WorldWideScience

Sample records for pixellated gamma-camera based

  1. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  2. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    Science.gov (United States)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  3. Preliminary study for pixel identification on a modular gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Soluri, A., E-mail: soluri@isib.cnr.it; Atzeni, G.; Ucci, A.; Cusanno, F.; Massari, R.

    2014-02-01

    Our group has recently investigated and produced new scintigraphic prototypes based on advanced scintillation structure. The aim of this study is to demonstrate the use of scintillation matrices with size equal to the overall area of the Position Sensitive Photomultiplier Tube (PSPMT), to design a modular gamma camera and study the solution of the dead area problems optimizing the overall pixel identification. In this paper we investigate the response of different combinations with crystals integrated within tungsten structure, coupled with H8500, R8900-C12 and R11265-M64 Hamamatsu PSPMTs. Several scintillation matrices, whose dimensions match to the physical area of the PSPMT, have been analysed so that we have also studied limits of detection for the elements of the matrix in the critical zones of the PSPMT, i.e. corners and borders. In order to enhance the detectability of scintillation elements we improved the light collection by depositing metallic layers or treating the tungsten structure with different coating materials, and shaping the external elements of the scintillation matrices. The results have shown good energy resolution and the proposed method can be applied in medical imaging for obtaining high efficiency scintillation devices.

  4. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Park, C. H.

    2002-01-01

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based ( CB ) PET. CB PET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CB PET in operation than cPET in the USA. CB PET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  5. Upgrading of analogue gamma cameras with PC based computer system

    International Nuclear Information System (INIS)

    Fidler, V.; Prepadnik, M.

    2002-01-01

    Full text: Dedicated nuclear medicine computers for acquisition and processing of images from analogue gamma cameras in developing countries are in many cases faulty and technologically obsolete. The aim of the upgrading project of International Atomic Energy Agency (IAEA) was to support the development of the PC based computer system which would cost 5.000 $ in total. Several research institutions from different countries (China, Cuba, India and Slovenia) were financially supported in this development. The basic demands for the system were: one acquisition card an ISA bus, image resolution up to 256x256, SVGA graphics, low count loss at high count rates, standard acquisition and clinical protocols incorporated in PIP (Portable Image Processing), on-line energy and uniformity correction, graphic printing and networking. The most functionally stable acquisition system tested on several international workshops and university clinics was the Slovenian one with a complete set of acquisition and clinical protocols, transfer of scintigraphic data from acquisition card to PC through PORT, count loss less than 1 % at count rate of 120 kc/s, improvement of integral uniformity index by a factor of 3-5 times, reporting, networking and archiving solutions for simple MS network or server oriented network systems (NT server, etc). More than 300 gamma cameras in 52 countries were digitized and put in the routine work. The project of upgrading the analogue gamma cameras yielded a high promotion of nuclear medicine in the developing countries by replacing the old computer systems, improving the technological knowledge of end users on workshops and training courses and lowering the maintenance cost of the departments. (author)

  6. PC based simulation of gamma camera for training of operating and maintenance staff

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2000-01-01

    Gamma camera- a sophisticated imaging system is used for functional assessment of biological subsystems/organs in nuclear medicine. The radioactive tracer attached to the native substance is injected into the patient. The distribution of radioactivity in the patient is imaged by the gamma camera. This report describes a PC based package for simulation of gamma cameras and effect of malfunctioning of its subsystems on images of different phantoms

  7. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera

    CERN Document Server

    Abe, A; Lee, J; Oka, T; Shizukuishi, K; Kikuchi, T; Inoue, T; Jimbo, M; Ryuo, H; Bickel, C

    2003-01-01

    We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16 x 16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use...

  8. Design of gamma camera data acquisition system based on PCI9810

    International Nuclear Information System (INIS)

    Zhao Yuanyuan; Zhao Shujun; Liu Yang

    2004-01-01

    This paper describe the design of gamma camera's data acquisition system, which is based on PCI9810 data acquisition card of ADLink Technology Inc. The main function of PCI9810 and the program of data acquisition system are described. (authors)

  9. Study of a new architecture of gamma cameras with Cd/ZnTe/CdTe semiconductors; Etude d'une nouvelle architecture de gamma camera a base de semi-conducteurs CdZnTe /CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, L

    2007-11-15

    This thesis studies new semi conductors for gammas cameras in order to improve the quality of image in nuclear medicine. The chapter 1 reminds the general principle of the imaging gamma, by describing the radiotracers, the channel of detection and the types of Anger gamma cameras acquisition. The physiological, physical and technological limits of the camera are then highlighted, to better identify the needs of future gamma cameras. The chapter 2 is dedicated to a bibliographical study. At first, semi-conductors used in imaging gamma are presented, and more particularly semi-conductors CDTE and CdZnTe, by distinguishing planar detectors and monolithic pixelated detectors. Secondly, the classic collimators of the gamma cameras, used in clinical routine for the most part of between them, are described. Their geometry is presented, as well as their characteristics, their advantages and their inconveniences. The chapter 3 is dedicated to a state of art of the simulation codes dedicated to the medical imaging and the methods of reconstruction in imaging gamma. These states of art allow to introduce the software of simulation and the methods of reconstruction used within the framework of this thesis. The chapter 4 presents the new architecture of gamma camera proposed during this work of thesis. It is structured in three parts. The first part justifies the use of semiconducting detectors CdZnTe, in particular the monolithic pixelated detectors, by bringing to light their advantages with regard to the detection modules based on scintillator. The second part presents gamma cameras to base of detectors CdZnTe (prototypes or commercial products) and their associated collimators, as well as the interest of an association of detectors CdZnTe in the classic collimators. Finally, the third part presents in detail the HiSens architecture. The chapter 5 describes both software of simulation used within the framework of this thesis to estimate the performances of the Hi

  10. Design and development of pixel size calibration phantom for gamma camera

    International Nuclear Information System (INIS)

    Khokhar, S.B.; Manan, A.; Chaudary, M.A.; Pervaiz, T.

    2005-01-01

    The purpose of the study is to make pixel calibration phantom, to measure pixel size for different zoom factors and matrix sizes and to compare the pixel size with the values of provided by the vendor. For this purpose pixel size calibration phantom (rectangular in shape) made up of acrylic material having dimension 43 x 10 square cm was prepared. Seven circular holes at exact known distance with whole diameter 1.5 mm were born. High specific activity was filled in the holes of the phantom, acquired the image by fixing the number of counts at all available matrices and zoom factors. Pixel size was calculated by counting the number of pixels between focused points and divided the distance thereof by the number of pixels. Mean pixel size was calculated and compared it with reference value provided by the manufacturer of the camera. P- value was calculated which showed that most results lie in the acceptable limit. The calculated values agreed very well. However there exist some deviation at larger matrix sizes, which might be due to scattering of radiation that overlaps nearest pixels, and due to human error. (author)

  11. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  12. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  13. Gamma camera

    International Nuclear Information System (INIS)

    Reiss, K.H.; Kotschak, O.; Conrad, B.

    1976-01-01

    A gamma camera with a simplified setup as compared with the state of engineering is described permitting, apart from good localization, also energy discrimination. Behind the usual vacuum image amplifier a multiwire proportional chamber filled with trifluorine bromium methane is connected in series. Localizing of the signals is achieved by a delay line, energy determination by means of a pulse height discriminator. With the aid of drawings and circuit diagrams, the setup and mode of operation are explained. (ORU) [de

  14. NEMA NU-1 2007 based and independent quality control software for gamma cameras and SPECT

    International Nuclear Information System (INIS)

    Vickery, A; Joergensen, T; De Nijs, R

    2011-01-01

    A thorough quality assurance of gamma and SPECT cameras requires a careful handling of the measured quality control (QC) data. Most gamma camera manufacturers provide the users with camera specific QC Software. This QC software is indeed a useful tool for the following of day-to-day performance of a single camera. However, when it comes to objective performance comparison of different gamma cameras and a deeper understanding of the calculated numbers, the use of camera specific QC software without access to the source code is rather avoided. Calculations and definitions might differ, and manufacturer independent standardized results are preferred. Based upon the NEMA Standards Publication NU 1-2007, we have developed a suite of easy-to-use data handling software for processing acquired QC data providing the user with instructive images and text files with the results.

  15. Gamma camera

    International Nuclear Information System (INIS)

    Berninger, W.H.

    1975-01-01

    The light pulse output of a scintillator, on which incident collimated gamma rays impinge, is detected by an array of photoelectric tubes each having a convexly curved photocathode disposed in close proximity to the scintillator. Electronic circuitry connected to outputs of the phototubes develops the scintillation event position coordinate electrical signals with good linearity and with substantial independence of the spacing between the scintillator and photocathodes so that the phototubes can be positioned as close to the scintillator as is possible to obtain less distortion in the field of view and improved spatial resolution as compared to conventional planar photocathode gamma cameras

  16. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  17. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  18. Gamma camera

    International Nuclear Information System (INIS)

    Conrad, B.; Heinzelmann, K.G.

    1975-01-01

    A gamma camera is described which obviates the distortion of locating signals generally caused by the varied light conductive capacities of the light conductors in that the flow of light through each light conductor may be varied by means of a shutter. A balancing of the flow of light through each of the individual light conductors, in effect, collective light conductors may be balanced on the basis of their light conductive capacities or properties, so as to preclude a distortion of the locating signals caused by the varied light conductive properties of the light conductors. Each light conductor has associated therewith two, relative to each other, independently adjustable shutters, of which one forms a closure member and the other an adjusting shutter. In this embodiment of the invention it is thus possible to block all of the light conductors leading to a photoelectric transducer, with the exception of those light conductors which are to be balanced. The balancing of the individual light conductors may then be obtained on the basis of the output signals of the photoelectric transducer. (auth)

  19. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    International Nuclear Information System (INIS)

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Guerin, Lucie; Verger, Loick; Buvat, Irene

    2010-01-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  20. Development of an LYSO based gamma camera for positron and scinti-mammography

    Science.gov (United States)

    Liang, H.-C.; Jan, M.-L.; Lin, W.-C.; Yu, S.-F.; Su, J.-L.; Shen, L.-H.

    2009-08-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 × 90 mm2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  1. Development of an LYSO based gamma camera for positron and scinti-mammography

    International Nuclear Information System (INIS)

    Liang, H-C; Jan, M-L; Lin, W-C; Yu, S-F; Shen, L-H; Su, J-L

    2009-01-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 x 90 mm 2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176 Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  2. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NARCIS (Netherlands)

    Koppert, Wilco J C; van der Velden, Sandra; Steenbergen, J H Leo; de Jong, Hugo W A M

    2018-01-01

    INTRODUCTION: In SPECT/CT systems X-ray and -ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high X-ray doses and deteriorate its functioning. We studied the NaI(Tl)

  3. Gamma camera based Positron Emission Tomography: a study of the viability on quantification

    International Nuclear Information System (INIS)

    Pozzo, Lorena

    2005-01-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  4. Evaluation of list-mode ordered subset expectation maximization image reconstruction for pixelated solid-state compton gamma camera with large number of channels

    Science.gov (United States)

    Kolstein, M.; De Lorenzo, G.; Chmeissani, M.

    2014-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For Compton camera, especially with a large number of readout channels, image reconstruction presents a big challenge. In this work, results are presented for the List-Mode Ordered Subset Expectation Maximization (LM-OSEM) image reconstruction algorithm on simulated data with the VIP Compton camera design. For the simulation, all realistic contributions to the spatial resolution are taken into account, including the Doppler broadening effect. The results show that even with a straightforward implementation of LM-OSEM, good images can be obtained for the proposed Compton camera design. Results are shown for various phantoms, including extended sources and with a distance between the field of view and the first detector plane equal to 100 mm which corresponds to a realistic nuclear medicine environment.

  5. Development of a tomographic system adapted to 3D measurement of contaminated wounds based on the Cacao concept (Computer aided collimation Gamma Camera)

    International Nuclear Information System (INIS)

    Douiri, A.

    2002-03-01

    The computer aided collimation gamma camera (CACAO in French) is a gamma camera using a collimator with large holes, a supplementary linear scanning motion during the acquisition and a dedicated reconstruction program taking full account of the source depth. The CACAO system was introduced to improve both the sensitivity and the resolution in nuclear medicine. This thesis focuses on the design of a fast and robust reconstruction algorithm in the CACAO project. We start by an overview of tomographic imaging techniques in nuclear medicine. After modelling the physical CACAO system, we present the complete reconstruction program which involves three steps: 1) shift and sum 2) deconvolution and filtering 3) rotation and sum. The deconvolution is the critical step that decreases the signal to noise ratio of the reconstructed images. We propose a regularized multi-channel algorithm to solve the deconvolution problem. We also present a fast algorithm based on Splines functions and preserving the high quality of the reconstructed images for the shift and the rotation steps. Comparisons of simulated reconstructed images in 2D and 3D for the conventional system (CPHC) and CACAO demonstrate the ability of CACAO system to increase the quality of the SPECT images. Finally, this study concludes with an experimental approach with a pixellated detector conceived for a 3D measurement of contaminated wounds. This experimentation proves the possible advantages of coupling the CACAO project with pixellated detectors. Moreover, a variety of applications could fully benefit from the CACAO system, such as low activity imaging, the use of high-energy gamma isotopes and the visualization of deep organs. Moreover the combination of the CACAO system with a pixels detector may open up further possibilities for the future of nuclear medicine. (author)

  6. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    Science.gov (United States)

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  7. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    Energy Technology Data Exchange (ETDEWEB)

    Halama, J. [Loyola Univ. Medical Center (United States)

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Be able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images

  8. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    Science.gov (United States)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  9. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    International Nuclear Information System (INIS)

    Halama, J.

    2016-01-01

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Be able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images

  10. Calibration of gamma cameras for the evaluation of accidental intakes of high-energy photon emitting radionuclides by humans based on urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, A.L.; Lucena, E.A.; Reis, A.A. dos; Souza, W.O.; Dantas, A.L.A.; Dantas, B.M., E-mail: bmdantas@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Dosimetria

    2017-07-01

    The prompt response to emergency situations involving suspicion of intakes of radionuclides requires the use of simple and rapid methods of internal monitoring of the exposed individuals. The use of gamma cameras to estimate intakes and committed doses was investigated by the Centers for Disease Control and Preventions (CDC) of the USA in 2010.The present study aims to develop a calibration protocol for gamma cameras to be applied on internal monitoring based on urine samples to evaluate the incorporation of high-energy photon emitting radionuclides in emergency situations. A gamma camera available in a public hospital located in the city of Rio de Janeiro was calibrated using a standard liquid source of {sup 152}Eu supplied by the LNMRI of the IRD.'Efficiency vs Energy' curves at 10 and 30 cm were obtained. Calibration factors, Minimum Detectable Activities and Minimum Detectable Effective Doses of the gamma camera were calculated for {sup 137}Cs and {sup 60}Co. The gamma camera evaluated in this work presents enough sensitivity to detect activities of such radionuclides at dose levels suitable to assess suspected accidental intakes. (author)

  11. Compact CdZnTe-Based Gamma Camera For Prostate Cancer Imaging

    International Nuclear Information System (INIS)

    Cui, Y.; Lall, T.; Tsui, B.; Yu, J.; Mahler, G.; Bolotnikov, A.; Vaska, P.; DeGeronimo, G.; O'Connor, P.; Meinken, G.; Joyal, J.; Barrett, J.; Camarda, G.; Hossain, A.; Kim, K.H.; Yang, G.; Pomper, M.; Cho, S.; Weisman, K.; Seo, Y.; Babich, J.; LaFrance, N.; James, R.B.

    2011-01-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  12. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    Science.gov (United States)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  13. Monitoring system for isolated limb perfusion based on a portable gamma camera

    International Nuclear Information System (INIS)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J.; Vidal-Sicart, S.; Pons, F.; Roe, N.; Rull, R.; Pavon, N.; Pavia, J.

    2009-01-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-α) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-α and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is ±1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-α and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-α and melphalan has been indicated. (orig.)

  14. Monitoring system for isolated limb perfusion based on a portable gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Vidal-Sicart, S.; Pons, F. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Barcelona (Spain); Roe, N. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Rull, R. [Servei de Cirurgia, Hospital Clinic, Barcelona (Spain); Pavon, N. [Inst. de Fisica Corpuscular, CSIC - UV, Valencia (Spain); Pavia, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2009-07-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-{alpha}) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-{alpha} and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is {+-}1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-{alpha} and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-{alpha} and melphalan has been indicated. (orig.)

  15. The making of analog module for gamma camera interface

    International Nuclear Information System (INIS)

    Yulinarsari, Leli; Rl, Tjutju; Susila, Atang; Sukandar

    2003-01-01

    The making of an analog module for gamma camera has been conducted. For computerization of planar gamma camera 37 PMT it has been developed interface hardware technology and software between the planar gamma camera with PC. With this interface gamma camera image information (Originally analog signal) was changed to digital single, therefore processes of data acquisition, image quality increase and data analysis as well as data base processing can be conducted with the help of computers, there are three gamma camera main signals, i.e. X, Y and Z . This analog module makes digitation of analog signal X and Y from the gamma camera that conveys position information coming from the gamma camera crystal. Analog conversion to digital was conducted by 2 converters ADC 12 bit with conversion time 800 ns each, conversion procedure for each coordinate X and Y was synchronized using suitable strobe signal Z for information acceptance

  16. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.; Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  17. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  18. Gamma camera display system

    International Nuclear Information System (INIS)

    Stout, K.J.

    1976-01-01

    A gamma camera having an array of photomultipliers coupled via pulse shaping circuitry and a resistor weighting circuit to a display for forming an image of a radioactive subject is described. A linearizing circuit is coupled to the weighting circuit, the linearizing circuit including a nonlinear feedback circuit with diode coupling to the weighting circuit for linearizing the correspondence between points of the display and points of the subject. 4 Claims, 5 Drawing Figures

  19. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1977-01-01

    A gamma camera system having control components operating in conjunction with a solid state detector is described. The detector is formed of a plurality of discrete components which are associated in geometrical or coordinate arrangement defining a detector matrix to derive coordinate signal outputs. These outputs are selectively filtered and summed to form coordinate channel signals and corresponding energy channel signals. A control feature of the invention regulates the noted summing and filtering performance to derive data acceptance signals which are addressed to further treating components. The latter components include coordinate and enery channel multiplexers as well as energy-responsive selective networks. A sequential control is provided for regulating the signal processing functions of the system to derive an overall imaging cycle

  20. Gate Simulation of a Gamma Camera

    International Nuclear Information System (INIS)

    Abidi, Sana; Mlaouhi, Zohra

    2008-01-01

    Medical imaging is a very important diagnostic because it allows for an exploration of the internal human body. The nuclear imaging is an imaging technique used in the nuclear medicine. It is to determine the distribution in the body of a radiotracers by detecting the radiation it emits using a detection device. Two methods are commonly used: Single Photon Emission Computed Tomography (SPECT) and the Positrons Emission Tomography (PET). In this work we are interested on modelling of a gamma camera. This simulation is based on Monte-Carlo language and in particular Gate simulator (Geant4 Application Tomographic Emission). We have simulated a clinical gamma camera called GAEDE (GKS-1) and then we validate these simulations by experiments. The purpose of this work is to monitor the performance of these gamma camera and the optimization of the detector performance and the the improvement of the images quality. (Author)

  1. Development of a gamma camera based on a multiwire proportional counter

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Zanevskij, Yu.V.; Ivanov, A.B.

    1981-01-01

    The developed high-pressure gamma-chamber based on a gas multiwire detector is discussed. The main characteristics of the detector for a gamma-ray energy of up to 100 keV are given. The chamber operation is possible at a pressure of up to 10 atm. The detector is filled with a Xe-CH 4 (90-10) mixture. The detector efficiency is about 50%, the space resolution is better than 2 mm at a working region of 280x280 mm [ru

  2. Dynamic imaging with coincidence gamma camera

    International Nuclear Information System (INIS)

    Elhmassi, Ahmed

    2008-01-01

    In this paper we develop a technique to calculate dynamic parameters from data acquired using gamma-camera PET (gc PET). Our method is based on an algorithm development for dynamic SPECT, which processes all decency projection data simultaneously instead of reconstructing a series of static images individually. The algorithm was modified to account for the extra data that is obtained with gc PET (compared with SPEC). The method was tested using simulated projection data for both a SPECT and a gc PET geometry. These studies showed the ability of the code to reconstruct simulated data with a varying range of half-lives. The accuracy of the algorithm was measured in terms of the reconstructed half-life and initial activity for the simulated object. The reconstruction of gc PET data showed improvement in half-life and activity compared to SPECT data of 23% and 20%, respectively (at 50 iterations). The gc PET algorithm was also tested using data from an experimental phantom and finally, applied to a clinical dataset, where the algorithm was further modified to deal with the situation where the activity in certain pixels decreases and then increases during the acquisition. (author)

  3. Gamma cameras - a method of evaluation

    International Nuclear Information System (INIS)

    Oates, L.; Bibbo, G.

    2000-01-01

    Full text: With the sophistication and longevity of the modern gamma camera it is not often that the need arises to evaluate a gamma camera for purchase. We have recently been placed in the position of retiring our two single headed cameras of some vintage and replacing them with a state of the art dual head variable angle gamma camera. The process used for the evaluation consisted of five parts: (1) Evaluation of the technical specification as expressed in the tender document; (2) A questionnaire adapted from the British Society of Nuclear Medicine; (3) Site visits to assess gantry configuration, movement, patient access and occupational health, welfare and safety considerations; (4) Evaluation of the processing systems offered; (5) Whole of life costing based on equally configured systems. The results of each part of the evaluation were expressed using a weighted matrix analysis with each of the criteria assessed being weighted in accordance with their importance to the provision of an effective nuclear medicine service for our centre and the particular importance to paediatric nuclear medicine. This analysis provided an objective assessment of each gamma camera system from which a purchase recommendation was made. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  5. A novel fully integrated handheld gamma camera

    International Nuclear Information System (INIS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-01-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  6. A novel fully integrated handheld gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  7. Rapid objective measurement of gamma camera resolution using statistical moments.

    Science.gov (United States)

    Hander, T A; Lancaster, J L; Kopp, D T; Lasher, J C; Blumhardt, R; Fox, P T

    1997-02-01

    An easy and rapid method for the measurement of the intrinsic spatial resolution of a gamma camera was developed. The measurement is based on the first and second statistical moments of regions of interest (ROIs) applied to bar phantom images. This leads to an estimate of the modulation transfer function (MTF) and the full-width-at-half-maximum (FWHM) of a line spread function (LSF). Bar phantom images were acquired using four large field-of-view (LFOV) gamma cameras (Scintronix, Picker, Searle, Siemens). The following factors important for routine measurements of gamma camera resolution with this method were tested: ROI placement and shape, phantom orientation, spatial sampling, and procedural consistency. A 0.2% coefficient of variation (CV) between repeat measurements of MTF was observed for a circular ROI. The CVs of less than 2% were observed for measured MTF values for bar orientations ranging from -10 degrees to +10 degrees with respect to the x and y axes of the camera acquisition matrix. A 256 x 256 matrix (1.6 mm pixel spacing) was judged sufficient for routine measurements, giving an estimate of the FWHM to within 0.1 mm of manufacturer-specified values (3% difference). Under simulated clinical conditions, the variation in measurements attributable to procedural effects yielded a CV of less than 2% in newer generation cameras. The moments method for determining MTF correlated well with a peak-valley method, with an average difference of 0.03 across the range of spatial frequencies tested (0.11-0.17 line pairs/mm, corresponding to 4.5-3.0 mm bars). When compared with the NEMA method for measuring intrinsic spatial resolution, the moments method was found to be within 4% of the expected FWHM.

  8. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  9. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    International Nuclear Information System (INIS)

    Dai Qiusheng; Zhao Cuilan; Qi Yujin; Zhang Hualin

    2010-01-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel subtractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99m Tc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera. (authors)

  10. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  11. Control system for gamma camera

    International Nuclear Information System (INIS)

    Miller, D.W.

    1977-01-01

    An improved gamma camera arrangement is described which utilizing a solid state detector, formed of high purity germanium. the central arrangement of the camera operates to effect the carrying out of a trapezoidal filtering operation over antisymmetrically summed spatial signals through gated integration procedures utilizing idealized integrating intervals. By simultaneously carrying out peak energy evaluation of the input signals, a desirable control over pulse pile-up phenomena is achieved. Additionally, through the use of the time derivative of incoming pulse or signal energy information to initially enable the control system, a low level information evaluation is provided serving to enhance the signal processing efficiency of the camera

  12. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  13. Evaluation of efficiency of a semiconductor gamma camera

    CERN Document Server

    Otake, H; Takeuchi, Y

    2002-01-01

    We evaluation basic characteristics of a compact type semiconductor gamma camera (eZ-SCOPE AN) of Cadmium Zinc Telluride (CdZnTe). This new compact gamma camera has 256 semiconductors representing the same number of pixels. Each semiconductor is 2 mm square and is located in 16 lines and rows on the surface of the detector. The specific performance characteristics were evaluated in the study referring to National Electrical Manufactures Association (NEMA) standards; intrinsic energy resolution, intrinsic count rate performance, integral uniformity, system planar sensitivity, system spatial resolution, and noise to the neighboring pixels. The intrinsic energy resolution measured 5.7% as full width half maximum (FWHM). The intrinsic count rate performance ranging from 17 kcps to 1,285 kcps was evaluated, but the highest intrinsic count rate was not observed. Twenty percents count loss was recognized at 1,021 kcps. The integral uniformity was 1.3% with high sensitivity collimator. The system planar sensitivity w...

  14. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution

    International Nuclear Information System (INIS)

    Heemskerk, Jan W T; Westra, Albert H; Linotte, Peter M; Ligtvoet, Kees M; Zbijewski, Wojciech; Beekman, Freek J

    2007-01-01

    Charge-coupled devices (CCDs) coupled to scintillation crystals can be used for high-resolution imaging with x-rays and gamma rays. When the CCD images can be read out fast enough, the energy and interaction position of individual gamma quanta can be estimated by a real-time image analysis of the scintillation light flashes ('photon-counting mode'). The electron-multiplying CCD (EMCCD) is well suited for fast read out, since even at high frame rates it has extremely low read-out noise. Back-illuminated (BI) EMCCDs have much higher quantum efficiency than front-illuminated (FI) EMCCDs. Here we compare the spatial and energy resolution of gamma cameras based on FI and BI EMCCDs. The CCDs are coupled to a 1000 μm thick columnar CsI(Tl) crystal for the purpose of Tc-99m and I-125 imaging. Intrinsic spatial resolutions of 44 μm for I-125 and 49 μm for Tc-99m were obtained when using a BI EMCCD, which is an improvement by a factor of about 1.2-2 over the FI EMCCD. Furthermore, in the energy spectrum of the BI EMCCD, the I-125 signal could be clearly separated from the background noise, which was not the case for the FI EMCCD. The energy resolution of a BI EMCCD for Tc-99m was estimated to be approximately 36 keV, full width at half maximum, at 141 keV. The excellent results for the BI EMCCD encouraged us to investigate the cooling requirements for our setup. We have found that for the BI EMCCD, the spatial and energy resolution, as well as image noise, remained stable over a range of temperatures from -50 deg. C to -15 deg. C. This is a significant advantage over the FI EMCCD, which suffered from loss of spatial and especially energy resolution at temperatures as low as -40 deg. C. We conclude that the use of BI EMCCDs may significantly improve the imaging capabilities and the cost efficiency of CCD-based high-resolution gamma cameras. (note)

  15. Decision about buying a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera 1 tab., 1 fig

  16. Decision about buying a gamma camera

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera

  17. Study of the feasibility of a compact gamma camera for real-time cancer assessment

    CERN Document Server

    Caballero Ontanaya, Luis

    2017-01-01

    Results from the simulations of a Compton gamma camera based on compact configuration of detectors consisting in two detection modules, each of them having two stages of high-resolution position- and energy sensitive radiation detectors operated in time-coincidence are presented. Monolithic scintillation crystals instead of pixelated crystals in order to reduce dead areas have been simulated. In order to study the system feasibility to produce real-time images, different setups are considered. Performance in terms of acquisition times have been calculated to determine the real-time capabilities and limitations of such a system.

  18. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    Science.gov (United States)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  19. Rapid evaluation of FDG imaging alternatives using head-to-head comparisons of full ring and gamma camera based PET scanners- a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Haslinghuis-Bajan, L.M.; Lingen, A. van; Mijnhout, G.S.; Teule, G.J.J. [Dept. of Nuclear Medicine, Vrije Univ. Medical Centre, Amsterdam (Netherlands); Hooft, L. [Dept. of Clinical Epidemiology and Biostatistics, Vrije Univ. Medical Centre, Amsterdam (Netherlands); Tulder, M. van [Dept. of Clinical Epidemiology and Biostatistics, Vrije Univ. Medical Centre, Amsterdam (Netherlands); Inst. for Research in Extramural Medicine, Vrije Univ., Medical Centre, Amsterdam (Netherlands); Deville, W. [Inst. for Research in Extramural Medicine, Vrije Univ., Medical Centre, Amsterdam (Netherlands); Hoekstra, O.S. [Dept. of Nuclear Medicine, Vrije Univ. Medical Centre, Amsterdam (Netherlands); Dept. of Clinical Epidemiology and Biostatistics, Vrije Univ. Medical Centre, Amsterdam (Netherlands)

    2002-10-01

    Aim: While FDG full ring PET (FRPET) has been gradually accepted in oncology, the role of the cheaper gamma camera based alternatives (GCPET) is less clear. Since technology is evolving rapidly, ''tracker trials'' would be most helpful to provide a first approximation of the relative merits of these alternatives. As difference in scanner sensitivity is the key variable, head-to-head comparison with FRPET is an attractive study design. This systematic review summarises such studies. Methods: Nine studies were identified until July 1, 2000. Two observers assessed the methodological quality (Cochrane criteria), and extracted data. Results: The studies comprised a variety of tumours and indications. The reported GC- and FRPET agreement for detection of malignant lesions ranged from 55 to 100%, but with methodological limitations (blinding, standardisation, limited patient spectrum). Mean lesion diameter was 2.9 cm (SD 1.8), with only about 20% <1.5 cm. The 3 studies with the highest quality reported concordances of 74-79%, for the studied lesion spectrum. Contrast at GCPET was lower than that of FRPET, contrast and detection agreement were positively related. Logistic regression analysis suggested that pre-test indicators might be used to predict FRPET-GCPET concordance. Conclusion: In spite of methodological limitations, ''first generation'' GCPET devices detected sufficient FRPET positive lesions to allow prospective evaluation in clinical situations where the impact of FRPET is not confined to detection of small lesions (<1.5 cm). The efficiency of head-to-head comparative studies would benefit from application in a clinically relevant patient spectrum, with proper blinding and standardisation of acquisition procedures. (orig.)

  20. Portable mini gamma camera for medical applications

    CERN Document Server

    Porras, E; Benlloch, J M; El-Djalil-Kadi-Hanifi, M; López, S; Pavon, N; Ruiz, J A; Sánchez, F; Sebastiá, A

    2002-01-01

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed.

  1. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  2. Development of a tomographic system adapted to 3D measurement of contaminated wounds based on the Cacao concept (Computer aided collimation Gamma Camera); Developpement a partir du concept CACAO (Camera A Collimation Assistee par Ordinateur) d'un systeme tomographique adapte a la mesure 3D de plaies contaminees

    Energy Technology Data Exchange (ETDEWEB)

    Douiri, A

    2002-03-01

    The computer aided collimation gamma camera (CACAO in French) is a gamma camera using a collimator with large holes, a supplementary linear scanning motion during the acquisition and a dedicated reconstruction program taking full account of the source depth. The CACAO system was introduced to improve both the sensitivity and the resolution in nuclear medicine. This thesis focuses on the design of a fast and robust reconstruction algorithm in the CACAO project. We start by an overview of tomographic imaging techniques in nuclear medicine. After modelling the physical CACAO system, we present the complete reconstruction program which involves three steps: 1) shift and sum 2) deconvolution and filtering 3) rotation and sum. The deconvolution is the critical step that decreases the signal to noise ratio of the reconstructed images. We propose a regularized multi-channel algorithm to solve the deconvolution problem. We also present a fast algorithm based on Splines functions and preserving the high quality of the reconstructed images for the shift and the rotation steps. Comparisons of simulated reconstructed images in 2D and 3D for the conventional system (CPHC) and CACAO demonstrate the ability of CACAO system to increase the quality of the SPECT images. Finally, this study concludes with an experimental approach with a pixellated detector conceived for a 3D measurement of contaminated wounds. This experimentation proves the possible advantages of coupling the CACAO project with pixellated detectors. Moreover, a variety of applications could fully benefit from the CACAO system, such as low activity imaging, the use of high-energy gamma isotopes and the visualization of deep organs. Moreover the combination of the CACAO system with a pixels detector may open up further possibilities for the future of nuclear medicine. (author)

  3. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  4. Programmable electronic system for analog and digital gamma cameras modernization

    International Nuclear Information System (INIS)

    Osorio Deliz, J. F.; Diaz Garcia, A.; Arista Omeu, E. J.

    2013-01-01

    At present the use of analog and digital gamma cameras is continuously increasing in developing countries. Many of them still largely rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. For this reason worldwide there are different medical equipment manufacturing companies engaged into partial or total Gamma Cameras modernization. Nevertheless in several occasions acquisition prices are not affordable for developing countries. This work describes the basic features of a programmable electronic system that allows improving acquisitions functions and processing of analog and digital gamma cameras. This system is based on an electronic board for the acquisition and digitization of nuclear pulses which have been generated by gamma camera detector. It comprises a hardware interface with PC and the associated software to fully signal processing. Signal shaping and image processing are included. The extensive use of reference tables in the processing and signal imaging software allowed the optimization of the processing speed. Time design and system cost were also decreased. (Author)

  5. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    International Nuclear Information System (INIS)

    Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.

    2008-01-01

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)

  6. Performance assessment of gamma cameras. Part 1

    International Nuclear Information System (INIS)

    Elliot, A.T.; Short, M.D.; Potter, D.C.; Barnes, K.J.

    1980-11-01

    The Dept. of Health and Social Security and the Scottish Home and Health Dept. has sponsored a programme of measurements of the important performance characteristics of 15 leading types of gamma cameras providing a routine radionuclide imaging service in hospitals throughout the UK. Measurements have been made of intrinsic resolution, system resolution, non-uniformity, spatial distortion, count rate performance, sensitivity, energy resolution and shield leakage. The main aim of this performance assessment was to provide sound information to the NHS to ease the task of those responsible for the purchase of gamma cameras. (U.K.)

  7. Advanced system for Gamma Cameras modernization

    International Nuclear Information System (INIS)

    Osorio Deliz, J. F.; Diaz Garcia, A.; Arista Romeu, E. J.

    2015-01-01

    Analog and digital gamma cameras still largely used in developing countries. Many of them rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. Consequently, there are different worldwide companies that produce medical equipment engaged into a partial or total Gamma Cameras modernization. Present work has demonstrated the possibility of substitution of almost entire signal processing electronics placed at inside a Gamma Camera detector head by a digitizer PCI card. this card includes four 12 Bits Analog-to-Digital-Converters of 50 MHz speed. It has been installed in a PC and controlled through software developed in Lab View. Besides, there were done some changes to the hardware inside the detector head including redesign of the Orientation Display Block (ODA card). Also a new electronic design was added to the Microprocessor Control Block (MPA card) which comprised a PIC micro controller acting as a tuning system for individual Photomultiplier Tubes. The images, obtained by measurement of 99m Tc point radioactive source, using modernized camera head demonstrate its overall performance. The system was developed and tested in an old Gamma Camera ORBITER II SIEMENS GAMMASONIC at National Institute of Oncology and Radiobiology (INOR) under CAMELUD project supported by National Program PNOULU and IAEA . (Author)

  8. Toward standardising gamma camera quality control procedures

    International Nuclear Information System (INIS)

    Alkhorayef, M.A.; Alnaaimi, M.A.; Alduaij, M.A.; Mohamed, M.O.; Ibahim, S.Y.; Alkandari, F.A.; Bradley, D.A.

    2015-01-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services. - Highlights: • Optimal parameters for quality control of the gamma camera are proposed. • For extrinsic and intrinsic uniformity a minimum of 15,000 counts is recommended. • For intrinsic flood uniformity the activity should not exceed 100 µCi (3.7 MBq). • For intrinsic uniformity the source to detector distance should be at least 60 cm. • The bar phantom measurement must be performed with at least 15 million counts.

  9. [Analog gamma camera digitalization computer system].

    Science.gov (United States)

    Rojas, G M; Quintana, J C; Jer, J; Astudillo, S; Arenas, L; Araya, H

    2004-01-01

    Digitalization of analogue gamma cameras systems, using special acquisition boards in microcomputers and appropriate software for acquisition and processing of nuclear medicine images is described in detail. Microcomputer integrated systems interconnected by means of a Local Area Network (LAN) and connected to several gamma cameras have been implemented using specialized acquisition boards. The PIP software (Portable Image Processing) was installed on each microcomputer to acquire and preprocess the nuclear medicine images. A specialized image processing software has been designed and developed for these purposes. This software allows processing of each nuclear medicine exam, in a semiautomatic procedure, and recording of the results on radiological films. . A stable, flexible and inexpensive system which makes it possible to digitize, visualize, process, and print nuclear medicine images obtained from analogue gamma cameras was implemented in the Nuclear Medicine Division. Such a system yields higher quality images than those obtained with analogue cameras while keeping operating costs considerably lower (filming: 24.6%, fixing 48.2% and developing 26%.) Analogue gamma camera systems can be digitalized economically. This system makes it possible to obtain optimal clinical quality nuclear medicine images, to increase the acquisition and processing efficiency, and to reduce the steps involved in each exam.

  10. New nuclear medicine gamma camera systems

    International Nuclear Information System (INIS)

    Villacorta, Edmundo V.

    1997-01-01

    The acquisition of the Open E.CAM and DIACAM gamma cameras by Makati Medical Center is expected to enhance the capabilities of its nuclear medicine facilities. When used as an aid to diagnosis, nuclear medicine entails the introduction of a minute amount of radioactive material into the patient; thus, no reaction or side-effect is expected. When it reaches the particular target organ, depending on the radiopharmaceutical, a lesion will appear as a decrease (cold) area or increase (hot) area in the radioactive distribution as recorded byu the gamma cameras. Gamma camera images in slices or SPECT (Single Photon Emission Computer Tomography), increase the sensitivity and accuracy in detecting smaller and deeply seated lesions, which otherwise may not be detected in the regular single planar images. Due to the 'open' design of the equipment, claustrophobic patients will no longer feel enclosed during the procedure. These new gamma cameras yield improved resolution and superb image quality, and the higher photon sensitivity shortens imaging acquisition time. The E.CAM, which is the latest generation gamma camera, is featured by its variable angle dual-head system, the only one available in the Philipines, and the excellent choice for Myocardial Perfusion Imaging (MPI). From the usual 45 minutes, the acquisition time for gated SPECT imaging of the heart has now been remarkably reduced to 12 minutes. 'Gated' infers snap-shots of the heart in selected phases of its contraction and relaxation as triggered by ECG. The DIACAM is installed in a room with access outside the main entrance of the department, intended specially for bed-borne patients. Both systems are equipped with a network of high performance Macintosh ICOND acquisition and processing computers. Added to the hardware is the ICON processing software which allows total simultaneous acquisition and processing capabilities in the same operator's terminal. Video film and color printers are also provided. Together

  11. Design and tests of a portable mini gamma camera

    International Nuclear Information System (INIS)

    Sanchez, F.; Benlloch, J.M.; Escat, B.; Pavon, N.; Porras, E.; Kadi-Hanifi, D.; Ruiz, J.A.; Mora, F.J.; Sebastia, A.

