. Matlab result shows that training with support vector machine produce better results and great computational efficiency with only a few minutes of runtime is necessary for training. Support vector machine have high classification accuracy and much faster convergence. Overall classification accuracy is 99.5. From our experiment It can be seen that classification accuracy mostly depends on the choice of the kernel function and best estimation of parameters for kernel is critical for a given image.

  16. Pilot System for the Phase 1 Pixel Upgrade

    CERN Document Server

    AUTHOR|(CDS)2072269

    2015-01-01

    The CMS phase 1 pixel upgrade is planned for installation in 2016-2017, incorporating new front-end ASICs with digital 400 Mbps data links to handle a higher instantaneous luminosity of up to 2.5 $x$ 10$^{34}$ cm$^{-2}$ s$^{-1}$ and trigger rates of 100 kHz with bunch spacing scenarios of 25 or 50 ns. The new digital readout requires new back-end electronics incorporating faster optical receivers and firmware for decoding the new data format. Additionally the phase 1 upgrade is powered from DC-DC converters installed inside CMS close to the modules. To gain experience with this new readout chain and DC-DC converters under realistic operating conditions (trigger rates, backgrounds, high data occupancy, and possible single-event upsets) a pilot detector system comprising eight sensor modules, service electronics, optical links, and back-end electronics has been prepared using pre-production parts. The pilot system was installed with the present forward pixel detector in 2014 during long shutdown 1 (LS1). The pi...

  17. Pixel Detector Trial Assembly Test in the SR1 building

    CERN Document Server

    D. Giugni

    2004-01-01

    During the last two months the Pixel group [LBL, Milan and Wuppertal] made a successful integration test on the mechanics of the barrel. The scope of the test was to qualify the integration procedures and the various assembling tools. The test took place in the clean room of the SR1 building at CERN, where the detector has been assembled around a dummy beam pipe made of Stainless Steel. The process is rather complex: the shells come in two parts and they have to be clamped together to get the full shell. This operation is carried out by a dedicated tool which is shown to the right in the picture below. The layer 1 shell is clamped around a "service" pipe that will be used for moving the full layer to the integration tool [ITT] which is visible on the left. View of the tools devoted to the Pixel barrel integration in the SR1 building Also visible in the picture is the global frame that is actually held by the tool. It will engage the layers sliding onto the rails. The first two layers are sequentially...

  18. Pixel Hybridization Technologies for the HL-LHC

    Science.gov (United States)

    Alimonti, G.; Biasotti, M.; Ceriale, V.; Darbo, G.; Gariano, G.; Gaudiello, A.; Gemme, C.; Rossi, L.; Rovani, A.; Ruscino, E.

    2016-12-01

    During the 2024-2025 shut-down, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×1034 cm-2s-1. This upgrade of the collider is called High-Luminosity LHC (HL-LHC). ATLAS and CMS detectors will be upgraded to meet the new challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing and an integrated luminosity of 3000 fb-1 over ten years. In particular, the current trackers will be completely replaced. In HL-LHC the trackers should operate under high fluences (up to 1.4 × 1016 neq cm-2), with a correlated high radiation damage. The pixel detectors, the innermost part of the trackers, needed a completely new design in the readout electronics, sensors and interconnections. A new 65 nm front-end (FE) electronics is being developed by the RD53 collaboration compatible with smaller pixel sizes than the actual ones to cope with the high track densities. Consequently the bump density will increase up to 4 ·104 bumps/cm2. Preliminary results of two hybridization technologies study are presented in this paper. In particular, the on-going bump-bonding qualification program at Leonardo-Finmeccanica is discussed, together with alternative hybridization techniques, as the capacitive coupling for HV-CMOS detectors.

  19. Aggregated Computational Toxicology Online Resource

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data...

  20. ACS/WFC Pixel History, Bringing the Pixels Back to Science

    Science.gov (United States)

    Borncamp, David; Grogin, Norman; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy within a Charged Coupled Device (CCD) results in excess electrical current that is trapped within the lattice structure of the electronics. This excess signal from the CCD itself can be present through multiple exposures, which will have an adverse effect on its science performance unless it is corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as ``dark'' images, allow for the measurement of thermal-electron contamination at each pixel of the CCD. This so-called ``dark current'' can then be subtracted from the science images by re-scaling to the science exposure times. Pixels that have signal above a certain value are traditionally marked as ``hot'' and flagged in the data quality array. Many users will discard these pixels as being bad. However, these pixels may not be bad in the sense that they cannot be reliably dark-subtracted; if these pixels are shown to be stable over a given anneal period, the charge can be properly subtracted and the extra Poisson noise from this dark current can be taken into account and put into the error arrays.

  1. Metal flux and dynamic speciation at (bio)interfaces. Part V: The roles of simple, fulvic and aggregate complexes on Pb flux in freshwater ligand mixtures, computed at planar consuming interfaces

    Science.gov (United States)

    Zhang, Zeshi; Buffle, Jacques

    2009-03-01

    The computations of metal flux in aquatic systems, at consuming interfaces like oganism membranes are of major importance in ecotoxicology and dynamic risk assessment. In this paper, the flux of Pb(II), at a planar consuming interface in natural waters, is studied. The system includes (a) simple ligands (OH -, CO32-); (b) fulvics and (c) aggregates, as complexants, i.e. those which may play the major roles in controlling the metal flux in aquatic media. The effects of various physico-chemical factors, in particular, the diffusion layer thickness, the stability constants of fulvic and aggregate complexes, the complexing site distribution of fulvics and the size distribution of aggregates, are studied in details.

  2. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  3. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  4. Propagation of Tau aggregates.

    Science.gov (United States)

    Goedert, Michel; Spillantini, Maria Grazia

    2017-05-30

    Since 2009, evidence has accumulated to suggest that Tau aggregates form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of Tau aggregates is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighbouring cells. In mice, the intracerebral injection of Tau inclusions induced the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Short fibrils constituted the major species of seed-competent Tau. The existence of several human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.

  5. Aggregation and Averaging.

    Science.gov (United States)

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  6. Dynamics of proteins aggregation. I. Universal scaling in unbounded media

    Science.gov (United States)

    Zheng, Size; Javidpour, Leili; Shing, Katherine S.; Sahimi, Muhammad

    2016-10-01

    It is well understood that in some cases proteins do not fold correctly and, depending on their environment, even properly-folded proteins change their conformation spontaneously, taking on a misfolded state that leads to protein aggregation and formation of large aggregates. An important factor that contributes to the aggregation is the interactions between the misfolded proteins. Depending on the aggregation environment, the aggregates may take on various shapes forming larger structures, such as protein plaques that are often toxic. Their deposition in tissues is a major contributing factor to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and prion. This paper represents the first part in a series devoted to molecular simulation of protein aggregation. We use the PRIME, a meso-scale model of proteins, together with extensive discontinuous molecular dynamics simulation to study the aggregation process in an unbounded fluid system, as the first step toward MD simulation of the same phenomenon in crowded cellular environments. Various properties of the aggregates have been computed, including dynamic evolution of aggregate-size distribution, mean aggregate size, number of peptides that contribute to the formation of β sheets, number of various types of hydrogen bonds formed in the system, radius of gyration of the aggregates, and the aggregates' diffusivity. We show that many of such quantities follow dynamic scaling, similar to those for aggregation of colloidal clusters. In particular, at long times the mean aggregate size S(t) grows with time as, S(t) ˜ tz, where z is the dynamic exponent. To our knowledge, this is the first time that the qualitative similarity between aggregation of proteins and colloidal aggregates has been pointed out.

  7. Radial lens distortion correction with sub-pixel accuracy for X-ray micro-tomography.

    Science.gov (United States)

    Vo, Nghia T; Atwood, Robert C; Drakopoulos, Michael

    2015-12-14

    Distortion correction or camera calibration for an imaging system which is highly configurable and requires frequent disassembly for maintenance or replacement of parts needs a speedy method for recalibration. Here we present direct techniques for calculating distortion parameters of a non-linear model based on the correct determination of the center of distortion. These techniques are fast, very easy to implement, and accurate at sub-pixel level. The implementation at the X-ray tomography system of the I12 beamline, Diamond Light Source, which strictly requires sub-pixel accuracy, shows excellent performance in the calibration image and in the reconstructed images.

  8. GenomePixelizer--a visualization program for comparative genomics within and between species.

    Science.gov (United States)

    Kozik, A; Kochetkova, E; Michelmore, R

    2002-02-01

    GenomePixelizer is a visualization tool that generates custom images of the physical or genetic positions of specified sets of genes in whole genomes or parts of genomes. Multiple sets of genes can be shown simultaneously with user-defined characteristics displayed. It allows the analysis of duplication events within and between species based on sequence similarities. The program is written in Tcl/Tk and works on any platform that supports the Tcl/Tk toolkit. GenomePixelizer generates HTML ImageMap tags for each gene in the image allowing links to databases. Images can be saved and presented on web pages.

  9. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Q; Dowkontt, P; Martín, J; Beilicke, M; Jung, I; Groza, M; Bürger, A; De Geronimo, G; Krawczynski, H

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pixel anodes fabricated on the anode surface with the area up to 2 cm x2 cm and the thickness of CZT detectors ranges from 0.5 cm to 1 cm. Energy spectra resolution and electron mobility-lifetime products of 8x8 pixels CZT detector with different thicknesses have been investigated.

  10. Implementation of pixel level digital TDI for scanning type LWIR FPAs

    Science.gov (United States)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Afridi, Sohaib; Shafique, Atia; Gurbuz, Yasar

    2014-07-01

    Implementation of a CMOS digital readout integrated circuit (DROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels with over sampling rate of 3. Analog signal integrated on integration capacitor is converted to digital domain in pixel, and digital data is transferred to TDI summation counters, where contributions of 8 pixels are added. Output data is 16 bit, where 8 bits are allocated for most significant bits and 8 bits for least significant bits. Control block of the ROIC, which is responsible of generating timing diagram for switches controlling the pixels and summation counters, is realized with VerilogHDL. Summation counters and parallel-to-serial converter to convert 16 bit parallel output data to single bit output are also realized with Verilog HDL. Synthesized verilog netlists are placed&routed and combined with analog under-pixel part of the design. Quantization noise of analog-to-digital conversion is less than 500e-. Since analog signal is converted to digital domain in-pixel, inaccuracies due to analog signal routing over large chip area is eliminated. ROIC is fabricated with 0.18μm CMOS process and chip area is 10mm2. Post-layout simulation results of the implemented design are presented. ROIC is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electron, while power consumption is less than 30mW. ROIC is designed to perform in cryogenic temperatures.

  11. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  12. Fast Sub-Pixel Motion Estimation Algorithm For H.264

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bitlength increases.

  13. A study in GUI aesthetics for modern pixel art games.

    OpenAIRE

    Grahn, Emma

    2013-01-01

    The clarity and usability of the graphical user interface is very important for the enjoyment of a digital game. Pixel art is an art style with low resolution consisting of a precise placing of pixels, the smallest unit of colour that a screen can display. Pixel art has the potential of being cheap, easy to make and nostalgic, but it takes some skill to handle. However the great weakness of pixel art is displaying letters, and small details with clarity. So is there a place for pixel art in m...

  14. Dynamical pixel manipulation of metasurfaces (Conference Presentation)

    Science.gov (United States)

    Zhong, Jin-Qian

    2017-05-01

    Two-dimensional (2D) metamaterials or known as metasurfaces have attracted researchers' attention due to their capability to manipulate the amplitudes, phases and polarization states of incident electromagnetic waves by conferring extra phase different phase at different positions through a super cell that is composed of different oriented structures. In other words, metasurfaces can achieve beam steering and wave shaping by imparting local, gradient phase shift to the incoming waves. With these abilities, metasurfaces can be applied to applications such as ultrathin invisibility cloaks, metasurface holograms, planar lenses and a vortex generator. With the above mentioned advantages and applications of metasurfaces, yet, all the demonstrated metasurfaces possess a main insufficiency that once the metasurfaces are designed and fabricated, their optical properties are then fixed without any chance for further manipulation, which limits their versatility in practical applications. Moreover, although some researchers employed dynamically changeable materials to achieve an active metasurface, such manipulation can only change the overall performance such as an operating frequency instead of changing the provided phase on each pixel of a metasurface. To solve this issue, we employ liquid crystal integrated with a metasurface and the combination could be thus be dynamically tuned via electric bias on each pixel of liquid crystals. Through this setup, we can alter the polarization state of the incident electromagnetic wave dynamically and thus manipulate the extra phase provided by each pixel. In this combination, liquid crystal is employed to change the incident polarization from 0 to 360-degree and the metasurface is designed to achieve four different output signals including phase modulated linear- and circular-polarized light and amplitude-modulated linear- and circular-polarized light. Meanwhile, the metasurfaces could also control the transmission efficiency of the

  15. Optical Cloud Pixel Recovery via Machine Learning

    Directory of Open Access Journals (Sweden)

    Subrina Tahsin

    2017-05-01

    Full Text Available Remote sensing derived Normalized Difference Vegetation Index (NDVI is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS and several commercial satellites. Studies that are heavily dependent on optical sensors are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to long-term environmental assessment when using information from satellite imagery retrieved from visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue. Though both simple and complex computational methods for data interpolation have been applied to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud Pixel Recovery (OCPR method is proposed to repair cloudy pixels from the time-space-spectrum continuum using a Random Forest (RF trained and tested with multi-parameter hydrologic data. The RF-based OCPR model is compared with a linear regression model to demonstrate the capability of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of 0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term environmental analysis.

  16. ATLAS Tracker and Pixel Operational Experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222525; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker, are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  17. CMB component separation in the pixel domain

    OpenAIRE

    Doroshkevich, A.; Verkhodanov, O.

    2010-01-01

    We show that the popular ILC approach is unstable in respect to the division of the sample of map pixels to the set of ``homogeneous'' subsamples. For suitable choice of such subsamples we can obtain the restored CMB signal with amplitudes ranged from zero to the amplitudes of the observed signal. We propose approach which allows us to obtain reasonable estimates of $C_\\ell$ at $\\ell\\leq 30$ and similar to WMAP $C_\\ell$ for larger $\\ell$. With this approach we reduce some anomalies of the WMA...

  18. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  19. Reading pixelized paragraphs of Chinese characters using simulated prosthetic vision.

    Science.gov (United States)

    Zhao, Ying; Lu, Yanyu; Zhao, Ji; Wang, Kaihu; Ren, Qiushi; Wu, Kaijie; Chai, Xinyu

    2011-07-29

    Visual prostheses offer a possibility of restoring useful reading ability to the blind. The psychophysics of simulating reading with a prosthesis using pixelized text has attracted attention recently. This study was an examination of the reading accuracy and efficiency of pixelized Chinese paragraphs after different parameters were altered. Forty native Chinese speakers with normal or corrected visual acuity (20/20) participated in four experiments. Reading accuracy and efficiency were measured after changing the character resolution, character size, pixel dropout percentage, number of gray levels, and luminance. A 5° × 5° character appeared to be the optimal size necessary for accurate pixelized reading. Reading accuracy close to 100% could be achieved with 10 × 10 pixels/character and ∼60% with a 6 × 6 pixel resolution. Pixel dropout adversely affected accuracy, and paragraphs with a 50% dropout were unreadable. Luminance had little effect; however, the number of gray levels significantly affected reading performance. Paragraph reading was at least 5% more accurate at each resolution than was the accuracy of Chinese character recognition. Character size and resolution, pixel dropout, and the number of gray levels clearly affected the reading performance of pixelized Chinese paragraphs. Compared with pixelized character recognition, pixelized Chinese paragraph reading achieved higher accuracy; thus, optimal Chinese reading performance may require prostheses with more electrodes (1000) than are required to read paragraphs in the Latin alphabet (500).

  20. Performance limits of a single photon counting pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Chmeissani, M.; Mikulec, B. E-mail: bettina.mikulec@cern.ch

    2001-03-11

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 {mu}m) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes.

  1. A neighbor pixel communication filtering structure for Dynamic Vision Sensors

    Science.gov (United States)

    Xu, Yuan; Liu, Shiqi; Lu, Hehui; Zhang, Zilong

    2017-02-01

    For Dynamic Vision Sensors (DVS), thermal noise and junction leakage current induced Background Activity (BA) is the major cause of the deterioration of images quality. Inspired by the smoothing filtering principle of horizontal cells in vertebrate retina, A DVS pixel with Neighbor Pixel Communication (NPC) filtering structure is proposed to solve this issue. The NPC structure is designed to judge the validity of pixel's activity through the communication between its 4 adjacent pixels. The pixel's outputs will be suppressed if its activities are determined not real. The proposed pixel's area is 23.76×24.71μm2 and only 3ns output latency is introduced. In order to validate the effectiveness of the structure, a 5×5 pixel array has been implemented in SMIC 0.13μm CIS process. 3 test cases of array's behavioral model show that the NPC-DVS have an ability of filtering the BA.

  2. Pixel 2010: A résumé

    CERN Document Server

    Wermes, Norbert

    2011-01-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This résumé attempts to extract the main statements of the results and developments presented at this conference.

  3. Overview of Silicon Pixel Sensor Development for the ATLAS Insertable B-Layer (IBL)

    CERN Document Server

    Grinstein, S; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost part of the ATLAS tracking system and is critical for track and vertex reconstruction. In order to preserve the tracking performance notwithstanding the increasing instantaneous luminosity delivered by the LHC, ATLAS plans to introduce a new pixel layer (IBL) mounted directly on a reduced diameter beam pipe. The IBL will have to sustain an estimated radiation dose, including safety factors, of $5 imes 10^{15}$~n$_{eq}$/cm$^2$. Two sensor technologies are currently being considered for the IBL, planar n-on-n slim edge and 3D double sided designs. Results of the characterization, irradiation and beam test studies of IBL pixel devices are presented.