    2004-01-01

    Design optimization, manufacturing, and tests, both laboratory and clinical, of a portable gamma camera for medical applications are presented. This camera, based on a continuous scintillation crystal and a position-sensitive photomultiplier tube, has an intrinsic spatial resolution of ≅2 mm, an energy resolution of 13% at 140 keV, and linearities of 0.28 mm (absolute) and 0.15 mm (differential), with a useful field of view of 4.6 cm diameter. Our camera can image small organs with high efficiency and so it can address the demand for devices of specific clinical applications like thyroid and sentinel node scintigraphy as well as scintimammography and radio-guided surgery. The main advantages of the gamma camera with respect to those previously reported in the literature are high portability, low cost, and weight (2 kg), with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the minigamma camera, and no external electronic devices are required. The camera is only connected through the universal serial bus port to a portable personal computer (PC), where a specific software allows to control both the camera parameters and the measuring process, by displaying on the PC the acquired image on 'real time'. In this article, we present the camera and describe the procedures that have led us to choose its configuration. Laboratory and clinical tests are presented together with diagnostic capabilities of the gamma camera

  12. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  13. Dynamic gamma camera scintigraphy in primary hypoovarism

    International Nuclear Information System (INIS)

    Peshev, N.; Mladenov, B.; Topalov, I.; Tsanev, Ts.

    1988-01-01

    Twenty-seven patients with primary hypoovarism and 10 controls were examined. After intravenous injection of 111 to 175 MBq 99m Tc pertechnetate, dynamic gamma camera scintigraphy for 15 minutes was carried out. In the patients with primary amenorrhea no functioning ovarial tissue was visualized or the ovaries were diminished in size, strongly reduced and non-homogenous accumulation of the radionuclide with unclear and uneven delineation were observed. In the patients with primary infertility, the gamma camera investigation gave information not only about the presence of ovarial parenchyma, but about the extent of the inflammatory process, too. In the patients after surgical intervention, the dynamic radioisotope investigation gave information about the volume and the site of the surgical intervention, as well as about the conditions of the residual parenchyma

  14. Gamma camera performance: technical assessment protocol

    International Nuclear Information System (INIS)

    Bolster, A.A.; Waddington, W.A.

    1996-01-01

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera's computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author)

  15. Gamma camera performance: technical assessment protocol

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, A.A. [West Glasgow Hospitals NHS Trust, London (United Kingdom). Dept. of Clinical Physics; Waddington, W.A. [University College London Hospitals NHS Trust, London (United Kingdom). Inst. of Nuclear Medicine

    1996-12-31

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera`s computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author).

  16. An imaging system for a gamma camera

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  17. Gamma camera scatter suppression unit WAM

    International Nuclear Information System (INIS)

    Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.

    1990-01-01

    In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)

  18. Quality assessment of gamma camera systems

    International Nuclear Information System (INIS)

    Kindler, M.

    1985-01-01

    There are methods and equipment in nuclear medical diagnostics that allow selective visualisation of the functioning of organs or organ systems, using radioactive substances for labelling and demonstration of metabolic processes. Following a previous contribution on fundamentals and systems components of a gamma camera system, the article in hand deals with the quality characteristics of such a system and with practical quality control and its significance for clinical applications. [de

  19. A fast algorithm for computer aided collimation gamma camera (CACAO)

    Science.gov (United States)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  20. Development of gamma camera and application to decontamination

    International Nuclear Information System (INIS)

    Yoshida, Akira; Moro, Eiji; Takahashi, Isao

    2013-01-01

    A gamma camera has been developed to support recovering from the contamination caused by the accident of Fukushima Dai-ichi Nuclear Power Plant of Tokyo Electric Power Company. The gamma camera enables recognition of the contamination by visualizing radioactivity. The gamma camera has been utilized for risk communication (explanation to community resident) at local governments in Fukushima. From now on, the gamma camera will be applied to solve decontaminations issues; improving efficiency of decontamination, visualizing the effect of decontamination work and reducing radioactive waste. (author)

  1. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  2. Low complexity pixel-based halftone detection

    Science.gov (United States)

    Ok, Jiheon; Han, Seong Wook; Jarno, Mielikainen; Lee, Chulhee

    2011-10-01

    With the rapid advances of the internet and other multimedia technologies, the digital document market has been growing steadily. Since most digital images use halftone technologies, quality degradation occurs when one tries to scan and reprint them. Therefore, it is necessary to extract the halftone areas to produce high quality printing. In this paper, we propose a low complexity pixel-based halftone detection algorithm. For each pixel, we considered a surrounding block. If the block contained any flat background regions, text, thin lines, or continuous or non-homogeneous regions, the pixel was classified as a non-halftone pixel. After excluding those non-halftone pixels, the remaining pixels were considered to be halftone pixels. Finally, documents were classified as pictures or photo documents by calculating the halftone pixel ratio. The proposed algorithm proved to be memory-efficient and required low computation costs. The proposed algorithm was easily implemented using GPU.

  3. A technique for the absolute measurement of activity using a gamma camera and computer

    International Nuclear Information System (INIS)

    Fleming, J.S.

    1979-01-01

    The quantity of activity of an isotope in an organ is of interest in gamma camera studies. There are problems in correcting the regional gamma camera counts for varying absorption in body tissue, particularly for thick organs. A description is given of a general method, based on anterior, posterior and lateral views. The method has been applied to liver 99 Tcsup(m) sulphur colloid imaging. Phantom measurements showed that the smallest error to be expected was 3.2%. In practice errors would be 5 to 10%, although lower errors would be associated with estimates of liver/spleen ratios. (U.K.)

  4. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Sicart, Sergi; Paredes, Pilar [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain); Institut d' Investigacio Biomedica Agusti Pi Sunyer (IDIBAPS), Barcelona (Spain); Vermeeren, Lenka; Valdes-Olmos, Renato A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Nuclear Medicine Department, Amsterdam (Netherlands); Sola, Oriol [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain)

    2011-04-15

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ({sup 99m}Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  5. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    International Nuclear Information System (INIS)

    Vidal-Sicart, Sergi; Paredes, Pilar; Vermeeren, Lenka; Valdes-Olmos, Renato A.; Sola, Oriol

    2011-01-01

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ( 99m Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  6. Gamma camera based Positron Emission Tomography: a study of the viability on quantification; Tomografia por emissao de positrons com sistemas PET/SPECT: um estudo da viabilidade de quantifizacao

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lorena

    2005-07-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  7. PC-AT to gamma camera interface Anugami-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Sonalkar, S.Y.; Kataria, S.K.

    2000-01-01

    The gamma camera interface ANUGAMI-S is an image acquisition system used in nuclear medicine centres and hospitals. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable parameters with image display and related acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. The paper describes the system details and gated acquisition achieved on the present system. (author)

  8. Quality control of plane and tomographic gamma cameras

    International Nuclear Information System (INIS)

    Moretti, J.L.; Roussi, A.

    1993-01-01

    In this article, the authors present different methods of gamma camera quality control in matters of uniformity, spatial resolution, spatial linearity, sensitivity, energy resolution, counting rate performance, SPECT parameters. The authors refer mainly to NEMA standards. 14 figs., 8 tabs

  9. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  10. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    International Nuclear Information System (INIS)

    Petasecca, M.; Loo, K. J.; Safavi-Naeini, M.; Han, Z.; Metcalfe, P. E.; Lerch, M. L. F.; Qi, Y.; Rosenfeld, A. B.; Meikle, S.; Pospisil, S.; Jakubek, J.; Bucci, J. A.; Zaider, M.

    2013-01-01

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5–3 mm for a 10–60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for

  11. BrachyView: proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy.

    Science.gov (United States)

    Petasecca, M; Loo, K J; Safavi-Naeini, M; Han, Z; Metcalfe, P E; Meikle, S; Pospisil, S; Jakubek, J; Bucci, J A; Zaider, M; Lerch, M L F; Qi, Y; Rosenfeld, A B

    2013-04-01

    The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real-time imaging (using a 3 s

  12. Computer assisted collimation gamma camera: A new approach to imaging contaminated tissues

    International Nuclear Information System (INIS)

    Quartuccio, M.; Franck, D.; Pihet, P.; Begot, S.; Jeanguillaume, C.

    2000-01-01

    Measurement systems with the capability of imaging tissues contaminated with radioactive materials would find relevant applications in medical physics research and possibly in health physics. The latter in particular depends critically on the performance achieved for sensitivity and spatial resolution. An original approach of computer assisted collimation gamma camera (French acronym CACAO) which could meet suitable characteristics has been proposed elsewhere. CACAO requires detectors with high spatial resolution. The present work was aimed at investigating the application of the CACAO principle on a laboratory testing bench using silicon detectors made of small pixels. (author)

  13. Computer assisted collimation gamma camera: A new approach to imaging contaminated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Quartuccio, M.; Franck, D.; Pihet, P.; Begot, S.; Jeanguillaume, C

    2000-07-01

    Measurement systems with the capability of imaging tissues contaminated with radioactive materials would find relevant applications in medical physics research and possibly in health physics. The latter in particular depends critically on the performance achieved for sensitivity and spatial resolution. An original approach of computer assisted collimation gamma camera (French acronym CACAO) which could meet suitable characteristics has been proposed elsewhere. CACAO requires detectors with high spatial resolution. The present work was aimed at investigating the application of the CACAO principle on a laboratory testing bench using silicon detectors made of small pixels. (author)

  14. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  15. PC-AT to gamma camera interface ANUGAMI-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gopalakrishnan, K.R.

    1997-01-01

    PC-AT to gamma camera interface is an image acquisition system used in nuclear medicine centres and hospitals. The interface hardware and acquisition software have been designed and developed to meet most of the routine clinical applications using gamma camera. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable frame sizes, orientation and colour palettes. A complete emulation of camera console has been provided along with persistence scope and acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. (author). 4 refs., 3 figs

  16. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  17. Development and evaluation of a Gamma Camera tuning system

    International Nuclear Information System (INIS)

    Arista Romeu, E. J.; Diaz Garcia, A.; Osorio Deliz, J. F.

    2015-01-01

    Correct operation of conventional analogue Gamma Cameras implies a good conformation of the position signals that correspond to a specific photo-peak of the radionuclide of interest. In order to achieve this goal the energy spectrum from each photo multiplier tube (PMT) has to be set within the same energy window. For this reason a reliable tuning system is an important part of all gamma cameras processing systems. In this work is being tested and evaluated a new prototype of tuning card that was developed and setting up for this purpose. The hardware and software of the circuit allow the regulation if each PMT high voltage. By this means a proper gain control for each of them is accomplished. The Tuning Card prototype was simulated in a virtual model and its satisfactory operation was proven in a Siemens Orbiter Gamma Camera. (Author)

  18. PIXEL PATTERN BASED STEGANOGRAPHY ON IMAGES

    Directory of Open Access Journals (Sweden)

    R. Rejani

    2015-02-01

    Full Text Available One of the drawback of most of the existing steganography methods is that it alters the bits used for storing color information. Some of the examples include LSB or MSB based steganography. There are also various existing methods like Dynamic RGB Intensity Based Steganography Scheme, Secure RGB Image Steganography from Pixel Indicator to Triple Algorithm etc that can be used to find out the steganography method used and break it. Another drawback of the existing methods is that it adds noise to the image which makes the image look dull or grainy making it suspicious for a person about existence of a hidden message within the image. To overcome these shortcomings we have come up with a pixel pattern based steganography which involved hiding the message within in image by using the existing RGB values whenever possible at pixel level or with minimum changes. Along with the image a key will also be used to decrypt the message stored at pixel levels. For further protection, both the message stored as well as the key file will be in encrypted format which can have same or different keys or decryption. Hence we call it as a RGB pixel pattern based steganography.

  19. Gamma camera image processing and graphical analysis mutual software system

    International Nuclear Information System (INIS)

    Wang Zhiqian; Chen Yongming; Ding Ailian; Ling Zhiye; Jin Yongjie

    1992-01-01

    GCCS gamma camera image processing and graphical analysis system is a special mutual software system. It is mainly used to analyse various patient data acquired from gamma camera. This system is used on IBM PC, PC/XT or PC/AT. It consists of several parts: system management, data management, device management, program package and user programs. The system provides two kinds of user interfaces: command menu and command characters. It is easy to change and enlarge this system because it is best modularized. The user programs include almost all the clinical protocols used now

  20. Development and evaluation of a portable CZT coded aperture gamma-camera

    Energy Technology Data Exchange (ETDEWEB)

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L. [CEA, LETI, Minatec Campus, Univ. Grenoble Alpes, 38054 Grenoble, (France); Carrel, F.; Lemaire, H.; Schoepff, V. [CEA, LIST, 91191 Gif-sur-Yvette, (France); Ferrand, G.; Lalleman, A.-S. [CEA, DAM, DIF, 91297 Arpajon, (France)

    2015-07-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm{sup 3} detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  1. Development and evaluation of a portable CZT coded aperture gamma-camera

    International Nuclear Information System (INIS)

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L.; Carrel, F.; Lemaire, H.; Schoepff, V.; Ferrand, G.; Lalleman, A.-S.

    2015-01-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm 3 detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  2. Two dimensional spatial distortion correction algorithm for scintillation GAMMA cameras

    International Nuclear Information System (INIS)

    Chaney, R.; Gray, E.; Jih, F.; King, S.E.; Lim, C.B.

    1985-01-01

    Spatial distortion in an Anger gamma camera originates fundamentally from the discrete nature of scintillation light sampling with an array of PMT's. Historically digital distortion correction started with the method based on the distortion measurement by using 1-D slit pattern and the subsequent on-line bi-linear approximation with 64 x 64 look-up tables for X and Y. However, the X, Y distortions are inherently two-dimensional in nature, and thus the validity of this 1-D calibration method becomes questionable with the increasing distortion amplitude in association with the effort to get better spatial and energy resolutions. The authors have developed a new accurate 2-D correction algorithm. This method involves the steps of; data collection from 2-D orthogonal hole pattern, 2-D distortion vector measurement, 2-D Lagrangian polynomial interpolation, and transformation to X, Y ADC frame. The impact of numerical precision used in correction and the accuracy of bilinear approximation with varying look-up table size have been carefully examined through computer simulation by using measured single PMT light response function together with Anger positioning logic. Also the accuracy level of different order Lagrangian polynomial interpolations for correction table expansion from hole centroids were investigated. Detailed algorithm and computer simulation are presented along with camera test results

  3. Assessment of gamma camera performance at some Sudanese hospitals

    International Nuclear Information System (INIS)

    Ibrahim, Nour El huda Ibrahim Ali

    2016-05-01

    The study aims to investigate the performance quality of the gamma cameras used in three public hospitals in Sudan. It is widely recognized that the attainment of high standards of efficiency and reliability in the practice of nuclear medicine, as in other specialties based on advanced technology, requires an appropriate quality assurance program. In this study we have focused on four of the main tests in order to assess the performance of the three units in question, such as uniformity, resolution/ linearity, center of rotation, photopeak. The values were within the acceptable range (according to the adopted protocols). Overall performance of the units was acceptable. Although all the results were within the acceptable range, some of them were at border, thus an action of preventive maintenance should be considered. It is noticed that a minor to negligible co-operation exists between the centers experts and /or equipment. The establishment of an external and internal auditing program is recommended. More co-operation between the centers should be considered.(Author)

  4. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    Science.gov (United States)

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.

  5. The implementation of quality controls of gamma camera functioning and simulation of tomography techniques by Gate and GEANT4

    International Nuclear Information System (INIS)

    Ben Ameur, Narjes

    2011-01-01

    The reliability of medical devices is directly linked to the services quality offered to the patient. For this reason, quality control tests should be regularly conducted in every nuclear medicine service according to international norms. Our approach consists on realizing different quality control tests recommended by the Nema norm on a gamma-camera in order to evaluate its performance. The obtained data allowed us to study the different physical phenomena happening during a SPECT exam. It also allowed us to identify those affecting the image quality based on the simulation programmes: GEANT 4 and Gate. The obtained results of the quality control showed that the Gamma-camera has a high performance in terms of spatial resolution, linearity, uniformity and rotational center. The establishment of a model for a gamma-camera Symbia E (Siemens) using a Gate platform confirms the reliability of this platform in the conception and the optimization of the detectors.

  6. Preliminary Experience with Small Animal SPECT Imaging on Clinical Gamma Cameras

    Directory of Open Access Journals (Sweden)

    P. Aguiar

    2014-01-01

    Full Text Available The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets.

  7. A compact gamma camera for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  8. Two-dimensional diced scintillator array for innovative, fine-resolution gamma camera

    International Nuclear Information System (INIS)

    Fujita, T.; Kataoka, J.; Nishiyama, T.; Ohsuka, S.; Nakamura, S.; Yamamoto, S.

    2014-01-01

    We are developing a technique to fabricate fine spatial resolution (FWHM<0.5mm) and cost-effective photon counting detectors, by using silicon photomultipliers (SiPMs) coupled with a finely pixelated scintillator plate. Unlike traditional X-ray imagers that use a micro-columnar CsI(Tl) plate, we can pixelate various scintillation crystal plates more than 1 mm thick, and easily develop large-area, fine-pitch scintillator arrays with high precision. Coupling a fine pitch scintillator array with a SiPM array results in a compact, fast-response detector that is ideal for X-ray, gamma-ray, and charged particle detection as used in autoradiography, gamma cameras, and photon counting CTs. As the first step, we fabricated a 2-D, cerium-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) scintillator array of 0.25 mm pitch, by using a dicing saw to cut micro-grooves 50μm wide into a 1.0 mm thick Ce:GAGG plate. The scintillator plate is optically coupled with a 3.0×3.0mm pixel 4×4 SiPM array and read-out via the resistive charge-division network. Even when using this simple system as a gamma camera, we obtained excellent spatial resolution of 0.48 mm (FWHM) for 122 keV gamma-rays. We will present our plans to further improve the signal-to-noise ratio in the image, and also discuss a variety of possible applications in the near future

  9. Implementation of test for quality assurance in nuclear medicine gamma camera

    Science.gov (United States)

    Moreno, A. Montoya; Laguna, A. Rodríguez; Zamudio, Flavio E. Trujillo

    2012-10-01

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (Rin) was 4.67 ± 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (Sext), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (Urot), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 ± 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (Utomo), UI values (%) and percentage noise level (rms%) were 7.54 ± 1.53 and 4.18 ± 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the service. This proposal can be used to

  10. Performance characteristics of ZLC 37 Siemens gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Abdelgadir, Wafaa Abdelrahman [Department of Physics, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1994-04-01

    The relationships between the ZLC 37 Siemens {gamma} camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens {gamma} cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity) when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author) 28 refs. , 10 tabs. , 22 figs. Also available from the Department of Physics, Faculty of Science, University of Khartoum, Khartoum (SD)

  11. Gamma camera investigations using an on-line computer system

    International Nuclear Information System (INIS)

    Vikterloef, K.J.; Beckman, K.-W.; Berne, E.; Liljenfors, B.

    1974-01-01

    A computer system for use with a gamma camera has been developed by Oerebro Regional Hospital and Nukab AB using a PDP 8/e with a 12K core memory connected to a Selektronik gamma camera. It is possible to register, without loss, pictures of high (5kcps) pulse frequency, two separate channels with identical coordinates, fast dynamic functions down to 5 pictures/second, and to perform statistical smoothing and subtraction of two separate pictures. Experience has shown these possibilities to be so valuable that one has difficulty in thinking of a scanning system without them. This applies not only to sophisticated investigations, e.g. dual isotope registration, but also in conventional scanning for avoiding false positive interpretations and increasing the precision. It is possible at relatively low cost to add a dosage planning system. (JIW)

  12. A SPECT demonstrator—revival of a gamma camera

    Science.gov (United States)

    Valastyán, I.; Kerek, A.; Molnár, J.; Novák, D.; Végh, J.; Emri, M.; Trón, L.

    2006-07-01

    A gamma camera has been updated and converted to serve as a demonstrator for educational purposes. The gantry and the camera head were the only part of the system that remained untouched. The main reason for this modernization was to increase the transparency of the gamma camera by partitioning the different logical building blocks of the system and thus providing access for inspection and improvements throughout the chain. New data acquisition and reconstruction software has been installed. By taking these measures, the camera is now used in education and also serves as a platform for tests of new hardware and software solutions. The camera is also used to demonstrate 3D (SPECT) imaging by collecting 2D projections from a rotatable cylindrical phantom. Since the camera head is not attached mechanically to the phantom, the effect of misalignment between the head and the rotation axis of the phantom can be studied.

  13. A SPECT demonstrator-revival of a gamma camera

    International Nuclear Information System (INIS)

    Valastyan, I.; Kerek, A.; Molnar, J.; Novak, D.; Vegh, J.; Emri, M.; Tron, L.

    2006-01-01

    A gamma camera has been updated and converted to serve as a demonstrator for educational purposes. The gantry and the camera head were the only part of the system that remained untouched. The main reason for this modernization was to increase the transparency of the gamma camera by partitioning the different logical building blocks of the system and thus providing access for inspection and improvements throughout the chain. New data acquisition and reconstruction software has been installed. By taking these measures, the camera is now used in education and also serves as a platform for tests of new hardware and software solutions. The camera is also used to demonstrate 3D (SPECT) imaging by collecting 2D projections from a rotatable cylindrical phantom. Since the camera head is not attached mechanically to the phantom, the effect of misalignment between the head and the rotation axis of the phantom can be studied

  14. Acquisition of gamma camera and physiological data by computer

    International Nuclear Information System (INIS)

    Hack, S.N.; Chang, M.; Line, B.R.; Cooper, J.A.; Robeson, G.H.

    1986-01-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable

  15. A triple GEM gamma camera for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Balla, A. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Bencivenni, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Corradi, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); D' Ambrosio, C. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Domenici, D. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Felici, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Gatta, M. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Morone, M.C. [Dipartimento di Biopatologia e Diagnostica per immagini, Universita di Roma Tor Vergata (Italy); INFN - Sezione di Roma Tor Vergata (Italy); Murtas, F. [Laboratori Nazionali di Frascati INFN, Frascati (Italy)]. E-mail: fabrizio.murtas@lnf.infn.it; Schillaci, O. [Dipartimento di Biopatologia e Diagnostica per immagini, Universita di Roma Tor Vergata (Italy)

    2007-03-01

    A Gamma Camera for medical applications 10x10cm{sup 2} has been built using a triple GEM chamber prototype. The photon converters placed in front of the three GEM foils, has been realized with different technologies. The chamber, High Voltage supplied with a new active divider made in Frascati, is readout through 64 pads, 1mm{sup 2} wide, organized in a row of 8cm long, with LHCb ASDQ chip. This Gamma Camera can be used both for X-ray movie and PET-SPECT imaging; this chamber prototype is placed in a scanner system, creating images of 8x8cm{sup 2}. Several measurements have been performed using phantom and radioactive sources of Tc99m(140keV) and Na22(511keV). Results on spatial resolution and image reconstruction are presented.

  16. Is it practical to use the gamma camera dead time

    International Nuclear Information System (INIS)

    Morin, P.P.; Morin, J.F.; Caroff, J.; Lahellec, M.; Savina, A.

    1975-01-01

    The linearity of gamma camera counting is an essential feature for users engaged in quantitative dynamic studies. Instead of defining this quality by the usual dead time, the disadvantages of which are reported, it is proposed to use the experimental count rate giving 10% loss. It is shown that by proceeding in this way all ambiguity would be abolished, where both the counting linearity itself and its relation to sensitivity are concerned [fr

  17. Biomedical image acquisition system using a gamma camera

    International Nuclear Information System (INIS)

    Jara B, A.T.; Sevillano, J.; Del Carpio S, J.A.

    2003-01-01

    A gamma camera images PC acquisition board has been developed. The digital system has been described using VHDL and has been synthesized and implemented in a Altera Max7128S CPLD and two PALs 16L8. The use of programmable-logic technologies has afforded a higher scale integration and a reduction of the digital delays and also has allowed us to modify and bring up to date the entire digital design easily. (orig.)

  18. Standardization of test conditions for gamma camera performance measurement

    International Nuclear Information System (INIS)

    Jordan, K.

    1982-02-01

    The way of measuring gamma camera performance is to use point sources or flood sources in air, often in combination with bar phantoms. This method has nothing in common with the use of a camera in clinical practice. Particularly in the case of low energy emitters, like Tc-99m, the influence of scattered radiation over the performance of cameras is very high. The IEC document 'Characteristics and test conditions of radionuclide imaging devices' is discussed

  19. A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors

    Science.gov (United States)

    Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.

    2018-04-01

    The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.

  20. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  1. Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera for radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu [Radiotracer Imaging Gr., Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Toshihiro [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2014-07-01

    Vast agricultural and forest areas around the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station in Japan were contaminated with radiocesium (Cs-134 and Cs-137) after the accident following the earthquake and tsunami in March 2011. A variety of agricultural studies, such as fertilizer management and plant breeding, have been undertaken intensively for reduction of radiocesium uptake in crops, or, enhancement of uptake in phyto-remediation. In this study, we newly developed a gamma camera specific for plant nutritional research, and performed quantitative analyses on uptake and partitioning of radiocesium in intact plant bodies. In general, gamma camera is a common technology in medical imaging, but it is not applicable to high-energy gamma rays such as emissions from Cs-137 (662 keV). Therefore, we designed our new gamma camera to prevent the penetration and scattering of the high-energy gamma rays. A single-crystal scintillator, Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), was employed, which has a relatively high density, a large light output, no natural radioactivity and no hygroscopicity. A 44 x 44 matrix of the Ce:GAGG pixels, with dimensions of 0.85 mm x 0.85 mm x 10 mm for each pixel, was coupled to a high-quantum efficiency position sensitive photomultiplier tube. This gamma detector unit was encased in a 20-mm-thick tungsten container with a tungsten pinhole collimator on the front. By using this gamma camera, soybean plants (Glycine max), grown in hydroponic solutions and fed with 1-2 MBq of Cs-137, were imaged for 6.5 days in maximum to investigate and visualize the uptake dynamics into/within the areal part. As a result, radiocesium gradually appeared in the shoot several hours after feeding of Cs-137, and then accumulated intensively in the maturing pods and seeds in a characteristic pattern. Our results also demonstrated that this gamma-camera method enables quantitative evaluation of plant ability to absorb, transport

  2. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  3. Survey of potential use of dynamic line phantom for quality control of Gamma camera

    International Nuclear Information System (INIS)

    Trindev, P.; Ozturk, N.

    2004-01-01

    Different phantoms, used to evaluate the essential for image quality parameters of gamma cameras in order to avoid artefacts, are presented. The prices are significant and it is a sensible approach to optimise the type and number of phantoms necessary for quality control. Among all phantoms the price of 'Dynamic Line Phantom' (DLP) is impressive, but it is announced to substitute several 'passive' and 'active' phantoms. The goal of this paper is to justify this statement. The programs, based on image profile are discussed in the paper and the practical uses of the different programs are given

  4. Performance tests of two portable mini gamma cameras for medical applications

    International Nuclear Information System (INIS)

    Sanchez, F.; Fernandez, M. M.; Gimenez, M.; Benlloch, J. M.; Rodriguez-Alvarez, M. J.; Garcia de Quiros, F.; Lerche, Ch. W.; Pavon, N.; Palazon, J. A.; Martinez, J.; Sebastia, A.

    2006-01-01

    We have developed two prototypes of portable gamma cameras for medical applications based on a previous prototype designed and tested by our group. These cameras use a CsI(Na) continuous scintillation crystal coupled to the new flat-panel-type multianode position-sensitive photomultiplier tube, H8500 from Hamamatsu Photonics. One of the prototypes, mainly intended for intrasurgical use, has a field of view of 44x44 mm 2 , and weighs 1.2 kg. Its intrinsic resolution is better than 1.5 mm and its energy resolution is about 13% at 140 keV. The second prototype, mainly intended for osteological, renal, mammary, and endocrine (thyroid, parathyroid, and suprarenal) scintigraphies, weighs a total of 2 kg. Its average spatial resolution is 2 mm; it has a field of view of 95x95 mm 2 , with an energy resolution of about 15% at 140 keV. The main advantages of these gamma camera prototypes with respect to those previously reported in the literature are high portability and low weight, with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the mini gamma cameras, and no external electronic devices are required. The cameras are only connected through the universal serial bus port to a portable PC. In this paper, we present the design of the cameras and describe the procedures that have led us to choose their configuration together with the most important performance features of the cameras. For one of the prototypes, clinical tests on melanoma patients are presented and images are compared with those obtained with a conventional camera

  5. Clinical significance of gamma camera renography in chronic renal insufficiency

    International Nuclear Information System (INIS)

    Dudczak, R.; Frischauf, H.; Kletter, K.

    1980-01-01

    Gamma camera renography allows, together with renal imaging, an evaluation of individual renal function. For these examinations, I 123 orthoiodohippurate is preferred and most widely used. The results on patients with chronic renal insufficiency, including urologic and posttransplantation patients, are reported. Whereas the method is of clinical significance in evaluating posttransplantation complications and in assessing individual kidney function preoperatively in urology, as well as in monitoring therapeutic effects in the early period of renal disease, it is of limited diagnostic value in chronic renal insufficiency. In this latter regard, clinical and laboratory examinations are of primary importance. (author)

  6. What about getting physiological information into dynamic gamma camera studies

    International Nuclear Information System (INIS)

    Kiuru, A.; Nickles, R. J.; Holden, J. E.; Polcyn, R. E.

    1976-01-01

    A general technique has been developed for the multiplexing of time dependent analog signals into the individual frames of a gamma camera dynamic function study. A pulse train, frequency-modulated by the physiological signal, is capacitively coupled to the preamplifier servicing anyone of the outer phototubes of the camera head. These negative tail pulses imitate photoevents occuring at a point outside of the camera field of view, chosen to occupy a data cell in an unused corner of the computer-stored square image. By defining a region of interest around this cell, the resulting time-activity curve displays the physiological variable in temporal synchrony with the radiotracer distribution. (author)

  7. Energy independent uniformity improvement for gamma camera systems

    International Nuclear Information System (INIS)

    Lange, K.

    1979-01-01

    In a gamma camera system having an array of photomultiplier tubes for detecting scintillation events and preamplifiers connecting each tube to a weighting resistor matrix for determining the position coordinates of the events, means are provided for summing the signals from all photomultipliers to obtain the total energy of each event. In one embodiment, at least two different percentages of the summed voltage are developed and used to change the gain of the preamplifiers as a function of total energy when energies exceed specific levels to thereby obtain more accurate correspondence between the true coordinates of the event and its coordinates in a display

  8. Gamma camera system with composite solid state detector

    International Nuclear Information System (INIS)

    Gerber, M.S.; Miller, D.W.

    1977-01-01

    A composite solid-state detector is described for utilization within gamma cameras. The detector's formed of an array of detector crystals, the opposed surfaces of each of which are formed incorporating an impedance-derived configuration for determining one coordinate of the location of discrete impinging photons upon the detector. A combined read-out for all detectors within the composite array is achieved through a row and column interconnection of the impedance configurations. Utilizing the read-outs for respective sides of the discrete crystals, a resultant time-constant characteristic for the composite detector crystal array remains essentially that of individual crystal detectors

  9. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    Science.gov (United States)

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  10. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimochi, Makoto; Hayama, Kazuhide [Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Dentistry at Niigata, 1-8 Hamaura-cho, 951-8580, Niigata (Japan); Sakahara, Harumi [Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu (Japan); Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi [Acrorad Co. Ltd., Tokyo (Japan); Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar [Integrated Detector and Electronics A.S (IDE AS), Hovik (Norway)

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV ({sup 99m}Tc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56{+-}0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and

  11. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications

    International Nuclear Information System (INIS)

    Tsuchimochi, Makoto; Hayama, Kazuhide; Sakahara, Harumi; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-01-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV ( 99m Tc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56±0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  12. Hydra phantom applicability for carrying out tests of field uniformity in gamma cameras

    International Nuclear Information System (INIS)

    Aragao Filho, Geraldo L.; Oliveira, Alex C.H.

    2014-01-01

    Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV). Also, was evaluated their

  13. Defining the lung outline from a gamma camera transmission attenuation map

    International Nuclear Information System (INIS)

    Fleming, John S; Pitcairn, Gary; Newman, Stephen

    2006-01-01

    Segmentation of the lung outline from gamma camera transmission images of the thorax is useful in attenuation correction and quantitative image analysis. This paper describes and compares two threshold-based methods of segmentation. Simulated gamma camera transmission images of test objects were used to produce a knowledge base of the variation of threshold defining the lung outline with image resolution and chest wall thickness. Two segmentation techniques based on global (GT) and context-sensitive (CST) thresholds were developed and evaluated in simulated transmission images of realistic thoraces. The segmented lung volumes were compared to the true values used in the simulation. The mean distances between segmented and true lung surface were calculated. The techniques were also applied to three real human subject transmission images. The lung volumes were estimated and the segmentations were compared visually. The CST segmentation produced significantly superior segmentations than the GT technique in the simulated data. In human subjects, the GT technique underestimated volumes by 13% compared to the CST technique. It missed areas that clearly belonged to the lungs. In conclusion, both techniques segmented the lungs with reasonable accuracy and precision. The CST approach was superior, particularly in real human subject images

  14. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N., E-mail: dinu@lal.in2p3.fr [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Imando, T. Ait; Nagai, A. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Pinot, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Puill, V. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Callier, S. [Omega Microelectronics Group, CNRS, Palaiseau (France); Janvier, B.; Esnault, C.; Verdier, M.-A. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Raux, L. [Omega Microelectronics Group, CNRS, Palaiseau (France); Vandenbussche, V.; Charon, Y.; Menard, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France)

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m{sup 2}. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm{sup 2} sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  15. PET with a coincidence gamma camera: results in selected oncological questions

    International Nuclear Information System (INIS)

    Lauer, I.; Haase, A; Adam, S.; Prueter, I.; Richter, E.; Baehre, M.

    2001-01-01

    Since early 1997, about 1660 investigations with coincidence gamma camera PET (CGC-PET) have been performed in our department, mostly undertaken for oncological questions. Based on these data, several retrospective and prospective studies were performed. In the following, the results in CUP (cancer of unknown primary) syndrome, melanoma and malignant lymphoma are presented. Methods: CGC-PET was performed after application of 250-350 MBq [ 18 F]FDG using a coincidence double head gamma camera with 19 mm Nal cristal. CUP-Syndrome: After completing conventional diagnostic procedures, 32 patients have been examined in a prospective study, including 25 patients with recently detected CUP and 7 patients undergoing restaging after therapy. Localization of the primary tumor was successful in 12 (38%) cases. Melanoma: We evaluated 50 studies in 41 patients suffering from melanoma, retrospectively. CGC-PET showed a sensitivity of 76%, and a specificity of 94%. In comparison to conventional diagnostic methods, CGC-PET delineated important additional information in 16%. CGC-PET was superior to morphological diagnostic tools in the differentiation between residual scar tissue and active tumor following immunochemotherapy. Malignant lymphoma: 29 CGC-PET in 29 patients were performed for staging of malignant lymphoma, sensitivity was 86% versus 88% for CT. Overall CGC-PET showed additional information to conventional diagnostic methods, but revealed problems in detecting small infiltrations of organs. In restaging malignant melanoma (26 patients, 33 studies), specificity of CGC-PET was superior to conventional diagnostics (92% versus 35%). (orig.) [de

  16. Gamma camera imaging of bilateral adrenocartical hyperplasia and adrenal tumors in the dog

    International Nuclear Information System (INIS)

    Mulnix, J.A.; Van den Brom, W.E.; Lubberink, A.A.; de Bruijne, J.J.; Rijnberk, A.

    1976-01-01

    Gamma camera imaging of the adrenal glands was done in 8 dogs with hyperadrenocorticism and 4 normal dogs given intravenous injections of 131I-19-iodocholesterol. In normal dogs, both adrenal glands could be visualized separately, and there was no difficulty in distinguishing among the images of normal glands, hyperplastic glands, and functional adrenal tumors. In addition, gamma camera imaging enabled the correct surgical site to be selected for removal of adrenal tumors. Hyperadrenocorticism was diagnosed in 8 dogs by evaluation of urinary 17-hydroxycorticosteroid (OHCS) excretion rates, urinary 17-OHCS and plasma 11 beta-OHCS responses to dexamethasone suppression of endogenous adrenocorticotropin (ACTH) secretion, and plasma 11 beta-OHCS response to intravenous administration of ACTH. Base line 17-OHCS excretion increased in 5 of the 8 dogs. Plasma 11 beta-OHCS concentrations were not decreased by dexamethasone administration in the 4 dogs subsequently found to have adrenal tumors; however, there was an exaggerated increase in plasma 11 beta-OHCS concentration after administration of ACTH in 3 of the 4 dogs which had bilateral adrenocortical hyperplasia

  17. Expanding of FOV of NaI(Tl) gamma camera detectors-Is it possible?

    International Nuclear Information System (INIS)

    Gayshan, Vadim L.; Gektin, A.V.; Boyarintsev, A.; Pedash, V.

    2006-01-01

    Every gamma camera detector used for medical imaging of conventional design faces the problem of distorted or no information readout at the areas closer to the edge of detectors. Obtaining position and energy information becomes almost impossible at distance 0-12 of PMT size from the edge. Therefore, in some designs were proposed losing of edge energy resolution while improving in spatial uniformity when it comes to imaging at the edges. This work is dedicated to understanding of the problem, mathematical simulations, practical tests and recommendations to build detectors with larger usable FOV without increasing in dimensions. To study the problem we built the test jig with linear motion source and readout electronics to simulate gamma cameras of PMTs. Based on simulation results the idea of modifying of crystal shape combined with specific light redirection system of baffles was tested and allowed to expand usable FOV. The results are presented and showed that for traditional NaI(Tl) scintillators using 2'' PMT may be possible to obtain relatively good spatial resolution starting from 4-5mm from the edge of a detector. The question of economical efficiency of proposed method is being investigated and a special detector manufacturing technology must be developed to accommodate this. While we believe that achieved results are very important for small size detectors (<20cm) they could be beneficial even for larger detectors used in whole body imaging systems

  18. Estimated GFR (eGFR by prediction equation in staging of chronic kidney disease compared to gamma camera GFR

    Directory of Open Access Journals (Sweden)

    Mohammad Masum Alam

    2016-07-01

    Full Text Available Background: Glomerular filtration rate is an effective tool for diagnosis and staging of chronic kidney disease. The effect ofrenal insufficiency by different method of this tool among patients with CKD is controversial.Objective: The objec­tive of this study was to evaluate the performance of eGFR in staging of CKD compared to gamma camera based GFR.Methods: This cross sectional analytical study was conducted in the Department of Biochemistry Bangabandhu Sheikh Mujib Medical University (BSMMU with the collaboration with National Institute of Nuclear Medicine and Allied Sciences, BSMMU during the period of January 2011 to December 2012. Gama camera based GFR was estimated from DTP A reno gram and eGFR was estimated by three prediction equations. Comparison was done by Bland Altman agree­ment test to see the agreement on the measurement of GFR between three equation based eGFR method and gama camera based GFR method. Staging comparison was done by Kappa analysis to see the agreement between the stages identified by those different methods.Results: Bland-Altman agreement analysis between GFR measured by gamma camera, CG equation ,CG equation corrected by BSA and MDRD equation shows statistically significant. CKD stages determined by CG GFR, CG GFR corrected by BSA , MDRD GFR and gamma camera based GFR was compared by Kappa statistical analysis .The kappa value was 0.66, 0.77 and 0.79 respectively.Conclusions: This study findings suggest that GFR estimation by MDRD equation in CKD patients shows good agreement with gamma camera based GFR and for staging of CKD patients, eGFR by MDRD formula may be used as very effective tool in Bangladeshi population.

  19. Recent developments in gamma camera technology for myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Bengel, Frank M.

    2010-01-01

    Economic pressure, competition from alternative modalities and an increasing awareness of patient radiation exposure have triggered a rapid development of novel technology for cardiac single-photon emission computed tomography (SPECT) in recent years. The trend clearly goes towards systems with higher sensitivity and resolution, and towards faster acquisition protocols. Those goals are achieved by various measures: On the one hand, several manufacturers have integrated novel semiconductor detector materials together with innovative collimators into dedicated cardiac scanners. On the other hand, new collimators and reconstruction algorithms have lead to increased speed and accuracy of conventional gamma cameras. Imaging times now can be reduced to as much as 10% of that of previous standard protocols, and/or injected activity can be reduced. This is achieved without loss of diagnostic accuracy. These novel developments are still in early phases of clinical implementation. Their potential for a profound change of the clinical practice of myocardial perfusion scintigraphy, however, becomes increasingly obvious. (orig.)

  20. Gamma camera system with improved means for correcting nonuniformity

    International Nuclear Information System (INIS)

    Lange, K.; Jeppesen, J.

    1979-01-01

    In a gamma camera system, means are provided for correcting nonuniformity or lack of correspondence between the positions of scintillations and their calculated and displayed by x-y coordinates. In an accumulation mode, pulse counts corresponding with scintillations in various areas of the radiation field are stored in memory locations corresponding with their locations in the radiation field. A uniform radiation source is presented to the detectors during the accumulation is interrupted at which time other locations have fewer counts in them. In the run mode, counts are stored in corresponding locations of a memory and these counts are compared continuously with those stored in the accumulation mode. Means are provided for injecting a number of counts during the run mode proportional to the difference between the counts accumulated during the accumulation mode in a given area increment and the counts that should have been obtained from a uniform source

  1. A new gamma camera for positron emission tomography

    International Nuclear Information System (INIS)

    Schotanus, P.

    1988-01-01

    This thesis describes the detection of annihiliation radiation employing a new principle: radiation is absorbed in a barium fluoride (BaF 2) crystal and the resulting scintillation light is detected in a multiwire proportional chamber filled with a photsensitive vapour. The application of such a detector for PET is new; the use of a high density fast scintillator in combination with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. In this work, the physical background of the above detection mechanism is explored and the performance parameters of a gamma camera using this new principle, are determined. Furthermore, a comprehensive research on the scintillation mechanism and physical characteristics of the increasingly popular BaF 2 scintillator is presented. Also, a new class of ultraviolet (UV) scintillation materials, consisting of rare earth doped fluorides, is introduced. (author). 211 refs.; 30 figs.; 17 tabs

  2. Quality control of the gamma camera/computer interface

    International Nuclear Information System (INIS)

    Busemann-Sokole, E.

    1983-01-01

    Reporting on the conference mentioned, the author indicates that technical inspection of the gamma camera and the attached computer each by themselves is not sufficient. The parts of the interface and the hardware or software can contain sources of error. In order to obtain the best diagnostic image a number of control measurements are recommended dealing with image intensifying, intensifier offset, linearity of transformation, exclusion of 'data drop' or 'bit drop', 2-pulse timing, correct response with different counting rates, and response to triggers (electrocardiogram). The last and most important recommendation is to record in writing particulars of each inspection and control measurement, particulars and solutions of problems and modifications in hardware and software. (Auth.)

  3. Inter-laboratory comparison study of gamma cameras in Pakistan

    International Nuclear Information System (INIS)

    Shahid, M.A.; Mumtaz-ul-Haq

    1988-01-01

    The evaluation of the performance of both instrument and the physician are important in any quality assurance programme in nuclear medicine imaging. The IAEA launched a similar program in 1984 under its Regional Cooperation Agreement program in South Asian Countries. The first part of the study consisted of the evaluation of imaging equipment by imaging IAEA-WHO Simulated Anatomic Liver Phantom (SALP) and its interpretation by the physician. From Pakistan, 8 gamma cameras from 7 laboratories were used for the study and 16 physician interpreted in the SALP images. This paper reports the results of SALP images from Pakistan and shows the efficacy of 80 to 100% as regards the quality of image obtained and the interpretation done by the physicians. (author)

  4. Standardization of test conditions for gamma camera performance measurement

    International Nuclear Information System (INIS)

    Jordan, K.

    1980-01-01

    The actual way of measuring gamma camera performance is to use point sources or flood sources in air, often in combination with bar phantoms. This method mostly brings best performance parameters for cameras but it has nothing in common with the use of a camera in clinical practice. Particular in the case of low energy emitters, like Tc-99m, the influence of scattered radiation over the performance of cameras is very high. Therefore it is important to have test conditions of radionuclide imaging devices, that will approach as best as practicable the measuring conditions in clinical applications. It is therefore a good news that the International Electrochemical Commission IEC has prepared a draft 'Characteristics and test conditions of radionuclide imaging devices' which is now submitted to the national committees for formal approval under the Six Months' Rule. Some essential points of this document are discussed in the paper. (orig.) [de

  5. Feasibility of the gamma camera acceptance testing procedure introduced by the Swiss Federal Office of public health

    International Nuclear Information System (INIS)

    Baechler, S.; Bochud, F.; Verdun, F.R.; Corminboeuf, F.; Linder, R.; Trueb, Ph.; Malterre, J.; Bischof Delaloye, A.

    2006-01-01

    Like in the field of radiology, digital systems are also becoming the standard in the field of nuclear medicine. This offers not only the possibility to process, transmit and archive data from patients more easily but also to introduce quantitative measurements for quality controls. In this framework, standards concerning the qualification of gamma camera systems have been updated and appeared to be useful to set legal requirements, in spite of the fact, that this is not their goals. The aim of this study was first to choose a set of tests described in standards to define measurements to be performed at the acceptance of the systems and after the regular maintenance (at least once every six months). Reference values are then established to control the stability of the system. To verify the feasibility, from a technical and a time requirements points of view, the tests proposed for the quality assurance programme have been applied on three gamma camera systems. The results of this study show that new requirements concerning the quality assurance of gamma camera of the Swiss Federal Office of Public Health based on international standards required to slightly modify some procedures to reduce the time necessary for the acceptance and status tests. (authors)

  6. SiPM-MAROC gamma-camera prototype with monolithic NaI(Tl) scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Dmitry; Ilyin, Andrey; Belyaev, Vladimir; Popova, Elan [National Research Nuclear University, Moscow Engineering Physics Institute (Russian Federation); Buzhan, Pavel; Stifutkin, Alexei [Moscow Engineering Physics Institute (Russian Federation)

    2015-05-18

    A full-body gamma-camera based on SiPM readout is currently under development as a part of MEPHI R activity supported in the framework of Russian Megagrants program. A goal of this development is a fast upgrade of existing medical equipment with minor changes in a system design and construction in order to combine SPECT and MR instruments. A monolithic NaI(Tl) scintillator commonly used for conventional PMT-based gamma cameras has been chosen for this study. SiPMs will be coupled with the scintillator via an optical guide. To cover scintillator surface thousands of SiPMs are required, together with multichannel front-end electronics. That means that readout electronics have to be very compact, with low power consumption and low cost. 64 – channel ASIC MAROC from Weeroc provides individual readout of each SiPM and has been considered as the best choice among electronics solutions available on the market. As the photodetector parameters are the key issues here, KETEK SiPMs with high detection efficiency, low crosstalk and low noise have been chosen for this study. In order to study the proposed detection system in detail and obtain detector module parameters, required for MC simulation, a 64-channel small prototype with 6x6mm{sup 2} SiPMs has been constructed and tested. SiPMs in SMD packages have been assembled as a matrix of 8x8 elements and readout by MAROC-based board. Prototype has been tested with different shape NaI(Tl) scintillators and gammas with different energy. Dedicated algorithms for extraction of gamma-event’s energy and position are under development. They are based on fitting a matrix of individual SiPMs responses by an analytical function F(x,y). They will be tested with GEANT-simulated events and experimental data. Development of the next (engineering) prototype of SiPM’s module for gamma-camera will be started soon.

  7. SiPM-MAROC gamma-camera prototype with monolithic NaI(Tl) scintillator

    International Nuclear Information System (INIS)

    Philippov, Dmitry; Ilyin, Andrey; Belyaev, Vladimir; Popova, Elan; Buzhan, Pavel; Stifutkin, Alexei

    2015-01-01

    A full-body gamma-camera based on SiPM readout is currently under development as a part of MEPHI R activity supported in the framework of Russian Megagrants program. A goal of this development is a fast upgrade of existing medical equipment with minor changes in a system design and construction in order to combine SPECT and MR instruments. A monolithic NaI(Tl) scintillator commonly used for conventional PMT-based gamma cameras has been chosen for this study. SiPMs will be coupled with the scintillator via an optical guide. To cover scintillator surface thousands of SiPMs are required, together with multichannel front-end electronics. That means that readout electronics have to be very compact, with low power consumption and low cost. 64 – channel ASIC MAROC from Weeroc provides individual readout of each SiPM and has been considered as the best choice among electronics solutions available on the market. As the photodetector parameters are the key issues here, KETEK SiPMs with high detection efficiency, low crosstalk and low noise have been chosen for this study. In order to study the proposed detection system in detail and obtain detector module parameters, required for MC simulation, a 64-channel small prototype with 6x6mm 2 SiPMs has been constructed and tested. SiPMs in SMD packages have been assembled as a matrix of 8x8 elements and readout by MAROC-based board. Prototype has been tested with different shape NaI(Tl) scintillators and gammas with different energy. Dedicated algorithms for extraction of gamma-event’s energy and position are under development. They are based on fitting a matrix of individual SiPMs responses by an analytical function F(x,y). They will be tested with GEANT-simulated events and experimental data. Development of the next (engineering) prototype of SiPM’s module for gamma-camera will be started soon.

  8. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    Science.gov (United States)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  9. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.

    Science.gov (United States)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  10. Integration of gamma cameras and PET devices of multiple vendors in several locations

    International Nuclear Information System (INIS)

    Dresel, S.; Vollmar, C.; Sengupta, S.; Hahn, K.

    2002-01-01

    Full text: The Department of Nuclear Medicine of the University of Munich consists of four independently operated locations with a total of 18 gamma cameras (of three vendors), one PET scanner and one coincidence gamma camera. Recent hardware improvements, the installation and development of fast networks and new technologies for storage of large data volumes all contribute to the propagation of digital reading and reporting of nuclear medicine studies. Thus, the vision of a fully digitized nuclear medicine department becomes reality. In 1997 the department started with a strategy to fully integrate the entire number of imaging devices into one network for filmless reading, archiving and distributing nuclear medicine studies throughout the hospitals. The decision was made to use HERMES workstations (Nuclear Diagnostics, Sweden) to connect all primary imaging modalities. The purpose of the workstations located in the Nuclear Medicine departments is threefold: postprocessing, reading and archiving of all data. The workstations are networked throughout the different hospitals and are able to read the proprietary or DICOM data of the vendors of the gamma camera and PET equipment. The HERMES system is connected via DICOM interface to a long term storage device (AGFA, Germany). Additionally a JAVA (SUN Microsystems, USA) based software (JARVIS, Nuclear Diagnostics) is available to view all data from any computer using a web browser. Furthermore all data is linked to the hospital information system and selected imaging data are distributed throughout the hospitals. After commencement of full service of the network in 2000 the department is over 95 % filmfree. The high costs of purchasing hardware- and software-components are compensated for by saving costs of films and by the improvement of the work flow. Independently from these issues, filmless reporting proves to be advantageous over conventional film reading in many facts that justify to switch to a digital department

  11. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Osman, Yousif Bashir Soliman

    2015-12-01

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  12. Risks assessment associated with the use of an analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Figueroa del Valle, D. G.

    2013-01-01

    Technological development experienced by the industrialized countries has been accompanied by a significant improvement in living standards. Likewise, the proliferation of facilities and transportation of certain materials have involved the emergence of new risks, which could cause accidents with a strong impact on people and the environment. The paper makes a risk assessment associated with the use of an analyzer for Gamma Cameras diagnostic. The method is bases on determining the number of risks HRN (Hazard Rating Number). As a result of the methodology used was obtained the risks that have more implications in the use of this system and sets safety rules for their use and an action plan for managing them. (Author)

  13. Risk analysis for working with an analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, Ivon; Figueroa del Valle, Diana G.

    2014-01-01

    In this work, an analysis of the risks for working with an analyzer for gamma cameras diagnostic was made. The method employed is based on determining the Hazard Rating Number (HRN). The results showed that the risks with higher value of HRN are electrocution with 100 and touch source container with hands with 75. These risks were classified as 'Very High' and 'High' respectively. The following risks were classified as 'Important': Fall of the source container (HRN = 25), high dose of the sample in the container (HRN = 20) and fracture of glass detector (HRN = 30). The wrong shielding of the source container (HRN = 10) is a risk that was classified as L ow . Safety rules for use of the system are indicated. An action plan for risk management is also presented. (author)

  14. Gamma camera correction system and method for using the same

    International Nuclear Information System (INIS)

    Inbar, D.; Gafni, G.; Grimberg, E.; Bialick, K.; Koren, J.

    1986-01-01

    A gamma camera is described which consists of: (a) a detector head that includes photodetectors for producing output signals in response to radiation stimuli which are emitted by a radiation field and which interact with the detector head and produce an event; (b) signal processing circuitry responsive to the output signals of the photodetectors for producing a sum signal that is a measure of the total energy of the event; (c) an energy discriminator having a relatively wide window for comparison with the sum signal; (d) the signal processing circuitry including coordinate computation circuitry for operating on the output signals, and calculating an X,Y coordinate of an event when the sum signal lies within the window of the energy discriminator; (e) an energy correction table containing spatially dependent energy windows for producing a validation signal if the total energy of an event lies within the window associated with the X,Y coordinates of the event; (f) the signal processing circuitry including a dislocation correction table containing spatially dependent correction factors for converting the X,Y coordinates of an event to relocated coordinates in accordance with correction factors determined by the X,Y coordinates; (g) a digital memory for storing a map of the radiation field; and (h) means for recording an event at its relocated coordinates in the memory if the energy correction table produces a validation signal

  15. Standardization of the intrinsic uniformity control of the gamma cameras

    International Nuclear Information System (INIS)

    Solsona Harster, Lluis; Llopis Gonzalez, David; Pavia Segura, Javier

    2001-01-01

    Objective: To verify the Intrinsic Uniformity (Iu) results using different acquisition parameters in the weekly gamma camera Quality Control (Qc). Material And Methods: We made 4 experiments using Tc99 sources and modifying the orientation, distance, activity an volume parameters of a source in ten detectors with I Na photomultipliers applying the following acquisition conditions: 4000 Kc, the source 2 m far from the geometrical centre of the detectors, 0.1 ml into 1 ml syringe, and 150 Tc99m ?Ci. Results: We found better results when the distance between detector/source is getting longer, but the better point we found between 1,5 and 2 m. We also found necessary the collimator position was parallel respect to the geometrical centre field of view, because a little deviation of only two degrees can offer a bad result between +0.5%. We study the dose that we should use, and the results show us that better results are not in the highest or smallest values of activity into the source. In volume parameters, we can see that if we use a source highest than 1 ml we obtained better results. Conclusion: Following our results in the variation of IU values as for as the distance, rotation detector/source, dose and source activity, we recommend to perform this QC applying NEMA rules in same conditions every week and using the different parameters of our study to obtain better IU (Au)

  16. Ectomography - a tomographic method for gamma camera imaging

    International Nuclear Information System (INIS)

    Dale, S.; Edholm, P.E.; Hellstroem, L.G.; Larsson, S.

    1985-01-01

    In computerised gamma camera imaging the projections are readily obtained in digital form, and the number of picture elements may be relatively few. This condition makes emission techniques suitable for ectomography - a tomographic technique for directly visualising arbitrary sections of the human body. The camera rotates around the patient to acquire different projections in a way similar to SPECT. This method differs from SPECT, however, in that the camera is placed at an angle to the rotational axis, and receives two-dimensional, rather than one-dimensional, projections. Images of body sections are reconstructed by digital filtration and combination of the acquired projections. The main advantages of ectomography - a high and uniform resolution, a low and uniform attenuation and a high signal-to-noise ratio - are obtained when imaging sections close and parallel to a body surface. The filtration eliminates signals representing details outside the section and gives the section a certain thickness. Ectomographic transverse images of a line source and of a human brain have been reconstructed. Details within the sections are correctly visualised and details outside are effectively eliminated. For comparison, the same sections have been imaged with SPECT. (author)

  17. Evaluation of tomographic ISOCAM Park II gamma camera parameters using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, Ivón

    2015-01-01

    In this paper the evaluation of tomographic ISOCAM Park II gamma camera parameters was performed using the Monte Carlo code SIMIND. The parameters uniformity, resolution and contrast were evaluated by Jaszczak phantom simulation. In addition the qualitative assessment of the center of rotation was performed. The results of the simulation are compared and evaluated against the specifications of the manufacturer of the gamma camera and taking into account the National Protocol for Quality Control of Nuclear Medicine Instruments of the Cuban Medical Equipment Control Center. A computational Jaszczak phantom model with three different distributions of activity was obtained. They can be used to perform studies with gamma cameras. (author)

  18. Use of calibration methodology of gamma cameras for the workers surveillance using a thyroid simulator

    International Nuclear Information System (INIS)

    Alfaro, M.; Molina, G.; Vazquez, R.; Garcia, O.

    2010-09-01

    In Mexico there are a significant number of nuclear medicine centers in operation. For what the accidents risk related to the transport and manipulation of open sources used in nuclear medicine can exist. The National Institute of Nuclear Research (ININ) has as objective to establish a simple and feasible methodology for the workers surveillance related with the field of the nuclear medicine. This radiological surveillance can also be applied to the public in the event of a radiological accident. To achieve this it intends to use the available equipment s in the nuclear medicine centers, together with the neck-thyroid simulators elaborated by the ININ to calibrate the gamma cameras. The gamma cameras have among their component elements that conform spectrometric systems like the employees in the evaluation of the internal incorporation for direct measurements, reason why, besides their use for diagnostic for image, they can be calibrated with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity distributed homogeneously in the human body, or located in specific organs. Inside the project IAEA-ARCAL-RLA/9/049-LXXVIII -Procedures harmonization of internal dosimetry- where 9 countries intervened (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). It was developed a protocol of cameras gamma calibration for the determination in vivo of radionuclides. The protocol is the base to establish and integrated network in Latin America to attend in response to emergencies, using nuclear medicine centers of public hospitals of the region. The objective is to achieve the appropriate radiological protection of the workers, essential for the sure and acceptable radiation use, the radioactive materials and the nuclear energy. (Author)

  19. Pixel-based meshfree modelling of skeletal muscles

    OpenAIRE

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2015-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A ...

  20. Improving the spatial resolution of the multiple multiwire proportional chamber gamma camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-03-01

    Results are presented showing how the spatial resolution of the multiple multiwire proportional chamber (MMPC) gamma camera may be improved. Under the best conditions 1.6 mm bars can be resolved. (author)

  1. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  2. Projection computation based on pixel in simultaneous algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Wang Xu; Chen Zhiqiang; Xiong Hua; Zhang Li

    2005-01-01

    SART is an important arithmetic of image reconstruction, in which the projection computation takes over half of the reconstruction time. An efficient way to compute projection coefficient matrix together with memory optimization is presented in this paper. Different from normal method, projection lines are located based on every pixel, and the following projection coefficient computation can make use of the results. Correlation of projection lines and pixels can be used to optimize the computation. (authors)

  3. Functioning of the Cartogam portable gamma camera in a photon counting mode (this development is performed at CEA in the framework of the B01-05 common interest program between CEA and COGEMA

    International Nuclear Information System (INIS)

    Gal, O.; Dessus, B.; Laine, F.; Jean, F.; Leveque, C.

    2001-01-01

    The CARTOGAM portable gamma camera, which is particularly compact (15 Kg in mass, including the shield, 8 cm in diameter), has been developed for gamma imaging applications in nuclear facilities. The detector is composed of a CsI(Tl) scintillator, an image intensifier and a CCD matrix. The ordinary mode for image acquisition with such a detector is an integrating mode: signal accumulated in the CCD pixels is read at the end of the exposure time, or even periodically with a summation in a PC memory. The main sources of noise in that mode are the photo-cathode thermo-electronic emission and the CCD leaking pixels. We have developed an alternative acquisition mode based on a morphological processing of the elementary images at the video frequency (25 images/s). In that mode, gamma events are individually identified and the noise due to isolated thermo-electrons or white pixels is (almost) completely removed, thus leading to an important gain in camera sensitivity. We present here experimental results obtained in this photon counting mode concerning SNR, spatial resolution, saturation limit in dose rate, sensitivity and comparison with the integrating mode. We present also a short analysis of the problem of measuring the SNR in practice in such images. (author)

  4. 131I activity quantification of gamma camera planar images

    Science.gov (United States)

    Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-01

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  5. A panoramic coded aperture gamma camera for radioactive hotspots localization

    Science.gov (United States)

    Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.

    2017-11-01

    A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.

  6. Initial clinical experience with dedicated ultra fast solid state cardiac gamma camera

    International Nuclear Information System (INIS)

    Aland, Nusrat; Lele, V.

    2010-01-01

    Full text: To analyze the imaging and diagnostic performance of new dedicated ultra fast solid state detector gamma camera and compare it with standard dual detector gamma camera in myocardial perfusion imaging. Material and Methods: In total 900 patients underwent myocardial perfusion imaging between 1st February 2010 and 29th August 2010 either stress/rest or rest/stress protocol. There was no age or gender bias (there were 630 males and 270 females). 5 and 15 mCi of 99m Tc - Tetrofosmin/MIBI was injected for 1st and 2nd part of the study respectively. Waiting period after injection was 20 min for regular stress and 40 min for pharmacological stress and 40 min after rest injection. Acquisition was performed on solid state detector gamma camera for a duration of 5 min and 3 min for 1st and 2nd part respectively. Interpretation of myocardial perfusion was done and QGS/QPS protocol was used for EF analysis. Out of these, 20 random patients underwent back to back myocardial perfusion SPECT imaging on standard dual detector gamma camera on same day. There was no age or gender bias (there were 9 males, 11 females). Acquisition time was 20 min for each part of the study. Interpretation was done using Autocard and EF analyses with 4 DM SPECT. Images obtained were then compared with those of solid state detector gamma camera. Result: Good quality and high count myocardial perfusion images were obtained with lesser amount of tracer activity on solid state detector gamma camera. Obese patients also showed good quality images with less tracer activity. As compared to conventional dual detector gamma camera images were brighter and showed better contrast with solid state gamma camera. Right ventricular imaging was better seen. Analyses of diastolic dysfunction was possible with 16 frame gated studies with solid state gamma camera. Shorter acquisition time with comfortable position reduced possibility of patient motion. All cardiac views were obtained with no movement of the

  7. A study on the performance evaluation of small gamma camera collimators using detective quantun efficiency

    International Nuclear Information System (INIS)

    Jeon, Ho Sang

    2008-02-01

    The anger-type gamma camera and novel marker compound using Tc-99m were firstly introduced in 1963. The gamma camera systems have being improved and applied to various fields, for example, medical, industrial, and environmental fields. Gamma camera is mainly composed of collimator, detector, and signal processor. And the radiative source is namely the imaging object. The collimator is essential component of gamma camera system because the imaging performance of system is mainly dependent on the collimator. The performance evaluation of collimators can be done by using evaluating factors. In this study, the novel factors for gamma camera evaluation are suggested. The established evaluating factors by NEMA are FWHM, sensitivity, and uniformity. They have some limitations in spite of their usefulness. Firstly, performance evaluation by those factors give insensitive and indirect results only. Secondly, the evaluation of noise property is ambiguous. Thirdly, there is no synthetic evaluation of system performance. Simulation with Monte Carlo code and experiment with a small camera camera were simultaenuously performed to verify novel evaluating factors. For the evaluation of spatial resolution, MTF was applied instead of FWHM. The MTF values presents excellent linear relationship with FWHM values. The NNPS was applied instead of uniformity and sensitivity for the evaluation of noise fluctuation. The NNPS values also presents linear relationship with sensitivity and unifomity. Moreover, these novel factors give quantities as the function of spatial frequencies. Finally, the DQE values were given by calculations with MTF, NNPS, and input SNR. DQE effectively presents the synthetic evaluation of gamma camera performance. It is the conclusion that MTF, NNPS, and DQE can be novel evaluating factors for gamma camera systems and the new factor for synthetic evaluation is derived

  8. Evaluation of efficiency of a semiconductor gamma camera eZ-SCOPE AN

    International Nuclear Information System (INIS)

    Wang Xinqiang; Wang Wei; Zhu Jiarui; Zhao Wenrui

    2004-01-01

    Objective: To study the basic performance of a compact semiconductor gamma camera (eZ-SCOPE AN) which is constructed using cadmium zinc telluride (CdZnTe) detectors with identical numbers of pixels. Each of the semiconductors sized 2 mm x 2 mm is located in 16 matrix x 16 matrix. The view field is 32 mm x 32 mm. Methods: Using a quality-control phantom, the eZ-SCOPE AN was evaluated. The specific performance characteristics were evaluated as shown below referring to National Electrical Manufacturers Association (NEMA) standards. 1) Intrinsic energy resolution. 2) Intrinsic count rate performance 3) Integral uniformity. 4) System planar sensitivity. 5) Special system resolution. Results: The intrinsic energy resolution [full width at half maximum (FWHM)] was 5.07%. It was failed to determine the maximal intrinsic count rate and the 20% count loss rate with a point source of 37 MBq because the plateau was not reached while using the solutions measured. The integral uniformity was 3.84% with the high sensitivity collimator. The system planer sensitivity was 20 988 counts·min -1 ·MBq -1 with high resolution collimator and 61 090 counts·min -1 ·MBq -1 with high sensitivity collimator. The special system resolution (FWHM) was 2.2 mm when the distance between the source and the collimator was 0 mm and it was 5.7 mm when the distance was 30 mm. Conclusion: This device is of high resolution and high sensitivity and is a reliable tool to investigate radioactivity biodistribution in small organs and small animals. (authors)

  9. Pixel-based meshfree modelling of skeletal muscles.

    Science.gov (United States)

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2016-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.

  10. Pixel-based OPC optimization based on conjugate gradients.

    Science.gov (United States)

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  11. Experimental evaluation of an online gamma-camera imaging of permanent seed implantation (OGIPSI) prototype for partial breast irradiation

    International Nuclear Information System (INIS)

    Ravi, Ananth; Caldwell, Curtis B.; Pignol, Jean-Philippe

    2008-01-01

    Previously, our team used Monte Carlo simulation to demonstrate that a gamma camera could potentially be used as an online image guidance device to visualize seeds during permanent breast seed implant procedures. This could allow for intraoperative correction if seeds have been misplaced. The objective of this study is to describe an experimental evaluation of an online gamma-camera imaging of permanent seed implantation (OGIPSI) prototype. The OGIPSI device is intended to be able to detect a seed misplacement of 5 mm or more within an imaging time of 2 min or less. The device was constructed by fitting a custom built brass collimator (16 mm height, 0.65 mm hole pitch, 0.15 mm septal thickness) on a 64 pixel linear array CZT detector (eValuator-2000, eV Products, Saxonburg, PA). Two-dimensional projection images of seed distributions were acquired by the use of a digitally controlled translation stage. Spatial resolution and noise characteristics of the detector were measured. The ability and time needed for the OGIPSI device to image the seeds and to detect cold spots was tested using an anthropomorphic breast phantom. Mimicking a real treatment plan, a total of 52 103 Pd seeds of 65.8 MBq each were placed on three different layers at appropriate depths within the phantom. The seeds were reliably detected within 30 s with a median error in localization of 1 mm. In conclusion, an OGIPSI device can potentially be used for image guidance of permanent brachytherapy applications in the breast and, possibly, other sites

  12. Statistical pixelwise inference models for planar data analysis: an application to gamma-camera uniformity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kalemis, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Bailey, D L [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Flower, M A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Lord, S K [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Ott, R J [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-07-21

    In this paper two tests based on statistical models are presented and used to assess, quantify and provide positional information of the existence of bias and/or variations between planar images acquired at different times but under similar conditions. In the first test a linear regression model is fitted to the data in a pixelwise fashion, using three mathematical operators. In the second test a comparison using z-scoring is used based on the assumption that Poisson statistics are valid. For both tests the underlying assumptions are as simple and few as possible. The results are presented as parametric maps of either the three operators or the z-score. The z-score maps can then be thresholded to show the parts of the images which demonstrate change. Three different thresholding methods (naive, adaptive and multiple) are presented: together they cover almost all the needs for separating the signal from the background in the z-score maps. Where the expected size of the signal is known or can be estimated, a spatial correction technique (referred to as the reef correction) can be applied. These tests were applied to flood images used for the quality control of gamma camera uniformity. Simulated data were used to check the validity of the methods. Real data were acquired from four different cameras from two different institutions using a variety of acquisition parameters. The regression model found the bias in all five simulated cases and it also found patterns of unstable regions in real data where visual inspection of the flood images did not show any problems. In comparison the z-map revealed the differences in the simulated images from as low as 1.8 standard deviations from the mean, corresponding to a differential uniformity of 2.2% over the central field of view. In all cases studied, the reef correction increased significantly the sensitivity of the method and in most cases the specificity as well. The two proposed tests can be used either separately or in

  13. Statistical pixelwise inference models for planar data analysis: an application to gamma-camera uniformity monitoring

    International Nuclear Information System (INIS)

    Kalemis, A; Bailey, D L; Flower, M A; Lord, S K; Ott, R J

    2004-01-01

    In this paper two tests based on statistical models are presented and used to assess, quantify and provide positional information of the existence of bias and/or variations between planar images acquired at different times but under similar conditions. In the first test a linear regression model is fitted to the data in a pixelwise fashion, using three mathematical operators. In the second test a comparison using z-scoring is used based on the assumption that Poisson statistics are valid. For both tests the underlying assumptions are as simple and few as possible. The results are presented as parametric maps of either the three operators or the z-score. The z-score maps can then be thresholded to show the parts of the images which demonstrate change. Three different thresholding methods (naive, adaptive and multiple) are presented: together they cover almost all the needs for separating the signal from the background in the z-score maps. Where the expected size of the signal is known or can be estimated, a spatial correction technique (referred to as the reef correction) can be applied. These tests were applied to flood images used for the quality control of gamma camera uniformity. Simulated data were used to check the validity of the methods. Real data were acquired from four different cameras from two different institutions using a variety of acquisition parameters. The regression model found the bias in all five simulated cases and it also found patterns of unstable regions in real data where visual inspection of the flood images did not show any problems. In comparison the z-map revealed the differences in the simulated images from as low as 1.8 standard deviations from the mean, corresponding to a differential uniformity of 2.2% over the central field of view. In all cases studied, the reef correction increased significantly the sensitivity of the method and in most cases the specificity as well. The two proposed tests can be used either separately or in

  14. Design and implementation of a quality assurance program for gamma cameras

    International Nuclear Information System (INIS)

    Montoya M, A.; Rodriguez L, A.; Trujillo Z, F. E.

    2010-09-01

    In nuclear medicine more than 90% of the carried out procedures are diagnostic. To assure an appropriate diagnostic quality of the images and the doses optimization received by the patients originated in the radioactive material, it is indispensable the periodic surveillance of the operation and performance of the equipment s by means of quality assurance tests. This work presents a proposal of a quality assurance program for gamma cameras based on recommendations of the IAEA, the American Association of Medical Physics and the National Electrical Manufacturers Association. Some tests of the program were applied to an e.cam gamma camera (Siemens) of the Nuclear Medicine Department of the National Institute of Cancer. The intrinsic and extrinsic uniformity, the intrinsic spatial resolution and the extrinsic sensibility were verified. For intrinsic uniformity the average daily values of the integral uniformity and differential uniformity in the useful vision field were 2.61% and 1.58% respectively, the average monthly values of intrinsic uniformity for the integral and differential uniformity in the useful vision field were 4.10% and 1.66% respectively. The used acceptance criterions were respectively of 3.74% and 2.74%. The average values of extrinsic uniformity for the useful vision field were of 7.65% (intrinsic uniformity) and 2.69% (extrinsic uniformity), in this case the acceptance criterion is a value of 6.00%. The average value of intrinsic spatial resolution went 4.67 mm superior to 4.4. mm that is the acceptance limit. Finally, maximum variations of 1.8% were observed (minors than 2% that is the acceptance criterion) for the extrinsic sensibility measured in different regions of the detector. Significant variations of extrinsic sensibility were not observed among the monthly lectures. Of the realized measurements was concluded that the system requires of a maintenance service by part of the manufacturer, which one carries out later on to this work. The

  15. Fabrication of a phantom and its application for checking gamma camera performance

    International Nuclear Information System (INIS)

    Yesmin, S; Ahmad, G. U.; Afroz, S.; Hossain, S.; Rashid, H.

    2004-01-01

    The primary aim of the present work is to fabricate a total performance phantom, which could be used for checking the performance characteristics of gamma camera. The phantom was locally fabricated at machine shop of Bangladesh University of Engineering and Technology (BUET) and used for checking the performance characteristics of gamma camera LF-61 of Centre for Nuclear Medicine and Ultrasound, Dhaka. With 10 mCi of Tc-99m, imaging of the phantom acquired with a reasonable counts. The image was inspected physically for evaluation of the camera performances. The visual inspection of the phantom image revealed that the performance characteristics like: spatial resolution, linearity, uniformity and lesion detection capability of the gamma camera could clearly be evaluated with reasonable acceptance level. This phantom is expected to be useful for checking performance characteristics of SPECT system as well. (author)

  16. Gamma camera image acquisition, display, and processing with the personal microcomputer

    International Nuclear Information System (INIS)

    Lear, J.L.; Pratt, J.P.; Roberts, D.R.; Johnson, T.; Feyerabend, A.

    1990-01-01

    The authors evaluated the potential of a microcomputer for direct acquisition, display, and processing of gamma camera images. Boards for analog-to-digital conversion and image zooming were designed, constructed, and interfaced to the Macintosh II (Apple Computer, Cupertino, Calif). Software was written for processing of single, gated, and time series images. The system was connected to gamma cameras, and its performance was compared with that of dedicated nuclear medicine computers. Data could be acquired from gamma cameras at rates exceeding 200,000 counts per second, with spatial resolution exceeding intrinsic camera resolution. Clinical analysis could be rapidly performed. This system performed better than most dedicated nuclear medicine computers with respect to speed of data acquisition and spatial resolution of images while maintaining full compatibility with the standard image display, hard-copy, and networking formats. It could replace such dedicated systems in the near future as software is refined

  17. Gamma camera computer system quality control for conventional and tomographic use

    International Nuclear Information System (INIS)

    Laird, E.E.; Allan, W.; Williams, E.D.

    1983-01-01

    The proposition that some of the proposed measurements of gamma camera performance parameters for routine quality control are redundant and that only the uniformity requires daily monitoring was examined. To test this proposition, measurements of gamma camera performance were carried out under normal operating conditions and also with the introduction of faults (offset window, offset PM tube). Results for the uniform flood field are presented for non-uniformity, intrinsic spatial resolution, linearity and relative system sensitivity. The response to introduced faults revealed that while the non-uniformity response pattern of the gamma camera was clearly affected, both measurements and qualitative indications of the other performance parameters did not necessarily show any deterioration. (U.K.)

  18. Utilization of a gamma camera in research of the concentration in marine products

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi

    1981-01-01

    A gamma camera was used for the study of the metabolism of micro elements in marine products. Hexagrammos otakii (rock trout) was put under anesthesia with MS-222. By cutting partly the abdomen, the internal organs were exposed. 1 - 2 mCi of technetium-99m was injected into the bulbus arteriosus. From immediately after the injection, photographs were taken consecutively, one picture every 0.5 second for 30 seconds, to a total of 60 pictures. Since the gamma camera has been developed solely for human beings, there is some inconvenience when it is applied to marine products. The advantages of using a gamma camera are the observation on the behavior of substances in a body while a marine product is alive, and the grasping of the variation in substance behavior at extremely brief intervals. The disadvantages are the low resolution of about 5 mm - 7 mm, and the difficulty in differentiating overlapping organs. (J.P.N.)

  19. A specially designed cut-off gamma camera for high resolution SPECT of the brain

    International Nuclear Information System (INIS)

    Larsson, S.A.; Bergstrand, G.; Bergstedt, H.; Berg, J.; Flygare, O.; Schnell, P.O.; Anderson, N.; Lagergren, C.

    1984-01-01

    A modern gamma camera system for Single Photon Emission Computed Tomography (SPECT) has been modified in order to optimize examinations of the head. By cutting off a part of the detector housing at one edge, it has been possible to rotate the camera close to the skull, still covering the entire brain and the skull base. The minimum radius of rotation used was thereby reduced, in the mean, from 21.2 cm to 13.0 cm in examination of 18 patients. In combination with an adjustment of the 64 x 64 acquisition matrix to a field of view of 26x26 cm/sup 2/, the spatial resolution improved from 18.6 mm (FWHM) to 12.6 +- 0.3 mm (FWHM) using the conventional LEGP-collimator and to 10.4 +- 0.3 mm (FWHM) using the LEHR-collimator. No other modification than a slight cut of the light guide was made in the internal construction of the camera. Thus, the physical properties of the detector head are not essentially changed from those of a non-modified unit. The improved spatial resolution of the cut-off camera SPECT-system implies certain clinical advantages in studies of the brain, the cerebrospinal fluid (CSF)-space and the skull base

  20. Kernel integration scatter model for parallel beam gamma camera and SPECT point source response

    International Nuclear Information System (INIS)

    Marinkovic, P.M.

    2001-01-01

    Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)

  1. Use of dual-head gamma camera in radionuclide internal contamination monitoring on radiation workers from a nuclear medicine department

    International Nuclear Information System (INIS)

    Rodriguez-Laguna, A.; Brandan, M.E.

    2008-01-01

    As a part of an internal dosimetry program that is performed at the Mexican National Institute of Cancerology - Nuclear Medicine Department, in the present work we suggest a procedure for the routinely monitoring of internal contamination on radiation workers and nuclear medicine staff. The procedure is based on the identification and quantification of contaminating radionuclides in human body by using a dual-head whole-body gamma camera. The results have shown that the procedures described in this study can be used to implement a method to quantify minimal accumulated activity in the main human organs to evaluate internal contamination with radionuclides. The high sensitivity of the uncollimated gamma camera is advantageous for the routinely detection and identification of small activities of internal contamination. But, the null spatial resolution makes impossible the definition of contaminated region of interest. Then, the use of collimators is necessary to the quantification of incorporated radionuclides activities in the main human organs and for the internal doses assessment. (author)

  2. Geant4 simulation of a 3D high resolution gamma camera

    International Nuclear Information System (INIS)

    Akhdar, H.; Kezzar, K.; Aksouh, F.; Assemi, N.; AlGhamdi, S.; AlGarawi, M.; Gerl, J.

    2015-01-01

    The aim of this work is to develop a 3D gamma camera with high position resolution and sensitivity relying on both distance/absorption and Compton scattering techniques and without using any passive collimation. The proposed gamma camera is simulated in order to predict its performance using the full benefit of Geant4 features that allow the construction of the needed geometry of the detectors, have full control of the incident gamma particles and study the response of the detector in order to test the suggested geometries. Three different geometries are simulated and each configuration is tested with three different scintillation materials (LaBr3, LYSO and CeBr3)

  3. FEATURES BASED ON NEIGHBORHOOD PIXELS DENSITY - A STUDY AND COMPARISON

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2016-02-01

    Full Text Available In optical character recognition applications, the feature extraction method(s used to recognize document images play an important role. The features are the properties of the pattern that can be statistical, structural and/or transforms or series expansion. The structural features are difficult to compute particularly from hand-printed images. The structure of the strokes present inside the hand-printed images can be estimated using statistical means. In this paper three features have been purposed, those are based on the distribution of B/W pixels on the neighborhood of a pixel in an image. We name these features as Spiral Neighbor Density, Layer Pixel Density and Ray Density. The recognition performance of these features has been compared with two more features Neighborhood Pixels Weight and Total Distances in Four Directions already studied in our work. We have used more than 20000 Devanagari handwritten character images for conducting experiments. The experiments are conducted with two classifiers i.e. PNN and k-NN.

  4. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2015-01-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...