  4. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  5. Monolithic active pixel radiation detector with shielding techniques

    Science.gov (United States)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  6. Skin Pixel Segmentation Using Learning Based Classification: Analysis and Performance Comparison

    Directory of Open Access Journals (Sweden)

    Rajandeep Sohal

    2014-05-01

    Full Text Available Skin detection or segmentation is employed in many tasks related to the detection and tracking of humans and human-body parts. The goal of skin pixel detection is locate the pixels of the skins and discard other non-related pixels from regions of the image. Skin area detection has been focus research area in human-computer interactions. Most of the research done in the fields of skin detection has been trained and tested on human images. The approach of this research is to make a comparative analysis of learning classification algorithms to identify the better classifier model for skin pixel detection. Our adopted procedure is based on skin segmentation and human face features which are so called knowledge based approach for skin pixel segmentation. Based on the feature selection of the classified, we found the good detection rate by using the various classification algorithms. We have got the detection rate of above 95.79% in case of J48 algorithm and 95.04% detection rate in case of SMO algorithm. The experiment result shows that, the algorithm gives hopeful results. At last, we concluded this paper and proposed future work.

  7. Where can pixel counting area estimates meet user-defined accuracy requirements?

    Science.gov (United States)

    Waldner, François; Defourny, Pierre

    2017-08-01

    Pixel counting is probably the most popular way to estimate class areas from satellite-derived maps. It involves determining the number of pixels allocated to a specific thematic class and multiplying it by the pixel area. In the presence of asymmetric classification errors, the pixel counting estimator is biased. The overarching objective of this article is to define the applicability conditions of pixel counting so that the estimates are below a user-defined accuracy target. By reasoning in terms of landscape fragmentation and spatial resolution, the proposed framework decouples the resolution bias and the classifier bias from the overall classification bias. The consequence is that prior to any classification, part of the tolerated bias is already committed due to the choice of the spatial resolution of the imagery. How much classification bias is affordable depends on the joint interaction of spatial resolution and fragmentation. The method was implemented over South Africa for cropland mapping, demonstrating its operational applicability. Particular attention was paid to modeling a realistic sensor's spatial response by explicitly accounting for the effect of its point spread function. The diagnostic capabilities offered by this framework have multiple potential domains of application such as guiding users in their choice of imagery and providing guidelines for space agencies to elaborate the design specifications of future instruments.

  8. An experimental testbed for NEAT to demonstrate micro-pixel accuracy

    CERN Document Server

    Crouzier, A; Preis, O; Henault, F; Kern, P; Guillermo, M; Feautrier, P; Cara, c; Lagage, P; Léger, A; LeDuigou, J M; Shao, M; Goullioud, R

    2012-01-01

    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. In NEAT, one fundamental aspect is the capability to measure stellar centroids at the precision of 5 {\\times} 10-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 4 {\\times} 10-5 pixel at Nyquist sampling. Simulations showed that a precision of 2 {\\mu}-pixels can be reached, if intra and inter pixel quantum efficiency variations are calibrated and corrected for by a metrology system. The European part of the NEAT consortium is designing and building a testbed in vacuum in order to achieve 5 {\\times} 10-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we give the basic relations and trade-offs that come into play for the design of a centroid testbed and its metrology system. We detail the different conditi...

  9. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    Science.gov (United States)

    Korol, I.

    2015-10-01

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb-1 of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation.

  10. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    Energy Technology Data Exchange (ETDEWEB)

    Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R.; Mehdiyeva, R. [Institute of Radiation Problems, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada)

    2016-07-11

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  11. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  12. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2016-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e- Compact Linear Collider (CLIC). A single point resolution of 3μm for the vertex detector and 7μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2 % X0 per layer in the ver- tex detector and 1-2%X0 in the tracker. A fast time slicing of 10ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25x25μm2 and 55x55μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50μm-500μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  13. Silicon pixel R&D for CLIC

    Science.gov (United States)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e‑ Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1–2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm–500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  14. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  15. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  16. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  17. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  18. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  19. Further applications for mosaic pixel FPA technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  20. The Pixels system: last but not late!

    CERN Multimedia

    Kevin Einsweiler

    The Pixel Detector for ATLAS is one of the smallest, but most challenging components of the experiment. It lives in the dangerous territory directly outside the beampipe, where the radiation environment is particularly fierce, and it must be roughly one million times more radiation-hard than its human designers. Starting at a radius of just 5cm from the interaction point where the proton beams collide, it occupies a volume of slightly more than one meter in length and a half meter in diameter. In this compact region, there are eighty million channels of electronics (most of the electronics channels in ATLAS!), each capable of measuring the charge deposited by a track in a silicon pixel measuring only 50 microns by 400 microns in size (a volume of 0.005 cubic millimeters). A total cooling capacity of 15 KWatts is available to keep it operating comfortably at -5C. This detector is built around, and provides the support for, the central beampipe of ATLAS. It is supported on carbon fiber rails inside of the Pix...

  1. Efficient single pixel imaging in Fourier space

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai

    2016-08-01

    Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.

  2. Pixel-Tilecal-MDT Combined Test Beam

    CERN Multimedia

    B. Di Girolamo

    A test with many expectations When an additional week of running (from September 11th to 18th) was allocated for the test-beam, it was decided to give priority to a combined run with the participation of the Pixel, Tilecal and MDT sub-detectors. The integration of these three sub-detectors was possible as they all use the baseline (DAQ-1/EF based) DAQ for test beams (as reported in a previous e-news). The tests and the addition of a common trigger and busy were organized in a short timescale by experts from the three sub-detectors and DAQ/EF. The expectations were many; both looking for problems and finding solutions. The setup The setup, shown in the figure, consisted of the Pixel telescope normally used during the sub-detector tests, two Tilecal barrel modules, two Tilecal extended barrel modules, and six MDT barrel chambers. This fully occupied a length of some 30 meters in the H8 line of the SPS North Area. Each sub-detector used their own specialized front-end electronics. The data collected by modu...

  3. Idiosyncratic Labour Income Risk and Aggregate Consumption: an Unobserved Component Approach

    OpenAIRE

    Pozzi, Lorenzo

    2007-01-01

    This discussion paper resulted in an article in the Journal of Macroeconomics (2010). Volume 32(1), 169-184. We investigate the importance of aggregate and consumer-specific or idiosyncratic labour income risk for aggregate consumption changes in the US over the period 1952-2001. Theoretically, the effect of labour income risk on consumption changes is decomposed into an aggregate and into an idiosyncratic part. Empirically, aggregate risk is modelled through a GARCH process on aggregate labo...

  4. Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation

    Science.gov (United States)

    Gao, Qinquan; Asthana, Akshay; Tong, Tong; Rueckert, Daniel; Edwards, Philip "Eddie"

    2014-03-01

    We propose a learning-based approach to segment the seminal vesicles (SV) via random forest classifiers. The proposed discriminative approach relies on the decision forest using high-dimensional multi-scale context-aware spatial, textual and descriptor-based features at both pixel and super-pixel level. After affine transformation to a template space, the relevant high-dimensional multi-scale features are extracted and random forest classifiers are learned based on the masked region of the seminal vesicles from the most similar atlases. Using these classifiers, an intermediate probabilistic segmentation is obtained for the test images. Then, a graph-cut based refinement is applied to this intermediate probabilistic representation of each voxel to get the final segmentation. We apply this approach to segment the seminal vesicles from 30 MRI T2 training images of the prostate, which presents a particularly challenging segmentation task. The results show that the multi-scale approach and the augmentation of the pixel based features with the super-pixel based features enhances the discriminative power of the learnt classifier which leads to a better quality segmentation in some very difficult cases. The results are compared to the radiologist labeled ground truth using leave-one-out cross-validation. Overall, the Dice metric of 0:7249 and Hausdorff surface distance of 7:0803 mm are achieved for this difficult task.

  5. Pixel-level Analog-To-Digital Converters for Hybrid Pixel Detectors with energy sensitivity

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  6. Design of pixel-level ADCs for energy-sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  7. Optical dynamics of molecular aggregates

    NARCIS (Netherlands)

    de Boer, Steven

    2006-01-01

    The subject of this thesis is the spectroscopy and dynamics of molecular aggregates in amorphous matrices. Aggregates of three different molecules were studied. The molecules are depicted in Fig. (1.1). Supersaturated solutions of these molecules show aggregate formation. Aggregation is a process si

  8. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-06-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  9. Serial pixel analog-to-digital converter (ADC)

    Science.gov (United States)

    Larson, Eric D.

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and "one-hot" counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  10. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  11. Monitoring the Aggregation of Dansyl Chloride in Acetone through Fluorescence Measurements

    Institute of Scientific and Technical Information of China (English)

    FANG,Yu(房喻); YIN,Yi-Qing(尹艺青); HU,Dao-Dao(胡道道); GAO,Gai-Ling(高改玲)

    2002-01-01

    The aggregation of dansyl chloride (DNS-Cl) in acetone has been studied in detail by steady-state fluorescence techniques. It has been demonstrated that DNS-Cl is stable in acetone during purification and aggregation study processes. The aggregates are not solvolyzed in acetone, and do not take part in any chemical reactions either. It has been found that DNS-Cl tends to aggregate even when its concentration is much lower than its solubility in acetone. The aggregation is reversible, and both the aggregation and the deaggregation are very slow processes.Introduction of SDS has a positive effect upon the formation and stabilization of the aggregates.

  12. Regulated protein aggregation: stress granules and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Wolozin Benjamin

    2012-11-01

    Full Text Available Abstract The protein aggregation that occurs in neurodegenerative diseases is classically thought to occur as an undesirable, nonfunctional byproduct of protein misfolding. This model contrasts with the biology of RNA binding proteins, many of which are linked to neurodegenerative diseases. RNA binding proteins use protein aggregation as part of a normal regulated, physiological mechanism controlling protein synthesis. The process of regulated protein aggregation is most evident in formation of stress granules. Stress granules assemble when RNA binding proteins aggregate through their glycine rich domains. Stress granules function to sequester, silence and/or degrade RNA transcripts as part of a mechanism that adapts patterns of local RNA translation to facilitate the stress response. Aggregation of RNA binding proteins is reversible and is tightly regulated through pathways, such as phosphorylation of elongation initiation factor 2α. Microtubule associated protein tau also appears to regulate stress granule formation. Conversely, stress granule formation stimulates pathological changes associated with tau. In this review, I propose that the aggregation of many pathological, intracellular proteins, including TDP-43, FUS or tau, proceeds through the stress granule pathway. Mutations in genes coding for stress granule associated proteins or prolonged physiological stress, lead to enhanced stress granule formation, which accelerates the pathophysiology of protein aggregation in neurodegenerative diseases. Over-active stress granule formation could act to sequester functional RNA binding proteins and/or interfere with mRNA transport and translation, each of which might potentiate neurodegeneration. The reversibility of the stress granule pathway also offers novel opportunities to stimulate endogenous biochemical pathways to disaggregate these pathological stress granules, and perhaps delay the progression of disease.

  13. Fractals of Silica Aggregates

    Institute of Scientific and Technical Information of China (English)

    ZhinhongLi; DongWu; Yuhansun; JunWang; YiLiu; BaozhongDong; Zhinhong

    2001-01-01

    Silica aggregates were prepared by base-catalyzed hydrolysis and condensation of alkoxides in alcohol.Polyethylene glycol(PEG) was used as organic modifier.The sols were characterized using Small Angle X-ray Scattering (SAXS) with synchrotron radiation as X-ray source.The structure evolution during the sol-gel process was determined and described in terms of the fractal geometry.As-produced silica aggregates were found to be mass fractals.The fractl dimensions spanned the regime 2.1-2.6 corresponding to more branched and compact structures.Both RLCA and Eden models dominated the kinetic growth under base-catalyzed condition.

  14. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  15. Artificial Structural Color Pixels: A Review

    Science.gov (United States)

    Zhao, Yuqian; Zhao, Yong; Hu, Sheng; Lv, Jiangtao; Ying, Yu; Gervinskas, Gediminas; Si, Guangyuan

    2017-01-01

    Inspired by natural photonic structures (Morpho butterfly, for instance), researchers have demonstrated varying artificial color display devices using different designs. Photonic-crystal/plasmonic color filters have drawn increasing attention most recently. In this review article, we show the developing trend of artificial structural color pixels from photonic crystals to plasmonic nanostructures. Such devices normally utilize the distinctive optical features of photonic/plasmon resonance, resulting in high compatibility with current display and imaging technologies. Moreover, dynamical color filtering devices are highly desirable because tunable optical components are critical for developing new optical platforms which can be integrated or combined with other existing imaging and display techniques. Thus, extensive promising potential applications have been triggered and enabled including more abundant functionalities in integrated optics and nanophotonics. PMID:28805736

  16. CMB component separation in the pixel domain

    CERN Document Server

    Doroshkevich, A

    2010-01-01

    We show that the popular ILC approach is unstable in respect to the division of the sample of map pixels to the set of ``homogeneous'' subsamples. For suitable choice of such subsamples we can obtain the restored CMB signal with amplitudes ranged from zero to the amplitudes of the observed signal. We propose approach which allows us to obtain reasonable estimates of $C_\\ell$ at $\\ell\\leq 30$ and similar to WMAP $C_\\ell$ for larger $\\ell$. With this approach we reduce some anomalies of the WMAP results. In particular, our estimate of the quadrupole is well consistent to theoretical one, the effect of the ``axis of evil'' is suppressed and the symmetry of the north and south galactic hemispheres increases. This results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We propose also new simple approach which can improve WMAP estimates of high $\\ell$ power spectrum.

  17. Image Pixel Fusion for Human Face Recognition

    CERN Document Server

    Bhowmik, Mrinal Kanti; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    In this paper we present a technique for fusion of optical and thermal face images based on image pixel fusion approach. Out of several factors, which affect face recognition performance in case of visual images, illumination changes are a significant factor that needs to be addressed. Thermal images are better in handling illumination conditions but not very consistent in capturing texture details of the faces. Other factors like sunglasses, beard, moustache etc also play active role in adding complicacies to the recognition process. Fusion of thermal and visual images is a solution to overcome the drawbacks present in the individual thermal and visual face images. Here fused images are projected into an eigenspace and the projected images are classified using a radial basis function (RBF) neural network and also by a multi-layer perceptron (MLP). In the experiments Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark for thermal and visual face images have been used. Compar...

  18. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules.

    CERN Document Server

    Rubinskiy, Igor; The ATLAS collaboration

    2011-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reduction of the pixel size and of the material budget. Two different promising Silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies qualification with particular emphasis on irradiation and beam tests will be presented.

  19. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  20. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  1. Super pixel-level dictionary learning for hyperspectral image classification

    Science.gov (United States)

    Zhao, Wei; Zhu, Wen; Liao, Bo; Fu, Xiangzheng

    2017-08-01

    This paper presents a superpixel-level dictionary learning model for hyperspectral data. The idea is to divide the hyperspectral image into a number of super-pixels by means of the super-pixel segmentation method. Each super-pixel is a spatial neighborhood called contextual group. That is, each pixel is represented using a linear combination of a few dictionary items learned from the train data, but since pixels inside a super-pixel are often consisting of the same materials, their linear combinations are constrained to use common items from the dictionary. To this end, the sparse coefficients of the context group have a common sparse pattern by using the joint sparse regularizer for dictionary learning. The sparse coefficients are then used for classification using linear support vector machines. The validity of the proposed method is experimentally verified on a real hyperspectral images.

  2. Steganography on quantum pixel images using Shannon entropy

    Science.gov (United States)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  3. CMOS monolithic pixel sensors research and development at LBNL

    Indian Academy of Sciences (India)

    D Contarato; J-M Bussat; P Denes; L Griender; T Kim; T Stezeberger; H Weiman; M Battaglia; B Hooberman; L Tompkins

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  4. Data encoding efficiency in pixel detector readout with charge information

    CERN Document Server

    Garcia-Sciveres, Maurice

    2016-01-01

    The minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the bits used for by the FE-I4 pixel readout chip of the ATLAS experiment.

  5. Data encoding efficiency in pixel detector readout with charge information

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, Maurice, E-mail: mgs@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wang, Xinkang [University of Chicago, Chicago, IL (United States)

    2016-04-11

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  6. Hit efficiency study of CMS prototype forward pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  7. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  8. Geoinformation Generalization by Aggregation

    Directory of Open Access Journals (Sweden)

    Tomislav Jogun

    2016-12-01

    Full Text Available Geoinformation generalization can be divided into model generalization and cartographic generalization. Model generalization is the supervised reduction of data in a model, while cartographic generalization is the reduction of the complexity of map content adapted to the map scale, and/or use by various generalization operators (procedures. The topic of this paper is the aggregation of geoinformation. Generally, aggregation is the joining of nearby, congenial objects, when the distance between them is smaller than the minimum sizes. Most researchers in geoinformation generalization have focused on line features. However, the appearance of web-maps with point features and choropleth maps has led to the development of concepts and algorithms for the generalization of point and polygonal features. This paper considers some previous theoretical premises and actual examples of aggregation for point, line and polygonal features. The algorithms for aggregation implemented in commercial and free GIS software were tested. In the conclusion, unresolved challenges that occur in dynamic cartographic visualizations and cases of unusual geometrical features are highlighted.

  9. Erosion of dust aggregates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 m/s and above. Though fractal aggregates as ...

  10. Diffusion in aggregated soil.

    NARCIS (Netherlands)

    Rappoldt, C.

    1992-01-01

    The structure of an aggregated soil is characterized by the distribution of the distance from an arbitrary point in the soil to the nearest macropore or crack. From this distribution an equivalent model system is derived to which a diffusion model can be more easily applied. The model system consist

  11. Velocity Distribution Measurement Using Pixel-Pixel Cross Correlation of Electrical Tomography

    Institute of Scientific and Technical Information of China (English)

    DENGXiang; PENGLihui; YAODanya; ZHANGBaofen

    2004-01-01

    Electrical tomography (ET) provides a novel means of visualizing the internal behavior of twophase flow in industrial process. Using a dual-sensingplane Electrical resistance tomography (ERT) or Electrical capacitance tomography (ECT) system, the raw data of two different section images can be acquired synchronously and the two images reflecting the inner medium distribution respectively can also be reconstructed by using imaging algorithm. Further, the analysis of pixel-pixel cross correlation is able to be setup and the measurement of velocity distribution of two-phase flow could be achieved. The principle is described in the paper. The FFT algorithm for gray value computation and cross correlation function calculation is also introduced. Some experimental results of velocity distribution measurement using pixelpixel cross correlation in vertical slug flow are presented.