  5. Bullet scintigraphy: can gamma camera be used for depleted uranium accident measurements?

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Radic, Z.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2002-01-01

    The aim of this study was to see could gamma cameras be used for measurement of internal contamination with depleted uranium. Radioactive waste depleted uranium, which is by-product from the production of enriched fuel for nuclear rectors and weapons now, is used for manufacture bullets, which are used in Iraq, Republic of Srpska and Yugoslavia. In this paper is measured minimum detectable activity (MDA) of gamma cameras for depleted uranium, iodine and technetium. For detection of the depleted uranium are used low energy X-rays, energy of 100 keV with 20% windows width. About 40% of gamma emissions of the depleted uranium are in these limits. Measured MDA activities 50-100 Bq for depleted uranium, iodine and technetium are about then times more then same for WBC (5 Bq). Gamma cameras can be used for relatively measurement of depleted uranium activity, what can be used for absorbed dose estimation. Detection of low level internal contamination with depleted uranium can be done with gamma cameras. (authors)

  6. Defective organification of iodine in an infant demonstrated with 123J and gamma camera

    International Nuclear Information System (INIS)

    Goebel, R.; Leb, G.; Sulzer, M.; Graz Univ.

    1979-01-01

    A defective organification of iodine is demonstrated in a two year old male infant. The availability and a relatively simple radiation detector and storage system (gamma camera and 1600 word memory) gives a reasonable low radiation dose, allows correction for extrathyroid neck activity and obviates problems of collimation. (orig.) [de

  7. Gastric emptying of liquid meals: validation of the gamma camera technique

    Energy Technology Data Exchange (ETDEWEB)

    Lawaetz, Otto; Dige-Petersen, Harriet

    1989-05-01

    To assess the extent of errors and to provide correction factors for gamma camera gastric emptying studies of liquid meals labelled with radionuclides (/sup 99/Tc/sup m/ or /sup 113/In/sup m/), phantom studies were performed with different gastric emptying procedures, gamma cameras and data handling systems. To validate the overall accuracy of the method, 24 combined aspiration and gamma camera gastric emptying studies were carried out in three normal volunteers. Gastric meal volume was underestimated due to scattered radiation from the stomach. The underestimation was 7-20% varying with the size of the gastric region of interest (ROI), the energy of the nuclide and the fraction of meal in the stomach. The overestimation, due to scattered radiation from the gut, was negligible (1-3%) for any of the procedures. The gamma camera technique eliminated much of the error due to variations of stomach geometry and produced accurate quantitative gastric emptying data comparable to those obtained by evacuation (P > 0.10), when the entire field maximum 1-min count achieved within the first 20 min of a study was taken as representing the original volume of the meal ingested, and when corrections for area related errors due to scattered radiation from the stomach were performed. (author).

  8. Gamma camera with an original system of scintigraphic image printing incorporated

    International Nuclear Information System (INIS)

    Roux, G.

    A new gamma camera has been developed, using Anger's Principle to localise the scintillations and incorporating the latest improvements which give a standard of efficiency at present competitive for this kind of apparatus. In the general design of the system special care was devoted to its ease of employment and above all to the production of high-quality scintigraphic images, the recording of images obtained from the gamma camera posing a problem to which a solution is proposed. This consists in storing all the constituent data of an image in a cell matrix of format similar to the scope of the object, the superficial information density of the image being represented by the cell contents. When the examination is finished a special printer supplies a 35x43 cm 2 document in colour on paper, or in black and white on radiological film, at 2:1 or 1:1 magnifications. The laws of contrast representation by the colours or shades of grey are chosen a posteriori according to the organ examined. Documents of the same quality as those so far supplied by a rectilinear scintigraph are then obtained with the gamma camera, which offers its own advantages in addition. The first images acquired in vivo with the whole system, gamma camera plus printer, are presented [fr

  9. Characteristics of a single photon emission tomography system with a wide field gamma camera

    International Nuclear Information System (INIS)

    Mathonnat, F.; Soussaline, F.; Todd-Pokropek, A.E.; Kellershohn, C.

    1979-01-01

    This text summarizes a work study describing the imagery possibilities of a single photon emission tomography system composed of a conventional wide field gamma camera, connected to a computer. The encouraging results achieved on the various phantoms studied suggest a significant development of this technique in clinical work in Nuclear Medicine Departments [fr

  10. A study on the optimization of optical guide of gamma camera detector

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Cho, Gyu Seong; Kim, Ho Kyung; Lee, Wan No; Kim, Young Soo

    2000-01-01

    An optical guide, which is a light guide located between NaI(Tl) scintillation-crystal and array of photo-multiplier tubes (PMTs) in the gamma camera detector system, is an essential component to deliver the spatial information recorded in scintillator to the PMTs. Without the optical guide, the spatial information within the range of a single PMT could not be obtained. For the design of the optimal optical guide, it is necessary to characterize its properties, especially sensitivity and spatial resolution of detector. In this study, the thickness and the refractive index of optical guide, which affect not only on the sensitivity but also on the spatial resolution of gamma-camera detector, were investigated by using Monte Carlo simulation. A 12'x12'x3/8' NaI(Tl) and 23 PMTs with each 5' diameter were considered as a gamma-camera detector components. Interactions of optical photons in the scintillator and the optical guide were simulated using a commercial code DETECT97, and the spatial resolution, mainly interfered by the intrinsic inward distortion within the PMT, was investigated using our own ANGER program, which was developed to calculate positions of incident photons in the gamma camera. From the simulation results, it was found that an optical guide with 1.6 of refractive index and 10 mm of thickness give maximum sensitivity and minimum spatial distortion, respectively

  11. Pixel extraction based integral imaging with controllable viewing direction

    International Nuclear Information System (INIS)

    Ji, Chao-Chao; Deng, Huan; Wang, Qiong-Hua

    2012-01-01

    We propose pixel extraction based integral imaging with a controllable viewing direction. The proposed integral imaging can provide viewers three-dimensional (3D) images in a very small viewing angle. The viewing angle and the viewing direction of the reconstructed 3D images are controlled by the pixels extracted from an elemental image array. Theoretical analysis and a 3D display experiment of the viewing direction controllable integral imaging are carried out. The experimental results verify the correctness of the theory. A 3D display based on the integral imaging can protect the viewer’s privacy and has huge potential for a television to show multiple 3D programs at the same time. (paper)

  12. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    International Nuclear Information System (INIS)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D.; Rebelo, A.M.O.; Teran, M.; Paolino, A.; Hermida, J.C.; Rojo, A.M.; Puerta, J.A.; Morales, J.; Bejerano, G.M.L.; Alfaro, M.; Ruiz, M.A.; Videla, R.; Pinones, O.; Gonzalez, S.; Navarro, T.; Cruz-Suarez, R.

    2007-01-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of 131 I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  13. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/n, Rio de Janeiro (Brazil); Rebelo, A.M.O. [University Hospital, Nuclear Medicine Center, Rio de Janeiro (Brazil); Teran, M.; Paolino, A. [Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Rojo, A.M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Puerta, J.A.; Morales, J. [Universidad Nacional de Colombia, Medellin (Colombia); Bejerano, G.M.L. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.; Ruiz, M.A. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac (Mexico); Videla, R.; Pinones, O. [Comision Chilena de Energia Nuclear, Santiago (Chile); Gonzalez, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Navarro, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Cruz-Suarez, R. [International Atomic Energy Agency, Vienna (Austria)

    2007-07-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of {sup 131}I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  14. SU-C-201-07: Validation of a GATE Gamma Camera Model for the Siemens Symbia

    International Nuclear Information System (INIS)

    Mikell, J; Siman, W; Kappadath, S; Mourtada, F

    2015-01-01

    Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99; these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research

  15. SU-C-201-07: Validation of a GATE Gamma Camera Model for the Siemens Symbia

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, J; Siman, W; Kappadath, S [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Mourtada, F [Christiana Care Hospital, Newark, DE (United States); Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston TX (United States); Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99; these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research

  16. Radionuclide examination of the cerebral circulation with the 'Fucks-Knipping Gamma-Camera'

    International Nuclear Information System (INIS)

    Arnim, W.H. von; Schicha, H.; Becker, V.; Vyska, K.; Feinendegen, L.E.

    1976-01-01

    In order to analyze cerebral blood flow for diagnostic purposes, Indium 113m-DTPA was i.v. injected into seated patients, and time-activity curves were registered by a multifacet gamma camera (Fucks-Knipping) form 8 regions of interest, from the median area and from the right and left side of the head: 3 from the hemisphere, 3 from the brain stem, 2 from the large arteries of the neck. The results from 14 patients with chronic impairment of cerebral blood flow were compared with normal data from 20 healthy individuals. The time activity curves were analyzed for peak-height, mean transit time, and ratio peak to plateau height. The individual parameters were investigated for the degree of their correlation in a multiparameter system. The results from the patients indicated for the different single parameters a non-uniform response. There was also no correlation between the deviation of different parameters, between single pathological parameters and the degree and the site of blood flow impairment. On the other hand, a positive correlation was found between the number of pathological parameters and the degree of blood flow impairment irrespective of the site of its localization. Reason for this result probably is the variable location and degree of blood flow compensation by collaterals, which predominantly are expected at the cerebral base. The data indicate the potential usefulness of the application of the multiparameter analysis to quantitatively detect the degree of impairment of cerebral blood flow without regard to its topography. In this respect, the method, here described, promises to be of clinical value for non-invasive and non-hazardous diagnostic screening of cerebral blood flow. (orig.) [de

  17. A study of effects of scattered reaction on physical parameters of a new gamma camera used in nuclear medicine

    International Nuclear Information System (INIS)

    Maury, Martine.

    1979-01-01

    This work is devoted to the analysis of the performance of a new gamma camera. This camera is characterized by the introduction of an image amplifier between the crystal detector and the localization system which compound four photomultipliers. The appreciation of performances of this new instrument is based on the measure of the physical parameters usually studied in this purpose: energy resolution, spatial resolution, modulation transfert fonction and contrast, sensitivity and deadtime. Furthermore, we have studied the influence of scattered radiation on the value of these parameters. Two studies complete this work: the artificial deterioration of the energy resolution of the camera inserting a noise, to estimate the importance of the energy resolution on the image contrast; the scanning of pulse amplitude spectra obtained from brain of patients in order to evaluate the participation of scattered radiation in the peak's constitution. We present, at last, a quality control programm for scintillation camera [fr

  18. Multiwire proportional gamma camera for imaging /sup 99/Tcsup(m) radionuclide distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-05-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of /sup 99/Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m/sup 2/, a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77.

  19. A multiwire proportional gamma camera for imaging 99Tcsup(m) radionuclide distributions

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-01-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of 99 Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m 2 , a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77. (author)

  20. A gamma camera method for quantitation of split renal function in children followed for vesicoureteric reflux

    International Nuclear Information System (INIS)

    Tamminen, T.E.; Riihimaeki, E.J.; Taehti, E.E.; Helsinki Univ. Central Hospital

    1978-01-01

    A method for quantitative estimation of split renal function using a computerized gamma camera system is described. 42 children and adolescents with existing or preexisting vesicouretric reflux and recurrent urinary tract infection were investigated. Total renal clearance of DTPA was calculated with a disapperarance curve derived from the largest extrarenal area in the field of view of a gamma camera with diverging collimator. Split renal function was estimated with the slopes of second phase renograms. The plasma disaapearance clearance of DTPA, calculated using one compartement model with two late blood samples, gave similar resusults with the clearance estimated from the body disappearance curves. The proportional planimetric renal parenchymal areas had good correlation with the split clearance estimated from renogram slopes. The method offers data on renal function and urinary tract dynamics which is very valuable in the follow-up of children with recurrent urinary tract infection and vesicoureteric reflux. (orig.) [de

  1. Development of gamma camera display phantom for quality control in developing countries

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    1981-08-01

    A special phantom suitable for the routine evaluation of ''end-to-end'' gamma camera system performance, that is, system performance from input to output, is described. The design finally adopted, called the ''strip-wedge phantom'' and consisting of an array of copper or aluminium wedges of various thicknesses, permits the evaluation of contrast along one axis and resolution along the other. It is proposed that on acceptance testing of a gamma camera system a series of progressively degraded images should be obtained from the best possible with the system to very poor. An ''action threshold'' should then be defined such that image quality below this threshold would warrant such action as calling in the service engineer. Daily routine images should then be examined with reference to this threshold. Experience with the phantom is summarized

  2. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  3. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  4. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P

    2000-07-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10{sup -2} seems possible in the near future. (author)

  5. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    International Nuclear Information System (INIS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P.

    2000-01-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10 -2 seems possible in the near future. (author)

  6. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M; Spiro, A [Loyola University Maryland, Baltimore, Maryland (United States); Vogel, R [Iowa Doppler Products, Iowa City, Iowa (United States); Donaldson, N; Gosselin, C [Rockhurst University, Kansas City, MO (United States)

    2015-06-15

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.

  7. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    International Nuclear Information System (INIS)

    Lowe, M; Spiro, A; Vogel, R; Donaldson, N; Gosselin, C

    2015-01-01

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images

  8. An alternate way for image documentation in gamma camera processing units

    International Nuclear Information System (INIS)

    Schneider, P.

    1980-01-01

    For documentation of images and curves generated by a gamma camera processing system a film exposure tool from a CT system was linked to the video monitor by use of a resistance bridge. The machine has a stock capacity of 100 plane films. For advantage there is no need for an interface, the complete information on the monitor is transferred to the plane film and compared to software controlled data output on printer or plotter the device is tremendously time saving. (orig.) [de

  9. Super-pixel extraction based on multi-channel pulse coupled neural network

    Science.gov (United States)

    Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.

  10. The role of the gamma camera in the study of gastric function

    International Nuclear Information System (INIS)

    Esser, J.D.; Mannell, A.; Hinder, R.A.

    1984-01-01

    With the gamma camera food labelled with radioactive tracers can be visualized as it enters and leaves the stomach. Radiopharmaceuticals such as technetium-99m di-isopropyl iminodiacetic acid simulate the bile pathway and can be used to demonstrate duodenogastric reflux. Duodenogastric reflux and gastric emptying of solid or liquid meals can be quantitated when the gamma camera is linked to a microprocessor. The test meal used at the Johannesburg and Hillbrow Hospitals consists of a 99 (sup m)Tc-labelled chicken liver weighing 30 g mixed with 70 g cooked ground beef. These studies are valuable for investigating symptomatic postgastrectomy patients and patients who have neurogenic or metabolic diseases which result in abnormal gastric function. The efficacy of drugs given to relieve these symptoms can also be assessed. In this paper we discuss the nuclear medicine techniques used to study gastric function. Examples are given of abnormalities which may not be diagnosed on gastroscopy or barium meal examination but which can be clearly identified by gamma camera techniques

  11. Use of gamma camera for measurement of the internal contamination with depleted uranium

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2000-01-01

    Depleted uranium from radioactive wastes is used for manufacturing bullets used in Iraq, Republic of Serbia and Yugoslavia. These bullets are extremely dense and capable of penetrating heavily armored vehicles. Their medical importance lies in the fact that the bullets contain seventy percent depleted uranium which creates aerosolized particles less than five microns in diameter, small enough to be inhaled, after spontaneous bullet burn at impact. Nuclear medicine scientists must be aware of this and be prepared to measure internal contamination of persons exposed to this radioactive material. Whole body counters (WBC) represent appropriate equipment for this purpose but their availability in developing countries is not sufficient. Gamma camera is an alternative. The minimum detectable activity (MDA) of depleted uranium, iodine and technetium for gamma cameras was measured in this paper. Low energy X-ray 100 KeV with 20% windows are used for the depleted uranium detection. About 40% gamma emissions from depleted uranium fall within these limits. The activities measured (50-100 Bq) are about ten times higher then on WBC (5 Bq). This does not limit the use of gamma cameras for measurement of lung or whole body internal contamination with depleted uranium. (author)

  12. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Gamma radiation damage in pixelated detector based on carbon nanotubes

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Leyva, D.; Abreu, Y.; Cruz, C. M.

    2013-01-01

    The aim of this paper is to evaluate the possible gamma radiation damage in high pixelated based on multi-walled carbon nanotubes detectors, grown on two different substrata, when it is operating in aggressive radiational environments. The radiation damage in displacements per atom (dpa) terms were calculated using the MCCM algorithm, which takes into account the McKinley-Feshbach approach with the Kinchin-Pease approximation for the damage function. Was observed that with increasing of the gamma energy the displacement total number grows monotonically reaching values of 0.39 displacements for a 10 MeV incident photon. The profiles of point defects distributions inside the carbon nanotube pixel linearly rise with depth, increasing its slope with photon energy. In the 0.1 MeV - 10 MeV studied energy interval the electron contribution to the total displacement number become higher than the positron ones, reaching this last one a maximum value of 12% for the 10 MeV incident photons. Differences between the calculation results for the two used different substrata were not observed. (Author)

  14. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    Science.gov (United States)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  15. A Cherenkov camera with integrated electronics based on the 'Smart Pixel' concept

    International Nuclear Information System (INIS)

    Bulian, Norbert; Hirsch, Thomas; Hofmann, Werner; Kihm, Thomas; Kohnle, Antje; Panter, Michael; Stein, Michael

    2000-01-01

    An option for the cameras of the HESS telescopes, the concept of a modular camera based on 'Smart Pixels' was developed. A Smart Pixel contains the photomultiplier, the high voltage supply for the photomultiplier, a dual-gain sample-and-hold circuit with a 14 bit dynamic range, a time-to-voltage converter, a trigger discriminator, trigger logic to detect a coincidence of X=1...7 neighboring pixels, and an analog ratemeter. The Smart Pixels plug into a common backplane which provides power, communicates trigger signals between neighboring pixels, and holds a digital control bus as well as an analog bus for multiplexed readout of pixel signals. The performance of the Smart Pixels has been studied using a 19-pixel test camera

  16. NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY

    Science.gov (United States)

    Gong, Qian

    2018-01-01

    Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory

  17. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  18. Dual-head gamma camera system for intraoperative localization of radioactive seeds

    International Nuclear Information System (INIS)

    Arsenali, B; Viergever, M A; Gilhuijs, K G A; De Jong, H W A M; Beijst, C; Dickerscheid, D B M

    2015-01-01

    Breast-conserving surgery is a standard option for the treatment of patients with early-stage breast cancer. This form of surgery may result in incomplete excision of the tumor. Iodine-125 labeled titanium seeds are currently used in clinical practice to reduce the number of incomplete excisions. It seems likely that the number of incomplete excisions can be reduced even further if intraoperative information about the location of the radioactive seed is combined with preoperative information about the extent of the tumor. This can be combined if the location of the radioactive seed is established in a world coordinate system that can be linked to the (preoperative) image coordinate system. With this in mind, we propose a radioactive seed localization system which is composed of two static ceiling-suspended gamma camera heads and two parallel-hole collimators. Physical experiments and computer simulations which mimic realistic clinical situations were performed to estimate the localization accuracy (defined as trueness and precision) of the proposed system with respect to collimator-source distance (ranging between 50 cm and 100 cm) and imaging time (ranging between 1 s and 10 s). The goal of the study was to determine whether or not a trueness of 5 mm can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (these specifications were defined by a group of dedicated breast cancer surgeons). The results from the experiments indicate that the location of the radioactive seed can be established with an accuracy of 1.6 mm  ±  0.6 mm if a collimator-source distance of 50 cm and imaging time of 5 s are used (these experiments were performed with a 4.5 cm thick block phantom). Furthermore, the results from the simulations indicate that a trueness of 3.2 mm or less can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (this trueness was achieved for all 14 breast phantoms which

  19. Experience with dedicated ultra fast solid state cardiac gamma camera: technologist perspective

    International Nuclear Information System (INIS)

    Parab, Anil; Gaikar, Anil; Patil, Kashinath; Lele, V.

    2010-01-01

    Full text: To describe technologist perspective of working with ultra fast solid state gamma camera and comparison with conventional dual head gamma camera. Material and Methods: 900 Myocardial Perfusion scan were carried out on dedicated solid state detector cardiac camera between 1st February 2010 till 29th August 2010. 27 studies were done back to back on a conventional dual head gamma camera. In 2 cases dual head isotope imaging was done (Thallium+ 99m Tc-tetrofosmin). Rest stress protocol was used in 600 patients and stress - rest protocol was used in 300. 1:3 ratio of injected activity was maintained for both protocols (5 mCi for 1st study and 15 mCi for second study). For Rest - Stress protocol, 5 mCi of 99m Tc - Tetrofosmin was injected at rest, 40 minutes later, 5 min image was acquired on the solid state detector. Patient was then stressed. 15 mCi 99m Tc - Tetrofosmin was injected at peak stress. Images were acquired 20 minutes later for 3 minutes (total duration of study 90-100 min). For stress rest protocol, 5 mCi 99m Tc - Tetrofosmin was injected at peak stress. 5 mCi images were acquired 20 minutes later. Rest injection of 15 mCi was given 1 hour post stress injection. Rest images were acquired 40 minutes after rest injection (total duration of study 110-120 min). Results: We observed even with lesser amount activity and acquisition time of 5 min/cardiac scan it showed high sensitivity count rate over 2.2-4.7 kcps (10 times more counts than standard gamma camera). System gives better energy resolution < 7%. Better image contrast. Dual isotope imaging can be possible. Spatial resolution 4.3-4.9 mm. Excellent quality images were obtained using low activities (5 mCi/15 mCi) using 1/3rd the acquisition time compared to conventional dual head gamma camera Even in obese patients 7 mCi/21 mCi activity yielded excellent images at 1/3 rd acquisition time Quick acquisition resulted in greater patient comfort and no motion artifact also due to non rotation of

  20. TU-H-206-01: An Automated Approach for Identifying Geometric Distortions in Gamma Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Mann, S; Nelson, J [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Samei, E [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-06-15

    Purpose: To develop a clinically-deployable, automated process for detecting artifacts in routine nuclear medicine (NM) quality assurance (QA) bar phantom images. Methods: An artifact detection algorithm was created to analyze bar phantom images as part of an ongoing QA program. A low noise, high resolution reference image was acquired from an x-ray of the bar phantom with a Philips Digital Diagnost system utilizing image stitching. NM bar images, acquired for 5 million counts over a 512×512 matrix, were registered to the template image by maximizing mutual information (MI). The MI index was used as an initial test for artifacts; low values indicate an overall presence of distortions regardless of their spatial location. Images with low MI scores were further analyzed for bar linearity, periodicity, alignment, and compression to locate differences with respect to the template. Findings from each test were spatially correlated and locations failing multiple tests were flagged as potential artifacts requiring additional visual analysis. The algorithm was initially deployed for GE Discovery 670 and Infinia Hawkeye gamma cameras. Results: The algorithm successfully identified clinically relevant artifacts from both systems previously unnoticed by technologists performing the QA. Average MI indices for artifact-free images are 0.55. Images with MI indices < 0.50 have shown 100% sensitivity and specificity for artifact detection when compared with a thorough visual analysis. Correlation of geometric tests confirms the ability to spatially locate the most likely image regions containing an artifact regardless of initial phantom orientation. Conclusion: The algorithm shows the potential to detect gamma camera artifacts that may be missed by routine technologist inspections. Detection and subsequent correction of artifacts ensures maximum image quality and may help to identify failing hardware before it impacts clinical workflow. Going forward, the algorithm is being

  1. Value of coincidence gamma camera PET for diagnosing head and neck tumors: functional imaging and image coregistration

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Hahn, K.

    2001-01-01

    54 patients suffering from head and neck tumors (30 m, 24 f, age: 32-67 years) were examined using dedicated PET and coincidence gamma camera PET after injection of 185-350 MBq [ 18 F]FDG. Examinations were carried out on the dedicated PET first (Siemens ECAT Exact HR+) followed by a scan on the coincidence gamma camera PET (Picker Prism 2000 XP-PCD, Marconi Axis g-PET 2 AZ). Dedicated PET was acquired in 3D mode, coincidence gamma camera PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and coincidence gamma camera PET. All patients received a CT scan in multislice technique (Siemens Somatom Plus 4, Marconi MX 8000). Image coregistration was performed on an Odyssey workstation (Marconi). All findings have been verified by the gold standard histology or in case of negative histology by follow-up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using coincidence gamma camera PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with coincidence gamma camera PET and in 15/18 with CT. False-positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and hybrid PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastatic lesions were seen with dedicated PET and with coincidence gamma camera PET elsewhere in the body (lung: n = 7, bone: n = 3, liver: n = 1). Additional malignant disease other than the head and neck tumor was found in 4 patients. (orig.) [de

  2. Correlation between glomerular filtration rate with gamma camera and estimated serum creatinine clearance from Cockcroft and Gault's formula

    International Nuclear Information System (INIS)

    Bhushan, Shivanand; Kumar, Rajesh

    2012-01-01

    The purpose of the present study is to find out the correlation between the glomerular filtration rate (GFR by Gates gamma camera method) and serum creatinine clearance (SCrCl by Cockcroft and Gault's method) within ± 3 weeks’ time difference. Study design retrospectively in 59 patients with serum creatinine value calculated for SCrCl with Cockcroft and Gault's formula as an index parameter for kidney function underwent the 99m-Technitium labeled Di-ethyl Triamine Penta Acetic Acid (99mTc-DTPA) renogram with ECIL planar gamma camera. All data of 59 patients has been divided into Group- I, II, and III based on the time difference of serum creatinine test from 99mTc-DTPA renal GFR tests performed on the same subjects. Serum Creatinine test was carried out within ± 3 days, between ± 4 days and ± 7 days, and between ± 8 days and ± 21 days from the DTPA GFR Test performed in the Group-I, II, and III respectively. Correlation coefficient of Group-I (n = 15) patients showed 0.8198 and P value < 0.001 for GFR and S. Creatinine within ± 3 days. Group-II (n = 17) and Group-III (n = 27) patients having correlation coefficient 0.6194 and 0.589 and P value <0.01 respectively, within ± 21 days. The two methods gave almost identical estimate of GFR even at 3 weeks interval. Study concludes that SCrCl using Cockcroft and Gault's formula could serve as an instant, easy, and reliable method for assessing kidney function. SCrCl with Cockcroft and Gault's formula is more useful for rapid estimation of global GFR for those patients who are not accessible to DTPA renogram with gamma camera. Correlation can be established further with the prospective study in various renal pathophysiological conditions

  3. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera

    International Nuclear Information System (INIS)

    Cardarelli, J.A.; Slingerland, D.W.; Burrows, B.A.; Miller, A.

    1985-01-01

    Previously described techniques for the measurement of the absorption of [ 57 Co]vitamin B 12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room

  4. Easy method to measure radioactive waste with a gamma-camera detector

    International Nuclear Information System (INIS)

    Murat, C.; Barrau, C.

    2007-01-01

    The aim of this technical note is to evaluate an easy method to measure 99m Tc samples with an activity of 1000, 100 and 10 Bq/L. This study is performed with a gamma camera detector in two departments of nuclear medicine in Avignon and in Nimes. We develop a procedure to measure 99m Tc radioactive waste at the two hospitals output in accordance with the D.G.S./D.H.O.S. no. 2001/323 circular requests of the Ministry for Employment and Solidarity. (authors)

  5. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    Science.gov (United States)

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  6. Approaches to contamination problems of agricultural land using Na(I) Tl spectrometer and gamma camera

    International Nuclear Information System (INIS)

    Yin, Yong-Gen; Suzui, Nobuo; Kawachi, Naoki; Ishii, Satomi; Fujimaki, Shu; Yamaguchi, Mitsutaka; Tanoi, Keitaro; Nakanishi, Tomoko M.; Chino, Mitsuo; Nakamura, Shin-ichi; Watabe, Hiroshi; Yamamoto, Seiichi

    2012-01-01

    The severe accident of Fukushima Daiichi Nuclear Power Plant made a large area of agricultural land contaminated with radioactive cesium (Cs-134 and 137). Quantitative analysis for radioactivity (discriminating for Cs-134 and Cs-137) taken in vegetables from the land was carried out using NaI (Tl) scintillation spectrometer. Development of gamma camera for their imaging due to Cs 137 was performed. The shape of the peaks in the spectrum, baseline suppression, a solution of lines overlapping, enhancement of high-resolution were studied. Furthermore, the effect of water on cesium absorbing and transferring process from the root to the tissue was studied. (S. Ohno)

  7. Single photon emission computed tomography of the brain with a rotating gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H J; Knopp, R; Winkler, C; Wappenschmidt, J

    1981-08-01

    In 471 patients SPECT of the brain was performed in addition to conventional serial brain scintigraphy using a rotating gamma camera (GAMMATOME T 9000). 23 patients had tumorous lesions, 26 had vascular lesions, and 422 patients revealed normal brain findings. 5 of the 23 patients with tumorous lesion and 5 of the 12 patients with vascular lesion (anamnesis shorter than 4 weeks) showed positive SPECT results but false negative conventional brain scans. Specificity could be improved up to 98% (412 out of 422 patients) using SPECT and conventional scintigraphy.

  8. Design and implementation of 3D LIDAR based on pixel-by-pixel scanning and DS-OCDMA

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Yongwan

    2017-02-01

    We designed a prototype for testing feasibility of a proposed light detection and ranging (LIDAR) system, which was designed to encode pixel location information in its laser pulses using the direct-sequence optical code division multiple access method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. The prototype was built using commercial o -the-shelf optical components and development kits. It comprised of an optical modulator, an amplified photodetector, an MEMS mirror development kit, an analog-to-digital converter evaluation module, a digital signal processor with ARM evaluation kit and a Windows personal computer. The prototype LIDAR system has capable of acquiring 120 x 32-pixel images at 5 frames/s. We measured a watering pot to demonstrate the imaging performance of the prototype LIDAR system.

  9. Hydra phantom applicability for carrying out tests of field uniformity in gamma cameras; Aplicabilidade do fantoma hydra para realizacao dos testes de uniformidade de campo em gama camaras

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Filho, Geraldo L., E-mail: geraldo_lemos10@hotmail.com [Centro de Medicina Nuclear de Pernambuco (CEMUPE), Recife, PE (Brazil); Oliveira, Alex C.H., E-mail: oliveira_ach@yahoo.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lopes Filho, Ferdinand J.; Vieira, Jose W., E-mail: ferdinand.lopes@oi.com.br, E-mail: jose-wilson59@live.com [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV

  10. Development of the micro pixel chamber based on MEMS technology

    Science.gov (United States)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2018-02-01

    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  11. F-18 FDG PET with coincidence detection, dual-head gamma camera, initial experience in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.M.G.; Pocock, N.; Quach, T.; Camden, B.M.C. [Liverpool Health Services, Liverpool, NSW (Australia). Department of Nuclear Medicine and Clinical Ultrasound

    1998-06-01

    Full text: The development of Co-incidence Detection (CD) in gamma camera technology has allowed the use of positron radiopharmaceuticals in clinical practice without dedicated PET facilities. We report our initial experience of this technology in Oncological applications. All patients were administered 200 MBq of F- 18 FDG intravenously in a fasting state, with serum glucose below 8.9 mmol/L., and hydration well maintained. Tomography was performed using an ADAC Solus Molecular Co-incidence Detection (MCD) dual-head gamma camera, 60 minutes after administration and immediately after voiding. Tomography of the torso required up to three collections depending on the length of the patient, with each collection requiring 32 steps of 40 second duration, and a 50% overlap. Tomography of the brain required a single collection with 32 steps of 80 seconds. Patients were scanned in the supine position. An iterative reconstruction algorithm was employed without attenuation correction. All patients had histologically confirmed malignancy. Scan findings were correlated with results of all conventional diagnostic imaging procedures that were pertinent to the evaluation and management of each individual patient`s disease. Correlation with tumour type and treatment status was also undertaken. F-18 FDG uptake as demonstrated by CD-PET was increased in tumour bearing sites. The degree of increased uptake varied with tumour type and with treatment status. Our initial experience with CD-PET has been very encouraging, and has led us to undertake prospective short and long term studies to define its role in oncology

  12. The use of a Micromegas as a detector for gamma camera

    International Nuclear Information System (INIS)

    Barbouchi, Asma; Trabelsi, Adel

    2008-01-01

    The micromegas (Micro Mesh Gaseaous) is a gas detector; it was developed by I.Giomattaris and G.Charpak for application in the field of experimental particle physics. But the polyvalence of this detector makes it to be used in several areas such as medical imaging. This detector has an X-Y readout capability of resolution less than 100μm, an energy resolution down to 14% for energy range 1-10 keV and an overall efficiency of 70%. Monte carlo simulation is widely used in nuclear medicine. It allows predicting the behaviour of system. Gate (Geant4 for Application Tomography Emission) is a platform for monte carlo simulation. It is dedicated to PET/SPECT (Position Emission Tomography / single Photon Emission Tomography) applications. Our goal is to model a gamma camera that use a Micromegas as a detector and to compare their performances (energy resolution, point spread function...) with those of a scintillated gamma camera by using Gate

  13. Survey of Current Status of Quality Control of Gamma Cameras in Republic of Korea

    International Nuclear Information System (INIS)

    Choe, Jae Gol; Joh, Cheol Woo

    2008-01-01

    It is widely recognized that good quality control (QC) program is essential for adequate imaging diagnosis using gamma camera. The purpose of this study is to survey the current status of QC of gamma cameras in Republic of Korea for implementing appropriate nationwide quality control guidelines and programs. A collection of data is done for personnel, equipment and appropriateness of each nuclear medicine imaging laboratory's' quality control practice. This survey is done by collection of formatted questionnaire by mails, e mails or interviews. We also reviewed the current recommendations concerning quality assurance by international societies. This survey revealed that practice of quality control is irregular and not satisfactory. The irregularity of the QC practice seems due partly to the lack of trained personnel, equipment, budget, time and hand-on guidelines. The implementation of QC program may cause additional burden to the hospitals, patients and nuclear medicine laboratories. However, the benefit of a good QC program is obvious that the hospitals can provide good quality nuclear medicine imaging studies to the patients. It is important to use least cumbersome QC protocol, to educate the nuclear medicine and hospital administrative personnel concerning QC, and to establish national QC guidelines to help each individual nuclear medicine laboratory

  14. Radioimmunological determination of alphafetoprotein and gamma camera scintigraphy in patients with tumours of the testes

    International Nuclear Information System (INIS)

    Milkov, V.; Sultanov, S.

    1989-01-01

    By means of radioimmunological method the blood serum concentrations of alphafetoprotein (AFP) were investigated in 35 patients with histologically confirmed tumours of the testes prior to surgical intervention. Parallely in all patients gamma camera scintigraphy of the testes was performed. Seven of all investigated 15 patients with seminoma of the testes had increased concentrations of AFP in the blood serum. In 7 of the examinated 10 patients with diagnosis teratoma of the testes increased blood serum concentrations of AFP were established, while 6 of the examined patients with embryonic tumour of the testis had increased blood serum concentrations of AFP. In comparison with the results established in the control group of 30 healthy males, this increase of AFP was statistically reliable. All examined patients showed positive scintigraphic findings, which confirmed the diagnosis of tumour of the testes. It is concluded that the parallel determination of blood serum AFP and gamma camera investigation of the testes could be successfully apllied in the diagnosis of these malignant diseases

  15. An operative gamma camera for sentinel lymph node procedure in case of breast cancer

    CERN Document Server

    Salvador, S; Mathelin, C; Guyonne, J; Huss, D

    2007-01-01

    Large field of view gamma cameras are widely used to perform lymphoscintigraphy in the sentinel lymph nodes (SLN) procedure in case of breast cancer. However, they are not specified for this application and their sizes do not enable their use in the operative room to control the excision of the all SLN. We present the results obtained with a prototype of a new mini gamma camera developed especially for the operative lymphoscintigraphy of the axillary area in case of breast cancer. This prototype is composed of 10 mm thick parallel lead collimator, a 2 mm thick GSO:Ce inorganic scintillating crystal from Hitachi and a Hamamatsu H8500 flat panel multianode (64 channels) photomultiplier tube (MAPMT) equipped with a dedicated electronics. Its actual field of view is 50 × 50mm2. The gamma interaction position in the GSO scintillating plate is obtained by calculating the center of gravity of the fired MAPMT channels. The measurements performed with this prototype demonstrate the usefulness of this mini gamma camer...

  16. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Perkel, M.S.; Fajman, W.A.; Hersh, T.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T 1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T 1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T 1/2 (r = 0.076) or the GC6 (r = 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P < .01), the T 1/2 (P < .01), and the GC6 (P < .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  17. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Perkel, M.S.; Fajman, W.A.; Hersh, T.; Moore, C.; Davidson, E.D.; Haun, C.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T1/2 (r . 0.076) or the GC6 (r. 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P less than .01), the T1/2 (P less than .01), and the GC6 (P less than .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  18. Performances evaluation of the coincidence detection on a gamma-camera

    International Nuclear Information System (INIS)

    Dreuille, O. de; Gaillard, J.F.; Brasse, D.; Bendriem, B.; Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.

    2000-01-01

    The performance of the VERTEX gamma-camera (ADAC) working in coincidence mode are investigated using a protocol derived from the NEMA and IEC recommendations. With a field of view determined by two rectangular detectors (50.8 cm x 40 cm) composed of NaI crystal, this camera allows a 3-D acquisition with different energy window configurations: photopeak-photopeak only (PP) and photopeak-photopeak + photopeak-Compton (PC). An energy resolution of 11% and a scatter fraction of 27% and 33% for the 3D-PP and 3D-PC mode respectively are the main significant results of our study. The spatial resolution equals 5.9 mm and the limit of the detectability ranges from 16 mm to 13 mm for a contrast of 2.5: as a function of the random estimation, the maximum of the Noise Equivalent Count rate varies from 3 kcps to 4.5 kcps for the PP mode and from 3.85 kcps to 6.1 kcps for the PC mode. These maxima are reached for a concentration of 8 kBq/ml for the PP mode and 5 kBq/ml for the PC mode. These values are compared with the results obtained by other groups for the VERTEX gamma camera and several dedicated PET systems. (authors)

  19. Limits in point to point resolution of MOS based pixels detector arrays

    Science.gov (United States)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  20. Monitoring of the internal contamination of occupationally exposure personnel in services of nuclear medicine through the use of gamma cameras

    International Nuclear Information System (INIS)

    Teran, M.; Paolino, A.; Savio, E.; Hermida, J.C.; Dantas, B.M.

    2006-01-01

    The radionuclides incorporation can happen as a result of diverse activities; these include the work associated with the different stadiums of the nuclear fuel cycle, the use of radioactive sources in medicine, the scientific research, the agriculture and the industry. In Uruguay the main activities linked to the manipulation of open sources correspond those of Nuclear Medicine and from 2004, in the mark of the Project Arcal RLA 049 and being based on the Safety Guides of the IAEA it is implementing a program of internal monitoring in combined form the Nuclear Medicine Center of the Hospital of and the Radiochemistry class of the Faculty of Chemistry. In accordance with the publication of the ICRP 75 the emphasis of any monitoring program should be in the formal study of the doses in the workers to who are considered commendable of to receive in routine form an outstanding fraction of the dose limits or who work in areas where the exposures can be significant in the accident event. From April 2004, to the date has started a pilot plan by means of in that were established appropriate conditions of procedures and of safety in a reduced group of workers of the Nuclear Medicine area. In that period the first work limits, equipment adjustment, calibrations and registration systems were determined. The monitoring system implemented until the moment is carried out with a thyroid caption equipment. However these measurements are carried out in the university hospital embracing 40% of the involved workers of our country, with the purpose of reaching the covering of the biggest quantity of occupationally exposed personnel of private clinics. Also it was developed a new work proposal that allows to have an alternative measure method, in the event of not having the equipment habitually used. Among the conclusions of this work are that for the before exposed are considered the measure conditions but appropriate the following ones: Gamma Camera without collimator; Measurement

  1. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    International Nuclear Information System (INIS)

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, Francois; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver

    2016-01-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  2. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  3. Values of tumor markers (AFP, β-HCG and CEA) and gamma-camera scintigraphy in patients with testicular tumors

    International Nuclear Information System (INIS)

    Milkov, V.; Sultanov, S.; Tsvetkov, D.