  12. Estimation of urban surface water at subpixel level from neighborhood pixels using multispectral remote sensing image (Conference Presentation)

    Science.gov (United States)

    Xie, Huan; Luo, Xin; Xu, Xiong; Wang, Chen; Pan, Haiyan; Tong, Xiaohua; Liu, Shijie

    2016-10-01

    Water body is a fundamental element in urban ecosystems and water mapping is critical for urban and landscape planning and management. As remote sensing has increasingly been used for water mapping in rural areas, this spatially explicit approach applied in urban area is also a challenging work due to the water bodies mainly distributed in a small size and the spectral confusion widely exists between water and complex features in the urban environment. Water index is the most common method for water extraction at pixel level, and spectral mixture analysis (SMA) has been widely employed in analyzing urban environment at subpixel level recently. In this paper, we introduce an automatic subpixel water mapping method in urban areas using multispectral remote sensing data. The objectives of this research consist of: (1) developing an automatic land-water mixed pixels extraction technique by water index; (2) deriving the most representative endmembers of water and land by utilizing neighboring water pixels and adaptive iterative optimal neighboring land pixel for respectively; (3) applying a linear unmixing model for subpixel water fraction estimation. Specifically, to automatically extract land-water pixels, the locally weighted scatter plot smoothing is firstly used to the original histogram curve of WI image . And then the Ostu threshold is derived as the start point to select land-water pixels based on histogram of the WI image with the land threshold and water threshold determination through the slopes of histogram curve . Based on the previous process at pixel level, the image is divided into three parts: water pixels, land pixels, and mixed land-water pixels. Then the spectral mixture analysis (SMA) is applied to land-water mixed pixels for water fraction estimation at subpixel level. With the assumption that the endmember signature of a target pixel should be more similar to adjacent pixels due to spatial dependence, the endmember of water and land are determined

  13. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  14. Pixel Stability in HST Advanced Camera for Surveys Images

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current that is propagated into individual pixels in an exposure. This excess signal from the CCD itself can be persistently existent through multiple exposures and can have an adverse effect on the detectors science performance unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed to map the location of these pixels. These images, generally referred to as “dark” images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This "dark current" can then be subtracted from the science images by re-scaling the dark to the science exposure times. Pixels that have signal above a certain threshold are traditionally marked as “hot” and flagged in the data quality array. Many users will discard these pixels as being bad because of this extra current. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra Poisson noise from this hot pixel’s dark current can be taken into account. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously marked as bad to be brought back into the science image as a reliable pixel.

  15. Multi-Dimensional Aggregation for Temporal Data

    DEFF Research Database (Denmark)

    Böhlen, M. H.; Gamper, J.; Jensen, Christian Søndergaard

    2006-01-01

    when the data hold. In temporal databases, intervals typically capture the states of reality that the data apply to, or capture when the data are, or were, part of the current database state. This paper proposes a new aggregation operator that addresses several challenges posed by interval data. First......Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture......, the intervals to be associated with the result tuples may not be known in advance, but depend on the actual data. Such unknown intervals are accommodated by allowing result groups that are specified only partially. Second, the operator contends with the case where an interval associated with data expresses...

  16. Aggregation of organic matter by pelagic tunicates

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, L.R. (Univ. of Georgia, Athens); Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  17. Dataset of aggregate producers in New Mexico

    Science.gov (United States)

    Orris, Greta J.

    2000-01-01

    This report presents data, including latitude and longitude, for aggregate sites in New Mexico that were believed to be active in the period 1997-1999. The data are presented in paper form in Part A of this report and as Microsoft Excel 97 and Data Interchange Format (DIF) files in Part B. The work was undertaken as part of the effort to update information for the National Atlas. This compilation includes data from: the files of U.S. Geological Survey (USGS); company contacts; the New Mexico Bureau of Mines and Mineral Resources, New Mexico Bureau of Mine Inspection, and the Mining and Minerals Division of the New Mexico Energy, Minerals and Natural Resources Department (Hatton and others, 1998); the Bureau of Land Management Information; and direct communications with some of the aggregate operators. Additional information on most of the sites is available in Hatton and others (1998).

  18. BIN PIXEL COUNT, MEAN AND TOTAL OF INTENSITIES EXTRACTED FROM PARTITIONED EQUALIZED HISTOGRAM FOR CBIR

    Directory of Open Access Journals (Sweden)

    H. B. Kekre

    2012-03-01

    Full Text Available In this paper we have introduced three simple feature vector extraction ideas to retrieve the images from database of 2000 images includes 20 different classes into it. The feature extraction process mainly based on splitting the image into three planes, for each plane an equalized histogram will be calculated which is divided in two, three and four equal parts to form the 8, 27 and 64 bins respectively. Three simple ways are used to extract the information in these three different sizes of bin sets. One is, ‘Count’ of the pixels falling in specific range of the histogram of each plane into its destination bin. Second, ‘Total’ intensities of these pixels in each of these bins is taken into consideration, and in third variation is the ‘Mean’ of these intensities is considered to represent the feature vector. Determination of the destination bin address for each pixel under process depends upon the R,G, B value of that pixel which falls in any one part of the equalized partitioned histogram, because based on it the 3digits flag will be assigned to that pixel with respect to its R, G, and B values. This way, sixfeature vector databases are prepared for 2000 images with three variable sizes and 3 variations in the extraction methods. We have maintained the separate set of bins for each plane and that way we have 3 more variations in databases. Means in all we have 18 feature vector databases that is six databases for each Red, Green and Blueplane. Experimentation uses image database of 20 classes having 100 images of each of the following classes: Flower, Sunset, Mountain, Buliding, Bus, Dinosaur, Elephant, Barbie, Mickey, Horses,Kingfisher, Dove, Crow, Rainbowrose, Pyramids, Plates, Car, Trees, Ship and Waterfall. Performance of our approaches is evaluated using two parameters LIRS and LSRR and results are refined and combined using three criteria Criterion1, 2 and 3.

  19. Architectural modeling of pixel readout chips Velopix and Timepix3

    NARCIS (Netherlands)

    Poikela, T.; Plosila, J.; Westerlund, T.; Buytaert, J.; Campbell, M.; Llopart, X.; Plackett, R.; Wyllie, K.; van Beuzekom, M.; Gromov, V.; Kluit, R.; Zappon, F.; Zivkovic, V.; Brezina, C.; Desch, K.; Fang, X.; Kruth, A.

    2012-01-01

    We examine two digital architectures for front end pixel readout chips, Velopix and Timepix3. These readout chips are developed for tracking detectors in future high energy physics experiments. They must incorporate local intelligence in pixels for time-over-threshold measurement and sparse readout.

  20. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  1. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  2. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  3. CMB component separation in the pixel domain

    Science.gov (United States)

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-01

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of “homogeneous” subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum Cℓ at ℓ≤30 and provides results similar to WMAP for larger ℓ. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the “axis of evil” is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high ℓ power spectrum.

  4. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    Science.gov (United States)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  5. Characterisation of a CMOS Active Pixel Sensor for use in the TEAM Microscope

    CERN Document Server

    Battaglia, Marco; Denes, Peter; Doering, Dionisio; Duden, Thomas; Krieger, Brad; Giubilato, Piero; Gnani, Dario; Radmilovic, Velimir

    2010-01-01

    A 1M- and a 4M-pixel monolithic CMOS active pixel sensor with 9.5x9.5 micron^2 pixels have been developed for direct imaging in transmission electron microscopy as part of the TEAM project. We present the design and a full characterisation of the detector. Data collected with electron beams at various energies of interest in electron microscopy are used to determine the detector response. Data are compared to predictions of simulation. The line spread function measured with 80 keV and 300 keV electrons is (12.1+/-0.7) micron and (7.4+/-0.6) micron, respectively, in good agreement with our simulation. We measure the detection quantum efficiency to be 0.78+/-0.04 at 80 keV and 0.74+/-0.03 at 300 keV. Using a new imaging technique, based on single electron reconstruction, the line spread function for 80 keV and 300 keV electrons becomes (6.7+/-0.3) micron and (2.4+/-0.2) micron, respectively. The radiation tolerance of the pixels has been tested up to 5 Mrad and the detector is still functional with a decrease o...

  6. Characterisation of a CMOS active pixel sensor for use in the TEAM microscope

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco, E-mail: MBattaglia@lbl.go [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Santa Cruz Institute of Particle Physics, University of California at Santa Cruz, CA 95064 (United States); Contarato, Devis; Denes, Peter; Doering, Dionisio; Duden, Thomas; Krieger, Brad [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Giubilato, Piero [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dipartimento di Fisica, Universita degli Studi, Padova I-35131 (Italy); Gnani, Dario; Radmilovic, Velimir [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-10-21

    A 1M- and a 4M-pixel monolithic CMOS active pixel sensor with 9.5x9.5{mu}m{sup 2} pixels have been developed for direct imaging in transmission electron microscopy as part of the TEAM project. We present the design and a full characterisation of the detector. Data collected with electron beams at various energies of interest in electron microscopy are used to determine the detector response. Data are compared to predictions of simulation. The line spread function measured with 80 and 300 keV electrons is (12.1{+-}0.7) and (7.4{+-}0.6){mu}m, respectively, in good agreement with our simulation. We measure the detection quantum efficiency to be 0.78{+-}0.04 at 80 keV and 0.74{+-}0.03 at 300 keV. Using a new imaging technique, based on single electron reconstruction, the line spread function for 80 and 300 keV electrons becomes (6.7{+-}0.3) and (2.4{+-}0.2){mu}m, respectively. The radiation tolerance of the pixels has been tested up to 5 Mrad and the detector is still functional with a decrease of dynamic range by {approx_equal}30%, corresponding to a reduction in full-well depth from {approx}39 to {approx}27 primary 300 keV electrons, due to leakage current increase, but identical line spread function performance.

  7. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  8. Research on ionospheric tomography based on variable pixel height

    Science.gov (United States)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  9. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  10. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  11. DEPFET--a pixel device with integrated amplification

    CERN Document Server

    Neeser, W; Buchholz, P; Fischer, P; Holl, P; Kemmer, J; Klein, P; Koch, H; Löcker, M; Lutz, Gerhard; Matthäy, H; Strüder, L; Trimpl, M; Ulrici, J; Wermes, N

    2002-01-01

    In the DEPFET pixel concept, the absorbed radiation directly modulates the channel current of a p-JFET transistor being integrated into a fully depleted high ohmic silicon substrate in every pixel cell, offering very low noise operation at room temperature. Hence, DEPFET pixels open new possibilities in biomedical applications, but also have a potential in particle physics and astrophysics. Second prototype 50 mu mx50 mu m single pixels as well as large (64x64) DEPFET matrices have been successfully produced and operated confirming the low noise behavior (12e). Device studies as well as a full DEPFET pixel Bioscope system to be used in real-time digital autoradiography with excellent spatial and energy resolution for X-rays are presented.

  12. DC-DC powering for the CMS pixel upgrade

    Science.gov (United States)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  13. DC-DC Powering for the CMS Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2013-01-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  14. DC–DC powering for the CMS pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@rwth-aachen.de; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-21

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC–DC converters close to the sensitive detector volume. This paper reviews the DC–DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC–DC converters is compared to conventional powering. The integration of the DC–DC powering scheme into the pixel detector is described and system design issues are reviewed.

  15. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  16. Sub-pixel mapping method based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    LI Jiao; WANG Li-guo; ZHANG Ye; GU Yan-feng

    2009-01-01

    A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel. The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information. Then the sub-pixel scaled target could be predicted by the trained model. In order to improve the performance of BP network, BP learning algorithm with momentum was employed. The experiments were conducted both on synthetic images and on hyperspectral imagery (HSI). The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.

  17. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  18. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  19. Multiport solid-state imager characterization at variable pixel rates

    Science.gov (United States)

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1993-10-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD-13, manufactured by English Electric Valve (EEV), is a 512 X 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal X 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory's High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 are presented and the versatility/capabilities of the test station are reviewed.

  20. Near Future Upgrades for the CMS Pixel Detector

    CERN Document Server

    Kumar, Ashish

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The current pixel detector is designed to operate at a maximum luminosity of $1\\times10^{34}cm^{-2}s^{-1}$. Before 2018 the instantaneous luminosity of the LHC is expected to reach $2\\times10^{34}cm^{-2}s^{-1}$, which will significantly increase the number of interactions per bunch crossing. The performance of the current pixel detector in such high occupancy environment will be degraded due to substantial data-loss and effects of radiation damage of sensors, built up over the operational period. In order to maintain or exceed its current performance, the CMS pixel detector will be replaced by a new lightweight system with additional detection layers, better acceptance and improved readout electronics. The upgraded pixel detector will provide improved track and vertex reconstruction, standalone tracking capabilities, as well as identification of ...

  1. Detector apparatus having a hybrid pixel-waveform readout system

    Science.gov (United States)

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  2. Test of CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Qiang; Jung, Ira; Groza, Michael; Dowkontt, Paul; Bose, Richard; Simburger, Garry; Burger, Arnold; Krawczynski, Henric

    2007-01-01

    The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.

  3. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2083994

    2016-01-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  4. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  5. Characterization of a module with pixelated CdTe detectors for possible PET, PEM and compton camera applications

    Science.gov (United States)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Puigdengoles, C.; Martínez, R.; Cabruja, E.

    2014-05-01

    We present the measurement of the energy resolution and the impact of charge sharing for a pixel CdTe detector. This detector will be used in a novel conceptual design for diagnostic systems in the field of nuclear medicine such as positron emission tomography (PET), positron emission mammography (PEM) and Compton camera. The detector dimensions are 10 mm × 10 mm × 2 mm and with a pixel pitch of 1 mm × 1 mm. The pixel CdTe detector is a Schottky diode and it was tested at a bias of -1000 V. The VATAGP7.1 frontend ASIC was used for the readout of the pixel detector and the corresponding single channel electronic noise was found to be σ < 2 keV for all the pixels. We have achieved an energy resolution, FWHM/Epeak, of 7.1%, 4.5% and 0.98% for 59.5, 122 and 511 keV respectively. The study of the charge sharing shows that 16% of the events deposit part of their energy in the adjacent pixel.

  6. Comparison of allocation algorithms for unambiguous registration of hits in presence of charge sharing in pixel detectors

    Science.gov (United States)

    Otfinowski, P.; Maj, P.; Deptuch, G.; Fahim, F.; Hoff, J.

    2017-01-01

    Charge sharing is the fractional collection of the charge cloud generated in a detector by two or more adjacent pixels. It may lead to excessive or inefficient registration of hits comparing to the number of impinging photons depending on how discrimination thresholds are set in typical photon counting pixel detector. The problems are particularly exposed for fine pixel sizes and/or for thick planar detectors. Presence of charge sharing is one of the limiting factors that discourages decreasing sizes of pixels in photon counting mode X-ray radiation imaging systems. Currently, a few different approaches tackling with the charge sharing problem exist (e.g. Medipix3RX, PIXIE, miniVIPIC or PIX45). The general idea is, first, to reconstruct the entire signal from adjacent pixels and, secondly, to allocate the hit to a single pixel. This paper focuses on the latter part of the process, i.e. on a comparison of how different hit allocation algorithms affect the spatial accuracy and false registration vs. missed hit probability. Different hit allocation algorithms were simulated, including standard photon counting (no full signal reconstruction) and the C8P1 algorithm. Also, a novel approach, based on a detection of patterns, with significantly limited analog signal processing, was proposed and characterized.

  7. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  8. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    Science.gov (United States)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  9. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.; Torheim, O.; Hu-Guo, C. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Degerli, Y. [CEA Saclay, IRFU/SEDI, 91191 Gif-sur-Yvette Cedex (France); Hu, Y., E-mail: yann.hu@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2013-03-11

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13μm CMOS technology. The functionalities of this chip have been verified through experimental characterization.

  10. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  11. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    OpenAIRE

    Li, Q.; Garson, A.; Dowkontt, P.; Martin, J.; Beilicke, M; Jung, I.; Groza, M.; A. Burger; De Geronimo, G.; Krawczynski, H.; .

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pi...

  12. Orthogonal cross-seeding: an approach to explore protein aggregates in living cells.

    Science.gov (United States)

    Hinz, Justyna; Gierasch, Lila M; Ignatova, Zoya

    2008-04-08

    Protein aggregation is associated with the pathology of many diseases, especially neurodegenerative diseases. A variety of structurally polymorphic aggregates or preaggregates including amyloid fibrils is accessible to any aggregating protein. Preaggregates are now believed to be the toxic culprits in pathologies rather than mature aggregates. Although clearly valuable, understanding the mechanism of formation and the structural characteristics of these prefibrillar species is currently lacking. We report here a simple new approach to map the nature of the aggregate core of transient aggregated species directly in the cell. The method is conceptually based on the highly discriminating ability of aggregates to recruit new monomeric species with equivalent molecular structure. Different soluble segments comprising parts of an amyloidogenic protein were transiently pulse-expressed in a tightly controlled, time-dependent manner along with the parent aggregating full-length protein, and their recruitment into the insoluble aggregate was monitored immunochemically. We used this approach to determine the nature of the aggregate core of the metastable aggregate species formed during the course of aggregation of a chimera containing a long polyglutamine repeat tract in a bacterial host. Strikingly, we found that different segments of the full-length protein dominated the aggregate core at different times during the course of aggregation. In its simplicity, the approach is also potentially amenable to screen also for compounds that can reshape the aggregate core and induce the formation of alternative nonamyloidogenic species.

  13. Hydrophobic aggregation of ultrafine kaolinite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ping; HU Yue-hua; LIU Run-Qing

    2008-01-01

    The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test, zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles show the self-aggregation of edge-face in acidic media, the aggregation of edge-face and edge-edge in neutral media, and the dispersion in alkaline media due to electrostatic repulsion. In the presence of the dodecylammonium acetate cationic surfactant and in neutral and alkaline suspension, the hydrophobic aggregation of face-face is demonstrated. The zeta potential of kaolinite increases with increasing the concentration of cationic surfactant. The small and loose aggregation at a low concentration but big and tight aggregation at a high concentration is presented At pH=7 alkyl quarterly amine salt CTAB has the best hydrophobic aggregation among three cationic surfactants, namely, dodecylammonium acetate, alkyl quarterly amine salts 1227 and CTAB.

  14. Absorption Spectra of Astaxanthin Aggregates

    CERN Document Server

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  15. Non-Arrhenius protein aggregation.

    Science.gov (United States)

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  16. Performance limits of a single photon counting pixel system

    Science.gov (United States)

    Chmeissani, M.; Mikulec, B.

    2001-03-01

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 μm) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes. The Medipix2 collaboration consists of groups from Barcelona, Cagliari, CEA/Leti DEIN, CERN, Freiburg, Glasgow, Mitthögskolan, Napoli, NIKHEF, MRC lab Cambridge, Pisa, Prague and Sassari.

  17. A low light level sensor with dark current compensating pixels

    Science.gov (United States)

    Perley, Mitchell; Baxter, Patrick; Raynor, Jeffrey M.; Renshaw, David

    2008-09-01

    In ultra-low light conditions the presence of dark current becomes a major source of noise for a CMOS sensor. Standard dark current compensation techniques, such as using a dark reference frame, bring significant improvements to dark noise in typical applications. However, applications requiring long integration times mean that such techniques cannot always be used. This paper presents a differential dark current compensating pixel. The pixel is made up of a differential amplifier and two photodiodes: one light shielded photodiode connected to the non-inverting input of the opamp and a light detecting photodiode connected to the inverting input of the opamp. An integrating capacitor is used in the feedback loop to convert photocurrent to voltage, and a switched capacitor network is present in parallel with the light shielded pixel, which is used to satisfy the output equation to compensate the dark current. The pixel uses 150 μm x 150 μm photodiodes and is fabricated in a standard 0.18 μm, 6M1P, CMOS process. The results show that the pixel is light sensitive and has a linear output as expected. However, the dark current is not predictably controlled. Further work will be carried out on the pixel design, and particularly the switched capacitor circuit, to determine the cause of the non-predictability of the pixel output.

  18. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    Science.gov (United States)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  19. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  20. Monte Carlo investigation of charge-transport effects on energy resolution and detection efficiency of pixelated CZT detectors for SPECT/PET applications.

    Science.gov (United States)

    Myronakis, Marios E; Darambara, Dimitra G

    2011-01-01

    Semiconductor detectors are increasingly considered as alternatives to scintillation crystals for nuclear imaging applications such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). One of the most prominent detector materials is cadmium zinc telluride (CZT), which is currently used in several application-specific nuclear imaging systems. In this work, the charge-transport effects in pixelated CZT detectors in relation to detector pixel size and thickness are investigated for pixels sizes from 0.4 up to 1.6 mm. The determination of an optimum pixel size and thickness for use with photon energies of 140 and 511 keV, suitable for SPECT and PET studies, is attempted using photon detection efficiency and energy resolution as figures of merit. The Monte Carlo method combined with detailed finite element analysis was utilized to realistically model photon interactions in the detector and the signal generation process. The GEANT4 Application for Tomographic Emission (GATE) toolkit was used for photon irradiation and interaction simulations. The COMSOL MULTIPHYSICS software application was used to create finite element models of the detector that included charge drift, diffusion, trapping, and generation. Data obtained from the two methods were combined to generate accurate signal induction at the detector pixels. The energy resolution was calculated as the full width at half maximum of the energy spectrum photopeak. Photon detection efficiency was also calculated. The effects of charge transport within the detector and photon escape from primary pixel of interaction were investigated; the extent of diffusion to lateral pixels was also assessed. Charge transport and signal induction were affected by the position of a pixel in the detector. Edge and corner pixels were less susceptible to lateral diffusion than pixels located in the inner part of the detector. Higher detection efficiency and increased photon escape from primary

  1. Amplifier based broadband pixel for sub-millimeter wave imaging

    Science.gov (United States)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  2. Image Restoration After Pixel Binning in Image Sensors

    Institute of Scientific and Technical Information of China (English)

    LI Hao; ZHANG Hui; GUO Xiaolian; HU Guangshu

    2009-01-01

    A method was developed to restore degraded images to some extent after the pixel binning pro-cess in image sensors to improve the resolution. A pixel binning model was used to approximate the original un-binned image. Then, the least squares error criterion was used as a constraint to reconstruct the re-stored pixel values from the binning model. The technique achieves about a one-decibel increase in the peak signal-to-noise ratio compared with the odginal estimated image. The technique has good detail pre-servation performance as well as low computation load. Thus, this restoration technique provides valuable improvements in practical, real time image processing.

  3. Pixelated camouflage patterns from the perspective of hyperspectral imaging

    Science.gov (United States)

    Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav

    2016-10-01

    Pixelated camouflage patterns fulfill the role of both principles the matching and the disrupting that are exploited for blending the target into the background. It means that pixelated pattern should respect natural background in spectral and spatial characteristics embodied in micro and macro patterns. The HS imaging plays the similar, however the reverse role in the field of reconnaissance systems. The HS camera fundamentally records and extracts both the spectral and spatial information belonging to the recorded scenery. Therefore, the article deals with problems of hyperspectral (HS) imaging and subsequent processing of HS images of pixelated camouflage patterns which are among others characterized by their specific spatial frequency heterogeneity.

  4. Dual readout 3D direct/induced-signals pixel systems

    CERN Document Server

    Parker, Sherwood; Deile, Mario; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Watts, Stephen

    2008-01-01

    In this paper, 3D-electrode pixel detectors are described, in which the bias electrode systems have additional elements. Adding resistors between the bias supply line and each bias electrode together with a signal electrode readout that can measure pulse heights of both polarities could simultaneously provide lower capacitance and improved spatial resolution in both directions. A separate paper (“Dual-readout—strip/pixel systems”) covers an alternative—pixels with an added strip readout in one direction which could be used with either planar or 3D-electrodes, and could simultaneously provide a fast trigger and significantly increase the spatial resolution in both directions.

  5. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  6. Dual collection mode optical microscope with single-pixel detection

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  7. Research on Judgment Aggregation Based on Logic

    Directory of Open Access Journals (Sweden)

    Li Dai

    2014-05-01

    Full Text Available Preference aggregation and judgment aggregation are two basic research models of group decision making. And preference aggregation has been deeply studied in social choice theory. However, researches of social choice theory gradually focus on judgment aggregation which appears recently. Judgment aggregation focuses on how to aggregate many consistent logical formulas into one, from the perspective of logic. We try to start with judgment aggregation model based on logic and then explore different solutions to problem of judgment aggregation.

  8. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    Science.gov (United States)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  9. Improvement of Event Synchronization in the ATLAS Pixel Readout Development

    Science.gov (United States)

    Adams, Logan; Atlas Collaboration

    2017-01-01

    As the LHC continues in Run2, the B-Layer still uses the Atlas-SiROD Pixel readout system initially developed for Run 1. The higher luminosity occurring during Run 2 results in higher occupancy causing increased desynchronization errors in the Pixel Readout. In order to ensure lasting operation of the B-Layer until it is replaced after Run 3, changes were made to the firmware and software to add debug capabilities to identify when the errors are crossing certain thresholds and change the internal control logic accordingly. These features also allow for better debugging of the Event Counter Reset addition to the firmware. This talk will focus on the features implemented and measurements to demonstrate the positive impact on the Pixel DAQ system. A Pixel front-end chip emulator which can be used for readout system development beyond Run 3 will also be discussed. Presenter is Logan Adams, University of Washington.

  10. Comparing three spaceborne optical sensors via fine scale pixel ...

    African Journals Online (AJOL)

    User @

    Pixel-based Urban Land Cover Classification Products ... operational VHR spaceborne measurement systems such as those envisaged under ...... zone correlated vegetation stratification in the Kruger National Park, South Africa', Physics and.

  11. Monolithic CMOS pixel detector for international linear collider vertex detection

    Indian Academy of Sciences (India)

    J E Brau; O Igonkina; N Sinew; D Strom; C Baltay; W Emmet; H Neal; D Rabinowitz

    2007-12-01

    A monolithic CMS pixel detector is under development for an ILC experiment. This chronopixel array provides a time stamp resolution of one bunch crossing, a critical feature for background suppression. The status of this effort is summarized.

  12. HISTOGRAM TECHNIQUE WITH PIXEL INDICATOR FOR HIGH FIDELITY STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    V.Meiamai

    2013-06-01

    Full Text Available In this current world of increasing technology trends and the “internet age”, the security of our personal information has become more important than it has ever been there are media reports ofidentity theft and fraud and the numbers of innocent victims are increasing exponentially. Steganography plays an important role in preventing such information destruction by implementing a principle ofimperceptible secret sharing. By this security can be established by clearly embedding data in such a way that the quality of the image is not affected. The existing methodology prevailing now is based on pixel indicator and number of data to be embedded is by pixel value differencing technique. A limitation in this methodology is that the pixel indicator channel is manually selected. The proposed methodology uses pixel indicator channel which is decided using histogram technique and the secret message file has to be embedded in the plane which has the highest color intensity.

  13. Performance of silicon pixel detectors at small track incidence angles

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN, as well as simulated data.

  14. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  15. Two-dimensional pixel array image sensor for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Beche, J.-F.; Cork, C. [and others

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  16. New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    CERN Document Server

    Neyret, D.; Anfreville, M.; Bedfer, Y.; Burtin, E.; Coquelet, C.; d'Hose, N.; Desforge, D.; Giganon, A.; Jourde, D.; Kunne, F.; Magnon, A.; Makke, N.; Marchand, C.; Paul, B.; Platchkov, S.; Thibaud, F.; Usseglio, M.; Vandenbroucke, M.

    2012-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very go...

  17. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  18. Integration and testing of the DAQ system for the CMS phase 1 pixel upgrade

    CERN Document Server

    Akgun, Bora

    2016-01-01

    The CMS pixel detector phase 1 upgrade in 2017 requires an upgraded DAQ to accept higher data rates. A new DAQ system has been developed based on a combination of custom and standard microTCA parts. Custom mezzanines on FC7 AMCs provide a front-end driver for readout, and front-end controller for configuration, clock and trigger. The DAQ system is undergoing a series of integration tests including readout of the pilot pixel detector already installed in CMS, checkout of the phase 1 detector during its assembly, and testing with the CMS central DAQ. This paper describes the DAQ system, integration tests and results, and an outline of the activities up to commissioning the final system at CMS in 2017.

  19. Pixel-by-pixel VIS/NIR and LIR sensor fusion system

    Science.gov (United States)

    Zhang, Evan; Zhang, James S.; Song, Vivian W.; Chin, Ken P.; Hu, Gelbert

    2003-01-01

    Visible (VIS) camera (such as CCD) or Near Infrared (NIR) camera (such as low light level CCD or image intensifier) has high resolution and is easy to distinguish enemy and foe, but it cannot see through thin fog/cloud, heavy smoke/dust, foliage, camouflage, and darkness. The Long Infrared (LIR) imager can overcome above problems, but the resolution is too low and it cannot see the NIR aiming light from enemy. The best solution is to fuse the VIS/NIR and LIR sensors to overcome their shortcomings and take advantages of both sensors. In order to see the same target without parallax, the fusio system must have a common optical aperature. In this paper, three common optical apertures are designed: common reflective objective lens, common beam splitter, and common transmissive objective lens. The first one has very small field of view and the second one needs two heads, so the best choice is the third one, but we must find suitable optical materials and correct the color aberrations from 0.6 to 12 μ. It is a tough job. By choosing ZnSe as the first common piece of the objective lens and using glass for NIR and Ge (or IR glass) for LIR as rest pieces, we only need to and are able to correct the aberrations from 0.6 to 1.0 μ for NIR and from 8 to 12 μ for LIR. Finally, a common reflective objective lens and the common beam splitter are also successfully designed. Five application examples are given. In the digital signal processing, we use only one Altera chip. After inserting data, scaling the image size, and adjusting the signal level, the LIR will have the same format and same pixel number of the VIS/NIR, so real-time pixel-by-pixel sensor fusion is realized. The digital output can be used for further image processing and automatic target recognition, such as if we overlap the LIR image on the VIS/NIR image for missile guidance or rifle sight we don't need to worry about the time and the environment again. A gum-size wireless transmitter is also designed that is

  20. Aggregation of MBP in chronic demyelination

    Science.gov (United States)

    Frid, Kati; Einstein, Ofira; Friedman-Levi, Yael; Binyamin, Orli; Ben-Hur, Tamir; Gabizon, Ruth

    2015-01-01

    Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS. PMID:26273684

  1. Simulation of charge transport in pixelated CdTe

    OpenAIRE

    Kolstein, M.; G Ariño; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have op...

  2. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  3. Leakage current measurements on pixelated CdZnTe detectors

    NARCIS (Netherlands)

    Dirks, B.P.F.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R&D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9×0.9 mm2) or 256 (0.5×0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several

  4. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  5. Angle-sensitive pixel design for wavefront sensing

    CERN Document Server

    Zheng, Guoan

    2013-01-01

    Conventional image sensors are only responsive to the intensity variation of the incoming light wave. By encoding the wavefront information into the balanced detection scheme, we demonstrate an image sensor pixel design that is capable to detect both the local intensity and wavefront information simultaneously. With the full compatibility to the CMOS fabrication process, the proposed pixel design can benefit a variety of applications, including phase microscopy, lensless imaging and machine vision.

  6. Small pitch pixel sensors\\\\ for the CMS Phase II upgrade

    CERN Document Server

    Steinbrueck, Georg

    2015-01-01

    The CMS collaboration has undertaken two sensor R\\&D programs on thin n-in-p planar and 3D silicon sensor technologies. To cope with the increase in instantaneous luminosity, the pixel area has to be reduced to approximately 2500 $\\mu$m$^{2}$ to keep the occupancy at the percent level. Suggested pixel cell geometries to match this requirement are {50$\\times$50 }$\\mu$...

  7. FPIX2, the BTeV pixel readout chip

    CERN Document Server

    Christian, D C; Chiodini, G; Hoff, J; Kwan, S; Mekkaoui, A; Yarema, R; 10.1016/j.nima.2005.04.046

    2005-01-01

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  8. VCSEL and Smart Pixel Research for VLSI Photonics

    Science.gov (United States)

    2007-11-02

    Texas (20 GHz) and the Vitesse GaAs E/D MESFET/MSM technology utilizing the MOSIS foundry (2.5 GHz). 14. SUBJECT TERMS Vertical cavity...pixels operating at 2.5 Gb/s using the Vitesse GaAs E/D MESFET/MSM MOSIS foundry. Design, fabrication, and testing of 2 x2 smart pixels operating at 20

  9. Pixel History for Advanced Camera for Surveys Wide Field Channel

    Science.gov (United States)

    Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.

  10. Small pixel CZT detector for hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew David, E-mail: Matt.Wilson@stfc.ac.uk [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom); Cernik, Robert [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Chen, Henry [Redlen Technologies, Saanichton, British Columbia (Canada); Hansson, Conny [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Iniewski, Kris [Redlen Technologies, Saanichton, British Columbia (Canada); Jones, Lawrence L.; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom)

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20x20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20x20 pixels on a 250 {mu}m pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A {sup 241}Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09{+-}0.46 to 1.50{+-}0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20x20 array. A large area 80x80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  11. Small pixel CZT detector for hard X-ray spectroscopy

    Science.gov (United States)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  12. Content Progressive Coding of Limited Bits/pixel Images

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Forchhammer, Søren

    1999-01-01

    A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF.......A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF....

  13. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  14. Scaling and Pixel Crosstalk Considerations for CMOS Image Sensor

    Institute of Scientific and Technical Information of China (English)

    JIN Xiang-liang; CHEN Jie(member,IEEE); QIU Yu-lin

    2003-01-01

    With the scaling development of the minimum lithographic size,the scaling trend of CMOS imager pixel size and fill factor has been computed according to the Moore rule.When the CMOS minimum lithographic feature scales down to 0.35 μm,the CCD image pixel size is not so easy to be reduced and but the CMOS image pixel size benefits from the scaling minimum lithographic feature. However, when the CMOS technology is downscaled to or under 0.35 μm,the fabrication of CMOS image sensors will be limited by the standard CMOS process in both ways of shallow trench isolation and source/drain junction,which results in pixel crosstalk.The impact of the crosstalk on the active pixel CMOS image sensor is analyzed based on the technology scaling.Some suppressed crosstalk methods have been reviewed.The best way is that combining the advantages of CMOS and SOI technology to fabricate the image sensors will reduce the pixel crosstalk.

  15. 3D electronics for hybrid pixel detectors – TWEPP-09

    CERN Document Server

    Godiot, S; Chantepie, B; Clémens, J C; Fei, R; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Hemperek, T; Karagounis, M; Krueger, H; Mekkaoui, A; Pangaud, P; Rozanov, A; Wermes, N

    2009-01-01

    Future hybrid pixel detectors are asking for smaller pixels in order to improve spatial resolution and to deal with an increasing counting rate. Facing these requirements is foreseen to be done by microelectronics technology shrinking. However, this straightforward approach presents some disadvantages in term of performances and cost. New 3D technologies offer an alternative way with the advantage of technology mixing. For the upgrade of ATLAS pixel detector, a 3D conception of the read-out chip appeared as an interesting solution. Splitting the pixel functionalities into two separate levels will reduce pixel size and open the opportunity to take benefit of technology's mixing. Based on a previous prototype of the read-out chip FE-I4 (IBM 130nm), this paper presents the design of a hybrid pixel read-out chip using threedimensional Tezzaron-Chartered technology. In order to disentangle effects due to Chartered 130nm technology from effects involved by 3D architecture, a first translation of FEI4 prototype had ...

  16. Intrinsic Pixel Size Variation in an LSST Prototype Sensor

    CERN Document Server

    Baumer, Michael

    2015-01-01

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) have motivated a search for new and unexpected sources of systematic error in the LSST camera. Flat-field images are a rich source of data on sensor anomalies, although such effects are typically dwarfed by shot noise in a single flat field. After combining many ($\\sim 500$) such images into `ultraflats' to reduce the impact of shot noise, we perform photon transfer analysis on a pixel-by-pixel basis and observe no spatial structure in pixel linearity or gain at light levels of 100 ke$^-$ and below. At 125 ke$^-$, a columnar structure is observed in the gain map--we attribute this to a flux-dependent charge transfer inefficiency. We also probe small-scale variations in effective pixel size by analyzing pixel-neighbor correlations in ultraflat images, where we observe clear evidence of intrinsic variation in effective pixel size in an LSST prototype sensor near the $\\sim .3\\%$ level.