    1989-01-01

    Complex gamma-camera and radioimmunologic study of the tumor markers AFP, β-HCG and CEA was performed in 7 patients with testicular tumors. In all tested patients gamma-camera scintigraphy of the testes clearly delineated the zone of the pathological process. Gamma-camera examination very well differentiates malignant from nonmalignant processes in the testes. The serum levels of the tumor markers AFP and β-HCG proved elevated in 3 of the tested patients during the preoperative period. The histological types of the tumors in these patients were: teratocarcinoma in one and embryonal carcinoma in the other two. It is believed that investigation of the three tumor markers may gain acceptance as additonal method in the complex diagnosis of these diseases

  4. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  5. Measurement of glomerular filtration rate using technetium-99m-DTPA and the gamma camera: A comparison of methods

    International Nuclear Information System (INIS)

    Russell, C.D.; Bischoff, P.G.; Kontzen, F.; Rowell, K.L.; Yester, M.V.; Lloyd, L.K.; Tauxe, W.N.; Dubovsky, E.V.

    1984-01-01

    A variety of methods has been proposed to estimate glomerular filtration rate (GFR) from renal uptake of Tc-99m-DTPA using a gamma camera. To compare alternative methods, the authors have calculated GFR in several different ways from measurements in 33 patients, and compared the results with an independent GFR measurement based on 8-point plasma clearance of Yb-169-DTPA. The best agreement was obtained using an algorithm that has not been described previously. This was a modification of a method used previously in which correction was made for overlap of kidneys by liver and spleen. The correlation coefficient was 0.958 and the residual standard deviation was 12.1 ml/min. This method required a single 20-min blood sample as well as the camera data. The best method not requiring a blood sample was significantly less accurate, with correlation coefficient 0.866 and residual standard deviation 21.1 ml/min. The accuracy of these methods was comparable to that reported for the creatinine clearance, the most commonly used estimate of GFR in current clinical practice

  6. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications.

    Science.gov (United States)

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-10-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μ W. In acquisition mode, the total power consumption of every pixel is 200 μ W. An equivalent noise charge (ENC) of 160 e - RMS at maximum gain and negative polarity conditions has been measured at room temperature.

  7. A new collimator for measurement of rCBF by means of gamma camera

    International Nuclear Information System (INIS)

    Zechmann, W.; Oberladstaetter, M.; Raccabona, G.; Vogl, G.; Gerstenbrand, F.

    1982-01-01

    Atraumatic measurement of rCBF by means of gamma camera and conventional collimators requires high doses of 133 Xenon to obtain high count rates over the cerebral ROI's. The input of time-activity curve of breathing air by means of a probe measurement is not possible on line without difficulties. A new collimator, developed by ours, which is comparable with standard rCBF-Multiprobe systems, which allows high countrates and low dose of 133 Xenon is presented. A special air bypass enables to get the breathing curve with simple ROI technique. The collimator can easily be adapted to the camera by means of an insert adapter ring. With this collimator the rCBF measurement with conventional equipment of a nuclear medicine department is possible. (Author)

  8. Renal scintiscanning: Methodology and normal findings using 131I hippurane and a gamma camera

    International Nuclear Information System (INIS)

    Ruppik, G.

    1982-01-01

    The methodological and mathematical fundamentals of renal functional scintiscanning using a gamma camera and 131 I-hippurane are described for ING, whole-body clearance, plasma clearance, and unilateral clearance. Methods are compared introducing the Tuebingen method of unilateral clearance with tolerance limits. The data of the patients are presented as standard values with a limit of two standard deviations for whole-body clearance unilateral clearance, the parenchymal phase and the excretion phase including a percentage of excretion. Comparative studies are presented for the main parameters of clearance and unilateral clearance, and the data obtained are documented in tables and graphs together with the initial data and the standard values. The results and problems of the method are gone into. (orig./MG) [de

  9. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-01-15

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.

  10. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    International Nuclear Information System (INIS)

    Santos, J.A.M.; Sarmento, S.; Alves, P.; Torres, M.C.; Bastos, A.L.; Ponte, F.

    2008-01-01

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector

  11. A new approach to the evaluation of peripheral vascular disease using the gamma camera

    International Nuclear Information System (INIS)

    Gerritsen, H.A.M.

    1976-01-01

    To estimate the degree of impaired perfusion in legs, and the extent of improvement after treatment, a functional test was developed using a gamma camera to follow the perfusion of intravenously injected sup(99m)Tc-pertechnetate. An analysis is given of normal and pathologic curve patterns. The influence of the severity of occlusive arterial disease on the arrival and distribution of radioactivity in the leg is demonstrated. After vascular surgery, changes in the curve pattern and the imaging of activity distribution reflected the function of the inserted bypass grafts. The test proved to be useful in the differentiation between patients with false claudication complaints due to non-arterial disease and patients with true claudication. It is concluded that the technique presented in this thesis can serve as a useful, non-invasive, screening test prior to arteriography and as a functional assessment of vascular reconstruction

  12. Measurement of spleen size using gamma camera scintigraphy in essential thrombocythaemia

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, P. (Department of Medicine, Oestra Hospital, University of Goeteborg, Goeteborg (Sweden)); Carneskog, J.; Wadenvik, H.; Kutti, J. (Haematology Section, Department of Medicine, Sahlgrenska Hospital, University of Goeteborg, Goeteborg (Sweden)); Jarneborn, L. (Department of Clinical Physiology, Oestra Hospital, University of Goeteborg, Goeteborg (Sweden))

    1993-09-01

    By using gamma camera imaging the spleen size was determined in 33 consecutive patients with essential thrombocythaemia (ET) and in 33 consecutive patients with reactive thrombocytosis (RT). All ET patients were newly diagnosed and had not received myelosuppressive treatment prior to study; they all fulfilled the criteria for ET as established by the Polycythemia Vera Study Group. In both posterior and lateral projections, the spleen area in the group of ET patients was significantly larger than in the RT patients. The present study has shown that 39% of ET patients at diagnosis have splenic enlargement. Evaluation of Spleen size is therefore a useful diagnostic test in patients presenting with unexplained thrombocytosis. (au) (15 refs.).

  13. PET with coincidence gamma cameras - clinical benefit from the radiooncologists' point of view

    International Nuclear Information System (INIS)

    Richter, E.; Feyerabend, T.; Stallmann, C.; Lauer, I.; Baehre, M.

    2001-01-01

    Positron emission tomography with FDG (FDG-PET) is a new technique, which displays the cellular metabolic activity. Since tumors exhibit an increased metabolic activity when compared to normal tissue, this imaging modality has a particularly high importance. FDG-PET is not only useful for localizing and staging of malignant tumors, but also to evaluate therapy response. In this context, PET is superior to morphologically orientated modalities, because therapeutically induced changes in glucose metabolism precede morphologic alterations. Numerous studies indicate, that PET will play an important role in radiooncology concerning therapy planning and monitoring the effects of therapy during and after treatment. Further clinical studies are necessary to evaluate the information provided by FDG-PET more precisely. Coincidence gamma cameras with adequate imaging characteristics will gain enhanced importance to meet these increasing demands. (orig.) [de

  14. Gastric emptying time in normal subjects using /sup 51/Cr and a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Claure, H [Hospital del Salvador, Santiago de Chile; Calderon, C; Braunschweig, T; Diaz, G

    1974-12-01

    Gastric emptying time of a meal consisting of 2 eggs, 50 g of white bread, and 300 ml of milk, was measured in 10 normal subjects, 5 males and 5 females, with an average age of 34.7 years. 200 uCi of Cr-51 were added to the meal and external counting was performed using a ..gamma.. camera. The rate of gastric emptying was estimated by the decrease in radiation counts over the gastric area. In 68.6 percent of the subjects the mean gastric emptying time was 60 min. The average curve showed a complex exponential slope with 2 distinct phases: a fast one between 0 and 35 min and a slow one between 40 and 60 min. These results suggest that a normal gastric emptying time consists of 2 different rate phases when a meal of mixed consistency (liquid and solid) is ingested.

  15. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  16. A study of quantitative scale display of the organ uptake with gamma-camera

    Energy Technology Data Exchange (ETDEWEB)

    Ishigami, K; Matsumoto, M [Kumamoto Univ. (Japan) School of Medicine

    1975-05-01

    The fundamental study of quantitative scale display of the organ uptake with ..gamma..-camera was performed in special respect of the thyroid gland and the pancreas. As one of the measurements on certain dimension of the organ, an optical progression outside the digital image was expressed, and was subjected to the quantitative scale with the use of the threshold level. And a rather satisfactory correlation was clinically obtained between the scale display and the thyroidal /sup 131/I uptake. For the purpose of revising the above scale display, the organ depth was measured with RI by the aid of the phantom. Then the pancreas depth determined by the count rate ratio curve of 140 and 270 keV peak of /sup 75/Se energies. However, the body background and the radioactive rays from the neighboring organs interfered with this curve.

  17. Conjugate view gamma camera method for measuring activity in 131{sup I} treatments; Metodo de la imagen conjugada para la cuantificacion de la actividad en tratamientos de 131{sup I}

    Energy Technology Data Exchange (ETDEWEB)

    Barquero Sanz, R.; Placios, A. M.; Perez, D. M.; Tortosa Oliver, R.; Michel, R.

    2012-07-01

    A quantification method is developed to determine 131{sup I} activity and its associated uncertainty using regions of interest from gamma camera images. Inside a neck phantom, a known activity source is introduced to simulate thyroid remainders in thyroid differentiated cancer. The three parameters that define the accuracy of the method are: net count rates in ROI, the air calibration factor of the gamma camera and the attenuation correction factor. In order to obtain net count rates, four methods for background subtraction are tested. The best procedure to follow is based in two energy windows acquisitions, which gives an activity result of 47 {+-} 5 {mu}Ci Bq, in good agreement with the real activity value for the source, 46 {+-} 5 {mu}Ci. (Author) 12 refs.

  18. FDG scan on an ordinary coincidence gamma camera (CDET) -preliminary data in pulmonary or colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Montravers, F.; Grahek, D.; Ghazzar, N.; Younsi, N.; Kerrou, K.; Talbot, J.N. [Hopital Tenon, 75 - Paris (France). Services de Medecine Nucleaire; Wartski, M.; Zerbib, E. [Hopital Marie Lannelongue Le Plessis Robinson (France); Lumbroso, J. [Institut Gustave Roussy Villejuif (France)

    1997-12-31

    Full text. The purpose of this study to evaluate the impact of FDG scan performed on an ordinary CDET gamma camera on the therapeutic management of patients with pulmonary nodules or with suspicion of recurrent colorectal carcinoma. Methods: two tomoscintigrams (thorax and abdomen) were acquired, using a PICKER Prism XP 2000 coincidence gamma camera, 45 m after i.v. injection of 100-150 MBq of {sup 18} F-FDG in fasting patients. The 21 pts were explored in July or August 1997. Preliminary results: among 12 patients with pulmonary nodules, the planed surgery was replaced by chemotherapy after visualization of unknown metastases accumulating FDG in 3 patients. In another one, the high uptake of FDG by a lung nodule which has been known for 6 years, led to surgery and objectivation of an adenocarcinoma. In one case, the absence of FDG uptake corresponded to an abscess (true negative result). In the other 7 patients, the indication of surgery was confirmed but the procedure was modified in 2 cases. In case of suspicion of recurrent colorectal carcinoma (9 patients), the finding of a single focus of FDG uptake whereas CT scan was negative or inconclusive let do the decision of surgery in 3 patients. In one patient with pelvic pain without increase of tumor markers levels and with normal CT scan, a normal FDG scan confirmed the physician`s hypothesis of pain due to the previous therapy but do not recurrence. In one patient, the finding of 3 foci of uptake of FDG whereas CT scan was inconclusive confirmed the indication of chemotherapy. In 2 patients with FDG abdominal foci without morphologic abnormalities, the therapeutic strategy is not yet decided in 2 patients, no foci could be found. In conclusion, these preliminary results show that FDG scan has provided a help to the physician indecision-making for therapeutic strategy in 8 patients on 21 (38%) and a help to the surgeon in 2 more cases (48% as a whole)

  19. FDG scan on an ordinary coincidence gamma camera (CDET) -preliminary data in pulmonary or colorectal cancer

    International Nuclear Information System (INIS)

    Montravers, F.; Grahek, D.; Ghazzar, N.; Younsi, N.; Kerrou, K.; Talbot, J.N.; Lumbroso, J.

    1997-01-01

    Full text. The purpose of this study to evaluate the impact of FDG scan performed on an ordinary CDET gamma camera on the therapeutic management of patients with pulmonary nodules or with suspicion of recurrent colorectal carcinoma. Methods: two tomoscintigrams (thorax and abdomen) were acquired, using a PICKER Prism XP 2000 coincidence gamma camera, 45 m after i.v. injection of 100-150 MBq of 18 F-FDG in fasting patients. The 21 pts were explored in July or August 1997. Preliminary results: among 12 patients with pulmonary nodules, the planed surgery was replaced by chemotherapy after visualization of unknown metastases accumulating FDG in 3 patients. In another one, the high uptake of FDG by a lung nodule which has been known for 6 years, led to surgery and objectivation of an adenocarcinoma. In one case, the absence of FDG uptake corresponded to an abscess (true negative result). In the other 7 patients, the indication of surgery was confirmed but the procedure was modified in 2 cases. In case of suspicion of recurrent colorectal carcinoma (9 patients), the finding of a single focus of FDG uptake whereas CT scan was negative or inconclusive let do the decision of surgery in 3 patients. In one patient with pelvic pain without increase of tumor markers levels and with normal CT scan, a normal FDG scan confirmed the physician's hypothesis of pain due to the previous therapy but do not recurrence. In one patient, the finding of 3 foci of uptake of FDG whereas CT scan was inconclusive confirmed the indication of chemotherapy. In 2 patients with FDG abdominal foci without morphologic abnormalities, the therapeutic strategy is not yet decided in 2 patients, no foci could be found. In conclusion, these preliminary results show that FDG scan has provided a help to the physician indecision-making for therapeutic strategy in 8 patients on 21 (38%) and a help to the surgeon in 2 more cases (48% as a whole)

  20. A hybrid 3D LIDAR imager based on pixel-by-pixel scanning and DS-OCDMA

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Yongwan

    2016-03-01

    We propose a new hybrid 3D light detection and ranging (LIDAR) system, which measures a scene with 1280 x 600 pixels at a refresh rate of 60fps. The emitted pulses of each pixel are modulated by direct sequence optical code division multiple access (DS-OCDMA) techniques. The modulated pulses include a unique device identification number, the pixel position in the line, and a checksum. The LIDAR emits the modulated pulses periodically without waiting to receive returning light at the detector. When all the pixels are completely through the process, the travel time, amplitude, width, and speed are used by the pixel-by-pixel scanning LIDAR imager to generate point cloud data as the measured results. We programmed the entire hybrid 3D LIDAR operation in a simulator to observe the functionality accomplished by our proposed model.

  1. Evaluation of different physical parameters that affect the clinical image quality for gamma camera by using different radionuclides

    International Nuclear Information System (INIS)

    Salah, F.A.; Ziada, G.; Hejazy, M.A.; Khalil, W.A.

    2008-01-01

    Some scintillation camera manufactures adhere to standard code of performance specification established by National Electric Manufactures Association (NEMA). Items such as differential and integral uniformity, spatial resolution energy resolution, etc. are all calculated with reproducible methodology that allows the user reliable technique for creation of these standards to avoid any lack of clinical service that may violate the ethics of patient care. Because 99m Tc is the most frequently used radionuclide in nuclear medicine, many clinics perform the daily uniformity and weekly resolution checks using this radionuclide. But when other commonly used radionuclide such as Tl-201,Ga-67 and I-131 are used, no standardized quality control is performed. So in these study we perform to evaluate the response of ADAC(digital) gamma camera and SELO(analogue) gamma camera to four radionuclide (Tl-201,Ga-67, I-131, and 99m Tc) flood image acquired using different non-uniformity correction tables. In the planer study uniformity and resolution images were obtained using ADAC and SELO cameras, linearity was obtained only by ADAC camera, while in the SPECT study uniformity and contrast images were obtained using ADAC camera only. The response for using different non-uniformity correction tables acquired using different isotopes was different from gamma camera model to another. We can conclude that the most of the gamma camera quality control parameters (uniformity, resolution and contrast) are influenced by variation in the correction tables, while other parameters not affected by this variation like linearity. (author)

  2. Nema tests in gamma-cameras. Independent implementation of manufacturer; Pruebas Nema en gammacamaras. Implementacion independiente del fabricante

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Pacho, J. A.; Montes Fuentes, C.; Verde Velasco, J. M.; Perez Alvarez, M. E.; Delgado Aparicio, J. M.; Cons Perez, N.; Gomez Gonzalez, N.; Garcia Repiso, S.; Saez Beltran, M.; Gomez Llorente, P. L.

    2013-07-01

    The analysis of test results of quality control in gamma cameras, as extrinsic planar uniformity and the spatial resolution is often limited by intrinsic equipment tools and procedures. With the objective of an independent assessment of such evidence and better management and monitoring of the data obtained are made two separate programs in Matlab. (Author)

  3. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  4. Neural network based cluster creation in the ATLAS silicon pixel detector

    CERN Document Server

    Selbach, K E; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS pixel detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  5. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies

    International Nuclear Information System (INIS)

    Vermeeren, L.; Valdes Olmos, R.A.; Vogel, W.V.; Sivro, F.; Hoefnagel, C.A.; Meinhardt, W.; Bex, A.; Poel, H.G. van der; Horenblas, S.

    2009-01-01

    Our aim was to assess the feasibility of intraoperative radioguidance with a portable gamma camera during laparoscopic sentinel node (SN) procedures in urological malignancies. We evaluated the use of the intraoperative portable gamma camera in 20 patients: 16 patients with prostate carcinoma (PCC), 2 patients with renal cell carcinoma (RC) and 2 patients with testicular cancer (TC). Intra/peritumoural injection of 99m Tc-nanocolloid ( 99m Tc) was followed by planar lymphoscintigraphy, SPECT/CT and marking of SN levels. Before laparoscopy a 125 I seed was fixed on the laparoscopic gamma probe as a pointer of SN seeking. The portable gamma camera was set to display the 99m Tc signal for SN localisation and the 125 I signal for SN seeking. Matching of these signals on screen indicated exact SN localisation, and consequently this SN was removed. The mean injected dose was 218 MBq in PCC, 228 MBq in RC and 88 MBq in TC. Pelvic SN were visualised in all PCC patients, with uncommonly located SN in seven patients. SN metastases were found in seven patients (one in a uncommonly located SN). Both RC patients and TC patients had para-aortic SN, which were all tumour free. A total of 59 SN were removed. The portable gamma camera enabled real-time SN display/identification in 18 patients (90%). The use of a portable gamma camera in combination with a laparoscopic gamma probe incorporates intraoperative real-time imaging with improved SN identification in urological malignancies. This procedure might also be useful for SN identification of other deep draining malignancies. (orig.)

  6. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Valdes Olmos, R.A.; Vogel, W.V.; Sivro, F.; Hoefnagel, C.A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Meinhardt, W.; Bex, A.; Poel, H.G. van der; Horenblas, S. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands)

    2009-07-15

    Our aim was to assess the feasibility of intraoperative radioguidance with a portable gamma camera during laparoscopic sentinel node (SN) procedures in urological malignancies. We evaluated the use of the intraoperative portable gamma camera in 20 patients: 16 patients with prostate carcinoma (PCC), 2 patients with renal cell carcinoma (RC) and 2 patients with testicular cancer (TC). Intra/peritumoural injection of {sup 99m}Tc-nanocolloid ({sup 99m}Tc) was followed by planar lymphoscintigraphy, SPECT/CT and marking of SN levels. Before laparoscopy a {sup 125}I seed was fixed on the laparoscopic gamma probe as a pointer of SN seeking. The portable gamma camera was set to display the {sup 99m}Tc signal for SN localisation and the {sup 125}I signal for SN seeking. Matching of these signals on screen indicated exact SN localisation, and consequently this SN was removed. The mean injected dose was 218 MBq in PCC, 228 MBq in RC and 88 MBq in TC. Pelvic SN were visualised in all PCC patients, with uncommonly located SN in seven patients. SN metastases were found in seven patients (one in a uncommonly located SN). Both RC patients and TC patients had para-aortic SN, which were all tumour free. A total of 59 SN were removed. The portable gamma camera enabled real-time SN display/identification in 18 patients (90%). The use of a portable gamma camera in combination with a laparoscopic gamma probe incorporates intraoperative real-time imaging with improved SN identification in urological malignancies. This procedure might also be useful for SN identification of other deep draining malignancies. (orig.)

  7. A kind of color image segmentation algorithm based on super-pixel and PCNN

    Science.gov (United States)

    Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.

  8. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    Science.gov (United States)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post

  9. Viability after myocardial infarction: can it be assessed within five minutes by low-dose dynamic iodine-123-iodophenylpentadecanoic acid imaging with a multicrystal gamma camera?

    Science.gov (United States)

    Murray, G L; Schad, N; Bush, A J

    1997-04-01

    Although positron emission tomography (PET) assesses myocardial viability (V) accurately, a rapid, inexpensive substitute is needed. Therefore, the authors developed a low-dose (1 mCi) Iodine-123-Iodophenylpentadecanoic Acid (IPPA) myocardial viability scan requiring analysis of only the first three minutes of data acquired at rest with a standard multicrystal gamma camera. Twenty-one patients > 2 weeks after myocardial infarction (MI) (24 MIs, 10 anterior, 14 inferoposterior, 21 akinetic or dyskinetic) had cardiac catheterization and resting IPPA imaging. V was determined by either transmural myocardial biopsy during coronary bypass surgery (12 patients, 14 MIs) or reinjection tomographic thallium scan (9 patients, 10 MIs), and 50% of MIs were viable. The IPPA variables analyzed were: time to initial left ventricular (LV) uptake in the region of interest (ROI), the ratio of three-minute uptake in the ROI to three-minute LV uptake, three-minute clearing (counts/pixel) in the ROI (decrease in IPPA after initial uptake), and three-minute accumulation (increase in IPPA after initial uptake) in the ROI. Rules for detecting V were generated and applied to 10 healthy volunteers to determine normalcy. While three-minute uptake in nonviable MIs was only 67% of volunteers (P or = 13.5 counts/pixel in 10/12 (83%) of viable MIs, and IPPA accumulation > or = 6.75 counts/pixel identified one more viable MI, for a sensitivity for V of 11/12 (92%), with a specificity of 11/12 (92%), and a 100% normalcy rate. The authors conclude low-dose IPPA (five-minute acquisition with analysis of the first three minutes of data) has potential for providing rapid, inexpensive V data after MI. Since newer multicrystal cameras are mobile, IPPA scans can be done in emergency rooms or coronary care units generating information that might be useful in decisions regarding thrombolysis, angioplasty, or bypass surgery.

  10. Status and perspectives of pixel sensors based on 3D vertical integration

    Energy Technology Data Exchange (ETDEWEB)

    Re, Valerio [Università di Bergamo, Dipartimento di Ingegneria, Viale Marconi, 5, 24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi, 6, 27100 Pavia (Italy)

    2014-11-21

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP.

  11. Status and perspectives of pixel sensors based on 3D vertical integration

    International Nuclear Information System (INIS)

    Re, Valerio

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP

  12. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We present feasibility studies to investigate the performances and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on the real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC).

  13. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2016-01-01

    We present feasibility studies to investigate the performance and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of rare physics events from the large pile-up of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total Level-1 trigger rate while keeping a high selection capability. This is quite an innovative and challenging objective for the upgrade of the experiments for the High Luminosity LHC.

  14. Development of new gamma camera localization method for sentinel nodes by image fusion and navigation in lymphoscintigraphy

    International Nuclear Information System (INIS)

    Fidler, V.; Milanez, T.; Prepadnik, M.; Skalic, S.; Skalic, K.; Vidrgar-Kralj, B.; Fidler, S.; Medved, M.

    2004-01-01

    Full text: The objective of this study was the development of the localization technique for skin marking the lesions with low accumulating Tc-99m labeled radiopharmaceuticals. Fusion of high count static planar scan (base image) with real time acquired scan (fluent image) and with added moving point source (Tc-99m or Co-57) in the same patient position was performed for best overlapping the target lesions and point source spot. Special acquisition software in Windows (Oncology MedicView) was developed. Both images were pre-processed by online visual inspection and then fluently fused in the way that only point source spot is overlapped to the base image. Image normalization was done by linear, log or combined log/linear conversions followed by on-line contrasting of fused image by high sensitive color scaling and spatial contrast filtering. The localization was performed in several patient positions with fixed bed and patient. Navigation tools using audio and visual signals were continuously created from the 'lesion-point source spot' distance information. Localization accuracy for SLN(s) using this technique was considerably high. SLN detection improved from 76 % (95 patients, 72 detected SLNs, 23 undetectable SLNs) to 95 % (45 pts, 42 detected SLNs, 3 undetectable SLNs). Localization procedure was shortened for at least 3 times. The new technique substantially lowered the localization time and increased the lesion detection by on-line interactive optimization of fused images. It can be used for all radioisotope localizations in oncology diagnostics using simple analog or semi digital gamma cameras connected to low-cost IAEA acquisition module and specially developed acquisition/processing software. (author)

  15. Human vision-based algorithm to hide defective pixels in LCDs

    Science.gov (United States)

    Kimpe, Tom; Coulier, Stefaan; Van Hoey, Gert

    2006-02-01

    Producing displays without pixel defects or repairing defective pixels is technically not possible at this moment. This paper presents a new approach to solve this problem: defects are made invisible for the user by using image processing algorithms based on characteristics of the human eye. The performance of this new algorithm has been evaluated using two different methods. First of all the theoretical response of the human eye was analyzed on a series of images and this before and after applying the defective pixel compensation algorithm. These results show that indeed it is possible to mask a defective pixel. A second method was to perform a psycho-visual test where users were asked whether or not a defective pixel could be perceived. The results of these user tests also confirm the value of the new algorithm. Our "defective pixel correction" algorithm can be implemented very efficiently and cost-effectively as pixel-dataprocessing algorithms inside the display in for instance an FPGA, a DSP or a microprocessor. The described techniques are also valid for both monochrome and color displays ranging from high-quality medical displays to consumer LCDTV applications.

  16. Multiple image encryption scheme based on pixel exchange operation and vector decomposition

    Science.gov (United States)

    Xiong, Y.; Quan, C.; Tay, C. J.

    2018-02-01

    We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.

  17. A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodoamphetamine with one blood sampling

    International Nuclear Information System (INIS)

    Iida, Hidehiro; Itoh, Hiroshi; Bloomfield, P.M.; Munaka, Masahiro; Higano, Shuichi; Murakami, Matsutaro; Inugami, Atsushi; Eberl, S.; Aizawa, Yasuo; Kanno, Iwao; Uemura, Kazuo

    1994-01-01

    A method has been developed to quantitate regional cerebral blood blow (rCBF) using iodine-123-labelled N-isopropyl-p-iodoamphetamine (IMP). This technique requires only two single-photon emission tomography (SPET) scans and one blood sample. Based on a two-compartment model, radioactivity concentrations in the brain for each scan time are calculated. A standard input function has been generated by combining the input functions from 12 independent studies prior to this work to avoid frequent arterial blood sampling, and one blood sample is taken at 10 min following IMP administration for calibration of the standard arterial input function. This calibration time was determined such that the integration of the first 40 min of the calibrated, combined input function agreed best with those from 12 individual input functions (the difference was 5.3% on average). This method was applied to eight subjects (two normals and six patients with cerebral infarction), and yielded rCBF values which agreed well with those obtained by a positron emission tomography H 2 15 O autoradiography method. This method was also found to provide rCBF values that were consistent with those obtained by the non-linear least squares fitting technique and those obtained by conventional microsphere model analysis. The optimum SPET scan times were found to be 40 and 180 min for the early and delayed scans, respectively. These scan times allow the use of a conventional rotating gamma camera for clinical purposes. V d values ranged between 10 and 40 ml/g depending on the pathological condition, thereby suggesting the importance of measuring V d for each ROI. In conclusion, optimization of the blood sampling time and the scanning time enabled quantitative measurement of rCBF with two SPET scans and one blood sample. (orig.)

  18. Cerebral emission computer tomography with a rotating gamma camera: clinic results with J-123 Isopropylamphetamin and J-123-Fenetyllin

    International Nuclear Information System (INIS)

    Biersack, H.J.; Hartmann, A.; Froescher, W.; Reske, S.-N.; Reichmann, K.; Knopp, R.; Winkler, C.

    1984-01-01

    Many amines can pass the blood brain barrier and accumulate in relatively large amounts in the brain tissue. For about 2 years 123-J amphetamines have, therefore, been used for brain imaging by several teams. Our experience sofar is based on 28 patients. Of these, 14 were epileptics, 10 had cerebrovascular diseases, 2 suffered from migraine and another 2 had brain tumors. In 3 patients with vascular lesions studies were repeated twice or three times. Amphetamine uptake in the brain was measured with a rotating gamma camera system (Gammatome T9000/CGR). At an examination time of 20 minutes 64 frames were acquired during one full rotation. The pulse rate was about 3000 second after injecting 6.5 mCi of 123-J amphetamine. Of the epileptics, 8 showed defects both on CT and SPECT, in 3 cases both studies were normal. While 1 patient with CT positivity had a normal SPECT, 2 cases were found to have lesions on SPECT inspite of a normal CT. The size of the lesion seen on amphetamine SPECT was lager than on CT in 3 of 9 patients. In the 10 patients with cerebrovascular lesions the 2 procedures showed concordant normal patterns in 1 and concordant abnormal patterns in 7 instances. 2 patients with normal CT were found to have a lesion on amphetamine scanning which corresponded to the neurologic findings. Regarding the size of the lesions, SPECT showed a more extensive involvement than CT in 2 cases. This again was in good agreement with the neurologic findings. Inspite of repeat studies cerebellar diaschisis was only seen in a single case with healed cerebral infarction and hemiplegia of some years' standing. Two patients suffered from migraine and compromised blood flow was identified as suggested by the neurologic findings inspite of a normal CT. (Author)

  19. Radioguided Parathyroidectomy with Portable Mini Gamma-Camera for the Treatment of Primary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Claudio Casella

    2015-01-01

    Full Text Available Background. A proper localisation of pathological parathyroid glands is essential for a minimally invasive approach in the surgical treatment of primary hyperparathyroidism (PHP. The recent introduction of portable mini gamma-cameras (pMGCs enabled intraoperative scintigraphic scanning. The aim of our study is to evaluate the efficacy of this new method and compare it with the preoperative localisation surveys. Methods. 20 patients were studied; they were evaluated preoperatively by neck ultrasound and Tc-sestaMIBI-scintigraphy and intraoperatively with the pMGC IP Guardian 2. The results obtained from the three evaluations were compared. Results. The pMGC presented a sensitivity of 95%, a specificity of 98.89%, and a diagnostic accuracy of 98.18%, which were higher than those of preoperative ultrasound (sensitivity 55%; specificity 95%; diagnostic accuracy 87% and scintigraphy with Tc-sestaMIBI (sensitivity 73.68%; specificity 96.05%; diagnostic accuracy 91.58%. Conclusions. The pMGC can be used effectively as an intraoperative method to find the correct location of the pathological parathyroid glands. The pMGC is more reliable than the currently used preoperative and intraoperative localisation techniques.

  20. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    Science.gov (United States)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  1. Quantitative studies with the gamma-camera: correction for spatial and energy distortion

    International Nuclear Information System (INIS)

    Soussaline, F.; Todd-Pokropek, A.E.; Raynaud, C.

    1977-01-01

    The gamma camera sensitivity distribution is an important source of error in quantitative studies. In addition, spatial distortion produces apparent variations in count density which degrades quantitative studies. The flood field image takes into account both effects and is influenced by the pile-up of the tail distribution. It is essential to measure separately each of these parameters. These were investigated using a point source displaced by a special scanning table with two X, Y stepping motors of 10 micron precision. The spatial distribution of the sensitivity, spatial distortion and photopeak in the field of view were measured and compared for different setting-up of the camera and PM gains. For well-tuned cameras, the sensitivity is fairly constant, while the variations appearing in the flood field image are primarily due to spatial distortion, the former more dependent than the latter on the energy window setting. This indicates why conventional flood field uniformity correction must not be applied. A correction technique to improve the results in quantitative studies has been tested using a continuously matched energy window at every point within the field. A method for correcting spatial distortion is also proposed, where, after an adequately sampled measurement of this error, a transformation can be applied to calculate the true position of events. The knowledge of the magnitude of these parameters is essential in the routine use and design of detector systems

  2. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  3. Feasibility study of a lens-coupled charge-coupled device gamma camera

    International Nuclear Information System (INIS)

    Lee, Hakjae; Jung, Youngjun; Kim, Jungmin; Bae, Seungbin; Lee, Kisung; Kang, Jungwon

    2011-01-01

    A charge-coupled device (CCD) is generally used in a digital camera as a light-collecting device such as a photomultiplier tube (PMT). Because of its low sensitivity and very high dark current, CCD have not been popularly used for gamma imaging systems. However, a recent CCD technological breakthrough has improved CCD sensitivity, and the use of a Peltier cooling system can significantly minimize the dark current. In this study, we investigated the feasibility of a prototype CCD gamma camera consisting of a CsI scintillator, optical lenses, and a CCD module. Despite electron-multiplying (EM) CCDs having higher performance, in this study, we built a cost-effective system consisted of low-cost components compared to EMCCDs. Our prototype detector consists of a CsI scintillator, two optical lenses, and a conventional Peltier-cooled CCD. The performance of this detector was evaluated by acquiring the sensitivity, resolution, and the modulation transfer function (MTF). The sensitivity of the prototype detector showed excellent linearity. With a 1 mm-diameter pinhole collimator, the full width at half-maximum (FWHM) of a 1.1 mm Tc-99m line source image was 2.85 mm. These results show that the developed prototype camera is feasible for small animal gamma imaging.

  4. A gamma camera method to monitor the use of degradable starch microspheres in hepatic arterial chemotherapy

    International Nuclear Information System (INIS)

    Britten, A.; Fleming, J.; Flowerdew, A.; Hunt, T.; Taylor, I.; Ackery, D.

    1989-01-01

    A gamma camera method to quantify the haemodynamic effects of degradable starch microspheres (DSM) in intra arterial hepatic therapy is described. Results are presented from ten patients with colorectal liver metastases. Intra hepatic arterio venous shunting was present in 1 patient prior to DSM and in 2 subjects after three 300 mg DSM fractions. DSM reduced the rate of flow of injectate to the lung in all cases. Conversely, an increased rate of flow of injectate to gut or spleen occurred with 300 mg fractions of DSM in 7/9 cases. Lower dose DSM fractions are indicated. At 2-3 min after DSM injection the mean fraction of the activity retained in the liver was 0.22. A DSM induced enhancement of tumour relative to normal tissue perfusion was obtained in four out of five tumour regions identified. All indices showed a wide variation between patients and between individual DSM doses, and the high incidence of extra hepatic shunting confirms the need for monitoring when using intra arterial microspheres. (orig.)

  5. Relationship between image quality and changes in spatial resolution for the gamma camera

    International Nuclear Information System (INIS)

    Ikeda, Hozumi; Kishimoto, Kenji; Shimonishi, Yoshihiro; Ohmura, Masahiro; Kosakai, Kazuhisa; Hamada, Kunio; Ochi, Hironobu.

    1989-01-01

    The purpose of this study is to examine quantitatively the relationship between visual image quality and degradation in spatial resolution for a gamma camera by the increase in distance from collimator. The relationship between the proportion (p) of images identified the difference of image quality and the difference (δFWHM) in FWHM between paired images was showed in a sigmoid curve. Using Dendy's method, minimum level to be correctly identified the difference of image quality on three out of four occasions (p=0.75) was corresponded to 0.4 mm in δFWHM. Using fuzzy theory, the level to be identified the difference of image quality was examind under various conditions. The truth-value of fuzzy sets-degraded or slightly degraded and not-degraded in image quality between paired images-was gained the peak at 0.5 mm of δFWHM. It was founded that changes of 0.4-0.5 mm in FWHM-corresponding about 2 cm distance from collimator-could be sufficiently identified in the difference of image quality. (author)

  6. Methodology for Gamma cameras calibration for I-131 uptake quantification in Hyperthyroidism diseases

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; Palau San Pedro, A.; Martin Escuela, J. M.; Reynosa Montejo, R.; Castillo, J.; Torres Aroche, L.

    2015-01-01

    Optimization and verification of Patient-Specific Treatment Planning with unsealed I-131 sources is a desirable goal from medical and radiation protection point of view. To obtain a practical protocol to combine the estimation of the related parameters with patient's specific treatment dose in hyperthyroidism disease, 3 equipment were studied (Iodine Probe, a Philips Forte Camera with pin-hole collimators and a Mediso Nucline with HEGP for planar and SPECT techniques) and crossed calibrated. The linear behaviour on diagnostic and therapeutic activity range was verified, showing a linear correlation fitting factor R 2 > 0.99. The differences between thyroid uptake determinations in all equipment were less than 6% for therapeutic activities and less than 1.1% in the diagnostic range. The combined protocol to calculate, with only one administration of I 131 , all the necessary parameters to the treatment dose estimation in 2D or 3D, avoiding wasting time with gamma cameras, was established and verified. Following this protocol the difference between apparent and calculated activities were less than 3%. (Author)

  7. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  8. Correction of dynamic time-activity curves for gamma-camera dead time, radiotracer delivery, and radioactive decay: special considerations with ultrashort-lived radioisotopes

    International Nuclear Information System (INIS)

    Kuruc, A.; Zimmerman, R.E.; Treves, S.

    1985-01-01

    Time-vs.-activity curves obtained by using ultrashort-lived radioisotopes often need to be corrected for the effects of gamma-camera dead time and physical decay. Count loss due to gamma-camera dead time can be monitored by using an electronic oscillator incorporated into the gamma camera. Two algorithms that use this information to correct time-activity curves are discussed. It is also shown that the effect of physical decay on a time-activity curve is dependent on the time course of delivery of the radioisotope to the organ of interest. A mathematical technique that corrects physical decay is described

  9. Status and perspectives of pixel sensors based on 3D vertical integration

    CERN Document Server

    Re, V

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors.

  10. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  11. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    Science.gov (United States)

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  12. Evaluation of intrinsic uniformity of gamma camera in the Servicio de Medicina Nuclear at the Hospital San Juan de Dios

    International Nuclear Information System (INIS)

    Mora Ramirez, Erick

    2007-01-01

    The quality assurance program in a nuclear medicine department aims to minimize errors and artifacts that cover all aspects of clinical practice. The quality control can be seen such as one particular procedure used to meet measurements that can be followed along the time. The intrinsic flood-field uniformity is one of the quality control procedures to evaluate the response of a gamma camera to a spatially uniform flux of an incident gamma radiation over the field of view. The gamma cameras, recording the integral and differential uniformity figures of the intrinsic uniformity during the 2007, were evaluated in order to establish how well the instruments were working. An evaluation of the acquisition protocol which implies the variation of the acquired counts, the energy window width and its placement was performed at the beginning. After that the recorded data were analyzed creating plots which were showing the performance of the systems. Using an energy window placed at 140 keV at 20 %, with matrix size of 512 x 512, acquiring 15 million counts and the source activity close to 700 μC; it was thought that good enough images and uniformities are obtained. Both are within the manufactures requirements; however, increasing the number of acquired counts, images are much better and an improvement in the evaluated parameters can be seen. The performance evaluation of the three gamma cameras was taking into account for approximately 240 days, showing an integral uniformity range of 1.04 - 3.5 % and the range for differential uniformity vary from 0.88 up to 2.7 %. It concludes that the gamma cameras were working quite well, no need to vary the acquisition protocol because it is good enough to perform this test. Also, factors affecting the quality of the images are radioactive waste material not very well shielded and temperature room variations, especially at the beginning of the workday. (author) [es

  13. Radiotracer study of wash load movement in a drum-type fabric washing machine using a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Balt, A.P.; Brekel, L.D.M. van den; Vandecasteele, C.; Kolar, Z.

    1987-01-01

    A study was made of the movement of the wash loads in a drum-type washing machine. For this purpose a sup(99m)Tc source was attached to one or two separate textile pieces and the subsequent source positions were determined by means of a gamma-camera. The wash load movement pattern appears to depend on the type of textile material and its amount, as well as on the volume of water present in the washing machine.

  14. Radiotracer study of wash load movement in a drum-type fabric washing machine using a gamma camera

    International Nuclear Information System (INIS)

    Balt, A.P.; Brekel, L.D.M. van den; Vandecasteele, C.; Kolar, Z.

    1987-01-01

    A study was made of the movement of the wash loads in a drum-type washing machine. For this purpose a sup(99m)Tc source was attached to one or two separate textile pieces and the subsequent source positions were determined by means of a gamma-camera. The wash load movement pattern appears to depend on the type of textile material and its amount, as well as on the volume of water present in the washing machine. (author)

  15. A new method for elimination of artifacts produced by collimator septum effect in gamma-camera images

    International Nuclear Information System (INIS)

    Uchida, Isao; Onai, Yoshio; Tomaru, Teizo; Irifune, Toraji; Kakegawa, Makoto.

    1978-01-01

    Collimator artifacts may be present within the images produced by collimators whose septal width approaches the inherent resolution of the gamma-camera system. As the inherent resolution of the gamma-camera is improved, collimator artifacts become more prominent. The purpose of this study is to eliminate collimator artifacts from gamma-camera images. To eliminate the septum effect produced by high-energy parallel-hole collimators with thick septa, the following method was used: X and Y signals from the detector are made to ride on the triangular waves changing periodically, and resultant position signals obtained by this processing are applied to the corresponding deflection circuits in the CRT display. The oscillation amplitude of processed position signals can be regulated by the frequency and amplitude of the triangular waves. Regulation of the oscillation amplitude of position signals, which would produce maximum reduction of collimator artifacts, was to approach the spatial frequency responses of the overall processed line spread functions obtained experimentally to those of the Gaussian functions with FWHM equal to the geometric resolution calculated from the equation given by Gerber and Miller. In images of a pancreas phantom containing 131 I, collimator artifacts were clearly seen in the unprocessed case, but were eliminated in the processed case. (auth.)

  16. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera

    International Nuclear Information System (INIS)

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest 99m Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time. (author)

  17. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  18. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Joaquin; Lledo, Salvador [University of Valencia, Clinic University Hospital, Department of Surgery, Valencia (Spain); Ferrer-Rebolleda, Jose [Clinic University Hospital, Department of Nuclear Medicine, Valencia (Spain); Cassinello, Norberto [Clinic University Hospital, Unit of Endocrinologic and Bariatric Surgery, Valencia (Spain)

    2007-02-15

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  19. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    International Nuclear Information System (INIS)

    Ortega, Joaquin; Lledo, Salvador; Ferrer-Rebolleda, Jose; Cassinello, Norberto

    2007-01-01

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  20. Performance assessment of a slat gamma camera collimator for 511 keV imaging. Corrigendum. Phys. Med. Biol., v. 44, p. 1735-1741

    International Nuclear Information System (INIS)

    Britten, A.J.; Klie, R.

    1999-01-01

    Further to the recent work on slat gamma camera collimators by Britten and Klie (see above), the authors would like to add some references on the early work in gamma camera slat collimators, which should have been included for completeness. These papers are the original publication by Keyes (1975), and the work carried out by Webb et al (1992, 1993) deriving equations for geometric sensitivity and showing Monte Carlo modelling of performance. (author)

  1. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    International Nuclear Information System (INIS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch.; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an infarct

  2. Estimating Daily Evapotranspiration Based on A Model of Evapotranspiration Fraction (EF) for Mixed Pixels

    Science.gov (United States)

    Xin, X.; Li, F.; Peng, Z.; Qinhuo, L.

    2017-12-01

    Land surface heterogeneities significantly affect the reliability and accuracy of remotely sensed evapotranspiration (ET), and it gets worse for lower resolution data. At the same time, temporal scale extrapolation of the instantaneous latent heat flux (LE) at satellite overpass time to daily ET are crucial for applications of such remote sensing product. The purpose of this paper is to propose a simple but efficient model for estimating daytime evapotranspiration considering heterogeneity of mixed pixels. In order to do so, an equation to calculate evapotranspiration fraction (EF) of mixed pixels was derived based on two key assumptions. Assumption 1: the available energy (AE) of each sub-pixel equals approximately to that of any other sub-pixels in the same mixed pixel within acceptable margin of bias, and as same as the AE of the mixed pixel. It's only for a simpification of the equation, and its uncertainties and resulted errors in estimated ET are very small. Assumption 2: EF of each sub-pixel equals to the EF of the nearest pure pixel(s) of same land cover type. This equation is supposed to be capable of correcting the spatial scale error of the mixed pixels EF and can be used to calculated daily ET with daily AE data.The model was applied to an artificial oasis in the midstream of Heihe River. HJ-1B satellite data were used to estimate the lumped fluxes at the scale of 300 m after resampling the 30-m resolution datasets to 300 m resolution, which was used to carry on the key step of the model. The results before and after correction were compare to each other and validated using site data of eddy-correlation systems. Results indicated that the new model is capable of improving accuracy of daily ET estimation relative to the lumped method. Validations at 12 sites of eddy-correlation systems for 9 days of HJ-1B overpass showed that the R² increased to 0.82 from 0.62; the RMSE decreased to 1.60 MJ/m² from 2.47MJ/m²; the MBE decreased from 1.92 MJ/m² to 1

  3. First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.

    Science.gov (United States)

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-21

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  4. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    Science.gov (United States)

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μ W from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e - RMS at room temperature.

  5. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  6. Defective pixel map creation based on wavelet analysis in digital radiography detectors

    International Nuclear Information System (INIS)

    Park, Chun Joo; Lee, Hyoung Koo; Song, William Y.; Achterkirchen, Thorsten Graeve; Kim, Ho Kyung

    2011-01-01

    The application of digital radiography detectors has attracted increasing attention in both medicine and industry. Since the imaging detectors are fabricated by semiconductor manufacturing process over large areas, defective pixels in the detectors are unavoidable. Moreover, the radiation damage due to the routine use of the detectors progressively increases the density of defective pixels. In this study, we present a method of identifying defective pixels in digital radiography detectors based on wavelet analysis. Artifacts generated due to wavelet transformations have been prevented by an additional local threshold method. The proposed method was applied to a sample digital radiography and the result was promising. The proposed method uses a single pair of dark and white images and does not require them to be corrected in gain-and-offset properties. This method will be helpful for the reliable use of digital radiography detectors through the working lifetime.

  7. Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography.

    Science.gov (United States)

    Song, Jun; Leon Swisher, Christine; Im, Hyungsoon; Jeong, Sangmoo; Pathania, Divya; Iwamoto, Yoshiko; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2016-04-21

    Lens-free digital in-line holography (LDIH) is a promising technology for portable, wide field-of-view imaging. Its resolution, however, is limited by the inherent pixel size of an imaging device. Here we present a new computational approach to achieve sub-pixel resolution for LDIH. The developed method is a sparsity-based reconstruction with the capability to handle the non-linear nature of LDIH. We systematically characterized the algorithm through simulation and LDIH imaging studies. The method achieved the spatial resolution down to one-third of the pixel size, while requiring only single-frame imaging without any hardware modifications. This new approach can be used as a general framework to enhance the resolution in nonlinear holographic systems.

  8. PixTrig: a Level 2 track finding algorithm based on pixel detector

    CERN Document Server

    Baratella, A; Morettini, P; Parodi, F

    2000-01-01

    This note describes an algorithm for track search at Level 2 based on pixel detector. Using three pixel clusters we can produce a reconstruction of the track parameter in both z and R-phi plane. These track segments can be used as seed for more sophisticated track finding algorithms or used directly, especially when impact parameter resolution is crucial. The algorithm efficiency is close to 90% for pt > 1 GeV/c and the processing time is small enough to allow a complete detector reconstruction (non RoI guided) within the Level 2 processing.

  9. Effects of use of the lodine contrast medium on gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Sung Jae; Cho, Yun Ho [Dept. of Nuclear Medicine, Inha University hospital, Incheon (Korea, Republic of); Choi, Jae Ho [Dept. of Radiological Technology, Ansan College, Ansan (Korea, Republic of)

    2016-12-15

    Effects of Gamma camera imaging on gamma ray counting rates as a function of use and density of the iodine contrast medium currently in primary use for clinics, and changes in gamma ray counting rates as a function of the contrast medium status upon attenuation correction using a CT absorption coefficientin an SPECT/CT attenuation correction will be considered herein. For experimental materials used 99mTcO4 370 MBq and Pamiray 370 mg, Iomeron 350 mg, Visipaque 320 mg, Bonorex 300 mg of iodine contrast medium. For image acquisition, planar imaging was consecutively filmed for 1, 2, 3, 4, 5 min, respectively, 30 min after administration of 99mTcO4. while 60 views were filmed per frame for 20 min at 55 min for the SPECT/CT imaging. In planar imaging, the gamma ray counting rates as a function of filming time were reduced showing a statistically significant difference when mixed according to the type of contrast medium density rather than when the radioactive isotope 99mTcO4 and the saline solution were mixed. In the tomography for mixing of the radioactive isotope 99mTcO4 and saline solution, the mean counting rate without correction by the CT absorption coefficient is 182±26 counts, while the counting rate with correction by the CT absorption coefficient is 531.3±34 counts. In the tomography for mixing of the radioactive isotope 99mTcO4 and the saline solution with the contrast medium, the mean values before attenuation correction by CT absorption coefficient were 166±29, 158.3±17, 154±36, and 150±33 counts depending on the densities of the contrast medium, while the mean values after attenuation correction were 515±03, 503±10, 496±31, and 488.7±33 counts, showing significant differences in both cases when comparatively evaluated with the imaging for no mixing of the contrast medium. Iodine contrast medium affects the rate of gamma ray. Therefore, You should always be preceded before another test on the day of diagnosis.

  10. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    International Nuclear Information System (INIS)

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-01-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ∼240 and 290 μm. (paper)

  11. Regional cerebral blood flow measurement using N-isopropyl-p-[123I] iodoamphetamine and rotating gamma camera emission computed tomography

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko

    1985-01-01

    Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-[ 123 I] Iodoamphetamine ( 123 I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in μCi/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in μCi and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the countingrate ratio between peripheral and central regions of interests obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p 123 I-IMP and rotating gamma camera ECT and those from 133 Xe inhalation method. rCBF measurement using 123 I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional 133 Xe clearance method. (author)

  12. Uteroplacental blood flow in diabetic pregnancy: measurements with indium 113m and a computer-linked gamma camera

    International Nuclear Information System (INIS)

    Nylund, L.; Lunell, N.O.; Lewander, R.; Persson, B.; Sarby, B.

    1982-01-01

    The uteroplacental blood flow index in the last trimester of pregnancy in 26 women with diabetes mellitus was compared to that in 41 healthy control subjects. After an intravenous injection of 1 mCi of indium 113m, the radiation over the placenta was recorded with a computer-linked gamma camera. From time-activity analysis of the isotope accumulation curve, a uteroplacental blood flow index could be calculated. In the diabetic pregnant women, the maternal-placental blood flow index was reduced 35% to 45% compared to that in healthy women. The blood flow index tended to be further impaired in those diabetic women who had higher blood glucose values

  13. LIFTING THE VEIL OF DUST FROM NGC 0959: THE IMPORTANCE OF A PIXEL-BASED TWO-DIMENSIONAL EXTINCTION CORRECTION

    International Nuclear Information System (INIS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.; Eskridge, P. B.; Cohen, S. H.

    2010-01-01

    We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 μm images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 μm) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.

  14. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  15. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  16. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach

    Directory of Open Access Journals (Sweden)

    Muhammad Kamal

    2011-10-01

    Full Text Available Visual image interpretation and digital image classification have been used to map and monitor mangrove extent and composition for decades. The presence of a high-spatial resolution hyperspectral sensor can potentially improve our ability to differentiate mangrove species. However, little research has explored the use of pixel-based and object-based approaches on high-spatial hyperspectral datasets for this purpose. This study assessed the ability of CASI-2 data for mangrove species mapping using pixel-based and object-based approaches at the mouth of the Brisbane River area, southeast Queensland, Australia. Three mapping techniques used in this study: spectral angle mapper (SAM and linear spectral unmixing (LSU for the pixel-based approaches, and multi-scale segmentation for the object-based image analysis (OBIA. The endmembers for the pixel-based approach were collected based on existing vegetation community map. Nine targeted classes were mapped in the study area from each approach, including three mangrove species: Avicennia marina, Rhizophora stylosa, and Ceriops australis. The mapping results showed that SAM produced accurate class polygons with only few unclassified pixels (overall accuracy 69%, Kappa 0.57, the LSU resulted in a patchy polygon pattern with many unclassified pixels (overall accuracy 56%, Kappa 0.41, and the object-based mapping produced the most accurate results (overall accuracy 76%, Kappa 0.67. Our results demonstrated that the object-based approach, which combined a rule-based and nearest-neighbor classification method, was the best classifier to map mangrove species and its adjacent environments.

  17. Design and implementation of a quality assurance program for gamma cameras; Diseno e implementacion de un programa de aseguramiento de calidad para camaras gamma

    Energy Technology Data Exchange (ETDEWEB)

    Montoya M, A.; Rodriguez L, A. [Instituto Nacional de Cancerologia, Departamento de Medicina Nuclear, Av. San Fernando No. 22, Col. Seccion XVI, 14080 Mexico D. F. (Mexico); Trujillo Z, F. E., E-mail: montoya-moreno@hotmail.co [Hospital Regional de Alta Especialidad de Oaxaca, Area de Fisica Medica, Aldama s/n, Paraje El Tule, 71256 San Bartolo Coyotepec, Oaxaca (Mexico)

    2010-09-15

    In nuclear medicine more than 90% of the carried out procedures are diagnostic. To assure an appropriate diagnostic quality of the images and the doses optimization received by the patients originated in the radioactive material, it is indispensable the periodic surveillance of the operation and performance of the equipment s by means of quality assurance tests. This work presents a proposal of a quality assurance program for gamma cameras based on recommendations of the IAEA, the American Association of Medical Physics and the National Electrical Manufacturers Association. Some tests of the program were applied to an e.cam gamma camera (Siemens) of the Nuclear Medicine Department of the National Institute of Cancer. The intrinsic and extrinsic uniformity, the intrinsic spatial resolution and the extrinsic sensibility were verified. For intrinsic uniformity the average daily values of the integral uniformity and differential uniformity in the useful vision field were 2.61% and 1.58% respectively, the average monthly values of intrinsic uniformity for the integral and differential uniformity in the useful vision field were 4.10% and 1.66% respectively. The used acceptance criterions were respectively of 3.74% and 2.74%. The average values of extrinsic uniformity for the useful vision field were of 7.65% (intrinsic uniformity) and 2.69% (extrinsic uniformity), in this case the acceptance criterion is a value of 6.00%. The average value of intrinsic spatial resolution went 4.67 mm superior to 4.4. mm that is the acceptance limit. Finally, maximum variations of 1.8% were observed (minors than 2% that is the acceptance criterion) for the extrinsic sensibility measured in different regions of the detector. Significant variations of extrinsic sensibility were not observed among the monthly lectures. Of the realized measurements was concluded that the system requires of a maintenance service by part of the manufacturer, which one carries out later on to this work. The

  18. Measurement of the iodine uptake by the thyroid: comparative analysis between the gamma camera system with 'pinhole' collimator and 13S002 system

    International Nuclear Information System (INIS)

    Silva, Carlos Borges da; Mello, Rossana Corbo R. de; Rebelo, Ana Maria O.

    2002-01-01

    The thyroid uptake measurements are common in medical uses and are considered a direct and precise form of diagnostic, however, different results have been observed as measurements of thyroid uptake are taken using distinct equipment. This study attempts to find the cause of the differences between a thyroid uptake probe and a gamma camera. These discrepancies can be associated to the different patients samples, equipment's problems or operator procedures errors. This work presents the results of comparative uptake measurements performed in a neck phantom and a 4-hour thyroid uptake study in 40 patients, using a Gamma Camera Ohio Nuclear model Sigma 410 with a pinhole collimator and Nuclear Medicine System model 13S002, developed by Instituto de Engenharia Nuclear. The results observed show that in spite of non satisfactory results commented in literature, both the System 13S002 and System Gamma Camera Ohio can be used in uptake thyroid diagnostic with statistical confidence degree of 99 %. (author)

  19. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    Energy Technology Data Exchange (ETDEWEB)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A. (Slaska Akademia Medyczna, Katowice (Poland))

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker /sup 125/Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy.

  20. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    International Nuclear Information System (INIS)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A.

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker 125 Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy. (author)

  1. A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images

    Science.gov (United States)

    Keyport, Ren N.; Oommen, Thomas; Martha, Tapas R.; Sajinkumar, K. S.; Gierke, John S.

    2018-02-01

    A comparative analysis of landslides detected by pixel-based and object-oriented analysis (OOA) methods was performed using very high-resolution (VHR) remotely sensed aerial images for the San Juan La Laguna, Guatemala, which witnessed widespread devastation during the 2005 Hurricane Stan. A 3-band orthophoto of 0.5 m spatial resolution together with a 115 field-based landslide inventory were used for the analysis. A binary reference was assigned with a zero value for landslide and unity for non-landslide pixels. The pixel-based analysis was performed using unsupervised classification, which resulted in 11 different trial classes. Detection of landslides using OOA includes 2-step K-means clustering to eliminate regions based on brightness; elimination of false positives using object properties such as rectangular fit, compactness, length/width ratio, mean difference of objects, and slope angle. Both overall accuracy and F-score for OOA methods outperformed pixel-based unsupervised classification methods in both landslide and non-landslide classes. The overall accuracy for OOA and pixel-based unsupervised classification was 96.5% and 94.3%, respectively, whereas the best F-score for landslide identification for OOA and pixel-based unsupervised methods: were 84.3% and 77.9%, respectively.Results indicate that the OOA is able to identify the majority of landslides with a few false positive when compared to pixel-based unsupervised classification.

  2. A Medipix2-based imaging system for digital mammography with silicon pixel detectors

    CERN Document Server

    Bisogni, M G; Fantacci, M E; Mettivier, G; Montesi, M C; Novelli, M; Quattrocchi, M; Rosso, V; Russo, P; Stefanini, A

    2004-01-01

    In this paper we present the first tests of a digital imaging system based on a silicon pixel detector bump-bonded to an integrated circuit operating in single photon counting mode. The X-rays sensor is a 300 mu m thick silicon, 14 by 14 mm/sup 2/, upon which a matrix of 256 * 256 pixels has been built. The read-out chip, named MEDIPIX2, has been developed at CERN within the MEDIPIX2 Collaboration and it is composed by a matrix of 256 * 256 cells, 55 * 55 mu m/sup 2/. The spatial resolution properties of the system have been assessed by measuring the square wave resolution function (SWRF) and first images of a standard mammographic phantom were acquired using a radiographic tube in the clinical irradiation condition. (5 refs).

  3. Pixel-based CTE Correction of ACS/WFC: Modifications To The ACS Calibration Pipeline (CALACS)

    Science.gov (United States)

    Smith, Linda J.; Anderson, J.; Armstrong, A.; Avila, R.; Bedin, L.; Chiaberge, M.; Davis, M.; Ferguson, B.; Fruchter, A.; Golimowski, D.; Grogin, N.; Hack, W.; Lim, P. L.; Lucas, R.; Maybhate, A.; McMaster, M.; Ogaz, S.; Suchkov, A.; Ubeda, L.

    2012-01-01

    The Advanced Camera for Surveys (ACS) was installed on the Hubble Space Telescope (HST) nearly ten years ago. Over the last decade, continuous exposure to the harsh radiation environment has degraded the charge transfer efficiency (CTE) of the CCDs. The worsening CTE impacts the science that can be obtained by altering the photometric, astrometric and morphological characteristics of sources, particularly those farthest from the readout amplifiers. To ameliorate these effects, Anderson & Bedin (2010, PASP, 122, 1035) developed a pixel-based empirical approach to correcting ACS data by characterizing the CTE profiles of trails behind warm pixels in dark exposures. The success of this technique means that it is now possible to correct full-frame ACS/WFC images for CTE degradation in the standard data calibration and reduction pipeline CALACS. Over the past year, the ACS team at STScI has developed, refined and tested the new software. The details of this work are described in separate posters. The new code is more effective at low flux levels (repair ACS electronics) and pixel-based CTE correction. In addition to the standard cosmic ray corrected, flat-fielded and drizzled data products (crj, flt and drz files) there are three new equivalent files (crc, flc and drc) which contain the CTE-corrected data products. The user community will be able to choose whether to use the standard or CTE-corrected products.

  4. Online data reduction with FPGA-based track reconstruction for the Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, Bruno; Wessel, Christian; Marinas, Carlos; Dingfelder, Jochen [Physikalisches Institut, Universitaet Bonn (Germany)

    2016-07-01

    The innermost two layers of the Belle II vertex detector at the KEK facility in Tsukuba, Japan, will be covered by high-granularity DEPFET pixel sensors (PXD). The large number of pixels leads to a maximum data rate of 256 Gbps, which has to be significantly reduced by the Data Acquisition System (DATCON). For the data reduction the hit information of the surrounding Silicon strip Vertex Detector (SVD) is utilized to define so-called Regions of Interest (ROI). Only hit information of the pixels located inside these ROIs are saved. The ROIs for the PXD are computed by reconstructing track segments from SVD data and extrapolation to the PXD. The goal is to achieve a data reduction of at least a factor of 10 with this ROI selection. All the necessary processing stages, the receiving, decoding and multiplexing of SVD data on 48 optical fibers, the track reconstruction and the definition of the ROIs, will be performed by the presented system. The planned hardware design is based on a distributed set of Advanced Mezzanine Cards (AMC) each equipped with a Field Programmable Gate Array (FPGA) and 4 optical transceivers. In this talk, the status and plans for the DATCON prototype and the FPGA-based tracking algorithm are introduced as well as the plans for their test in the upcoming test beam at DESY.

  5. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    Science.gov (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  6. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.

    Science.gov (United States)

    Perez-Garcia, H; Barquero, R

    The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in 131 I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with 131 I radioactive water (big object size) image, a 131 I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of 131 I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter makes

  7. PET with a dual-head coincidence gamma camera in head and neck cancer: A comparison with computed tomography and dedicated PET

    International Nuclear Information System (INIS)

    Zimny, M.

    2001-01-01

    Positron emission tomography with 18 F-fluoro-deoxyglucose (FDG PET) is a promising imaging tool for detecting and staging of primary or recurrent head and neck cancer. The aim of this study was to evaluate a dual-head gamma camera modified for coincidence detection (KGK-PET) in comparison to computed tomography (CT) and dedicated PET (dPET). 50 patients with known or suspected primary or recurrent head and neck cancer were enrolled. 32 patients underwent KGK-PET and dPET using a one-day protocol. The sensitivity for the detection of primary/ recurrent head and neck cancer for KGK-PET and CT was 80% and 54%, respectively, specificity was 73% and 82%, respectively. The sensitivity and specificity for the detection of lymph node metastases based on neck sides with KGK-PET was 71% (CT: 65%) and 88% (CT: 89%) respectively. In comparison to dPET, KGK-PET revealed concordant results in 32/32 patients with respect to primary tumor/recurrent disease and in 55/60 evaluated neck sides. All involved neck sides that were missed by KGK-PET were also negative with dPET. These results indicate that in patients with head and neck cancer KGK-PET reveals information, that are similar to dPET and complementary to CT. (orig.) [de

  8. Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT

    Directory of Open Access Journals (Sweden)

    Samaneh Mazaheri

    2015-01-01

    Full Text Available Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.

  9. Dependence of the appearance-based perception of criminality, suggestibility, and trustworthiness on the level of pixelation of facial images.

    Science.gov (United States)

    Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis

    2012-10-01

    While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility.

  10. Multiaxial tomography of heart chambers by gated blood-pool emission computed tomography using a rotating gamma camera

    International Nuclear Information System (INIS)

    Tamaki, N.; Mukai, T.; Ishii, Y.; Yonekura, Y.; Yamamoto, K.; Kadota, K.; Kambara, H.; Kawai, C.; Torizuka, K.

    1983-01-01

    Fifteen patients and three volunteers underwent radionuclide blood-pool cardiac studies with electrocardiographic gating. Following conventional planar-gated imaging (anterior and left anterior oblique projections), emission computed tomography (ECT), using a rotating gamma camera, was performed.A series of transaxial tomograms of the cardiac chambers was obtained. The left ventricular short-axis plane, long-axis plane, and four-chamber-view plane were then reorganized; each chamber was visualized separately. Compared to gated planar imaging, this technique showed regional asynergy more clearly in patients with myocardial infarction and demonstrated dilatation of the atria and ventricles more accurately in patients with an atrial septal defect and valvular heart diseases. In addition, when a section of the heart is otained at any angle with gated blood pool ECT, three-dimensional assessment of cardiac chambers in motion is more precise; mutual superimposition becomes unnecessary

  11. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  12. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  13. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method

    Science.gov (United States)

    Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu

    2017-06-01

    Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing

  14. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  15. Cyclops: single-pixel imaging lidar system based on compressive sensing

    Science.gov (United States)

    Magalhães, F.; Correia, M. V.; Farahi, F.; Pereira do Carmo, J.; Araújo, F. M.

    2017-11-01

    Mars and the Moon are envisaged as major destinations of future space exploration missions in the upcoming decades. Imaging LIDARs are seen as a key enabling technology in the support of autonomous guidance, navigation and control operations, as they can provide very accurate, wide range, high-resolution distance measurements as required for the exploration missions. Imaging LIDARs can be used at critical stages of these exploration missions, such as descent and selection of safe landing sites, rendezvous and docking manoeuvres, or robotic surface navigation and exploration. Despite these devices have been commercially available and used for long in diverse metrology and ranging applications, their size, mass and power consumption are still far from being suitable and attractive for space exploratory missions. Here, we describe a compact Single-Pixel Imaging LIDAR System that is based on a compressive sensing technique. The application of the compressive codes to a DMD array enables compression of the spatial information, while the collection of timing histograms correlated to the pulsed laser source ensures image reconstruction at the ranged distances. Single-pixel cameras have been compared with raster scanning and array based counterparts in terms of noise performance, and proved to be superior. Since a single photodetector is used, a better SNR and higher reliability is expected in contrast with systems using large format photodetector arrays. Furthermore, the event of failure of one or more micromirror elements in the DMD does not prevent full reconstruction of the images. This brings additional robustness to the proposed 3D imaging LIDAR. The prototype that was implemented has three modes of operation. Range Finder: outputs the average distance between the system and the area of the target under illumination; Attitude Meter: provides the slope of the target surface based on distance measurements in three areas of the target; 3D Imager: produces 3D ranged

  16. FDTD-based optical simulations methodology for CMOS image sensors pixels architecture and process optimization

    Science.gov (United States)

    Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon

    2008-02-01

    This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.

  17. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors.

    Science.gov (United States)

    Bendinger, Alina L; Glowa, Christin; Peter, Jörg; Karger, Christian P

    2018-03-01

    A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors

    Science.gov (United States)

    Bendinger, Alina L.; Glowa, Christin; Peter, Jörg; Karger, Christian P.

    2018-03-01

    A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity.

  19. Research of high speed data readout and pre-processing system based on xTCA for silicon pixel detector

    International Nuclear Information System (INIS)

    Zhao Jingzhou; Lin Haichuan; Guo Fang; Liu Zhen'an; Xu Hao; Gong Wenxuan; Liu Zhao

    2012-01-01

    As the development of the detector, Silicon pixel detectors have been widely used in high energy physics experiments. It needs data processing system with high speed, high bandwidth and high availability to read data from silicon pixel detectors which generate more large data. The same question occurs on Belle II Pixel Detector which is a new style silicon pixel detector used in SuperKEKB accelerator with high luminance. The paper describes the research of High speed data readout and pre-processing system based on xTCA for silicon pixel detector. The system consists of High Performance Computer Node (HPCN) based on xTCA and ATCA frame. The HPCN consists of 4XFPs based on AMC, 1 AMC Carrier ATCA Board (ACAB) and 1 Rear Transmission Module. It characterized by 5 high performance FPGAs, 16 fiber links based on RocketIO, 5 Gbit Ethernet ports and DDR2 with capacity up to 18GB. In a ATCA frame, 14 HPCNs make up a system using the high speed backplane to achieve the function of data pre-processing and trigger. This system will be used on the trigger and data acquisition system of Belle II Pixel detector. (authors)

  20. Edge Probability and Pixel Relativity-Based Speckle Reducing Anisotropic Diffusion.

    Science.gov (United States)

    Mishra, Deepak; Chaudhury, Santanu; Sarkar, Mukul; Soin, Arvinder Singh; Sharma, Vivek

    2018-02-01

    Anisotropic diffusion filters are one of the best choices for speckle reduction in the ultrasound images. These filters control the diffusion flux flow using local image statistics and provide the desired speckle suppression. However, inefficient use of edge characteristics results in either oversmooth image or an image containing misinterpreted spurious edges. As a result, the diagnostic quality of the images becomes a concern. To alleviate such problems, a novel anisotropic diffusion-based speckle reducing filter is proposed in this paper. A probability density function of the edges along with pixel relativity information is used to control the diffusion flux flow. The probability density function helps in removing the spurious edges and the pixel relativity reduces the oversmoothing effects. Furthermore, the filtering is performed in superpixel domain to reduce the execution time, wherein a minimum of 15% of the total number of image pixels can be used. For performance evaluation, 31 frames of three synthetic images and 40 real ultrasound images are used. In most of the experiments, the proposed filter shows a better performance as compared to the state-of-the-art filters in terms of the speckle region's signal-to-noise ratio and mean square error. It also shows a comparative performance for figure of merit and structural similarity measure index. Furthermore, in the subjective evaluation, performed by the expert radiologists, the proposed filter's outputs are preferred for the improved contrast and sharpness of the object boundaries. Hence, the proposed filtering framework is suitable to reduce the unwanted speckle and improve the quality of the ultrasound images.

  1. Glue detection based on teaching points constraint and tracking model of pixel convolution

    Science.gov (United States)

    Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen

    2018-01-01

    On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.

  2. Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images

    Directory of Open Access Journals (Sweden)

    Elif Sertel

    2016-07-01

    Full Text Available On 30 May 2013, a forest fire occurred in Izmir, Turkey causing damage to both forest and fruit trees within the region. In this research, pre- and post-fire SPOT-6 images obtained on 30 April 2013 and 31 May 2013 were used to identify the extent of forest fire within the region. SPOT-6 images of the study region were orthorectified and classified using pixel and object-based classification (OBC algorithms to accurately delineate the boundaries of burned areas. The present results show that for OBC using only normalized difference vegetation index (NDVI thresholds is not sufficient enough to map the burn scars; however, creating a new and simple rule set that included mean brightness values of near infrared and red channels in addition to mean NDVI values of segments considerably improved the accuracy of classification. According to the accuracy assessment results, the burned area was mapped with a 0.9322 kappa value in OBC, while a 0.7433 kappa value was observed in pixel-based classification. Lastly, classification results were integrated with the forest management map to determine the effected forest types after the fire to be used by the National Forest Directorate for their operational activities to effectively manage the fire, response and recovery processes.

  3. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  4. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  5. Monte Carlo based performance assessment of different animal PET architectures using pixellated CZT detectors

    International Nuclear Information System (INIS)

    Visvikis, D.; Lefevre, T.; Lamare, F.; Kontaxakis, G.; Santos, A.; Darambara, D.

    2006-01-01

    The majority of present position emission tomography (PET) animal systems are based on the coupling of high-density scintillators and light detectors. A disadvantage of these detector configurations is the compromise between image resolution, sensitivity and energy resolution. In addition, current combined imaging devices are based on simply placing back-to-back and in axial alignment different apparatus without any significant level of software or hardware integration. The use of semiconductor CdZnTe (CZT) detectors is a promising alternative to scintillators for gamma-ray imaging systems. At the same time CZT detectors have the potential properties necessary for the construction of a truly integrated imaging device (PET/SPECT/CT). The aims of this study was to assess the performance of different small animal PET scanner architectures based on CZT pixellated detectors and compare their performance with that of state of the art existing PET animal scanners. Different scanner architectures were modelled using GATE (Geant4 Application for Tomographic Emission). Particular scanner design characteristics included an overall cylindrical scanner format of 8 and 24 cm in axial and transaxial field of view, respectively, and a temporal coincidence window of 8 ns. Different individual detector modules were investigated, considering pixel pitch down to 0.625 mm and detector thickness from 1 to 5 mm. Modified NEMA NU2-2001 protocols were used in order to simulate performance based on mouse, rat and monkey imaging conditions. These protocols allowed us to directly compare the performance of the proposed geometries with the latest generation of current small animal systems. Results attained demonstrate the potential for higher NECR with CZT based scanners in comparison to scintillator based animal systems

  6. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method

    Science.gov (United States)

    Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing

    2018-02-01

    In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.

  7. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

    Science.gov (United States)

    Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

    2018-04-01

    We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

  8. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  9. A comparison of region-based and pixel-based CEUS kinetics parameters in the assessment of arthritis

    Science.gov (United States)

    Grisan, E.; Raffeiner, B.; Coran, A.; Rizzo, G.; Ciprian, L.; Stramare, R.

    2014-03-01

    Inflammatory rheumatic diseases are leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity and increased mortality. The gold-standard for diagnosing and differentiating arthritis is based on patient conditions and radiographic findings, as joint erosions or decalcification. However, early signs of arthritis are joint effusion, hypervascularization and synovial hypertrophy. In particular, vascularization has been shown to correlate with arthritis' destructive behavior, more than clinical assessment. Contrast Enhanced Ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. The evaluation of perfusion pattern rely on subjective semi-quantitative scales, that are able to capture the macroscopic degree of vascularization, but are unable to detect the subtler differences in kinetics perfusion parameters that might lead to a deeper understanding of disease progression and a better management of patients. Quantitative assessment is mostly performed by means of the Qontrast software package, that requires the user to define a region of interest, whose mean intensity curve is fitted with an exponential function. We show that using a more physiologically motivated perfusion curve, and by estimating the kinetics parameters separately pixel per pixel, the quantitative information gathered is able to differentiate more effectively different perfusion patterns. In particular, we will show that a pixel-based analysis is able to provide significant markers differentiating rheumatoid arthritis from simil-rheumatoid psoriatic arthritis, that have non-significant differences in clinical evaluation (DAS28), serological markers, or region-based parameters.

  10. Intelligent error correction method applied on an active pixel sensor based star tracker

    Science.gov (United States)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  11. Reliability of single kidney glomerular filtration rate measured by a 99mTc-DTPA gamma camera technique

    International Nuclear Information System (INIS)

    Rehling, M.; Moller, M.L.; Jensen, J.J.; Thamdrup, B.; Lund, J.O.; Trap-Jensen, J.

    1986-01-01

    The reliability of a previously published method for determination of single kidney glomerular filtration rate (SKGFR) by means of technetium-99m-diethylenetriaminepenta-acetate (99mTc-DTPA) gamma camera renography was evaluated. The day-to-day variation in the calculated SKGFR values was earlier found to be 8.8%. The technique was compared to the simultaneously measured renal clearance of inulin in 19 unilaterally nephrectomized patients with GFR varying from 11 to 76 ml/min. The regression line (y = 1.04 X -2.5) did not differ significantly from the line of identity. The standard error of estimate was 4.3 ml/min. In 17 patients the inter- and intraobserver variation of the calculated SKGFR values was 1.2 ml/min and 1.3 ml/min, respectively. In 21 of 25 healthy subjects studied (age range 27-29 years), total GFR calculated from the renograms was within an established age-dependent normal range of GFR

  12. Non-invasive estimation of the human pulmonary blood volume with gamma camera and RI-angiocardiography

    International Nuclear Information System (INIS)

    Goto, Koshi; Hirano, Akihiko; Hirakawa, Senri

    1981-01-01

    A new, non-invasive method for the estimation of the human pulmonary blood volume (PBV), existing between the pulmonary artery bifurcation (PAB) and the left atrium (LA), has been developed in this laboratory, in the form of PBV = PPT sub(RCG) x 0.77 x CO, equation (6), given in Appendix. This was an extension of the classical Stewart-Hamilton method of indicator dilution, applied to radioisotope angiocardiography. Using a gamma-camera, the radio-isotope (99 m Tc-albumin) dilution curves were recorded externally at the region of PAB, LA and LV (left ventricle), among other things, in human subjects in supine position. The mean transit time (MTT) was determined for each region, and the difference in MTT, e.g., ΔMTT sub(PAB-LA), was measured. We calculated PBV between PAB and LA as PBV = ΔMTT sub(PAB-LA) x CO, equation (1) given in Appendix. Empirical time relations between ΔMTT sub(PAB-LA) and PPT sub(RCG) were examined in mechanical models and human subjects, through several steps represented by equations (2) to (5), given in Appendix, and our tentatively final formula was equation (6). The values of PBV estimated in this way were in good agreement with those of PBV measured invasively in the past, using two injection sites (PA and LA) and one sampling site (artery). (author)

  13. Functional studies of the oesophagus with sulfur-colloid of sup(99m)Tc and gamma-camera

    International Nuclear Information System (INIS)

    Veiga-Fernandes, F.; Costa, P.M.; Pinheiro, M.F.; Guerreiro, D.

    1982-01-01

    A scintiscanning technique which allows sequential detection and quantification of gastro-oesophageal reflux (GER), and study of the oesophageal emptying of a liquid and semi-solid food is presented. At first patients swallowed 5 ml of water containing 1 mCi sup(99m)Tc sulfur-colloid and oesophageal activity is recorded from an anterior view by a gamma-camera. Then, patients ingest 300 ml of water that clear the oesophagus and fill up the stomach. GER index is calculated according to the formula GER = (Ae - Ab)/Ag) x 100, where Ae is the activity in the oesophagus; Ab, is the background activity; and Ag is the gastric activity. GER index presented corresponds to a median of three determinations in upright, supine and supine position with abdominal pressure of 4 kilos. The oesophageal transit time of a semi-solid food in upright and supine position is registered 5 minutes after GER studies through two areas of interest which are positioned: one in the superior third and the other in the inferior third of the oesophagus. Normal GER reflux index was, 0.84 +- 0.37 in the upright position; 0.87 +- 0.43 in the supine position; and 0.90 +- 0.56 in the supine position plus abdominal pressure

  14. Simulation of a multi-detector gamma camera for validation protocols of quantification the activity from SPECT images

    International Nuclear Information System (INIS)

    Lozano Sanchez, A.; Calderon Marin, C.; Gonzalez Gonzalez, J.

    2015-01-01

    The main sources that decreasing accuracy in the estimation of internal absorbed dose has been identified in the methods for the quantification of cumulated activity from scintigraphic imaging, likes the corrections required by the physical and instrumental phenomena related to the formation of those images. The results of the simulation of a dual detector gamma camera E.cam SIEMENS using the Monte Carlo code SIMIND to obtain tomographic SPECT projections are presented here. SIMIND will allow dealing with the contribution of physical interactions and instrumental effects during simulations. Energy resolution, spatial resolution and sensitivity planar were determined with real and simulated systems. The relative differences did not exceed 10%. Energy spectra simulated under different conditions (source in air and water) with the inclusion of interactions in the collimator and phantom were compared. The tomographic sensitivity of a volumetric phantom containing radioactive solutions of 99m Tc and 131 I were determined from real and simulated SPECT images. Two processing protocols were considered: with scatter correction ( 99m Tc dual energy window method and 131 I were calculated after corrections. The results, expressed in terms of the differences relative to the well-know activity value in the phantom inserts improves when attenuation and scattering corrections are applied, obtaining good agreement between the results for real and simulated systems. (Author)

  15. Assessment of spleen size using gamma camera scintigraphy in newly diagnosed patients with essential thrombocythaemia and polycythaemia vera

    International Nuclear Information System (INIS)

    Carneskog, J.; Wadenvik, H.; Kutti, J.; Fjaeelling, M.