  17. Optical differentiation wavefront sensing with binary pixelated transmission filters.

    Science.gov (United States)

    Qiao, J; Mulhollan, Z; Dorrer, C

    2016-05-02

    Sensors measuring the spatial phase of optical waves are widely used in optics. The optical differentiation wavefront sensor (ODWS) reconstructs the wavefront of an optical wave from wavefront slope measurements obtained by inducing linear field-transmission gradients in the far-field. Its dynamic range and sensitivity can be adjusted simply by changing the gradient slope. We numerically and experimentally demonstrate the possibility of implementing the spatially varying transmission gradient using distributions of small pixels that are either transparent or opaque. Binary pixelated filters are achromatic and can be fabricated with high accuracy at relatively low cost using commercial lithography techniques. We study the impact of the noise resulting from pixelation and binarization of the far-field filter for various test wavefronts and sensor parameters. The induced wavefront error is approximately inversely proportional to the pixel size. For an ODWS with dynamic range of 100 rad/mm over a 1-cm pupil, the error is smaller than λ/15 for a wide range of test wavefronts when using 2.5-μm pixels. We experimentally demonstrate the accuracy and consistency of a first-generation ODWS based on binary pixelated filters.

  18. Challenges of small-pixel infrared detectors: a review

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  19. Imaging by photon counting with 256 x 256 pixel matrix

    CERN Document Server

    Tlustos, Lukas; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Using 0.25 mum standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256 multiplied by 256 square 55mum pixels intended for X- ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise similar to 150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3 multiplied by 10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13- bit register. The serial readout takes 5-10 ms. A parallel readout of similar to 300 mus could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to t...

  20. An adaptive regression method for infrared blind-pixel compensation

    Science.gov (United States)

    Chen, Suting; Meng, Hao; Pei, Tao; Zhang, Yanyan

    2017-09-01

    Blind pixel compensation is an ill-posed inverse problem of infrared imaging systems and image restoration. The performance of a blind pixel compensation algorithm depends on the accuracy of estimation for the underlying true infrared images. We propose an adaptive regression method (ARM) for blind pixel compensation that integrates the multi-scale framework with a regression model. A blind-pixel is restored by exploiting the intra-scale properties through the nonparametric regressive estimation and the inter-scale characteristics via parametric regression for continuous learning. Combining the respective strengths of a parametric model and a nonparametric model, ARM establishes a set of multi-scale blind-pixel compensation method to correct the non-uniformity based on key frame extraction. Therefore, it is essentially different from the traditional frameworks for blind pixel compensation which are based on filtering and interpolation. Experimental results on some challenging cases of blind compensation show that the proposed algorithm outperforms existing methods by a significant margin in both isolated blind restoration and clustered blind restoration.

  1. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    Full Text Available Introduction: Soil aggregate stability is a key factor in soil resistivity to mechanical stresses, including the impacts of rainfall and surface runoff, and thus to water erosion (Canasveras et al., 2010. Various indicators have been proposed to characterize and quantify soil aggregate stability, for example percentage of water-stable aggregates (WSA, mean weight diameter (MWD, geometric mean diameter (GMD of aggregates, and water-dispersible clay (WDC content (Calero et al., 2008. Unfortunately, the experimental methods available to determine these indicators are laborious, time-consuming and difficult to standardize (Canasveras et al., 2010. Therefore, it would be advantageous if aggregate stability could be predicted indirectly from more easily available data (Besalatpour et al., 2014. The main objective of this study is to investigate the potential use of support vector machines (SVMs method for estimating soil aggregate stability (as quantified by GMD as compared to multiple linear regression approach. Materials and Methods: The study area was part of the Bazoft watershed (31° 37′ to 32° 39′ N and 49° 34′ to 50° 32′ E, which is located in the Northern part of the Karun river basin in central Iran. A total of 160 soil samples were collected from the top 5 cm of soil surface. Some easily available characteristics including topographic, vegetation, and soil properties were used as inputs. Soil organic matter (SOM content was determined by the Walkley-Black method (Nelson & Sommers, 1986. Particle size distribution in the soil samples (clay, silt, sand, fine sand, and very fine sand were measured using the procedure described by Gee & Bauder (1986 and calcium carbonate equivalent (CCE content was determined by the back-titration method (Nelson, 1982. The modified Kemper & Rosenau (1986 method was used to determine wet-aggregate stability (GMD. The topographic attributes of elevation, slope, and aspect were characterized using a 20-m

  2. Novel aspects of platelet aggregation

    Directory of Open Access Journals (Sweden)

    Roka-Moya Y. M.

    2014-01-01

    Full Text Available The platelet aggregation is an important process, which is critical for the hemostatic plug formation and thrombosis. Recent studies have shown that the platelet aggregation is more complex and dynamic than it was previously thought. There are several mechanisms that can initiate the platelet aggregation and each of them operates under specific conditions in vivo. At the same time, the influence of certain plasma proteins on this process should be considered. This review intends to summarize the recent data concerning the adhesive molecules and their receptors, which provide the platelet aggregation under different conditions.

  3. Fractal Aggregation Under Rotation

    Institute of Scientific and Technical Information of China (English)

    WU Feng-Min; WU Li-Li; LU Hang-Jun; LI Qiao-Wen; YE Gao-Xiang

    2004-01-01

    By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω the fractal dimension decreases with increasing ω, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.

  4. Fractal Aggregation Under Rotation

    Institute of Scientific and Technical Information of China (English)

    WUFeng-Min; WULi-Li; LUHang-Jun; LIQiao-Wen; YEGao-Xiang

    2004-01-01

    By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω; thefractal dimension decreases with increasing ω;, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.

  5. Platelet aggregation following trauma

    DEFF Research Database (Denmark)

    Windeløv, Nis A; Sørensen, Anne M; Perner, Anders

    2014-01-01

    We aimed to elucidate platelet function in trauma patients, as it is pivotal for hemostasis yet remains scarcely investigated in this population. We conducted a prospective observational study of platelet aggregation capacity in 213 adult trauma patients on admission to an emergency department (ED......). Inclusion criteria were trauma team activation and arterial cannula insertion on arrival. Blood samples were analyzed by multiple electrode aggregometry initiated by thrombin receptor agonist peptide 6 (TRAP) or collagen using a Multiplate device. Blood was sampled median 65 min after injury; median injury...... severity score (ISS) was 17; 14 (7%) patients received 10 or more units of red blood cells in the ED (massive transfusion); 24 (11%) patients died within 28 days of trauma: 17 due to cerebral injuries, four due to exsanguination, and three from other causes. No significant association was found between...

  6. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  7. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth

    CERN Document Server

    Guskov, A; Smolyanskiy, P; Zhemchugov, A

    2015-01-01

    The scientific apparatus "Gamma-400" designed for study of hadron and electromagnetic components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the "Gamma-400" apparatus. Due to high granularity of the sensor (pixel size is 55 $mu$m) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  8. Serial powering Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    CERN Document Server

    Ta, D B; Hugging, F; Fischer, P; Grosse-Knetter, J; Runólfsson, O; Wermes, N

    2006-01-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensive...

  9. A prototype of a new generation readout ASIC in 65nm CMOS for pixel detectors at HL-LHC

    Science.gov (United States)

    Monteil, E.; Pacher, L.; Paternò, A.; Loddo, F.; Demaria, N.; Gaioni, L.; De Canio, F.; Traversi, G.; Re, V.; Ratti, L.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Marzocca, C.; Licciulli, F.; Ciciriello, F.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.; Veri, C.

    2016-12-01

    This paper describes a readout ASIC prototype designed by CHIPIX65 project, part of RD53, for a pixel detector at HL-LHC . A 64 × 64 matrix of 50 × 50 μ m2 pixels is realised. A digital architecture has been developed, with particle efficiency above 99.9% at 3 GHz/cm2 pixel rate, 1 MHz trigger rate with 12.5 μ s latency. Two analog front end designs, one synchronous and one asynchronous, are implemented. Charge is measured with 5-bit precision and the analog dead-time is below 1%. IP-blocks (DAC, ADC, BandGap, SER, sLVS-TX/RX) and very front ends are silicon proven, irradiated to 600-800Mrad.

  10. A prototype of pixel readout ASIC in 65 nm CMOS technology for extreme hit rate detectors at HL-LHC

    Science.gov (United States)

    Paternò, A.; Pacher, L.; Monteil, E.; Loddo, F.; Demaria, N.; Gaioni, L.; De Canio, F.; Traversi, G.; Re, V.; Ratti, L.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Marzocca, C.; Licciulli, F.; Ciciriello, F.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.; Veri, C.

    2017-02-01

    This paper describes a readout ASIC prototype designed by the CHIPIX65 project, part of RD53, for a pixel detector at HL-LHC . A 64×64 matrix of 50×50μm2 pixels is realised. A digital architecture has been developed, with particle efficiency above 99.5% at 3 GHz/cm2 pixel rate, trigger frequency of 1 MHz and 12.5μsec latency. Two analog front end designs, one synchronous and one asynchronous, are implemented. Charge is measured with 5-bit precision, analog dead-time below 1%. The chip integrates for the first time many of the components developed by the collaboration in the past, including the Digital-to-Analog converters, Bandgap reference, Serializer, sLVS drivers, and analog Front Ends. Irradiation tests on these components proved their reliability up to 600 Mrad.

  11. Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

    CERN Document Server

    Hogg, David W; Barclay, Tom; Dawson, Rebekah; Fergus, Rob; Foreman-Mackey, Dan; Harmeling, Stefan; Hirsch, Michael; Lang, Dustin; Montet, Benjamin T; Schiminovich, David; Schölkopf, Bernhard

    2013-01-01

    Kepler's immense photometric precision to date was maintained through satellite stability and precise pointing. In this white paper, we argue that image modeling--fitting the Kepler-downlinked raw pixel data--can vastly improve the precision of Kepler in pointing-degraded two-wheel mode. We argue that a non-trivial modeling effort may permit continuance of photometry at 10-ppm-level precision. We demonstrate some baby steps towards precise models in both data-driven (flexible) and physics-driven (interpretably parameterized) modes. We demonstrate that the expected drift or jitter in positions in the two-weel era will help with constraining calibration parameters. In particular, we show that we can infer the device flat-field at higher than pixel resolution; that is, we can infer pixel-to-pixel variations in intra-pixel sensitivity. These results are relevant to almost any scientific goal for the repurposed mission; image modeling ought to be a part of any two-wheel repurpose for the satellite. We make other r...

  12. Distortion of the per-pixel signal in the Timepix detector observed in high energy carbon ion beams

    Science.gov (United States)

    Hartmann, B.; Soukup, P.; Granja, C.; Jakubek, J.; Pospíšil, S.; Jäkel, O.; Martišíková, M.

    2014-09-01

    Within the application of the pixelated semiconductor Timepix detector for ion beam therapy purposes, distortion and non-linearity in the spectrometric pixel response to high energy carbon ions were observed. In this contribution, these effects are studied in detail. A distinct correlation between the arrival time of a particle during the exposure time and the respective detector signal was found. The hypothesis to explain these findings by oscillations in the pixel electronics leading to a second rise of the preamplifier output above threshold is discussed. Depending on the particle arrival time, the distortions can result in an artificially increased counter value and consequently an enlarged detector signal in energy mode. The effect appears when the signal per-pixel is above approximately 1 MeV, therefore becomig especially significant for measurements with heavy ions. The results presented in this publication are part of: B. Hartmann, A Novel Approach to Ion Spectroscopy of Therapeutic Ion Beams Using a Pixelated Semiconductor Detector, Ph.D. thesis, University of Heidelberg, Germany (2013).

  13. Global Liquidity through the Lens of Monetary Aggregates

    OpenAIRE

    Kyuil Chung; Jong-Eun Lee; Elena Loukoianova; Hail Park; Shin, Hyun S.

    2014-01-01

    This paper examines how the financial activities of non-financial corporates (NFCs) in international markets potentially affects domestic monetary aggregates and financial conditions. Monetary aggregates reflect, in part, the activities of NFCs, who channel capital market financing into the domestic banking system, thereby influencing funding conditions and credit availability. Periods of capital inflows are also those when the domestic currency is appreciating, and such periods of rapid exch...

  14. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  15. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    Science.gov (United States)

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e(-) RMS at room temperature.

  16. Automated Detection of Contaminated Radar Image Pixels in Mountain Areas

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; Qin XU; Pengfei ZHANG; Shun LIU

    2008-01-01

    In mountain areas,radar observations are often contaminated(1)by echoes from high-speed moving vehicles and(2)by point-wise ground clutter under either normal propagation(NP)or anomalous propa-gation(AP)conditions.Level II data are collected from KMTX(Salt Lake City,Utah)radar to analyze these two types of contamination in the mountain area around the Great Salt Lake.Human experts provide the"ground truth"for possible contamination of either type on each individual pixel.Common features are then extracted for contaminated pixels of each type.For example,pixels contaminated by echoes from high-speed moving vehicles are characterized by large radial velocity and spectrum width.Echoes from a moving train tend to have larger velocity and reflectivity but smaller spectrum width than those from moving vehicles on highways.These contaminated pixels are only seen in areas of large terrain gradient(in the radial direction along the radar beam).The same is true for the second type of contamination-point-wise ground clutters.Six quality control(QC)parameters are selected to quantify the extracted features.Histograms are computed for each QC parameter and grouped for contaminated pixels of each type and also for non-contaminated pixels.Based on the computed histograms,a fuzzy logical algorithm is developed for automated detection of contaminated pixels.The algorithm is tested with KMTX radar data under different(clear and rainy)weather conditions.

  17. Smart pixel imaging with computational-imaging arrays

    Science.gov (United States)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  18. Effect of Pixel’s Spatial Characteristics on Recognition of Isolated Pixelized Chinese Character

    Science.gov (United States)

    Yang, Kun; Liu, Shuang; Wang, Hong; Liu, Wei; Wu, Yaowei

    2015-01-01

    The influence of pixel’s spatial characteristics on recognition of isolated Chinese character was investigated using simulated prosthestic vision. The accuracy of Chinese character recognition with 4 kinds of pixel number (6*6, 8*8, 10*10, and 12*12 pixel array) and 3 kinds of pixel shape (Square, Dot and Gaussian) and different pixel spacing were tested through head-mounted display (HMD). A captured image of Chinese characters in font style of Hei were pixelized with Square, Dot and Gaussian pixel. Results showed that pixel number was the most important factor which could affect the recognition of isolated pixelized Chinese Chartars and the accuracy of recognition increased with the addition of pixel number. 10*10 pixel array could provide enough information for people to recognize an isolated Chinese character. At low resolution (6*6 and 8*8 pixel array), there were little difference of recognition accuracy between different pixel shape and different pixel spacing. While as for high resolution (10*10 and 12*12 pixel array), the fluctuation of pixel shape and pixel spacing could not affect the performance of recognition of isolated pixelized Chinese Character. PMID:26628934

  19. Exciton dynamics in molecular aggregates

    NARCIS (Netherlands)

    Augulis, R.; Pugžlys, A.; Loosdrecht, P.H.M. van; Pugzlys, A

    2006-01-01

    The fundamental aspects of exciton dynamics in double-wall cylindrical aggregates of cyanine dyes are studied by means of frequency resolved femtosecond pump-probe spectroscopy. The collective excitations of the aggregates, resulting from intermolecular dipole-dipole interactions have the characteri

  20. Aggregate resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Gessel, S.F. van; Veldkamp, J.G.

    2005-01-01

    We have built a 3D lithological model of the Netherlands, for the purpose of mapping on-land aggregate resources down to 50 m below the surface. The model consists of voxel cells (1000 · 1000 · 1 m), with lithological composition and aggregate content estimates as primary attributes. These attribute

  1. Exciton dynamics in molecular aggregates

    NARCIS (Netherlands)

    Augulis, R.; Pugžlys, A.; Loosdrecht, P.H.M. van; Pugzlys, A

    2006-01-01

    The fundamental aspects of exciton dynamics in double-wall cylindrical aggregates of cyanine dyes are studied by means of frequency resolved femtosecond pump-probe spectroscopy. The collective excitations of the aggregates, resulting from intermolecular dipole-dipole interactions have the

  2. Aggregation and Disaggregation Techniques Applied on Remotely Sensed Data to Obtain Optimum Resolution for Surface Energy Fluxes Estimation

    Science.gov (United States)

    Agam, N.; Kustas, W. P.; Li, F.; Anderson, M. C.

    2006-05-01

    Continuous monitoring of surface energy fluxes provides an important tool for precision agriculture management. It is, therefore, desirable to obtain these fluxes at agricultural field size (length scale ~ 10-100 m). To date, land surface temperature (LST), a fundamental input required for flux computations, is usually available at a nominal resolution of 1 km, which disables field-scale monitoring. Disaggregating LST data into field-scale sub-pixels was found to be possible, with deterioration in temperature accuracy as sub-pixel size is reduced. In contrast to LST, land use and fractional vegetation cover (LU and FC, additional key inputs) are available at high spatial resolution (e.g., 30 m). Aggregation of LU and FC to meet the lower resolution LST data introduces errors when aggregating to larger pixel sizes. The objective of this research is to find the optimum resolution that will minimize the errors due to aggregation of LU/FC and disaggregation of LST data, to provide continuous estimates of field scale surface energy fluxes. Data were used from the 2002 Soil Moisture-Atmosphere Coupling Experiment (SMACEX02) conducted over the upper Midwest corn and soybean production region of Iowa. Three dates during the period of rapid crops growth (June 23, July 1, and July 8) for which Landsat TM images are available were analyzed. The original pixels were aggregated to form 960 m pixels (to mimic thermal data currently available from MODIS) and were then disaggregated following the procedure suggested by Kustas et al. (2003)* to form 60, 120, and 240 m sub-pixels. LU and FC were obtained at 30 m resolution and then aggregated to 60, 120, 240, and 960 m. The Two-Source-Model was run at each of the resolutions using the pertinent inputs. The model output at 60 m resolution, using the original LST data was considered the base line, to which all other outputs were compared. For comparing the flux results at the lower resolutions, the 60 m flux output was aggregated. The

  3. Optical monitoring of particle aggregates

    Institute of Scientific and Technical Information of China (English)

    John Gregory

    2009-01-01

    Methods for monitoring particle aggregation are briefly reviewed. Most of these techniques are based on some form of light scattering and may be greatly dependent on the optical properties of aggregates, which are not generally known. As fractal aggregates grow larger their density can become very low and this has important practical consequences for light scattering. For instance, the scattering coefficient may be much less than for solid objects, which means that the aggregates can appear much smaller than their actual size by a light transmission method. Also, for low-density objects, a high proportion of the scattered light energy is within a small angle of the incident beam, which may also be relevant for measurements with aggregates.Using the 'turbidity fluctuation' technique as an example, it is shown how the apparent size of hydroxide flocs depends mainly on the included impurity particles, rather than the hydroxide precipitate itself. Results using clay suspensions with hydrolyzing coagulants and under are discussed.