    1996-01-01

    By using gamma camera imaging the spleen size was assessed in 18 consecutive patients with essential thrombocythaemia (ET) and in 18 consecutive patients with polycythaemia vera (PV). All ET and PV patients were newly diagnosed and had not received any myelosuppressive therapy prior to study. The spleen areas in both posterior and left lateral projections were determined. Eighteen consecutive patients with idiopathic thrombocytopenic purpura (ITP) served as a control group since by definition they do not present with splenic enlargement; in these latter subjects the mean posterior and left lateral splenic areas were almost identical (48 ± 15 and 47 ± 17 cm 2 , respectively). In comparison with this control group patients with ET an dPV had significantly larger spleens. In both ET and in PV patients the left lateral spleen scan area exceeded the posterior one. Patients with PV had larger splenic areas in both projections than did patients with ET, but the differences were not statistically significant. Compared to the ITP patients it was found that at least 50% of the ET patients and at least 61% of the PV patients at diagnosis presented with splenomegaly. (au) 35 refs

  16. Assessment of spleen size using gamma camera scintigraphy in newly diagnosed patients with essential thrombocythaemia and polycythaemia vera

    Energy Technology Data Exchange (ETDEWEB)

    Carneskog, J.; Wadenvik, H.; Kutti, J. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Fjaeelling, M. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Clinical Physiology, Section of Nuclear Med., Goeteborg (Sweden)

    1996-03-01

    By using gamma camera imaging the spleen size was assessed in 18 consecutive patients with essential thrombocythaemia (ET) and in 18 consecutive patients with polycythaemia vera (PV). All ET and PV patients were newly diagnosed and had not received any myelosuppressive therapy prior to study. The spleen areas in both posterior and left lateral projections were determined. Eighteen consecutive patients with idiopathic thrombocytopenic purpura (ITP) served as a control group since by definition they do not present with splenic enlargement; in these latter subjects the mean posterior and left lateral splenic areas were almost identical (48 {+-} 15 and 47 {+-} 17 cm{sup 2}, respectively). In comparison with this control group patients with ET an dPV had significantly larger spleens. In both ET and in PV patients the left lateral spleen scan area exceeded the posterior one. Patients with PV had larger splenic areas in both projections than did patients with ET, but the differences were not statistically significant. Compared to the ITP patients it was found that at least 50% of the ET patients and at least 61% of the PV patients at diagnosis presented with splenomegaly. (au) 35 refs.

  17. Intraoperative Scintigraphy Using a Large Field-of-View Portable Gamma Camera for Primary Hyperparathyroidism: Initial Experience

    Directory of Open Access Journals (Sweden)

    Nathan C. Hall

    2015-01-01

    Full Text Available Background. We investigated a novel technique, intraoperative 99 mTc-Sestamibi (MIBI imaging (neck and excised specimen (ES, using a large field-of-view portable gamma camera (LFOVGC, for expediting confirmation of MIBI-avid parathyroid adenoma removal. Methods. Twenty patients with MIBI-avid parathyroid adenomas were preoperatively administered MIBI and intraoperatively imaged prior to incision (neck and immediately following resection (neck and/or ES. Preoperative and intraoperative serum parathyroid hormone monitoring (IOPTH and pathology (path were also performed. Results. MIBI neck activity was absent and specimen activity was present in 13/20 with imaging after initial ES removal. In the remaining 7/20 cases, residual neck activity and/or absent ES activity prompted excision of additional tissue, ultimately leading to complete hyperfunctioning tissue excision. Postexcision LFOVGC ES imaging confirmed parathyroid adenoma resection 100% when postresection imaging qualitatively had activity (ES and/or no activity (neck. The mean ± SEM time saving using intraoperative LFOVGC data to confirm resection versus first IOPTH or path result would have been 22.0 ± 2 minutes (specimen imaging and 26.0 ± 3 minutes (neck imaging. Conclusion. Utilization of a novel real-time intraoperative LFOVGC imaging approach can provide confirmation of MIBI-avid parathyroid adenoma removal appreciably faster than IOPTH and/or path and may provide a valuable adjunct to parathyroid surgery.

  18. Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera

    Science.gov (United States)

    Morozov, A.; Alves, F.; Marcos, J.; Martins, R.; Pereira, L.; Solovov, V.; Chepel, V.

    2017-05-01

    Compact gamma cameras with a square-shaped monolithic scintillator crystal and an array of silicon photomultipliers (SiPMs) are actively being developed for applications in areas such as small animal imaging, cancer diagnostics and radiotracer guided surgery. Statistical methods of position reconstruction, which are potentially superior to the traditional centroid method, require accurate knowledge of the spatial response of each photomultiplier. Using both Monte Carlo simulations and experimental data obtained with a camera prototype, we show that the spatial response of all photomultipliers (light response functions) can be parameterized with axially symmetric functions obtained iteratively from flood field irradiation data. The study was performed with a camera prototype equipped with a 30  ×  30  ×  2 mm3 LYSO crystal and an 8  ×  8 array of SiPMs for 140 keV gamma rays. The simulations demonstrate that the images, reconstructed with the maximum likelihood method using the response obtained with the iterative approach, exhibit only minor distortions: the average difference between the reconstructed and the true positions in X and Y directions does not exceed 0.2 mm in the central area of 22  ×  22 mm2 and 0.4 mm at the periphery of the camera. A similar level of image distortions is shown experimentally with the camera prototype.

  19. An Image Encryption Algorithm Based on Balanced Pixel and Chaotic Map

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective.

  20. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    Science.gov (United States)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to

  1. Efficient conceptual design for LED-based pixel light vehicle headlamps

    Science.gov (United States)

    Held, Marcel Philipp; Lachmayer, Roland

    2017-12-01

    High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.

  2. Angiocardiography with 99mTc-albumin bymass of gamma camera associated with examinations in the morphological and dynamic study of the congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Esposti, A D; Abbati, A

    1975-03-03

    A. Degli Esposti and A. Abbati: Computerised gamma-camera 99/sup m/ Tc-albumin angiocardiography in the morphological and dynamic examination of children with congenital heart disease. A number of cases in which computerised gamma-camera 99/sup m/ Tc-albumin angiocardiography was employed in children with congenital heart diseases are described. Comparison is made with the data obtained contrastographically, or during surgery or necropsy. The preliminary results, particularly in recently examined subjects, whose data were processed in a more efficient manner, point to the usefulness of the method. Though incapable of offering the same morphological precision as contrastography, it has the advantage of being absolute harmless and, above all, repeatable.

  3. Use of calibration methodology of gamma cameras for the workers surveillance using a thyroid simulator; Uso de una metodologia de calibracion de camaras gamma para la vigilancia de trabajadores usando un simulador de tiroides

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, M.; Molina, G.; Vazquez, R.; Garcia, O., E-mail: mercedes.alfaro@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    In Mexico there are a significant number of nuclear medicine centers in operation. For what the accidents risk related to the transport and manipulation of open sources used in nuclear medicine can exist. The National Institute of Nuclear Research (ININ) has as objective to establish a simple and feasible methodology for the workers surveillance related with the field of the nuclear medicine. This radiological surveillance can also be applied to the public in the event of a radiological accident. To achieve this it intends to use the available equipment s in the nuclear medicine centers, together with the neck-thyroid simulators elaborated by the ININ to calibrate the gamma cameras. The gamma cameras have among their component elements that conform spectrometric systems like the employees in the evaluation of the internal incorporation for direct measurements, reason why, besides their use for diagnostic for image, they can be calibrated with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity distributed homogeneously in the human body, or located in specific organs. Inside the project IAEA-ARCAL-RLA/9/049-LXXVIII -Procedures harmonization of internal dosimetry- where 9 countries intervened (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). It was developed a protocol of cameras gamma calibration for the determination in vivo of radionuclides. The protocol is the base to establish and integrated network in Latin America to attend in response to emergencies, using nuclear medicine centers of public hospitals of the region. The objective is to achieve the appropriate radiological protection of the workers, essential for the sure and acceptable radiation use, the radioactive materials and the nuclear energy. (Author)

  4. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  5. [Evaluation of the efficacy of sentinel node detection in breast cancer: chronological course and influence of the incorporation of an intra-operative portable gamma camera].

    Science.gov (United States)

    Goñi Gironés, E; Vicente García, F; Serra Arbeloa, P; Estébanez Estébanez, C; Calvo Benito, A; Rodrigo Rincón, I; Camarero Salazar, A; Martínez Lozano, M E

    2013-01-01

    To define the sentinel node identification rate in breast cancer, the chronological evolution of this parameter and the influence of the introduction of a portable gamma camera. A retrospective study was conducted using a prospective database of 754 patients who had undergone a sentinel lymph node biopsy between January 2003 and December 2011. The technique was mixed in the starting period and subsequently was performed with radiotracer intra-peritumorally administered the day before of the surgery. Until October 2009, excision of the sentinel node was guided by a probe. After that date, a portable gamma camera was introduced for intrasurgical detection. The SN was biopsied in 725 out of the 754 patients studied. The resulting technique global effectiveness was 96.2%. In accordance with the year of the surgical intervention, the identification percentage was 93.5% in 2003, 88.7% in 2004, 94.3% in 2005, 95.7% in 2006, 93.3% in 2007, 98.8% in 2008, 97.1% in 2009 and 99.1% in 2010 and 2011. There was a significant difference in the proportion of identification before and after the incorporation of the portable gamma camera of 4.6% (95% CI of the difference 2-7.2%, P = 0.0037). The percentage of global identification exceeds the recommended level following the current guidelines. Chronologically, the improvement for this parameter during the study period has been observed. These data suggest that the incorporation of a portable gamma camera had an important role. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  6. Measuring of main parameters of blood circulation at small laboratory animals in chronic experiment by means of computerized gamma-camera

    International Nuclear Information System (INIS)

    Rutskij, A.V.; Kovalenko, Yu.D.; Rudenko, F.V.; Ioda, G.I.; Kaminskij, M.P.

    1996-01-01

    Technique for studding of a state systemic and regional hemodynamics at small laboratory animals (rats) by using short-lived isotopes (technetium 99 m) and computerized gamma-camera are described. One gives possibility to make the repeated measuring in condition long-tome experiment. The proposed technique of radiocardiocirculography gives possibility simultaneously to measure linear parameters of both arterial and vein blood circulation too. 3 refs., 1 tab., 2 figs

  7. Characterization of the column-based priority logic readout of Topmetal-II− CMOS pixel direct charge sensor

    International Nuclear Information System (INIS)

    An, M.; Zhang, W.; Xiao, L.; Gao, C.; Chen, C.; Huang, G.; Ji, R.; Liu, J.; Pei, H.; Sun, X.; Wang, K.; Yang, P.; Zhou, W.; Han, M.; Mei, Y.; Li, X.; Sun, Q.

    2017-01-01

    We present the detailed study of the digital readout of Topmetal-II - CMOS pixel direct charge sensor. Topmetal-II - is an integrated sensor with an array of 72×72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators in each pixel with individually adjustable thresholds. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic features with a full clock-less circuitry hence there is no continuously running clock distributed in the pixel and matrix logic. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments. We studied the detailed working behavior and performance of this readout, and demonstrated its functional validity and potential in imaging applications.

  8. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Hillel, P.G.; Beek, E.J.R. van; Taylor, C.; Lorenz, E.; Bax, N.D.S.; Prakash, V.; Tindale, W.B.

    2006-01-01

    AIM: With a combined gamma camera/CT imaging system, CT images are obtained which are inherently registered to the emission images and can be used for the attenuation correction of SPECT and for mapping the functional information from these nuclear medicine tomograms onto anatomy. The aim of this study was to evaluate the clinical impact of SPECT/CT using such a system for somatostatin receptor imaging (SRI) of neuroendocrine tumours. MATERIALS AND METHODS: SPECT/CT imaging with 111 In-Pentetreotide was performed on 29 consecutive patients, the majority of whom had carcinoid disease. All SPECT images were first reported in isolation and then re-reported with the addition of the CT images for functional anatomical mapping (FAM). RESULTS: Fifteen of the 29 SPECT images were reported as abnormal, and in 11 of these abnormal images (73%) FAM was found to either establish a previously unknown location (7/11) or change the location (4/11) of at least one lesion. The revised location could be independently confirmed in 64% of these cases. Confirmation of location was not possible in the other patients due to either a lack of other relevant investigations, or the fact that lesions seen in the SPECT images were not apparent in the other investigations. FAM affected patient management in 64% of the cases where the additional anatomical information caused a change in the reported location of lesions. CONCLUSION: These results imply that FAM can improve the reporting accuracy for SPECT SRI with significant impact on patient management

  9. Physical assessment of the GE/CGR Neurocam and comparison with a single rotating gamma-camera

    International Nuclear Information System (INIS)

    Kouris, K.; Jarritt, P.H.; Costa, D.C.; Ell, P.J.

    1992-01-01

    The GE/CGR Neurocam is a triple-headed single photon emission tomography (SPET) system dedicated to multi-slice brain tomography. We have assessed its physical performance in terms of sensitivity and resolution, and its clinical efficacy in comparison with a modern, single, rotating gamma-camera (GE 400XCT). Using a water-filled cylinder containing TC-99m, the tomographic volume sensitivity of the Neurocam was 30.0 and 50.7 kcps/MBq.ml.cm for the high-resolution and general-purpose collimators, respectively; the corresponding values for the single rotating camera were 7.6 and 12.8 kcps/MBq.ml.cm. Tomographic resolution was measured in air and in water. In air, the Neurocam resolution at the centre of the field-of-view is 9.0 and 10.7 mm full width at half-maximum (FWHM) with the collimators, respectively, and is isotropic in the three orthogonal planes; the resolution of the GE 400XCT with its 13-cm radius of rotation is 10.3 and 11.7 mm, respectively. For the Neurocam with the HR collimator, the transaxial FWHM values in water were 9.7 mm at the centre and 9.5 mm radial (6.6 mm tangential) at 8 cm from the centre. The physical characteristics of the Neurocam enable the routine acquisition of brain perfusion data with Tc-99m hexamethyl-propylene amine oxime in about 14 min, yielding better image quality than with a single rotating camera in 40 min. (orig./HP)

  10. Calibration of gamma camera systems for a multicentre European {sup 123}I-FP-CIT SPECT normal database

    Energy Technology Data Exchange (ETDEWEB)

    Tossici-Bolt, Livia [Southampton Univ. Hospitals NHS Trust, Dept. of Medical Physics and Bioengineering, Southampton (United Kingdom); Dickson, John C. [UCLH NHS Foundation Trust and Univ. College London, Institute of Nuclear Medicine, London (United Kingdom); Sera, Terez [Univ. of Szeged, Dept. of Nuclear Medicine and Euromedic Szeged, Szeged (Hungary); Nijs, Robin de [Rigshospitalet and Univ. of Copenhagen, Neurobiology Research Unit, Copenhagen (Denmark); Bagnara, Maria Claudia [Az. Ospedaliera Universitaria S. Martino, Medical Physics Unit, Genoa (Italy); Jonsson, Cathrine [Karolinska Univ. Hospital, Dept. of Nuclear Medicine, Medical Physics, Stockholm (Sweden); Scheepers, Egon [Univ. of Amsterdam, Dept. of Nuclear Medicine, Academic Medical Centre, Amsterdam (Netherlands); Zito, Felicia [Fondazione IRCCS Granda, Ospedale Maggiore Policlinico, Dept. of Nuclear Medicine, Milan (Italy); Seese, Anita [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Koulibaly, Pierre Malick [Univ. of Nice-Sophia Antipolis, Nuclear Medicine Dept., Centre Antoine Lacassagne, Nice (France); Kapucu, Ozlem L. [Gazi Univ., Faculty of Medicine, Dept. of Nuclear Medicine, Ankara (Turkey); Koole, Michel [Univ. Hospital and K.U. Leuven, Nuclear Medicine, Leuven (Belgium); Raith, Maria [Medical Univ. of Vienna, Dept. of Nuclear Medicine, Vienna (Austria); George, Jean [Univ. Catholique Louvain, Nuclear Medicine Division, Mont-Godinne Medical Center, Mont-Godinne (Belgium); Lonsdale, Markus Nowak [Bispebjerg Univ. Hospital, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Muenzing, Wolfgang [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Tatsch, Klaus [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Municipal Hospital of Karlsruhe Inc., Dept. of Nuclear Medicine, Karlsruhe (Germany); Varrone, Andrea [Center for Psychiatric Research, Karolinska Inst., Dept. of Clinical Neuroscience, Stockholm (Sweden)

    2011-08-15

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [{sup 123}I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. {sup 123}I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the ''Southampton'' methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the

  11. ImageSURF: An ImageJ Plugin for Batch Pixel-Based Image Segmentation Using Random Forests

    Directory of Open Access Journals (Sweden)

    Aidan O'Mara

    2017-11-01

    Full Text Available Image segmentation is a necessary step in automated quantitative imaging. ImageSURF is a macro-compatible ImageJ2/FIJI plugin for pixel-based image segmentation that considers a range of image derivatives to train pixel classifiers which are then applied to image sets of any size to produce segmentations without bias in a consistent, transparent and reproducible manner. The plugin is available from ImageJ update site http://sites.imagej.net/ImageSURF/ and source code from https://github.com/omaraa/ImageSURF. Funding statement: This research was supported by an Australian Government Research Training Program Scholarship.

  12. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    Science.gov (United States)

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  13. A basic component for ISGRI, the CdTe gamma camera on board the INTEGRAL satellite

    International Nuclear Information System (INIS)

    Arques, M.; Baffert, N.; Lattard, D.

    1999-01-01

    A basic component, called Polycell, has been developed for the ISGRI (INTEGRAL Soft Gamma Ray Imager) CdTe camera on board the INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) satellite. Operating at room temperature, it covers the 20 keV--1 MeV energy range. It features a sub-ensemble of 16 CdTe detectors and their associated front end electronics. This electronics is based on 4-channel analog-digital ASICs. Their analog part features a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The digital part ensures the internal acquisition timing sequence as well as the dialogue with external electronics. Two versions of the ISGRI ASIC have been developed in a collaboration of two CEA microelectronics teams from CEA/DTA/LETI/DSYS and CEA/DSM/DAPNIA/SEI, respectively on a standard CMOS AMS process hardened against radiation by lay-out, and on a Silicon On Insulator process (DMILL MHS), the latter being latch-up free. This paper presents the ASIC and polycell architecture as well as experimental results obtained with polycells equipped with AMS ASICs

  14. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Anizan, N; Wahl, R L; Frey, E C; Wang, H; Zhou, X C

    2015-01-01

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  15. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  16. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    International Nuclear Information System (INIS)

    Annovazzi, A.; Amendolia, S.R.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M.E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-01-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18x24 cm 2 ), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%

  17. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Science.gov (United States)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  18. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors

    International Nuclear Information System (INIS)

    Koenig, Thomas; Schulze, Julia; Zuber, Marcus; Rink, Kristian; Oelfke, Uwe; Butzer, Jochen; Hamann, Elias; Cecilia, Angelica; Zwerger, Andreas; Fauler, Alex; Fiederle, Michael

    2012-01-01

    Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution. (paper)

  19. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...

  20. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1982-01-01

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  1. Pixel-based approach for building heights determination by SAR radargrammetry

    Science.gov (United States)

    Dubois, C.; Thiele, A.; Hinz, S.

    2013-10-01

    Numerous advances have been made recently in photogrammetry, laser scanning, and remote sensing for the creation of 3D city models. More and more cities are interested in getting 3D city models, be it for urban planning purposes or for supporting public utility companies. In areas often affected by natural disaster, rapid updating of the 3D information may also be useful for helping rescue forces. The high resolutions that can be achieved by the new spaceborne SAR sensor generation enables the analysis of city areas at building level and make those sensors attractive for the extraction of 3D information. Moreover, they present the advantage of weather and sunlight independency, which make them more practicable than optical data, in particular for tasks where rapid response is required. Furthermore, their short revisit time and the possibility of multi-sensor constellation enable providing several acquisitions within a few hours. This opens up the floor for new applications, especially radargrammetric applications, which consider acquisitions taken under different incidence angles. In this paper, we present a new approach for determining building heights, relying only on the radargrammetric analysis of building layover. By taking into account same-side acquisitions, we present the workflow of building height determination. Focus is set on some geometric considerations, pixel-based approach for disparity map calculation, and analysis of the building layover signature for different configurations in order to determine building height.

  2. Extraction optimization and pixel-based chemometric analysis of semi-volatile organic compounds in groundwater

    DEFF Research Database (Denmark)

    Christensen, Peter; Tomasi, Giorgio; Kristensen, Mette

    2017-01-01

    . In this study, we tested the combination of solid phase extraction (SPE) with dispersive liquid-liquid micro extraction (DLLME), or with stir bar sorptive extraction (SBSE), as an extraction method for semi-VOCs in groundwater. Combining SPE with DLLME or SBSE resulted in better separation of peaks...... in an unresolved complex mixture. SPE-DLLME was chosen as the preferred extraction method. SPE-DLLME covered a larger polarity range (logKo/w 2.0-11.2), had higher extraction efficiency at logKo/w 2.0-3.8 and 5.8-11.2, and was faster compared to SPE-SBSE. SPE-DLLME extraction combined with chemical analysis by gas...... chromatography-mass spectrometry (GC-MS) and pixel-based data analysis of summed extraction ion chromatograms (sEICs) was tested as a new method for chemical fingerprinting of semi-VOCs in 15 groundwater samples. The results demonstrate that SPE-DLLME-GC-MS provides an excellent compromise between compound...

  3. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  4. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Naveed ur Rehman

    2015-05-01

    Full Text Available A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA, discrete wavelet transform (DWT and non-subsampled contourlet transform (NCT. A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  5. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  6. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    Science.gov (United States)

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant

  7. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Energy Technology Data Exchange (ETDEWEB)

    Annovazzi, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Amendolia, S.R. [Str. Dip. di Matematica e Fisica dell' Universita, Sassari and Sezione I.N.F.N., Pisa (Italy); Bigongiari, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Catarsi, F. [CAEN S.p.A., Viareggio-Lucca (Italy); Cesqui, F. [AMS S.p.A, Rome (Italy); Cetronio, A. [AMS S.p.A, Rome (Italy); Colombo, F. [LABEN S.p.A., Vimodrone-Milan (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Gilberti, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Lanzieri, C. [AMS S.p.A, Rome (Italy); Lavagna, S. [AMS S.p.A, Rome (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Passuello, G. [CAEN S.p.A., Viareggio-Lucca (Italy); Paternoster, G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Pieracci, M. [CAEN S.p.A., Viareggio-Lucca (Italy); Poletti, M. [LABEN S.p.A., Vimodrone-Milan (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy)]. E-mail: arnaldo.stefanini@pi.infn.it; Testa, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Venturelli, L. [AMS S.p.A, Rome (Italy)

    2007-06-11

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm{sup 2} therefore to cover the typical irradiation field used in mammography (18x24 cm{sup 2}), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  8. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  9. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  10. iPixel: a visual content-based and semantic search engine for retrieving digitized mammograms by using collective intelligence.

    Science.gov (United States)

    Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A

    2012-09-01

    Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.

  11. Pixel-based dust-extinction mapping in nearby galaxies: A new approach to lifting the veil of dust

    Science.gov (United States)

    Tamura, Kazuyuki

    In the first part of this dissertation, I explore a new approach to mapping dust extinction in galaxies, using the observed and estimated dust-free flux- ratios of optical V -band and mid-IR 3.6 micro-meter emission. Inferred missing V -band flux is then converted into an estimate of dust extinction. While dust features are not clearly evident in the observed ground-based images of NGC 0959, the target of my pilot study, the dust-map created with this method clearly traces the distribution of dust seen in higher resolution Hubble images. Stellar populations are then analyzed through various pixel Color- Magnitude Diagrams and pixel Color-Color Diagrams (pCCDs), both before and after extinction correction. The ( B - 3.6 microns) versus (far-UV - U ) pCCD proves particularly powerful to distinguish pixels that are dominated by different types of or mixtures of stellar populations. Mapping these pixel- groups onto a pixel-coordinate map shows that they are not distributed randomly, but follow genuine galactic structures, such as a previously unrecognized bar. I show that selecting pixel-groups is not meaningful when using uncorrected colors, and that pixel-based extinction correction is crucial to reveal the true spatial variations in stellar populations. This method is then applied to a sample of late-type galaxies to study the distribution of dust and stellar population as a function of their morphological type and absolute magnitude. In each galaxy, I find that dust extinction is not simply decreasing radially, but that is concentrated in localized clumps throughout a galaxy. I also find some cases where star-formation regions are not associated with dust. In the second part, I describe the application of astronomical image analysis tools for medical purposes. In particular, Source Extractor is used to detect nerve fibers in the basement membrane images of human skin-biopsies of obese subjects. While more development and testing is necessary for this kind of work

  12. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    Science.gov (United States)

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis.

  13. Regional cerebral blood flow measurement using N-isopropyl-p-(/sup 123/I) iodoamphetamine and rotating gamma camera emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko (Kanazawa Univ. (Japan). School of Medicine)

    1985-01-01

    Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-(/sup 123/I) Iodoamphetamine (/sup 123/I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in ..mu..Ci/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in ..mu..Ci and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the counting rate ratio between peripheral and central regions of interest obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p < 0.001) between rCBF values obtained from /sup 123/I-IMP and rotating gamma camera ECT and those from /sup 133/Xe inhalation method. rCBF measurement using /sup 123/I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional /sup 133/Xe clearance method.

  14. Evaluation of a high-resolution, breast-specific, small-field-of-view gamma camera for the detection of breast cancer

    International Nuclear Information System (INIS)

    Brem, R.F.; Kieper, D.A.; Rapelyea, J.A.; Majewski, S.

    2003-01-01

    Purpose: The purpose of our study is to review the state of the art in nuclear medicine imaging of the breast (scintimammography) and to evaluate a novel, high-resolution, breast-specific gamma camera (HRBGC) for the detection of suspicious breast lesions. Materials and Methods: Fifty patients with 58 breast lesions in whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a HRBGC prototype. Nuclear studies were prospectively classified as negative (normal/benign) or positive (suspicious/malignant) by two radiologists, blinded to mammographic and histologic results with both the conventional and high-resolution. All lesions were confirmed by pathology. Results: Included in this study were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. Specificity of both systems was 93.3% (28/30). In the 18 nonpalpable cancers, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and HRBGC, respectively. In cancers ≤ 1cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four of the cancers (median size, 8.5 mm) detected with the HRBGC were missed by the conventional camera Conclusion: Evaluation of indeterminate breasts lesions with a high resolution, breast-specific gamma camera results in improved sensitivity for the detection of cancer with greater improvement demonstrated in nonpalpable and ≤1 cm cancers

  15. Comparison Effectiveness of Pixel Based Classification and Object Based Classification Using High Resolution Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang City)

    Science.gov (United States)

    Ardha Aryaguna, Prama; Danoedoro, Projo

    2016-11-01

    Developments of analysis remote sensing have same way with development of technology especially in sensor and plane. Now, a lot of image have high spatial and radiometric resolution, that's why a lot information. Vegetation object analysis such floristic composition got a lot advantage of that development. Floristic composition can be interpreted using a lot of method such pixel based classification and object based classification. The problems for pixel based method on high spatial resolution image are salt and paper who appear in result of classification. The purpose of this research are compare effectiveness between pixel based classification and object based classification for composition vegetation mapping on high resolution image Worldview-2. The results show that pixel based classification using majority 5×5 kernel windows give the highest accuracy between another classifications. The highest accuracy is 73.32% from image Worldview-2 are being radiometric corrected level surface reflectance, but for overall accuracy in every class, object based are the best between another methods. Reviewed from effectiveness aspect, pixel based are more effective then object based for vegetation composition mapping in Tidar forest.

  16. A GEANT4 based simulation for pixelated X-ray hybrid detectors

    International Nuclear Information System (INIS)

    Marinho, F.; Akiba, K.

    2015-01-01

    In this letter we present a detailed Monte Carlo approach to simulate pixelated detectors for X-ray applications. It allows us to fully characterize quantities such as interaction probability and reconstructed energy deposits according to beam energy as to evaluate energy and position resolution for comparisons with experimental results. The implementation and use of Monte Carlo truth information is also discussed

  17. Geant4-based simulations of charge collection in CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Esposito, M.; Allinson, N.M.; Price, T.; Anaxagoras, T.

    2017-01-01

    Geant4 is an object-oriented toolkit for the simulation of the interaction of particles and radiation with matter. It provides a snapshot of the state of a simulated particle in time, as it travels through a specified geometry. One important area of application is the modelling of radiation detector systems. Here, we extend the abilities of such modelling to include charge transport and sharing in pixelated CMOS Active Pixel Sensors (APSs); though similar effects occur in other pixel detectors. The CMOS APSs discussed were developed in the framework of the PRaVDA consortium to assist the design of custom sensors to be used in an energy-range detector for proton Computed Tomography (pCT). The development of ad-hoc classes, providing a charge transport model for a CMOS APS and its integration into the standard Geant4 toolkit, is described. The proposed charge transport model includes, charge generation, diffusion, collection, and sharing across adjacent pixels, as well as the full electronic chain for a CMOS APS. The proposed model is validated against experimental data acquired with protons in an energy range relevant for pCT.

  18. Localization of sentinel nodes in breast cancer: novel method and device to help pen marking of active nodes during gamma camera imaging

    International Nuclear Information System (INIS)

    Laasanen, Mikko S; Heikkinen, Jari O; Saarakkala, Simo; Paajanen, Hannu

    2005-01-01

    Gamma camera imaging with Tc-99m marking is a widely used method to locate sentinel lymph nodes (SNs) in breast cancer patients. Prior to SN biopsy, the anterior and lateral location of the SN is marked on the patient's skin using an ink pen. The pen marks guide the surgeon during an operation. However, in many cases the marking is difficult due to limited space under the detectors of a gamma camera. The aim of this study was to improve the pen marking method. Eleven female patients were imaged 3-4 h after injection of Tc-99m labelled Nanocol(copyright) . Injection was performed to parenchyma surrounding the breast tumour. To facilitate pen marking, two polycarbonate (PC) plates with 40 x 32 holes (spacing = 10 mm) were engineered for anterior and lateral side imaging and then installed on the bed of a dual-head gamma camera. Two drops of Tc-99m were placed into the top corners of both the PC plates, in order to trace the corresponding x-y coordinates first from the acquired images and then from the plates. After imaging, the x-y coordinates of the SN(s) were determined from the anterior and lateral side images. Subsequently, the location of each SN was marked with an ink pen on the skin through the small holes in the PC plates. According to the surgeon's evaluation, the distance between the marks and the true location of the SNs was 4.5 ± 6.9 mm. Measurements with a custom made phantom revealed that the accuracy of the novel method was significantly (P 0.06) higher as compared with the traditional method (2.7 ± 3.0 mm versus 9.2 ± 3.0 mm). In addition, we were not able to mark the weakest activity (0.02 MBq) with the traditional method. Taken together, the marking process was considerably easier with the novel method, it had better accuracy and sensitivity than the traditional method and the device is simple enough to be adapted for most gamma cameras. (note)

  19. Development of the set of corrections for a gamma camera dedicated to research; Desarrollo del conjunto de correcciones para una gammacamara dedicada a investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Insua, M.; Ambroa Rey, E. M.; Vazquez Vazquez, R.; Sanchez Garcia, M.; Luna Vega, V.; Mosquera Sueiro, J.; Otero Martinez, C.; Lobato Busto, R.; Pombar Camean, M.

    2013-07-01

    As part of a project for animal research, replaced electronics one of the gamma-cameras (GC) of the service that was out of use, with the aim of using it for SPECT. The implementation is therefore required of the corrections that allow image quality enough for SPECT from raw data supplied by the team. This has been developed software that enables to perform correction of power, uniform and linearity on the acquired data. For validation, change in several parameters indicative of the image quality has been evaluated. (Author)

  20. The optimisation of the laser-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels

    Science.gov (United States)

    Shaw-Stewart, James; Mattle, Thomas; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander

    2013-08-01

    Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.

  1. The optimisation of the laser-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels

    Energy Technology Data Exchange (ETDEWEB)

    Shaw-Stewart, James, E-mail: james.shaw-stewart@ed.ac.uk [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Mattle, Thomas [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Lippert, Thomas, E-mail: thomas.lippert@psi.ch [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Nagel, Matthias [Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Nüesch, Frank, E-mail: frank.nueesch@empa.ch [Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Section de science et génie des matériaux, EPFL, CH-1015 Lausanne (Switzerland); Wokaun, Alexander [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland)

    2013-08-01

    Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.

  2. P.I.X.S.C.A.N.: a micro-CT scanner for small animal based on hybrid pixel detectors; PIXSCAN: micro-tomodensitrometre a pixels hybrides pour le petit animal

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, R

    2008-03-15

    Since more than a dozen years, efforts were led in the field of X-ray tomography for small animals, principally for the improvement of spatial resolution and the diminution of the absorbed dose. The C.P.P.M. developed the micro-CT P.I.X.S.C.A.N. based on the hybrid pixel detector X.P.A.D.2. In this context, my thesis work consists in studying the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 and the contribution of the hybrid pixels in the imaging of small animals. A fast analytical simulation, FastSimu, was developed. An extrapolation of the performance of the demonstrator P.I.X.S.C.A.N, as well as the validation of the results obtained with the measured data, were led by means of the analytical simulator FastSimu. The demonstrator P.I.X.S.C.A.N./X.P.A.D.2 allowed to obtain reconstructed images with a rather good quality for a relatively weak absorbed dose. Its spatial resolution is degraded by the high number of defective pixels of the detector X.P.A.D.2. Beyond this study, a new version of the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 is under construction. This latter, characterized by two and a half times smaller pixels and about no defective pixels will bring a considerable improvement on spatial resolution. (author)

  3. CLASSIFICATION OF URBAN AERIAL DATA BASED ON PIXEL LABELLING WITH DEEP CONVOLUTIONAL NEURAL NETWORKS AND LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    W. Yao

    2016-06-01

    Full Text Available The recent success of deep convolutional neural networks (CNN on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN’s texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  4. Classification of Urban Aerial Data Based on Pixel Labelling with Deep Convolutional Neural Networks and Logistic Regression

    Science.gov (United States)

    Yao, W.; Poleswki, P.; Krzystek, P.

    2016-06-01

    The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  5. Fully Pipelined Parallel Architecture for Candidate Block and Pixel-Subsampling-Based Motion Estimation

    Directory of Open Access Journals (Sweden)

    Reeba Korah

    2008-01-01

    Full Text Available This paper presents a low power and high speed architecture for motion estimation with Candidate Block and Pixel Subsampling (CBPS Algorithm. Coarse-to-fine search approach is employed to find the motion vector so that the local minima problem is totally eliminated. Pixel subsampling is performed in the selected candidate blocks which significantly reduces computational cost with low quality degradation. The architecture developed is a fully pipelined parallel design with 9 processing elements. Two different methods are deployed to reduce the power consumption, parallel and pipelined implementation and parallel accessing to memory. For processing 30 CIF frames per second our architecture requires a clock frequency of 4.5 MHz.

  6. Dual-mode optical microscope based on single-pixel imaging

    OpenAIRE

    Rodríguez Jiménez, Angel David; Clemente Pesudo, Pedro Javier; Tajahuerce, Enrique; Lancis Sáez, Jesús

    2016-01-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD...

  7. FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation

    OpenAIRE

    Hoffman, Judy; Wang, Dequan; Yu, Fisher; Darrell, Trevor

    2016-01-01

    Fully convolutional models for dense prediction have proven successful for a wide range of visual tasks. Such models perform well in a supervised setting, but performance can be surprisingly poor under domain shifts that appear mild to a human observer. For example, training on one city and testing on another in a different geographic region and/or weather condition may result in significantly degraded performance due to pixel-level distribution shift. In this paper, we introduce the first do...

  8. Coincidence detection of photons of 511 keV from positon annihilation on a conventional gamma camera: optimization and analysis of potentialities

    International Nuclear Information System (INIS)

    Brasse, David

    1999-01-01

    The feasibility of acquiring clinical oncology studies on a gamma camera designed for the imaging of low energy single photons was investigated. The first prototype used two Nal(Tl) detectors of 40 cm by 30 cm with a 3/8 inch height and the second prototype was equipped with two large Nal(Tl) detectors of 40 cm by 54 cm with a 4/8 inch height. The optimization of such devices was mainly an optimization of the count rates obtained for reconstruct an image as a function of the angular axial aperture of the projections, with and without axial collimators. This optimization was performed experimentally using an anthropomorphic whole body phantom and the noise equivalent count rate as the figure of merit. An original correction for the random coincidences was also designed in order to optimize the contrast recovery and the contrast to noise ratio of small tumors (16 mm and 19 mm diameter). Finally, the optimal dose of FDG that can be injected to the subjects for an acquisition of that machine was determined and data acquired on an ECAT HR+ were compared with those acquired on the gamma camera for five subjects. (author) [fr

  9. The added value of a portable gamma camera for intraoperative detection of sentinel lymph node in squamous cell carcinoma of the oral cavity: A case report.

    Science.gov (United States)

    Mayoral, M; Paredes, P; Sieira, R; Vidal-Sicart, S; Marti, C; Pons, F

    2014-01-01

    The use of sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity is still subject to debate although some studies have reported its feasibility. The main reason for this debate is probably due to the high false-negative rate for floor-of-mouth tumors per se. We report the case of a 54-year-old man with a T1N0 floor-of-mouth squamous cell carcinoma who underwent the sentinel lymph node procedure. Lymphoscintigraphy and SPECT/CT imaging were performed for lymphatic mapping with a conventional gamma camera. Sentinel lymph nodes were identified at right Ib, left IIa and Ia levels. However, these sentinel lymph nodes were difficult to detect intraoperatively with a gamma probe owing to the activity originating from the injection site. The use of a portable gamma camera made it possible to localize and excise all the sentinel lymph nodes. This case demonstrates the usefulness of this tool to improve sentinel lymph node detecting in floor-of-mouth tumors, especially those close to the injection area. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  10. Efficient Processing of a Rainfall Simulation Watershed on an FPGA-Based Architecture with Fast Access to Neighbourhood Pixels

    Directory of Open Access Journals (Sweden)

    Yeong LeeSeng

    2009-01-01

    Full Text Available This paper describes a hardware architecture to implement the watershed algorithm using rainfall simulation. The speed of the architecture is increased by utilizing a multiple memory bank approach to allow parallel access to the neighbourhood pixel values. In a single read cycle, the architecture is able to obtain all five values of the centre and four neighbours for a 4-connectivity watershed transform. The storage requirement of the multiple bank implementation is the same as a single bank implementation by using a graph-based memory bank addressing scheme. The proposed rainfall watershed architecture consists of two parts. The first part performs the arrowing operation and the second part assigns each pixel to its associated catchment basin. The paper describes the architecture datapath and control logic in detail and concludes with an implementation on a Xilinx Spartan-3 FPGA.