  4. Dye Aggregation in Ink Jet

    Institute of Scientific and Technical Information of China (English)

    Thomas Paul; Sarfraz Hussain

    2004-01-01

    Dye aggregation has long been recognised as a key factor in performance, and this is no less so in ink jet applications. The aggregation state was shown to be important in many different areas ranging from the use of dyes in photodynamic therapies all the way to colorants for dying of fabrics. Therefore different methods to investigate dye association qualitatively and quantitatively were developed. A simple procedure to study aggregation could be a useful tool to characterise dyes for ink jet printing. It is critically reviewed the methods used to study dye aggregation, and discussed some of the main conclusions. This will be illustrated by examples of ink jet dye aggregation and its study in aqueous and ink systems. The results are used to correlate the solution behaviour of dyes with their print performance.

  5. DRAG ON SUBMICRON NANOPARTICLE AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    F.; Einar; Kruis

    2005-01-01

    A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.

  6. Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC

    CERN Document Server

    Ichimiya, Ryo; Akiba, Yasuyuki; Atomssa, Ermias; Chollet, Simon; Drapier, Olivier; En'yo, Hideto; Fujiwara, Kohei; Gastaldi, Franck; de Cassagnac, Raphael Granier; Kasai, Miki; Kurita, Kazuyosi; Kurosawa, Maki; Mannel, Eric J; Ohnishi, Hiroaki; Onuki, Yoshiyuki; Pak, Robart; Pancake, Charles; Sekimoto, Michiko; Shafto, Eugene; Sondheim, Walter; Taketani, Atsushi

    2008-01-01

    PHENIX is one of the major experiments at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory. It has been exploring the spin structure of the nucleon utilizing polarized proton-proton collisions and characteristics of the Quark Gluon Plasma (QGP) created in heavy ion collisions. The Silicon Vertex Tracker (VTX) will be implemented in 2010 to enhance physics capabilities. It will be installed very close to the collision point and will cover | \\eta | < 1.2 and | \\phi | ~2{\\pi} by four layers of silicon sensors. Inner two layers are silicon pixel detectors and outer two layers are silicon strip layers. In this paper, the inner silicon pixel detector is reported. We used 200 {\\mu}m thick silicon sensor and readout chip developed for ALICE experiment. As a part of PHENIX detector, it needs to be read out by four times faster from ALICE experiment and to be thin in material to minimize the radiation length. To meet the criteria, the PHENIX silicon pixel detector has been designed an...

  7. A new pixel level digital read out integrated circuits for ultraviolet imaging sensors

    Science.gov (United States)

    Xu, Bin; Lan, Tian-yi; Yuan, Yong-gang; Li, Xiang-yang

    2014-11-01

    The ultraviolet imaging sensors consist of two important parts: the array of detectors and the read out integrated circuits. Along with the demand for the fine resolution, large input dynamic range and high integration degree of the imaging sensors, the functions of read out integrated circuits are becoming more and more important. The on chip analog to digital conversion is the main directions of research on this area. In this paper, we presented a new digital read out integrated circuits for ultraviolet imaging sensors. The proposed circuits have an analog to digital converter in each pixel, which enable the parallel analog to digital conversion of the whole pixel array. The developed circuits have a 50um×50um pixel area with a 128×128 size, and are designed in a 0.35um four metal double poly mixed signal CMOS process. The simulation results show that the designed analog to digital converter has an accuracy of 0.2mV and can achieve the dynamic range of 88dB. The proposed circuits realize the low noise and high speed digital output of read out integrated circuits for ultraviolet imaging sensors.

  8. 3D-FBK Pixel sensors: recent beam tests results with irradiated devices

    CERN Document Server

    Micelli, A; Sandaker, H; Stugu, B; Barbero, M; Hugging, F; Karagounis, M; Kostyukhin, V; Kruger, H; Tsung, J W; Wermes, N; Capua, M; Fazio, S; Mastroberardino, A; Susinno, G; Gallrapp, C; Di Girolamo, B; Dobos, D; La Rosa, A; Pernegger, H; Roe, S; Slavicek, T; Pospisil, S; Jakobs, K; Kohler, M; Parzefall, U; Darbo, G; Gariano, G; Gemme, C; Rovani, A; Ruscino, E; Butter, C; Bates, R; Oshea, V; Parker, S; Cavalli-Sforza, M; Grinstein, S; Korokolov, I; Pradilla, C; Einsweiler, K; Garcia-Sciveres, M; Borri, M; Da Via, C; Freestone, J; Kolya, S; Lai, C H; Nellist, C; Pater, J; Thompson, R; Watts, S J; Hoeferkamp, M; Seidel, S; Bolle, E; Gjersdal, H; Sjobaek, K N; Stapnes, S; Rohne, O; Su, D; Young, C; Hansson, P; Grenier, P; Hasi, J; Kenney, C; Kocian, M; Jackson, P; Silverstein, D; Davetak, H; DeWilde, B; Tsybychev, D; Dalla Betta, G F; Gabos, P; Povoli, M; Cobal, M; Giordani, M P; Selmi, L; Cristofoli, A; Esseni, D; Palestri, P; Fleta, C; Lozano, M; Pellegrini, G; Boscardin, M; Bagolini, A; Piemonte, C; Ronchin, S; Zorzi, N; Hansen, T E; Hansen, T; Kok, A; Lietaer, N; Kalliopuska, J; Oja, A

    2011-01-01

    The Pixel detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider (LHC), and plays a key role in the reconstruction of the primary and secondary vertices of short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration (VLSI) and Micro-Electro-Mechanical-Systems (MEMS) where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradi...

  9. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  10. Perspectives on Preference Aggregation.

    Science.gov (United States)

    Regenwetter, Michel

    2009-07-01

    For centuries, the mathematical aggregation of preferences by groups, organizations, or society itself has received keen interdisciplinary attention. Extensive theoretical work in economics and political science throughout the second half of the 20th century has highlighted the idea that competing notions of rational social choice intrinsically contradict each other. This has led some researchers to consider coherent democratic decision making to be a mathematical impossibility. Recent empirical work in psychology qualifies that view. This nontechnical review sketches a quantitative research paradigm for the behavioral investigation of mathematical social choice rules on real ballots, experimental choices, or attitudinal survey data. The article poses a series of open questions. Some classical work sometimes makes assumptions about voter preferences that are descriptively invalid. Do such technical assumptions lead the theory astray? How can empirical work inform the formulation of meaningful theoretical primitives? Classical "impossibility results" leverage the fact that certain desirable mathematical properties logically cannot hold in all conceivable electorates. Do these properties nonetheless hold true in empirical distributions of preferences? Will future behavioral analyses continue to contradict the expectations of established theory? Under what conditions do competing consensus methods yield identical outcomes and why do they do so?

  11. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  12. Orthogonal flexible Rydberg aggregates

    CERN Document Server

    Leonhardt, K; Rost, J M

    2015-01-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable non-adiabatic effects. A joint exciton/motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of non-adiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K.~Leonhardt {\\it et al.}, Phys.~Rev.~Lett. {\\bf 113} 223001 (2014)]. In this article we discuss the underlying complex dynamics in detail, characterise the ...

  13. Multiport solid-state imager characterization at variable pixel rates

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  14. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  15. Super pixel density based clustering automatic image classification method

    Science.gov (United States)

    Xu, Mingxing; Zhang, Chuan; Zhang, Tianxu

    2015-12-01

    The image classification is an important means of image segmentation and data mining, how to achieve rapid automated image classification has been the focus of research. In this paper, based on the super pixel density of cluster centers algorithm for automatic image classification and identify outlier. The use of the image pixel location coordinates and gray value computing density and distance, to achieve automatic image classification and outlier extraction. Due to the increased pixel dramatically increase the computational complexity, consider the method of ultra-pixel image preprocessing, divided into a small number of super-pixel sub-blocks after the density and distance calculations, while the design of a normalized density and distance discrimination law, to achieve automatic classification and clustering center selection, whereby the image automatically classify and identify outlier. After a lot of experiments, our method does not require human intervention, can automatically categorize images computing speed than the density clustering algorithm, the image can be effectively automated classification and outlier extraction.

  16. The pixel tracking telescope at the Fermilab Test Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Simon; Lei, CM [Fermi National Accelerator Laboratory, Batavia, IL (United States); Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Prosser, Alan; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL (United States); Terzo, Stefano [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Turqueti, Marcos [Fermi National Accelerator Laboratory, Batavia, IL (United States); Uplegger, Lorenzo, E-mail: uplegger@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vigani, Luigi; Dinardo, Mauro E. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100×150 μm{sup 2} pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  17. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    Science.gov (United States)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    intensity of WR in aggregates of different sizes. [ii] the intra-aggregate distribution of OC and the intensity of WR and [iii] the structural stability of soil aggregates relative to the OC content and the intensity of WR in soils under different crops (apricot, citrus and wheat) and different treatments (conventional tilling and mulching). Soil samples were collected from an experimental area (Luvic Calcisols and Calcic Luvisols) in the province of Sevilla (Southern Spain) under different crops (apricot, citrus and wheat) and different management types (conventional tillage with moldboard plow) and mulching (no-tilling and addition of wheat residues at rates varying between 5 and 8 Mg/ha/year). At each sampling site, soil blocks (50 cm long × 50 cm wide × 10 cm deep) were carefully collected to avoid disturbance of aggregates as much as possible and transported to the laboratory. At field moist condition, undisturbed soil aggregates were separated by hand. In order to avoid possible interferences due to disturbance by handling, aggregates broken during this process were discarded. Individual aggregates were arranged in paper trays and air-dried during 7 days under laboratory standard conditions. After air-drying, part of each sample was carefully divided for different analyses: [i] part of the original samples was sieved (2 mm) to eliminate coarse soil particles and homogenized for characterization of OC and N contents, C/N ratio and texture; [ii] part of the aggregates were dry-sieved (0.25-0.5, 0.5-1 and 1-2 mm) or measured with a caliper (2-5, 5-10 and 10-15 mm) and separated in different sieve-size classes for determination of WR and OC content; [iii] aggregates 10-15 mm in size were selected for obtaining aggregate layers using a soil aggregate erosion (SAE) apparatus and WR and OC content were determined at each layer; finally, [iv] in order to study the relation between stability to slaking, WR and OC, these properties were determined in 90 air-dried aggregates

  18. Planar Pixel Sensors for the ATLAS Upgrade: Beam Tests results

    CERN Document Server

    Weingarten, J; Beimforde, M; Benoit, M; Bomben, M; Calderini, G; Gallrapp, C; George, M; Gibson, S; Grinstein, S; Janoska, Z; Jentzsch, J; Jinnouchi, O; Kishida, T; La Rosa, A; Libov, V; Macchiolo, A; Marchiori, G; Münstermann, D; Nagai, R; Piacquadio, G; Ristic, B; Rubinskiy, I; Rummler, A; Takubo, Y; Troska, G; Tsiskaridtze, S; Tsurin, I; Unno, Y; Weigel, P; Wittig, T

    2012-01-01

    Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing between neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.

  19. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  20. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  1. Silicon pixel detector prototyping in SOI CMOS technology

    Science.gov (United States)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  2. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  3. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  4. Pixel front-end development in 65 nm CMOS technology

    CERN Document Server

    Havránek, M; Kishishita, T; Krüger, H; Wermes, N

    2014-01-01

    Luminosity upgrade of the LHC (HL-LHC) imposes severe constraints on the detector tracking systems in terms of radiation hardness and capability to cope with higher hit rates. One possible way of keeping track with increasing luminosity is the usage of more advanced technologies. Ultra deep sub-micron CMOS technologies allow a design of complex and high speed electronics with high integration density. In addition, these technologies are inherently radiation hard. We present a prototype of analog pixel front-end integrated circuit designed in 65 nm CMOS technology with applications oriented towards the ATLAS Pixel Detector upgrade. The aspects of ultra deep sub-micron design and performance of the analog pixel front-end circuits will be discussed.

  5. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  6. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  7. Simulation of Caliste-SO single pixel response

    Science.gov (United States)

    Barylak, J.; Barylak, A.; Mrozek, T.; Podgórski, P.; Steślicki, M.; Ścisłowski, D.

    2016-09-01

    The paper presents a method for determining the pixel response using Geant4 package. The response is calculated for cadmium telluride sensor of Caliste-SO detector. Caliste-SO will be used in STIX instrument on board Solar Orbiter, which is M-class mission of the ESA's program Cosmic Vision 2015-2025. Solar Orbiter is to be launched in October 2018. STIX instrument will provide imaging spectroscopy of solar hard X-ray emissions (4 - 150 keV) using a Fourier-imaging technique. Response of pixels in pixelized Caliste-SO detector vary between each other due to different sizes and locations. This can influence the scientific data obtained from STIX. Additionally, in the simulation we considered detector effects, like: hole tailing, damage layer, Fano and electronic noise.

  8. The Phase-1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  9. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  10. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  11. Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    CERN Document Server

    Bubna, M; Krzywda, A; Koybasi, O; Arndt, K; Bortoletto, D; Shipsey, I; Bolla, G; Kok, A; Hansen, T -E; Hansen, T A; Jensen, G U; Brom, J M; Boscardin, M; Chramowicz, J; Cumalat, J; Betta, G F Dalla; Dinardo, M; Godshalk, A; Jones, M; Krohn, M D; Kumar, A; Lei, C M; Moroni, L; Perera, L; Povoli, M; Prosser, A; Rivera, R; Solano, A; Obertino, M M; Kwan, S; Uplegger, L; Via, C D; Vigani, L; Wagner, S

    2014-01-01

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  12. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  13. HEXITEC ASIC-a pixellated readout chip for CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)], E-mail: l.l.jones@stfc.ac.uk; Seller, Paul; Wilson, Matthew; Hardie, Alec [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20x20 pixel ASIC has been developed and manufactured on a standard 0.35 {mu}m CMOS process.

  14. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    Science.gov (United States)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  15. Radiation hardness studies on CMOS monolithic pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bisello, Dario [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Contarato, Devis, E-mail: DContarato@lbl.go [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Denes, Peter; Doering, Dionisio [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Giubilato, Piero [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Sung Kim, Tae [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Mattiazzo, Serena [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Radmilovic, Velimir [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Zalusky, Sarah [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-12-11

    This paper presents irradiation studies performed on a CMOS monolithic pixel sensor prototype implementing different optimizations of the pixel cell aimed at a superior radiation tolerance. Irradiations with 200 keV electrons up to a total dose of 1.1 Mrad have been performed in view of the utilization of such a design in Transmission Electron Microscopy (TEM) applications. Comparative irradiations were performed with 29 MeV protons up to a 2 Mrad total dose and with 1-14 MeV neutrons up to fluences in excess of 10{sup 13} n{sub eq} cm{sup -2}. Experimental results show an improved performance of pixels designed with Enclosed Layout Transistor (ELT) rules and an optimized layout of the charge collecting diodes.

  16. Design and test of pixel sensors for the CMS experiment

    CERN Document Server

    Bölla, G; Rott, C; Roy, A; Kwan, S; Chien, C Y; Cho, H; Gobbi, B; Horisberger, R P; Kaufmann, R

    2001-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) will have a silicon pixel detector as its innermost tracking device. The pixel system will be exposed to the harsh radiation environment of the LHC. Prototype sensors have been designed to meet the specifications of the CMS experiment. The sensors are n/sup +/-n devices to allow partial depletion operation after bulk type inversion. The isolation of the n/sup +/ pixels is provided through a novel double open p-ring design that allows sensor testing before bump bonding and flip chipping. The prototype wafers contain a variety of p-stop designs and are fabricated by two vendors on different bulk substrates including oxygenated silicon. A study of the static measurement of the prototype sensors before irradiation is presented. (2 refs).

  17. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  18. Efficient Processing of a Rainfall Simulation Watershed on an FPGA-Based Architecture with Fast Access to Neighbourhood Pixels

    Directory of Open Access Journals (Sweden)

    Yeong LeeSeng

    2009-01-01

    Full Text Available This paper describes a hardware architecture to implement the watershed algorithm using rainfall simulation. The speed of the architecture is increased by utilizing a multiple memory bank approach to allow parallel access to the neighbourhood pixel values. In a single read cycle, the architecture is able to obtain all five values of the centre and four neighbours for a 4-connectivity watershed transform. The storage requirement of the multiple bank implementation is the same as a single bank implementation by using a graph-based memory bank addressing scheme. The proposed rainfall watershed architecture consists of two parts. The first part performs the arrowing operation and the second part assigns each pixel to its associated catchment basin. The paper describes the architecture datapath and control logic in detail and concludes with an implementation on a Xilinx Spartan-3 FPGA.

  19. Efficient Processing of a Rainfall Simulation Watershed on an FPGA-Based Architecture with Fast Access to Neighbourhood Pixels

    Directory of Open Access Journals (Sweden)

    Kah Phooi Seng

    2009-01-01

    Full Text Available This paper describes a hardware architecture to implement the watershed algorithm using rainfall simulation. The speed of the architecture is increased by utilizing a multiple memory bank approach to allow parallel access to the neighbourhood pixel values. In a single read cycle, the architecture is able to obtain all five values of the centre and four neighbours for a 4-connectivity watershed transform. The storage requirement of the multiple bank implementation is the same as a single bank implementation by using a graph-based memory bank addressing scheme. The proposed rainfall watershed architecture consists of two parts. The first part performs the arrowing operation and the second part assigns each pixel to its associated catchment basin. The paper describes the architecture datapath and control logic in detail and concludes with an implementation on a Xilinx Spartan-3 FPGA.

  20. CMS pixel module qualification and Monte-Carlo study of $H \\to \\tau^{+}\\tau^{-} \\to l^{+}l^{-}ET$

    CERN Document Server

    Trüb, Peter; Pauss, F

    2008-01-01

    The first part of this work reports on the development of test and calibration algorithms for the qualification of the barrel modules of the CMS pixel detector. Several algorithms to test the hardware functionality and performance have been developed and implemented into an object-oriented software framework. Examples are the pixel readout test, the bump bonding test or the noise measurement. The qualification procedure also includes calibration routines. For instance the gain of each pixel or the temperature sensors of the readout chips have to be calibrated. Furthermore, an algorithm to unify the thresholds of all pixels was developed. According to specific quality criteria, each module is graded into one of three categories. Out of 981 tested modules, 806 were qualified for the usage in the detector. The second part of this work deals with a Monte-Carlo study of the Higgs decay channel $H\\to \\tau^{+}\\tau^{-} \\to l^{+}l^{-}Et$ with a jet balancing the large transverse momentum of the Higgs boson. In contras...

  1. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  2. Hybrid Predictor and Field-Biased Context Pixel Selection Based on PPVO

    OpenAIRE

    Hongyin Xiang; Jinsha Yuan; Sizu Hou

    2016-01-01

    Most pixel-value-ordering (PVO) predictors generated prediction-errors including −1 and 1 in a block-by-block manner. Pixel-based PVO (PPVO) method provided a novel pixel scan strategy in a pixel-by-pixel way. Prediction-error bin 0 is expanded for embedding with the help of equalizing context pixels for prediction. In this paper, a PPVO-based hybrid predictor (HPPVO) is proposed as an extension. HPPVO predicts pixel in both positive and negative orientations. Assisted by expansion bins selec...

  3. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  4. Characterizing pixel and point patterns with a hyperuniformity disorder length

    Science.gov (United States)

    Chieco, A. T.; Dreyfus, R.; Durian, D. J.

    2017-09-01

    We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".

  5. Imaging by photon counting with 256x256 pixel matrix

    Science.gov (United States)

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H. M.; Llopart, Xavier

    2004-09-01

    Using 0.25µm standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256x256 square 55µm pixels intended for X-ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise ~150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3x10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13-bit register. The serial readout takes 5-10 ms. A parallel readout of ~300 µs could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to the homogeneous response over a large sensor area. The sensor material can be adapted to the energy of the X-rays. Best results have been obtained with high-resistivity silicon detectors, but also CdTe and GaAs detectors have been used. The lowest detectable X-ray energy was about 4 keV. Background measurements have been made, as well as measurements of the uniformity of imaging by photon counting. Very low photon count rates are feasible and noise-free at room temperature. The readout matrix can be used also with visible photons if an energy or charge intensifier structure is interposed such as a gaseous amplification layer or a microchannel plate or acceleration field in vacuum.

  6. Cost aggregation and occlusion handling with WLS in stereo matching.

    Science.gov (United States)

    Min, Dongbo; Sohn, Kwanghoon

    2008-08-01

    This paper presents a novel method for cost aggregation and occlusion handling for stereo matching. In order to estimate optimal cost, given a per-pixel difference image as observed data, we define an energy function and solve the minimization problem by solving the iterative equation with the numerical method. We improve performance and increase the convergence rate by using several acceleration techniques such as the Gauss-Seidel method, the multiscale approach, and adaptive interpolation. The proposed method is computationally efficient since it does not use color segmentation or any global optimization techniques. For occlusion handling, which has not been performed effectively by any conventional cost aggregation approaches, we combine the occlusion problem with the proposed minimization scheme. Asymmetric information is used so that few additional computational loads are necessary. Experimental results show that performance is comparable to that of many state-of-the-art methods. The proposed method is in fact the most successful among all cost aggregation methods based on standard stereo test beds.

  7. Comprehensive measurements of GaAs pixel detectors capacitance

    CERN Document Server

    Caria, M; D'Auria, S; Lai, A; Randaccio, P; Cadeddu, S

    2002-01-01

    We have studied GaAs pixel detectors on semi-insulating wafers with Schottky contacts. We performed comprehensive measurements on the inter-pixel and capacitance to back plane. Being semi-insulating, the behaviour is totally different with respect to other common semiconductors, such as high resistivity silicon. Non-homogeneities are also an issue, due to both the contacts and the crystal bulk. In order to detect them and their influence on capacitance, we undertook systematic measurements with different configurations of the measuring electrodes.

  8. Dynamic Efficiency Measurements for Irradiated ATLAS Pixel Single Chip Modules

    CERN Document Server

    Pfaff, Mike; Grosse-Knetter, Jorn

    2011-01-01

    The ATLAS pixel detector is the innermost subdetector of the ATLAS experiment. Due to this, the pixel detector has to be particularly radiation hard. In this diploma thesis effects on the sensor and the electronics which are caused by irradiation are examined. It is shown how the behaviour changes between an unirradiated sample and a irradiated sample, which was treated with the same radiation dose that is expected at the end of the lifetime of ATLAS. For this study a laser system, which is used for dynamic efficiency measurements was constructed. Furthermore, the behaviour of the noise during the detection of a particle was evaluated studied.

  9. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  10. CMOS VLSI Active-Pixel Sensor for Tracking

    Science.gov (United States)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  11. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    CERN Document Server

    Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

    2010-01-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  12. An improved bit shuffling pixels-based image scrambling method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; WANG Hong-xia; WANG Jin

    2011-01-01

    @@ Compared with the Arnold transform, the image scrambling method based on bit shuffling pixels is much more secure, and has higher efficiency and speed.However, the key space of this bit shuffling pixels based method is too small to resist exhaustive search attack.Therefore, an improved method based on chaos is proposed in this paper.The security of the improved scheme is enhanced by increasing the number of the keys.Theoretical analysis and experimental results show that the proposed method is effective and has higher security.

  13. Information preserved guided scan pixel difference coding for medical images

    CERN Document Server

    Takaya, K; Yuan, L; Takaya, Kunio; Yuan, Li

    2001-01-01

    This paper analyzes the information content of medical images, with 3-D MRI images as an example, in terms of information entropy. The results of the analysis justify the use of Pixel Difference Coding for preserving all information contained in the original pictures, lossless coding in other words. The experimental results also indicate that the compression ratio CR=2:1 can be achieved under the lossless constraints. A pratical implementation of Pixel Difference Coding which allows interactive retrieval of local ROI (Region of Interest), while maintaining the near low bound information entropy, is discussed.

  14. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  15. New Active Digital Pixel Circuit for CMOS Image Sensor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new active digital pixel circuit for CMOS image sensor is designed consisting of four components: a photo-transducer, a preamplifier, a sample & hold (S & H) circuit and an A/D converter with an inverter. It is optimized by simulation and adjustment based on 2μm standard CMOS process. Each circuit of the components is designed with specific parameters. The simulation results of the whole pixel circuits show that the circuit has such advantages as low distortion, low power consumption, and improvement of the output performances by using an inverter.

  16. A prototype hybrid pixel detector ASIC for the CLIC experiment

    CERN Document Server

    Valerio, P; Arfaoui, S; Ballabriga, R; Benoit, M; Bonacini, S; Campbell, M; Dannheim, D; De Gaspari, M; Felici, D; Kulis, S; Llopart, X; Nascetti, A; Poikela, T; Wong, W S

    2014-01-01

    A prototype hybrid pixel detector ASIC specifically designed to the requirements of the vertex detector for CLIC is described and first electrical measurements are presented. The chip has been designed using a commercial 65 nm CMOS technology and comprises a matrix of 64x64 square pixels with 25 μm pitch. The main features include simultaneous 4-bit measure- ment of Time-over-Threshold (ToT) and Time-of-Arrival (ToA) with 10 ns accuracy, on-chip data compression and power pulsing capability.

  17. CMS Forward Pixel Upgrade Electronics and System Testing

    CERN Document Server

    Weber, Hannsjorg Artur

    2016-01-01

    This note discusses results of electronics and system testing of the CMS forward pixel (FPIX) detector upgrade for Phase 1. The FPIX detector is comprised of four stand-alone half cylinders, each of which contains frontend readout electronic boards, power regulators, cables and fibers in addition to the pixel modules. All of the components undergo rigorous testing and quality assurance before assembly into the half cylinders. Afterwards, we perform full system tests on the completely assembled half cylinders, including calibrations at final operating temperatures, characterization of the realistic readout chain, and system grounding and noise studies. The results from all these tests are discussed.

  18. Development of a high density pixel multichip module at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G. [and others

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  19. How Would You Like to Aggregate Your Temporal Data?

    DEFF Research Database (Denmark)

    Böhlen, M. H.; Gamper, J.; Jensen, Christian Søndergaard

    2006-01-01

    and query languages have been proposed. Motivated in part by the emergence of non-traditional data management applications and the increasing proliferation of temporal data, this paper puts focus on the aggregation of temporal data. In particular, it provides a general framework of temporal aggregation...... concepts, and it discusses the abilities of five approaches to the design of temporal query languages with respect to temporal aggregation. Rather than providing focused, polished results, the paper?s aim is to explore the inherent support for temporal aggregation in an informal manner that may serve......Real-world data management applications generally manage temporal data, i.e., they manage multiple states of time-varying data. Many contributions have been made by the research community for how to better model, store, and query temporal data. In particular, several dozen temporal data models...

  20. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration

    KAUST Repository

    Ershadi, Ali

    2013-04-01

    The influence of spatial resolution on the estimation of land surface heat fluxes from remote sensing is poorly understood. In this study, the effects of aggregation from fine (< 100 m) to medium (approx. 1. km) scales are investigated using high resolution Landsat 5 overpasses. A temporal sequence of satellite imagery and needed meteorological data were collected over an agricultural region, capturing distinct variations in crop stage and phenology. Here, we investigate both the impact of aggregating the input forcing and of aggregating the derived latent heat flux. In the input aggregation scenario, the resolution of the Landsat based radiance data was increased incrementally from 120. m to 960. m, with the land surface temperature calculated at each specific resolution. Reflectance based land surface parameters such as vegetation height and leaf area index were first calculated at the native 30. m Landsat resolution and then aggregated to multiple spatial scales. Using these data and associated meteorological forcing, surface heat fluxes were calculated at each distinct resolution using the Surface Energy Balance System (SEBS) model. Results indicate that aggregation of input forcing using a simple averaging method has limited effect on the land surface temperature and available energy, but can reduce evapotranspiration estimates at the image scale by up to 15%, and at the pixel scale by up to 50%. It was determined that the predominant reason for the latent heat flux reduction in SEBS was a decrease in the aerodynamic resistance at coarser resolutions, which originates from a change in the roughness length parameters of the land surface due to the aggregation. In addition, the magnitude of errors in surface heat flux estimation due to input aggregation was observed to be a function of the heterogeneity of the land surface and evaporative elements. In examining the response of flux aggregation, fine resolution (120. m) heat fluxes were aggregated to coarser

  1. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  2. Pixel-Level Digital-to-Analog Conversion Scheme with Compensation of Thin-Film-Transistor Variations for Compact Integrated Data Drivers of Active Matrix Organic Light Emitting Diodes

    Science.gov (United States)

    Kim, Tae-Wook; Park, Sang-Gyu; Choi, Byong-Deok

    2011-03-01

    The previous pixel-level digital-to-analog-conversion (DAC) scheme that implements a part of a DAC in a pixel circuit turned out to be very efficient for reducing the peripheral area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs). However, how the pixel-level DAC can be compatible with the existing pixel circuits including compensation schemes of TFT variations and IR drops on supply rails, which is of primary importance for active matrix organic light emitting diodes (AMOLEDs) is an issue in this scheme, because LTPS TFTs suffer from random variations in their characteristics. In this paper, we show that the pixel-level DAC scheme can be successfully used with the previous compensation schemes by giving two examples of voltage- and current-programming pixels. The previous pixel-level DAC schemes require additional two TFTs and one capacitor, but for these newly proposed pixel circuits, the overhead is no more than two TFTs by utilizing the already existing capacitor. In addition, through a detailed analysis, it has been shown that the pixel-level DAC can be expanded to a 4-bit resolution, or be applied together with 1:2 demultiplexing driving for 6- to 8-in. diagonal XGA AMOLED display panels.

  3. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts...... energy data management and discuss strategies for aggregation and disaggregation of flex-objects while retaining flexibility. This paper further extends these approaches beyond flex-objects originating from energy consumption by additionally considering flex-objects originating from energy production...... and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from...

  4. Dependability in Aggregation by Averaging

    CERN Document Server

    Jesus, Paulo; Almeida, Paulo Sérgio

    2010-01-01

    Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a funda...

  5. Interval-Valued Model Level Fuzzy Aggregation-Based Background Subtraction.

    Science.gov (United States)

    Chiranjeevi, Pojala; Sengupta, Somnath

    2016-07-29

    In a recent work, the effectiveness of neighborhood supported model level fuzzy aggregation was shown under dynamic background conditions. The multi-feature fuzzy aggregation used in that approach uses real fuzzy similarity values, and is robust for low and medium-scale dynamic background conditions such as swaying vegetation, sprinkling water, etc. The technique, however, exhibited some limitations under heavily dynamic background conditions, as features have high uncertainty under such noisy conditions and these uncertainties were not captured by real fuzzy similarity values. Our proposed algorithm is particularly focused toward improving the detection under heavy dynamic background conditions by modeling uncertainties in the data by interval-valued fuzzy set. In this paper, real-valued fuzzy aggregation has been extended to interval-valued fuzzy aggregation by considering uncertainties over real similarity values. We build up a procedure to calculate the uncertainty that varies for each feature, at each pixel, and at each time instant. We adaptively determine membership values at each pixel by the Gaussian of uncertainty value instead of fixed membership values used in recent fuzzy approaches, thereby, giving importance to a feature based on its uncertainty. Interval-valued Choquet integral is evaluated using interval similarity values and the membership values in order to calculate interval-valued fuzzy similarity between model and current. Adequate qualitative and quantitative studies are carried out to illustrate the effectiveness of the proposed method in mitigating heavily dynamic background situations as compared to state-of-the-art.

  6. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  7. CMOS integrator based lock-in pixel for heterodyne interferometry

    NARCIS (Netherlands)

    Soloviev, O.; Vdovin, G.

    2005-01-01

    This article presents a prototype of a CMOS phase sensor for high accuracy (1 Angstrom) heterodyne interferometry. Switched integrators realization of a lock-in pixel for 4-bucket phase detection algorithm is described and illustrated by experimental results. Factors that limit the accuracy of this

  8. Silicon Avalanche Pixel Sensor for High Precision Tracking

    CERN Document Server

    D'Ascenzo, N; Moon, C S; Morsani, F; Ratti, L; Saveliev, V; Navarro, A Savoy; Xie, Q

    2013-01-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of a large occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS ...

  9. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m$^{2}$, depending on the final layout choice that is expected to take place in early 2017. An intense R\\&D activity is taking place in the field of planar, 3D, CMOS sensors to identify the optimal technology for the different pixel layers. In parallel various sensor-chip interconnection options are explored to identify reliable technologies when employing 100-150~$\\mu$m thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off de...

  10. The phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Verzocchi, Marco

    2016-01-01

    The CMS collaboration is building a replacement for the pixel detector that will be installed in the extended end of year shutdown 2016-2017. This contribution reviews the motivations for the upgrade, the technological choices made, the status of the construction of this new detector and the plans for installation and commissioning.

  11. Phase 1 pixel modules production and High Density Interconnect testing

    CERN Document Server

    Still, Joseph

    2014-01-01

    During the first run of the LHC, luminosity peaked at $1 \\times 10^{34} cm^{-2}s^{-1}$ with $ \\approx 50 ns$ bunch spacing a pile-up of about 25, or simultaneous inelastic collisions per crossing, occur in the CMS experiment. However after the upgrade of of the LHC during long shut down 1, luminosity, and therefore pile-up. Therefore the CMS pixel tracker has to be upgraded to be able to operate correctly under this news stronger constraints. That is how this CERN Summer Student project, which took place at the CERN Meyrin site, comes within the framework of the pixel detector upgrade in the CMS experiment with a work aimed on the phase 1 of pixel modules production and tests of the HDI. The production and tests of the HDI were held in cleanroom facilities. This included first hand as well as to work on pixel modules building and performing size and flatness tests on them, and on a other hand testing several HDIs. At first, prototypes modules were assembled before real modules building. Another aspect of work...

  12. The ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4 cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and sensors which can stand radiation levels beyond 5$ imes$10$^{15}$ n$_{eq}$/cm$^{2}$ . ATLAS has developed the new FEI4 chip and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation length and allows detector cooling with CO$_{2}$ at -40 $^{circ}$C coolant temperature. Currently the overall integration and installation procedure is being developed and tested ready for installation in 2013. The paper summarizes the current state of development of IBL modules, first preliminary test results of the new chip ...

  13. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  14. Fabrication of ATLAS pixel detector prototypes at IRST

    CERN Document Server

    Boscardin, M; Gregori, P; Zen, M; Zori, N

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed. (5 refs).

  15. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Kraus, Martin; Klein, Jákup

    2017-01-01

    of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...

  16. Charge induction in semiconductor detectors with pixellated structure

    NARCIS (Netherlands)

    Samedov, Victor V.

    2007-01-01

    Considerable interest is now being attracted to the next generation of compound semiconductor detectors with pixellated structure in application to x-ray and gamma-astronomy, nuclear spectroscopy and nuclear medicine. The spatial resolution of this type of detectors is mainly determined by the proce

  17. The CMS pixel readout chip for the Phase 1 Upgrade

    CERN Document Server

    Hits, Dmitry

    2015-01-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25\\,ns and to be efficient up to the nominal instantaneous luminosity of 10$^{34} \\rm cm^{-2} \\rm s^{-1}$. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach $2\\times10^{34} \\rm cm^{-2} \\rm s^{-1}$ before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250\\,nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented togeth...

  18. The CMS Pixel Readout Chip for the Phase 1 Upgrade

    Science.gov (United States)

    Hits, D.; Starodumov, A.

    2015-05-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25 ns and to be efficient up to the nominal instantaneous luminosity of 1034 cm-2 s-1. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach 2×1034 cm-2 s-1 before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250 nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented together with measured performance of the chip.

  19. Phase 1 upgrade of the CMS Pixel Detector

    CERN Document Server

    Saha, Anirban

    2016-01-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of $\\rm 1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to $\\rm 2\\times10^{34} cm^{-2}s^{-1}$, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are the a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with hi...

  20. The NUC and blind pixel eliminating in the DTDI application

    Science.gov (United States)

    Su, Xiao Feng; Chen, Fan Sheng; Pan, Sheng Da; Gong, Xue Yi; Dong, Yu Cui

    2013-12-01

    AS infrared CMOS Digital TDI (Time Delay and integrate) has a simple structure, excellent performance and flexible operation, it has been used in more and more applications. Because of the limitation of the Production process level, the plane array of the infrared detector has a large NU (non-uniformity) and a certain blind pixel rate. Both of the two will raise the noise and lead to the TDI works not very well. In this paper, for the impact of the system performance, the most important elements are analyzed, which are the NU of the optical system, the NU of the Plane array and the blind pixel in the Plane array. Here a reasonable algorithm which considers the background removal and the linear response model of the infrared detector is used to do the NUC (Non-uniformity correction) process, when the infrared detector array is used as a Digital TDI. In order to eliminate the impact of the blind pixel, the concept of surplus pixel method is introduced in, through the method, the SNR (signal to noise ratio) can be improved and the spatial and temporal resolution will not be changed. Finally we use a MWIR (Medium Ware Infrared) detector to do the experiment and the result proves the effectiveness of the method.

  1. Gauss-Legendre Sky Pixelization (glesp) for CMB Maps

    Science.gov (United States)

    Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  2. Gauss--Legendre Sky Pixelization (GLESP) for CMB maps

    CERN Document Server

    Doroshkevich, A G; Verkhodanov, O V; Novikov, D I; Turchaninov, V I; Novikov, I D; Christensen, P R

    2003-01-01

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss--Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  3. Charge amplitude distribution of the Gossip gaseous pixel detector

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, Cora; Schmitz, Jurriaan; Smits, Sander M.; Timmermans, J.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few

  4. ATLAS Pixel Radiation Monitoring with HVPP4 System

    CERN Document Server

    Gorelov, Igor; Seidel, Sally; Toms, Konstantin

    2009-01-01

    In this talk we present the basis for the protocol for radiation monitoring of the ATLAS Pixel Sensors. The monitoring is based on a current measurement system, HVPP4. The status on the ATLAS HVPP4 system development is also presented.

  5. Study of Pixel Area Variations in Fully Depleted Thick CCD

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V.; O' Connor, P.; Kotov, A.I.; Frank, J.; Kubanek, P.; Prouza, M.; Radeka, V.; Takacs, P.

    2010-06-30

    Future wide field astronomical surveys, like Large Synoptic Survey Telescope (LSST), require photometric precision on the percent level. The accuracy of sensor calibration procedures should match these requirements. Pixel size variations found in CCDs from different manufacturers are the source of systematic errors in the flat field calibration procedure. To achieve the calibration accuracy required to meet the most demanding science goals this effect should be taken into account. The study of pixel area variations was performed for fully depleted, thick CCDs produced in a technology study for LSST. These are n-channel, 100 {micro}m thick devices. We find pixel size variations in both row and column directions. The size variation magnitude is smaller in the row direction. In addition, diffusion is found to smooth out electron density variations. It is shown that the characteristic diffusion width can be extracted from the flat field data. Results on pixel area variations and diffusion, data features, analysis technique and modeling technique are presented and discussed.

  6. Fundamental Characteristics of a Pinned Photodiode CMOS Pixels

    NARCIS (Netherlands)

    Xu, Y.

    2015-01-01

    This thesis gives an insightful analysis of the pinned photodiode 4T CMOS pixel from three different aspects. Firstly, from the charge accumulated aspect, the PPD full well capacity and related parameters of influence are investigated such as the pinning voltage, and transfer gate potential barrier.

  7. Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  8. From Pixels to Geographic Objects in Remote Sensing Image Analysis

    NARCIS (Netherlands)

    Addink, E.A.; Van Coillie, Frieke M.B.; Jong, Steven M. de

    2012-01-01

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received considerabl

  9. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  10. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  11. From Pixels to Geographic Objects in Remote Sensing Image Analysis

    NARCIS (Netherlands)

    Addink, E.A.; Van Coillie, Frieke M.B.; Jong, Steven M. de

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received

  12. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Rummler, Andr{e}; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown around 2025 by an all-silicon detector (Inner Tracker, ITk). The pixel detector will be composed by the five innermost layers, instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m^2, depending on the final layout choice that is expected to take place in early 2017. Different designs of planar, 3D, CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. In parallel sensor-chip interconnection options are evaluated in collaboration with industrial partners to identify reliable technologies when employing 100-150 μm thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off detector read-out electronics will be implemented in the frame...

  13. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  14. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  15. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  16. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37

  17. Monitoring the Aggregation of Dansyl Chloride in Acetone through Fluorescence Measurements

    Institute of Scientific and Technical Information of China (English)

    FANG,Yu; YIN,Yi-Qing; 等

    2002-01-01

    The aggregation of dansyl chloride (DNS-Cl) in acetone has been studied in detail by steady-state fluorescence techniques.It has been demonstrated that DNS-Cl is stable in acetone during purification and aggregation study processes.The aggregates are not solvolyzed in acetone,and do not take part n any chemical reactions either.It has been found that DNS-Cl tends to aggregate even when its concentration is much lower than its solubility in acetone.The aggregation is reversible,and both the aggregation and the deaggregation are very slow processes.Introduction of SDS has a positive effect upon the formation and stabilization of the aggregates.

  18. SNR improvement for hyperspectral application using frame and pixel binning

    Science.gov (United States)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  19. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    Science.gov (United States)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  20. Ash Aggregates in Proximal Settings

    Science.gov (United States)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (sustained plume attended by concomitant production of pyroclastic density currents. The size and internal structure of the armoured lapilli provide constraints on the nature of the initial explosive phase of eruption at Kima'Kho. Their proximity to the vent also indicates rapid aggregation within the eruption plume. Within both sequences rapid aggregation of ash particles occurred in proximity to the vent. However, the conditions were substantially different leading to the production of armoured

  1. Involvement of non-polyalanine (polyA) residues in aggregation of polyA proteins: Clue for inhibition of aggregation.

    Science.gov (United States)

    Sharma, Vandna; Ghosh, Kalyan Sundar

    2014-11-20

    Presence of polyalanine (polyA) stretches in some proteins is found to be associated with their aggregation, which causes disorders in various developmental processes. In this work, inherent propensities towards aggregation of some residues, which are not part of the polyA stretches, have been identified by using the primary sequences of seven polyA proteins with the help of Betascan, PASTA and Tango programs and explored unambiguously. This provides a basis for proposing molecular mechanism of this type of aggregation. Reported suppression of aggregation of polyA proteins by chaperones like HSP40 and HSP70 is substantiated through molecular docking. The hydrophobic residues of identified aggregating region are found to be interacting with hydrophobic surface of chaperones. This suggests a crucial clue for possible way to inhibit the aggregation of such proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    Science.gov (United States)

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  3. Hardware architecture of high-performance digital hologram generator on the basis of a pixel-by-pixel calculation scheme.

    Science.gov (United States)

    Seo, Young-Ho; Lee, Yoon-Hyuk; Yoo, Ji-Sang; Kim, Dong-Wook

    2012-06-20

    In this paper we propose a hardware architecture for high-speed computer-generated hologram generation that significantly reduces the number of memory access times to avoid the bottleneck in the memory access operation. For this, we use three main schemes. The first is pixel-by-pixel calculation, rather than light source-by-source calculation. The second is a parallel calculation scheme extracted by modifying the previous recursive calculation scheme. The last scheme is a fully pipelined calculation scheme and exactly structured timing scheduling, achieved by adjusting the hardware. The proposed hardware is structured to calculate a row of a computer-generated hologram in parallel and each hologram pixel in a row is calculated independently. It consists of and input interface, an initial parameter calculator, hologram pixel calculators, a line buffer, and a memory controller. The implemented hardware to calculate a row of a 1920×1080 computer-generated hologram in parallel uses 168,960 lookup tables, 153,944 registers, and 19,212 digital signal processing blocks in an Altera field programmable gate array environment. It can stably operate at 198 MHz. Because of three schemes, external memory bandwidth is reduced to approximately 1/20,000 of the previous ones at the same calculation speed.

  4. Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels

    Science.gov (United States)

    Qing Peng, Zhi; Xin, Xiaozhou; Jiao, Jin Jun; Zhou, Ti; Liu, Qinhuo

    2016-11-01

    Evapotranspiration (ET) plays an important role in surface-atmosphere interactions and can be monitored using remote sensing data. However, surface heterogeneity, including the inhomogeneity of landscapes and surface variables, significantly affects the accuracy of ET estimated from satellite data. The objective of this study is to assess and reduce the uncertainties resulting from surface heterogeneity in remotely sensed ET using Chinese HJ-1B satellite data, which is of 30 m spatial resolution in VIS/NIR bands and 300 m spatial resolution in the thermal-infrared (TIR) band. A temperature-sharpening and flux aggregation scheme (TSFA) was developed to obtain accurate heat fluxes from the HJ-1B satellite data. The IPUS (input parameter upscaling) and TRFA (temperature resampling and flux aggregation) methods were used to compare with the TSFA in this study. The three methods represent three typical schemes used to handle mixed pixels from the simplest to the most complex. IPUS handles all surface variables at coarse resolution of 300 m in this study, TSFA handles them at 30 m resolution, and TRFA handles them at 30 and 300 m resolution, which depends on the actual spatial resolution. Analyzing and comparing the three methods can help us to get a better understanding of spatial-scale errors in remote sensing of surface heat fluxes. In situ data collected during HiWATER-MUSOEXE (Multi-Scale Observation Experiment on Evapotranspiration over heterogeneous land surfaces of the Heihe Watershed Allied Telemetry Experimental Research) were used to validate and analyze the methods. ET estimated by TSFA exhibited the best agreement with in situ observations, and the footprint validation results showed that the R2, MBE, and RMSE values of the sensible heat flux (H) were 0.61, 0.90, and 50.99 W m-2, respectively, and those for the latent heat flux (LE) were 0.82, -20.54, and 71.24 W m-2, respectively. IPUS yielded the largest errors in ET estimation. The RMSE of LE between the

  5. Testing, installation and development of hardware and software components for the forward pixel detector of CMS

    CERN Document Server

    Florez Bustos, Carlos Andres

    2007-01-01

    The LHC (Large Hadron Collider) will be the particle accelerator with the highest collision energy ever. CMS (Compact Muon Solenoid) is one of the two largest experiments at the LHC. A main goal of CMS is to elucidate the electroweak symmetry breaking and determine if the Higgs mechanism is responsible for it. The pixel detector in CMS is the closest detector to the interaction point and is part of the tracker system. This thesis presents four different projects related to the forward pixel detector, performed as part of the testing and development of its hardware and software components. It presents the methods, implementation and results for the data acquisition and installation of the detector control system at the Meson Test Beam Facility of Fermilab for the beam test of the detector; the study of the C.A.E.N power supply and the multi service cable; the layout of the test stands for the assembly of the half-disk and half-service cylinder and the development of a software interface to the data acquisition...

  6. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    CERN Document Server

    Baselmans, J J A; Yates, S J C; Yurduseven, O; Llombart, N; Karatsu, K; Baryshev, A M; Ferrari, L; Endo, A; Thoen, D J; de Visser, P J; Janssen, R M J; Murugesan, V; Driessen, E F C; Coiffard, G; Martin-Pintado, J; Hargrave, P; Griffin, M

    2016-01-01

    Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low- noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation frequency of 850 GHz. The overall system has an excellent sensitivity, with an average detector sensitivity NEP=2.8 +- 0.8 x 10^-19 W/rt(Hz) measured using a thermal calibration source. The dynamic range wou...

  7. Aggregation models on hypergraphs

    Science.gov (United States)

    Alberici, Diego; Contucci, Pierluigi; Mingione, Emanuele; Molari, Marco

    2017-01-01

    Following a newly introduced approach by Rasetti and Merelli we investigate the possibility to extract topological information about the space where interacting systems are modelled. From the statistical datum of their observable quantities, like the correlation functions, we show how to reconstruct the activities of their constitutive parts which embed the topological information. The procedure is implemented on a class of polymer models on hypergraphs with hard-core interactions. We show that the model fulfils a set of iterative relations for the partition function that generalise those introduced by Heilmann and Lieb for the monomer-dimer case. After translating those relations into structural identities for the correlation functions we use them to test the precision and the robustness of the inverse problem. Finally the possible presence of a further interaction of peer-to-peer type is considered and a criterion to discover it is identified.

  8. Aggregation models on hypergraphs

    CERN Document Server

    Alberici, Diego; Mingione, Emanuele; Molari, Marco

    2016-01-01

    Following a newly introduced approach by Rasetti and Merelli we investigate the possibility to extract topological information about the space where interacting systems are modelled. From the statistical datum of their observable quantities, like the correlation functions, we show how to reconstruct the activities of their constitutive parts which embed the topological information. The procedure is implemented on a class of polymer models with hard-core interactions. We show that the model fulfils a set of iterative relations for the partition function that generalise those introduced by Heilmann and Lieb for the monomer-dimer case. After translating those relations into structural identities for the correlation functions we use them to test the precision and the robustness of the inverse problem. Finally the possible presence of a further interaction of peer-to-peer type is considered and a criterion to discover it is identified.

  9. Hierarchical organization in aggregates of protein molecules

    DEFF Research Database (Denmark)

    Bohr, Henrik; Kyhle, Anders; Sørensen, Alexis Hammer

    1997-01-01

    The aggregation of proteins into small clusters is studied by atomic force and electron microscopy. Scaling laws and fractal behaviour in the growth of the aggregates and in the correlation between aggregates is seen. A phase diagram of the aggregation process where the protonic concentration...

  10. A Functional Reference Architecture for Aggregators

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Heussen, Kai; Gehrke, Oliver;

    2015-01-01

    Aggregators are considered to be a key enabling technology for harvesting power system services from distributed energy resources (DER). As a precondition for more widespread use of aggregators in power systems, methods for comparing and validating aggregator designs must be established. This paper...... proposes a functional reference architecture for aggregators to address this requirement....

  11. Fractal Aggregates in Tennis Ball Systems

    Science.gov (United States)

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  12. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  13. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Purnomo Heru

    2017-01-01

    Full Text Available The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is studied. Sand used to coat the plastic aggregates are Merapi volcanic sand which are taken in Magelang. Three mixtures of polypropylene (PP coarse plastic aggregates, Cimangkok river sand as fine aggregates, water and Portland Cement Composite with a water-cement ratio of 0.28, 0.3 and 0.35 are conducted. Compression test are performed on concrete cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The results in general show that concrete specimens using plastic aggregates coated with sand have higher compressive strength compared to those of concrete specimens using plastic aggregates without sand coating. The bond improvement is indirectly indicated by the betterment of concrete compressive strength.

  14. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem.......Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...

  15. High throughput optoelectronic smart pixel systems using diffractive optics

    Science.gov (United States)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  16. Erythrocyte aggregation: Basic aspects and clinical importance

    OpenAIRE

    Oğuz K. Başkurt; Meiselman, Herbert J.

    2013-01-01

    Red blood cells (RBC) aggregate to form two- and three-dimensional structures when suspended in aqueous solutions containing large plasma proteins or polymers; this aggregation is reversible and shear dependent (i.e., dispersed at high shear and reformed at low or stasis). The extent of aggregation is the main determinant of low shear blood viscosity, thus predicting an inverse relationship between aggregation and in vivo blood flow. However, the effects of aggregation on hemodynamic mechanis...

  17. Molecular Aggregation in Disodium Cromoglycate

    Science.gov (United States)

    Singh, Gautam; Agra-Kooijman, D.; Collings, P. J.; Kumar, Satyendra

    2012-02-01

    Details of molecular aggregation in the mesophases of the anti-asthmatic drug disodium cromoglycate (DSCG) have been studied using x-ray synchrotron scattering. The results show two reflections, one at wide angles corresponding to π-π stacking (3.32 å) of molecules, and the other at small angles which is perpendicular to the direction of molecular stacking and corresponds to the distance between the molecular aggregates. The latter varies from 35 - 41 å in the nematic (N) phase and 27 -- 32 å in the columnar (M) phase. The temperature evolution of the stack height, positional order correlations in the lateral direction, and orientation order parameter were determined in the N, M, and biphasic regions. The structure of the N and M phases and the nature of the molecular aggregation, together with their dependence on temperature and concentration, will be presented.

  18. SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2011-05-01

    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  19. Survey Paper on Image Denoising Using Spatial Statistic son Pixel

    Directory of Open Access Journals (Sweden)

    Varun Nigam

    2015-01-01

    Full Text Available The classical non-local means image denoising approach, the value of a pixel is determined based on the weighted average of other pixels, where the weights are determined based on a fixed isotropic ally weighted similarity function between the local neighbourhoods. It is demonstrate that noticeably improved perceptual quality can be achieved through the use of adaptive anisotropic ally weighted similarity functions between local neighbourhoods. This is accomplished by adapting the similarity weighing function in an anisotropic manner based on the perceptual characteristics of the underlying image content derived efficiently based on the Mexican Hat wavelet. Experimental results show that the it can be used to provide improved perceptual quality in the denoised image both quantitatively and qualitatively when compared to existing methods.

  20. Current progress on pixel level packaging for uncooled IRFPA

    Science.gov (United States)

    Dumont, G.; Rabaud, W.; Yon, J.-J.; Carle, L.; Goudon, V.; Vialle, C.; Becker, Sébastien; Hamelin, Antoine; Arnaud, A.

    2012-06-01

    Vacuum packaging is definitely a major cost driver for uncooled IRFPA and a technological breakthrough is still expected to comply with the very low cost infrared camera market. To address this key issue, CEA-LETI is developing a Pixel Level Packaging (PLP) technology which basically consists in capping each pixel under vacuum in the direct continuation of the wafer level bolometer process. Previous CEA-LETI works have yet shown the feasibility of PLP based microbolometers that exhibit the required thermal insulation and vacuum achievement. CEA-LETI is still pushing the technology which has been now applied for the first time on a CMOS readout circuit. The paper will report on the recent progress obtained on PLP technology with particular emphasis on the optical efficiency of the PLP arrangement compared to the traditional microbolometer packaging. Results including optical performances, aging studies and compatibility with CMOS readout circuit are extensively presented.