  11. Monitoring of the internal contamination of occupationally exposure personnel in services of nuclear medicine through the use of gamma cameras; Monitoreo de la contaminacion interna de personal ocupacionalmente expuesto en servicios de medicina nuclear mediante el uso de gamma camaras

    Energy Technology Data Exchange (ETDEWEB)

    Teran, M.; Paolino, A.; Savio, E. [Catedra de Radioquimica, Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Centro de Medicina Nuclear, Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Dantas, B.M. [Laboratorio de Medidas In vivo, Instituto da Radioprotecao e Dosimetria, Rio de Janeiro (Brazil)

    2006-07-01

    The radionuclides incorporation can happen as a result of diverse activities; these include the work associated with the different stadiums of the nuclear fuel cycle, the use of radioactive sources in medicine, the scientific research, the agriculture and the industry. In Uruguay the main activities linked to the manipulation of open sources correspond those of Nuclear Medicine and from 2004, in the mark of the Project Arcal RLA 049 and being based on the Safety Guides of the IAEA it is implementing a program of internal monitoring in combined form the Nuclear Medicine Center of the Hospital of and the Radiochemistry class of the Faculty of Chemistry. In accordance with the publication of the ICRP 75 the emphasis of any monitoring program should be in the formal study of the doses in the workers to who are considered commendable of to receive in routine form an outstanding fraction of the dose limits or who work in areas where the exposures can be significant in the accident event. From April 2004, to the date has started a pilot plan by means of in that were established appropriate conditions of procedures and of safety in a reduced group of workers of the Nuclear Medicine area. In that period the first work limits, equipment adjustment, calibrations and registration systems were determined. The monitoring system implemented until the moment is carried out with a thyroid caption equipment. However these measurements are carried out in the university hospital embracing 40% of the involved workers of our country, with the purpose of reaching the covering of the biggest quantity of occupationally exposed personnel of private clinics. Also it was developed a new work proposal that allows to have an alternative measure method, in the event of not having the equipment habitually used. Among the conclusions of this work are that for the before exposed are considered the measure conditions but appropriate the following ones: Gamma Camera without collimator; Measurement

  12. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    Science.gov (United States)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  13. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip.

    Science.gov (United States)

    Johnson, Lee J; Cohen, Ethan; Ilg, Doug; Klein, Richard; Skeath, Perry; Scribner, Dean A

    2012-04-15

    Microelectrode recording arrays of 60-100 electrodes are commonly used to record neuronal biopotentials, and these have aided our understanding of brain function, development and pathology. However, higher density microelectrode recording arrays of larger area are needed to study neuronal function over broader brain regions such as in cerebral cortex or hippocampal slices. Here, we present a novel design of a high electrode count picocurrent imaging array (PIA), based on an 81,920 pixel Indigo ISC9809 readout integrated circuit camera chip. While originally developed for interfacing to infrared photodetector arrays, we have adapted the chip for neuron recording by bonding it to microwire glass resulting in an array with an inter-electrode pixel spacing of 30 μm. In a high density electrode array, the ability to selectively record neural regions at high speed and with good signal to noise ratio are both functionally important. A critical feature of our PIA is that each pixel contains a dedicated low noise transimpedance amplifier (∼0.32 pA rms) which allows recording high signal to noise ratio biocurrents comparable to single electrode voltage amplifier recordings. Using selective sampling of 256 pixel subarray regions, we recorded the extracellular biocurrents of rabbit retinal ganglion cell spikes at sampling rates up to 7.2 kHz. Full array local electroretinogram currents could also be recorded at frame rates up to 100 Hz. A PIA with a full complement of 4 readout circuits would span 1cm and could acquire simultaneous data from selected regions of 1024 electrodes at sampling rates up to 9.3 kHz. Published by Elsevier B.V.

  14. Poster - 01: LabPET II Pixelated APD-Based PET Scanner for High-Resolution Preclinical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-François; Bergeron, Mélanie; Bouchard, Jonathan; Bouziri, Haithem; Cadorette, Jules; Gaudin, Émilie; Jürgensen, Nadia; Koua, Konin Calliste; Trépanier, Pierre-Yves Lauzier; Leroux, Jean-Daniel; Loignon-Houle, Francis; Njejimana, Larissa; Paillé, Maxime; Paulin, Caroline; Pepin, Catherine; Pratte, Jean-François; Samson, Arnaud; Thibaudeau, Christian [Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke, Novalgo Inc., Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, 3IT, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke (Canada); and others

    2016-08-15

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time and energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.

  15. The value of gamma camera and computed tomography data set coregistration to assess Lewis Y antigen targeting in small cell lung cancer by 111Indium-labeled humanized monoclonal antibody 3S193

    International Nuclear Information System (INIS)

    Quaia, Emilio; Krug, Lee M.; Pandit-Taskar, Neeta; Nagel, Andrew; Reuter, Victor E.; Humm, John; Divgi, Chaitanya

    2008-01-01

    Aim: To assess the value of data set coregistration of gamma camera and computed tomography (CT) in the assessment of targeting of humanized monoclonal antibody 3S193 labeled with indium-111 ( 111 In-hu3S193) to small cell lung cancer (SCLC). Methods and materials: Ten patients (6 male and 4 female; mean age ± S.D., 60 ± 4 years), from an overall population of 20 patients with SCLCs expressing Lewis Y antigen at immunohistochemical analysis, completed a four weekly injections of 111 In-hu3S193 and underwent gamma camera imaging. All had had, as part of their baseline evaluation, Fluorine18 fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Two readers in consensus retrospectively coregistered the gamma camera images with the CT component of the FDG PET/CT by automatic or manual alignment. The resulting image sets were visually examined and SCLC lesions targeting at coregistered gamma camera and CT was correlated side-by-side with the 18 F-FDG uptake. Results: A total number of 31 lesions from SCLC with a thoracic (n = 13) or extrathoracic location (n = 18) were all positive on FDG PET/CT. Coregistration of the gamma camera to the CT demonstrated targeting of antibody to all lesions >2 cm (n = 20) and in a few lesions ≤2 cm (n = 2), with no visualization of most lesions ≤2 cm (n = 9). No 111 In-hu3S193 uptake in normal tissues was observed. Conclusion: Coregistration of antibody gamma camera imaging to FDG PET/CT is feasible and allows valuable assessment of 111 In-hu3S193 antibody targeting to SCLC lesions >2 cm, while lesions ≤2 cm reveal a limited targeting

  16. Porous media microstructure reconstruction using pixel-based and object-based simulated annealing: comparison with other reconstruction methods

    Energy Technology Data Exchange (ETDEWEB)

    Diogenes, Alysson N.; Santos, Luis O.E. dos; Fernandes, Celso P. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Appoloni, Carlos R. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2008-07-01

    The reservoir rocks physical properties are usually obtained in laboratory, through standard experiments. These experiments are often very expensive and time-consuming. Hence, the digital image analysis techniques are a very fast and low cost methodology for physical properties prediction, knowing only geometrical parameters measured from the rock microstructure thin sections. This research analyzes two methods for porous media reconstruction using the relaxation method simulated annealing. Using geometrical parameters measured from rock thin sections, it is possible to construct a three-dimensional (3D) model of the microstructure. We assume statistical homogeneity and isotropy and the 3D model maintains porosity spatial correlation, chord size distribution and d 3-4 distance transform distribution for a pixel-based reconstruction and spatial correlation for an object-based reconstruction. The 2D and 3D preliminary results are compared with microstructures reconstructed by truncated Gaussian methods. As this research is in its beginning, only the 2D results will be presented. (author)

  17. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    Science.gov (United States)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  18. Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    ZHANG Zhiqiang

    2018-01-01

    Full Text Available Timely and accurate change detection of buildings provides important information for urban planning and management.Accompanying with the rapid development of satellite remote sensing technology,detecting building changes from high-resolution remote sensing images have received wide attention.Given that pixel-based methods of change detection often lead to low accuracy while object-based methods are complicated for uses,this research proposes a method that combines pixel-based and object-based methods for detecting building changes from high-resolution remote sensing images.First,based on the multiple features extracted from the high-resolution images,a random forest classifier is applied to detect changed building at the pixel level.Then,a segmentation method is applied to segement the post-phase remote sensing image and to get post-phase image objects.Finally,both changed building at the pixel level and post-phase image objects are fused to recognize the changed building objects.Multi-temporal QuickBird images are used as experiment data for building change detection with high-resolution remote sensing images,the results indicate that the proposed method could reduce the influence of environmental difference,such as light intensity and view angle,on building change detection,and effectively improve the accuracies of building change detection.

  19. Performance and track-based alignment of the Phase-1 upgraded CMS pixel detector

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The Compact Muon Solenoid (CMS) detector is a multi-purpose detector constructed in order to study high-energy particle collisions at the Large Hadron Collider (LHC) at CERN. The all-silicon design of the tracking system of the CMS experiment provided excellent resolution for charged tracks and an efficient tagging of jets during Run 1 and Run 2 of the LHC. After the pixel detector of the CMS experiment was upgraded and installed during the shutdown in the beginning of 2017, the positions and orientations of the tracker modules needed to be determined with a precision of several micrometers. The alignment also needs to be quickly recalculated each time the state of the CMS magnet is changed between 0 T and 3.8 T. The latest results of the CMS tracker performance in the 2017 run are presented, with a special focus on alignment and resolution performance using several million reconstructed tracks from cosmic rays and collision data.

  20. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Radiopharmaceutical activities administered for diagnostic procedures in nuclear medicine in the first six months of the gamma camera use in the Clinical Center of Montenegro - Podgorica

    International Nuclear Information System (INIS)

    Antovic, Nevenka; Aligrudic, Irena

    2008-01-01

    Nuclear medicine procedures have carried out in the Clinical Center of Montenegro - Podgorica since 2006 by the dual-headed SPECT and Digital gamma camera NUCLINE Spirit DH-V. In the first six months of the gamma camera use (from September 2006 to March 2007) examinations of skeleton, kidneys, thyroid and lung were performed. For diagnostic skeletal imaging (102 patients) the radiopharmaceutical 99m Tc-MDP is used, and administered activities were in the range from 555 to 740 MBq. For thyroid imaging (203 patients) 99m Tc-pertechnetate is used, and administered activities were in the range (37-111) MBq. Lung imaging is performed for 3 patients, using 99m Tc-MAA and administered activities in the range (111-185) MBq. Renal imaging is carried out for 72 patients: 42 dynamic studies of kidneys were performed with 99m Tc-DTPA and administered activities from 207 to 282 MBq, and 30 static kidneys scintigraphies were performed using the radiopharmaceutical 99m Tc-DMSA. 6 patients in the last mentioned group were children with year of birth between 2000 and 2006, and administered activities were from 16.6 to 55.5 MBq. In the same group, activities 28.5 MBq, 74.4 MBq and 120 MBq were administered to three patients with age between 6 and 18 years, and in the other cases, administered activities to the patients (adults) were in the range (59.2 to 196) MBq. The administered activities presented here are basis for further estimations of cumulated activity and absorbed dose to the various organs, which is useful for comparison of the average dose to patient organs in various nuclear medicine procedures and calculation of effective dose equivalent and total effective dose, significant for an estimation of potential risk due to the radioactivity administered to a patient during nuclear medicine procedures. It is very important for procedures optimization and improvement of the radiation protection. (author)

  2. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Dezhi Wang

    2018-02-01

    Full Text Available In the dwindling natural mangrove today, mangrove reforestation projects are conducted worldwide to prevent further losses. Due to monoculture and the low survival rate of artificial mangroves, it is necessary to pay attention to mapping and monitoring them dynamically. Remote sensing techniques have been widely used to map mangrove forests due to their capacity for large-scale, accurate, efficient, and repetitive monitoring. This study evaluated the capability of a 0.5-m Pléiades-1 in classifying artificial mangrove species using both pixel-based and object-based classification schemes. For comparison, three machine learning algorithms—decision tree (DT, support vector machine (SVM, and random forest (RF—were used as the classifiers in the pixel-based and object-based classification procedure. The results showed that both the pixel-based and object-based approaches could recognize the major discriminations between the four major artificial mangrove species. However, the object-based method had a better overall accuracy than the pixel-based method on average. For pixel-based image analysis, SVM produced the highest overall accuracy (79.63%; for object-based image analysis, RF could achieve the highest overall accuracy (82.40%, and it was also the best machine learning algorithm for classifying artificial mangroves. The patches produced by object-based image analysis approaches presented a more generalized appearance and could contiguously depict mangrove species communities. When the same machine learning algorithms were compared by McNemar’s test, a statistically significant difference in overall classification accuracy between the pixel-based and object-based classifications only existed in the RF algorithm. Regarding species, monoculture and dominant mangrove species Sonneratia apetala group 1 (SA1 as well as partly mixed and regular shape mangrove species Hibiscus tiliaceus (HT could well be identified. However, for complex and easily

  3. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    Science.gov (United States)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  4. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    International Nuclear Information System (INIS)

    Miucci, A; Gonzalez-Sevilla, S; Ferrere, D; Iacobucci, G; Rosa, A La; Muenstermann, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Obermann, T; Wermes, N; Garcia-Sciveres, M; Backhaus, M; Capeans, M; Feigl, S; Nessi, M; Pernegger, H; Ristic, B; George, M

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

  5. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  6. New Generation GridPix: Development and characterisation of pixelated gaseous detectors based on the Timepix3 chip

    CERN Document Server

    AUTHOR|(CDS)2082958; Hessey, Nigel

    Due to the increasing demands of high energy physics experiments there is a need for particle detectors which enable high precision measurements. In this regard, the GridPix detector is a novel detector concept which combines the benefits of a pixel chip with an integrated gas amplification structure. The resulting unit is a detector sensitive to single electrons with a great potential for particle tracking and energy loss measurements. This thesis is focusing on the development of a new generation of GridPix detectors based on the Timepix3 chip, which implements a high resolution Time to Digital Converter (TDC) in each pixel. After an introductory chapter describing the motivation behind GridPix, the manuscript presents the physics of gaseous detectors in chapter 2 along with the gaseous detectors used for particle tracking in chapter 3. Chapters 4 and 5 are focusing on the tracking performance of GridPix detectors. Chapter 4 presents results obtained with a GridPix detector based on a small scale prototy...

  7. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2012-09-01

    Full Text Available We present a novel and innovative automated processing environment for the derivation of land cover (LC and land use (LU information. This processing framework named TWOPAC (TWinned Object and Pixel based Automated classification Chain enables the standardized, independent, user-friendly, and comparable derivation of LC and LU information, with minimized manual classification labor. TWOPAC allows classification of multi-spectral and multi-temporal remote sensing imagery from different sensor types. TWOPAC enables not only pixel-based classification, but also allows classification based on object-based characteristics. Classification is based on a Decision Tree approach (DT for which the well-known C5.0 code has been implemented, which builds decision trees based on the concept of information entropy. TWOPAC enables automatic generation of the decision tree classifier based on a C5.0-retrieved ascii-file, as well as fully automatic validation of the classification output via sample based accuracy assessment.Envisaging the automated generation of standardized land cover products, as well as area-wide classification of large amounts of data in preferably a short processing time, standardized interfaces for process control, Web Processing Services (WPS, as introduced by the Open Geospatial Consortium (OGC, are utilized. TWOPAC’s functionality to process geospatial raster or vector data via web resources (server, network enables TWOPAC’s usability independent of any commercial client or desktop software and allows for large scale data processing on servers. Furthermore, the components of TWOPAC were built-up using open source code components and are implemented as a plug-in for Quantum GIS software for easy handling of the classification process from the user’s perspective.

  8. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    Science.gov (United States)

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. A Novel Sub-pixel Measurement Algorithm Based on Mixed the Fractal and Digital Speckle Correlation in Frequency Domain

    Directory of Open Access Journals (Sweden)

    Zhangfang Hu

    2014-10-01

    Full Text Available The digital speckle correlation is a non-contact in-plane displacement measurement method based on machine vision. Motivated by the facts that the low accuracy and large amount of calculation produced by the traditional digital speckle correlation method in spatial domain, we introduce a sub-pixel displacement measurement algorithm which employs a fast interpolation method based on fractal theory and digital speckle correlation in frequency domain. This algorithm can overcome either the blocking effect or the blurring caused by the traditional interpolation methods, and the frequency domain processing also avoids the repeated searching in the correlation recognition of the spatial domain, thus the operation quantity is largely reduced and the information extracting speed is improved. The comparative experiment is given to verify that the proposed algorithm in this paper is effective.

  10. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shun, E-mail: s-ono@champ.hep.sci.osaka-u.ac.jp [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), 1-1 Oho, Tsukuba (Japan)

    2017-02-11

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm{sup 2} pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  11. Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Acton, P.D.; Mozley, P.D.; Kung, H.F.; Pennsylvania Univ., Philadelphia, PA

    1999-01-01

    Positron emission tomography (PET) and single-photon emission tomography (SPET) imaging of the dopaminergic system is a powerful tool for distinguishing groups of patients with neurodegenerative disorders, such as Parkinson's disease (PD). However, the differential diagnosis of individual subjects presenting early in the progress of the disease is much more difficult, particularly using region-of-interest analysis where small localized differences between subjects are diluted. In this paper we present a novel pixel-based technique using logistic discriminant analysis to distinguish between a group of PD patients and age-matched healthy controls. Simulated images of an anthropomorphic head phantom were used to test the sensitivity of the technique to striatal lesions of known size. The methodology was applied to real clinical SPET images of binding of technetium-99m labelled TRODAT-1 to dopamine transporters in PD patients (n=42) and age-matched controls (n=23). The discriminant model was trained on a subset (n=17) of patients for whom the diagnosis was unequivocal. Logistic discriminant parametric maps were obtained for all subjects, showing the probability distribution of pixels classified as being consistent with PD. The probability maps were corrected for correlated multiple comparisons assuming an isotropic Gaussian point spread function. Simulated lesion sizes measured by logistic discriminant parametric mapping (LDPM) gave strong correlations with the known data (r 2 =0.985, P<0.001). LDPM correctly classified all PD patients (sensitivity 100%) and only misclassified one control (specificity 95%). All patients who had equivocal clinical symptoms associated with early onset PD (n=4) were correctly assigned to the patient group. Statistical parametric mapping (SPM) had a sensitivity of only 24% on the same patient group. LDPM is a powerful pixel-based tool for the differential diagnosis of patients with PD and healthy controls. The diagnosis of disease even

  12. Occult Breast Cancer: Scintimammography with High-Resolution Breast-specific Gamma Camera in Women at High Risk for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Jocelyn A. Rapelyea; , Gilat Zisman; Kevin Mohtashemi; Joyce Raub; Christine B. Teal; Stan Majewski; Benjamin L. Welch

    2005-08-01

    To prospectively evaluate a high-resolution breast-specific gamma camera for depicting occult breast cancer in women at high risk for breast cancer but with normal mammographic and physical examination findings. MATERIALS AND METHODS: Institutional Review Board approval and informed consent were obtained. The study was HIPAA compliant. Ninety-four high-risk women (age range, 36-78 years; mean, 55 years) with normal mammographic (Breast Imaging Reporting and Data System [BI-RADS] 1 or 2) and physical examination findings were evaluated with scintimammography. After injection with 25-30 mCi (925-1110 MBq) of technetium 99m sestamibi, patients were imaged with a high-resolution small-field-of-view breast-specific gamma camera in craniocaudal and mediolateral oblique projections. Scintimammograms were prospectively classified according to focal radiotracer uptake as normal (score of 1), with no focal or diffuse uptake; benign (score of 2), with minimal patchy uptake; probably benign (score of 3), with scattered patchy uptake; probably abnormal (score of 4), with mild focal radiotracer uptake; and abnormal (score of 5), with marked focal radiotracer uptake. Mammographic breast density was categorized according to BI-RADS criteria. Patients with normal scintimammograms (scores of 1, 2, or 3) were followed up for 1 year with an annual mammogram, physical examination, and repeat scintimammography. Patients with abnormal scintimammograms (scores of 4 or 5) underwent ultrasonography (US), and those with focal hypoechoic lesions underwent biopsy. If no lesion was found during US, patients were followed up with scintimammography. Specific pathologic findings were compared with scintimammographic findings. RESULTS: Of 94 women, 78 (83%) had normal scintimammograms (score of 1, 2, or 3) at initial examination and 16 (17%) had abnormal scintimammograms (score of 4 or 5). Fourteen (88%) of the 16 patients had either benign findings at biopsy or no focal abnormality at US; in two

  13. Occult Breast Cancer: Scintimammography with High-Resolution Breast-specific Gamma Camera in Women at High Risk for Breast Cancer

    International Nuclear Information System (INIS)

    Rachel F. Brem; Jocelyn A. Rapelyea; , Gilat Zisman; Kevin Mohtashemi; Joyce Raub; Christine B. Teal; Stan Majewski; Benjamin L. Welch

    2005-01-01

    To prospectively evaluate a high-resolution breast-specific gamma camera for depicting occult breast cancer in women at high risk for breast cancer but with normal mammographic and physical examination findings. MATERIALS AND METHODS: Institutional Review Board approval and informed consent were obtained. The study was HIPAA compliant. Ninety-four high-risk women (age range, 36-78 years; mean, 55 years) with normal mammographic (Breast Imaging Reporting and Data System [BI-RADS] 1 or 2) and physical examination findings were evaluated with scintimammography. After injection with 25-30 mCi (925-1110 MBq) of technetium 99m sestamibi, patients were imaged with a high-resolution small-field-of-view breast-specific gamma camera in craniocaudal and mediolateral oblique projections. Scintimammograms were prospectively classified according to focal radiotracer uptake as normal (score of 1), with no focal or diffuse uptake; benign (score of 2), with minimal patchy uptake; probably benign (score of 3), with scattered patchy uptake; probably abnormal (score of 4), with mild focal radiotracer uptake; and abnormal (score of 5), with marked focal radiotracer uptake. Mammographic breast density was categorized according to BI-RADS criteria. Patients with normal scintimammograms (scores of 1, 2, or 3) were followed up for 1 year with an annual mammogram, physical examination, and repeat scintimammography. Patients with abnormal scintimammograms (scores of 4 or 5) underwent ultrasonography (US), and those with focal hypoechoic lesions underwent biopsy. If no lesion was found during US, patients were followed up with scintimammography. Specific pathologic findings were compared with scintimammographic findings. RESULTS: Of 94 women, 78 (83%) had normal scintimammograms (score of 1, 2, or 3) at initial examination and 16 (17%) had abnormal scintimammograms (score of 4 or 5). Fourteen (88%) of the 16 patients had either benign findings at biopsy or no focal abnormality at US; in two

  14. Integrating pixel- and polygon-based approaches to wildfire risk assessment: Application to a high-value watershed on the Pike and San Isabel National Forests, Colorado, USA

    Science.gov (United States)

    Matthew P. Thompson; Julie W. Gilbertson-Day; Joe H. Scott

    2015-01-01

    We develop a novel risk assessment approach that integrates complementary, yet distinct, spatial modeling approaches currently used in wildfire risk assessment. Motivation for this work stems largely from limitations of existing stochastic wildfire simulation systems, which can generate pixel-based outputs of fire behavior as well as polygon-based outputs of simulated...

  15. Determination of in vivo behavior of mitomycin C-loaded o/w soybean oil microemulsion and mitomycin C solution via gamma camera imaging.

    Science.gov (United States)

    Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan

    2013-09-01

    In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.

  16. Development of a new Xe-133 single dose multi-step method (SDMM) for muscle blood flow measurement using gamma camera

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Seto, Mikito; Taki, Junichi

    1985-01-01

    In order to measure the muscle blood flow (MBF) during exercise (Ex), a new Xe-133 single dose multi-step method (SDMM) for leg MBF measurement before, during and after Ex using gamma camera was developped. Theoretically, if the activity of Xe-133 in the muscle immediately before and after Ex are known, then the mean MBF during Ex can be calculated. In SDMM, these activities are corrected through correction formula using time delays between end of data aquisition (DA) at rest (R1) and begining of the Ex (TAB), and between end of Ex and begining of the DA after Ex (R2) (TDA). Validity of the SDMM and MBF response on mild and heavy Ex were evaluated in 11 normal volunteers. Ex MBF calculated from 5 and 2.5 min DA (5 sec/frame) both at R1 and R2 were highly correlated (r=.996). Ex MBF by SDMM and direct(measurement by fixed leg exercise were also highly correlated (r=.999). Reproducibility of the R1 and Ex MBF were excellent (r=.999). The highest MBF was seen in GCM on miled walking Ex and in VLM on heavy squatting Ex. After miled Ex, MBF rapidly returned to normal. After heavy Ex, MBF remaind high in VLM In conclusion, SDMM is simple and accurate method for evaluation of dynamic MBF response according to exercise. SDMM is also applicable to the field of sports medicine. (author)

  17. Surface and volume three-dimensional displays of Tc-99m HMPAO brain SPECT images in stroke patients with three-head gamma camera

    International Nuclear Information System (INIS)

    Shih, W.J.; Slevin, J.T.; Schleenbaker, R.E.; Mills, B.J.; Magoun, S.L.; Ryo, U.Y.

    1991-01-01

    This paper evaluates volume and surface 3D displays in Tc-99m HMPAO brain SPECT imaging in stroke patients. Using a triple-head gamma camera interfaced with a 64-bit supercomputer, 20 patients with stroke were studied. Each patient was imaged 30-60 minutes after an intravenous injection of 20 mCi of Tc-99m HMPAO. SPECT images as well as planar images were routinely obtained; volume and surface 3D display then proceeded, with the process requiring 5-10 minutes. Volume and surface 3D displays show the brain from all angles; thus the location and extension of lesion(s) in the brain are much easier to appreciate. While a cerebral lesion(s) was more clearly delineated by surface 3D imaging, crossed cerebellar diaschisis in seven patients was clearly exhibited with volume 3D but not with surface 3D imaging. Volume and surface 3D displays enhance continuity of structures and understanding of spatial relationships

  18. [Diagnostic use of positron emission tomography in France: from the coincidence gamma-camera to mobile hybrid PET/CT devices].

    Science.gov (United States)

    Talbot, Jean-Noël

    2010-11-01

    Positron emission tomography (PET) is a well-established medical imaging method. PET is increasingly used for diagnostic purposes, especially in oncology. The most widely used radiopharmaceutical is FDG, a glucose analogue. Other radiopharmaceuticals have recently been registered or are in development. We outline technical improvements of PET machines during more than a decade of clinical use in France. Even though image quality has improved considerably and PET-CT hybrid machines have emerged, spending per examination has remained remarkably constant. Replacement and maintenance costs have remained in the range of 170-190 Euros per examination since 1997, whether early CDET gamma cameras or the latest time-of-flight PET/CT devices are used. This is mainly due to shorter acquisition times and more efficient use of FDG New reimbursement rates for PET/CT are needed in France in order to favor regular acquisition of state-of-the-art devices. One major development is the coupling of PET and MR imaging.

  19. Comparison of uteroplacental blood flow in normal and pre-eclamptic patients measurement with technetium-99m and a computer-linked gamma camera

    International Nuclear Information System (INIS)

    Cho, S.H.; Moon, H.; Kim, D.S.; Cho, S.S.

    1985-01-01

    Uteroplacental blood flow studies in preeclampsia are of special interest since the vascular changes reported in this disease might constitute a structural basis for a reduction of blood flow. Evidence has also been given for a decreased uteroplacental blood flow in preeclampsia. Among the various methods to estimate the maternal placental blood flow, the one most frequently reported in the literature during the last years has been the time activity analysis of short lived radiotracer such as technetium-99m or indium-113m injected intravenously. Only few studies with the above mentioned technique comparing normal and preeclampsia cases have been undertaken. In clinical practice we frequently experience difficuly in finding the optimal time to get the delivery in preeclampsia patients. The aim of this study was first to measure uteroplacental blood flow in preeclamptic pregnancies using a computer-linked gamma camera method for the time-activity analysis of technetium-99m and second to discuss the possibility of clinical application of these measurements for determination of fetal well-being and the timing of the delivery in these patients. Uteroplacental blood flow was measured from 13 preeclamptic patients and 19 pregnancies without any complication after 35 completed weeks of gestation from Jan. 1983 to Sep. 1983 at Obstetrics department of Hanyang University Hospital. (Author)

  20. Comparison of uteroplacental blood flow in normal and pre-eclamptic patients measurement with technetium-99m and a computer-linked gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.H.; Moon, H.; Kim, D.S.; Cho, S.S.

    1985-05-01

    Uteroplacental blood flow studies in preeclampsia are of special interest since the vascular changes reported in this disease might constitute a structural basis for a reduction of blood flow. Evidence has also been given for a decreased uteroplacental blood flow in preeclampsia. Among the various methods to estimate the maternal placental blood flow, the one most frequently reported in the literature during the last years has been the time activity analysis of short lived radiotracer such as technetium-99m or indium-113m injected intravenously. Only few studies with the above mentioned technique comparing normal and preeclampsia cases have been undertaken. In clinical practice we frequently experience difficuly in finding the optimal time to get the delivery in preeclampsia patients. The aim of this study was first to measure uteroplacental blood flow in preeclamptic pregnancies using a computer-linked gamma camera method for the time-activity analysis of technetium-99m and second to discuss the possibility of clinical application of these measurements for determination of fetal well-being and the timing of the delivery in these patients. Uteroplacental blood flow was measured from 13 preeclamptic patients and 19 pregnancies without any complication after 35 completed weeks of gestation from Jan. 1983 to Sep. 1983 at Obstetrics department of Hanyang University Hospital. (Author).

  1. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy.

    Science.gov (United States)

    Murray, G; Schad, N; Ladd, W; Allie, D; vander Zwagg, R; Avet, P; Rockett, J

    1992-07-01

    Fifteen patients with coronary disease and resting left ventricular ejection fractions of less than or equal to 0.35 underwent resting metabolic cardiac imaging utilizing 1 mCi [123I]iodophenylpentadecanoic acid (IPPA) intravenously and a multicrystal gamma camera. Parametric images of regional rates of IPPA clearance and accumulation were generated. Forty-two vascular territories (22 infarcted) were evaluated by metabolic imaging as well as transmural myocardial biopsy. Despite resting akinesis or dyskinesis in 20/22 (91%) infarcted territories, 16/22 (73%) of these territories were metabolically viable. Transmural myocardial biopsies in all patients (43 sites, 42 vascular territories) during coronary bypass surgery confirmed IPPA results in 39/43 patients (91%). When compared to biopsy, scan sensitivity for viability was 33/36 (92%) with a specificity of 6/7 (86%). Eighty percent of bypassed, infarcted but IPPA viable segments demonstrated improved regional systolic wall motion postoperatively as assessed by exercise radionuclide angiography. We conclude resting IPPA imaging identifies viable myocardium, thereby providing a safe, cost-effective technique for myocardial viability assessment.

  2. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    Science.gov (United States)

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  3. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    Science.gov (United States)

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  4. P.I.X.S.C.A.N.: a micro-CT scanner for small animal based on hybrid pixel detectors

    International Nuclear Information System (INIS)

    Khoury, R.

    2008-03-01

    Since more than a dozen years, efforts were led in the field of X-ray tomography for small animals, principally for the improvement of spatial resolution and the diminution of the absorbed dose. The C.P.P.M. developed the micro-CT P.I.X.S.C.A.N. based on the hybrid pixel detector X.P.A.D.2. In this context, my thesis work consists in studying the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 and the contribution of the hybrid pixels in the imaging of small animals. A fast analytical simulation, FastSimu, was developed. An extrapolation of the performance of the demonstrator P.I.X.S.C.A.N, as well as the validation of the results obtained with the measured data, were led by means of the analytical simulator FastSimu. The demonstrator P.I.X.S.C.A.N./X.P.A.D.2 allowed to obtain reconstructed images with a rather good quality for a relatively weak absorbed dose. Its spatial resolution is degraded by the high number of defective pixels of the detector X.P.A.D.2. Beyond this study, a new version of the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 is under construction. This latter, characterized by two and a half times smaller pixels and about no defective pixels will bring a considerable improvement on spatial resolution. (author)

  5. Adaptive block online learning target tracking based on super pixel segmentation

    Science.gov (United States)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  6. A Novel Event-Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS).

    Science.gov (United States)

    Rigi, Amin; Baghaei Naeini, Fariborz; Makris, Dimitrios; Zweiri, Yahya

    2018-01-24

    In this paper, a novel approach to detect incipient slip based on the contact area between a transparent silicone medium and different objects using a neuromorphic event-based vision sensor (DAVIS) is proposed. Event-based algorithms are developed to detect incipient slip, slip, stress distribution and object vibration. Thirty-seven experiments were performed on five objects with different sizes, shapes, materials and weights to compare precision and response time of the proposed approach. The proposed approach is validated by using a high speed constitutional camera (1000 FPS). The results indicate that the sensor can detect incipient slippage with an average of 44.1 ms latency in unstructured environment for various objects. It is worth mentioning that the experiments were conducted in an uncontrolled experimental environment, therefore adding high noise levels that affected results significantly. However, eleven of the experiments had a detection latency below 10 ms which shows the capability of this method. The results are very promising and show a high potential of the sensor being used for manipulation applications especially in dynamic environments.

  7. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow

    Science.gov (United States)

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  8. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    CERN Document Server

    Miucci, A; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; Rosa, A.La; Muenstermann, D.; George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J.C.; Liu, J; Barbero, M.; Rozanov, A

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. 1Corresponding author. c CERN 2014, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI. doi:10.1088/1748-0221/9/05/C050642014 JINST 9 C05064 A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation a...

  9. Correction of defective pixels for medical and space imagers based on Ising Theory

    Science.gov (United States)

    Cohen, Eliahu; Shnitser, Moriel; Avraham, Tsvika; Hadar, Ofer

    2014-09-01

    We propose novel models for image restoration based on statistical physics. We investigate the affinity between these fields and describe a framework from which interesting denoising algorithms can be derived: Ising-like models and simulated annealing techniques. When combined with known predictors such as Median and LOCO-I, these models become even more effective. In order to further examine the proposed models we apply them to two important problems: (i) Digital Cameras in space damaged from cosmic radiation. (ii) Ultrasonic medical devices damaged from speckle noise. The results, as well as benchmark and comparisons, suggest in most of the cases a significant gain in PSNR and SSIM in comparison to other filters.

  10. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    Science.gov (United States)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  11. Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral BRDF.

    Science.gov (United States)

    Liu, Chao; Gu, Jinwei

    2014-01-01

    Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.

  12. Spatial clustering of pixels of a multispectral image

    Science.gov (United States)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  13. Pixel based SHG probes of extracellular matrix (ECM) alterations in ovarian cancer (Conference Presentation)

    Science.gov (United States)

    Campbell, Kirby R.; Chaudhary, Rajeev; Handel, Julia; Campagnola, Paul J.

    2017-02-01

    Remodeling of the extracellular matrix in human ovarian cancer, can be reflected in increased collagen concentration, changes in alignment and/or up-regulation of different collagen isoforms, including Col III. Using fibrillar gel models, we demonstrate that Col I and Col III can be quantitatively distinguished by 3 distinct SHG polarization specific metrics: i) determination of helical pitch angle via the single axis molecular model, ii) dipole alignment via anisotropy, and iii) chirality via SHG circular dichroism (SHG-CD). These sub-resolution differentiations are possible due to differences in the α helix angles of the two isoforms, which co-mingle in the same fibrils. We also investigated the mechanism of the SHG-CD response and show that unlike conventional CD, it is dominated by electric dipole interactions and is consistent with the two state SHG model. We further applied these 3 polarization resolved analyses to human normal, high risk, benign tumors, and malignant human ovarian tissues. We found that these tissues could all be differentiated by these metrics, where high grade tissues had analogous α-helical pitch angles to the in the Col I/Col III gel model. This confirms literature suggestions based on immunofluorescence and gene expression that Col III is up-regulated in high grade ovarian cancers. The different tissues also displayed differing anisotropies, indicating the fibril assemblies are distinct and likely do not result from remodeling of existing collagen but synthesis of new collagen. Importantly, these SHG polarization methods provide structural information not otherwise possible and can serve as label-free biomarkers for ovarian and other cancers.

  14. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery

    Science.gov (United States)

    Gao, Junfeng; Liao, Wenzhi; Nuyttens, David; Lootens, Peter; Vangeyte, Jürgen; Pižurica, Aleksandra; He, Yong; Pieters, Jan G.

    2018-05-01

    The developments in the use of unmanned aerial vehicles (UAVs) and advanced imaging sensors provide new opportunities for ultra-high resolution (e.g., less than a 10 cm ground sampling distance (GSD)) crop field monitoring and mapping in precision agriculture applications. In this study, we developed a strategy for inter- and intra-row weed detection in early season maize fields from aerial visual imagery. More specifically, the Hough transform algorithm (HT) was applied to the orthomosaicked images for inter-row weed detection. A semi-automatic Object-Based Image Analysis (OBIA) procedure was developed with Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize. Furthermore, the two binary weed masks generated from HT and OBIA were fused for accurate binary weed image. The developed RF classifier was evaluated by 5-fold cross validation, and it obtained an overall accuracy of 0.945, and Kappa value of 0.912. Finally, the relationship of detected weeds and their ground truth densities was quantified by a fitted linear model with a coefficient of determination of 0.895 and a root mean square error of 0.026. Besides, the importance of input features was evaluated, and it was found that the ratio of vegetation length and width was the most significant feature for the classification model. Overall, our approach can yield a satisfactory weed map, and we expect that the obtained accurate and timely weed map from UAV imagery will be applicable to realize site-specific weed management (SSWM) in early season crop fields for reducing spraying non-selective herbicides and costs.

  15. Small-pixel long wavelength infrared focal plane arrays based on InAs/GaSb Type-II superlattice

    Science.gov (United States)

    Han, Xi; Jiang, Dongwei; Wang, Guowei; Hao, Hongyue; Sun, Yaoyao; Jiang, Zhi; Lv, Yuexi; Guo, Chunyan; Xu, Yingqiang; Niu, Zhichuan

    2018-03-01

    The paper reports a 640 × 512 long wavelength infrared focal plane arrays (FPAs) with 15 × 15 μm2 pixels pitch based on the type II InAs/GaSb superlattice. Material grown on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 10.2 μm across the entire wafer. The peak quantum efficiency of the detector reaches 28% at 9.1 μm without anti-reflecting coating. Maximal resistance-area products of 8.95 Ω·cm2 at 77 K and 24.4 Ω·cm2 at 45 K are achieved in a single element device indicating that the generation-recombination and tunneling mechanisms dominate the device dark current, respectively. The peak Johnson Detectivity reaches 9.66 × 1011 cm Hz1/2/W at 9.1 μm with the bias voltage of 80 mV. In the whole zone, the operability and non-uniformity for the responsivity are 97.74% and 6.41% respectively. The average noise equivalent temperature difference of 31.9 mK at 77 K is achieved with an integration time of 0.5 ms, a 300 K background and f/2 optics.

  16. Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion

    Science.gov (United States)

    Pan, Yue; Xu, Xiping; Qiao, Yang

    2018-06-01

    In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.

  17. Diagnosis of myocardial viability by dual-head coincidence gamma camera fluorine-18 fluorodeoxyglucose positron emission tomography with and without non-uniform attenuation correction

    International Nuclear Information System (INIS)

    Nowak, B.; Zimmy, M.; Kaiser, H.-J.; Schaefer, W.; Reinartz, P.; Buell, U.; Schwarz, E.R.; Dahl, J. vom

    2000-01-01

    This study assessed a dual-head coincidence gamma camera (hybrid PET) equipped with single-photon transmission for myocardial fluorine-18 fluorodeoxyglucose (FDG) imaging by comparing this technique with conventional positron emission tomography (PET) using a dedicated ring PET scanner. Twenty-one patients were studied with dedicated FDG ring PET and FDG hybrid PET for evaluation of myocardial glucose metabolism, as well as technetium-99 m tetrofosmin single-photon emission tomography (SPET) to estimate myocardial perfusion. All patients underwent transmitted attenuation correction using germanium-68 rod sources for ring PET and caesium-137 point sources for hybrid PET. Ring PET and hybrid PET emission scans were started 61±12 and 98±15 min, respectively, after administration of 154±31 MBq FDG. Attenuation-corrected images were reconstructed iteratively for ring PET and hybrid PET (ac-hybrid PET), and non-attenuation-corrected images for hybrid PET (non-ac-hybrid PET) only. Tracer distribution was analysed semiquantitatively using a volumetric vector sampling method dividing the left ventricular wall into 13 segments. FDG distribution in non-ac-hybrid PET and ring PET correlated with r=0.36 (P<0.0001), and in ac-hybrid PET and ring PET with r=0.79 (P<0.0001). Non-ac-hybrid PET significantly overestimated FDG uptake in the apical and supra-apical segments, and underestimated FDG uptake in the remaining segments, with the exception of one lateral segment. Ac-hybrid PET significantly overestimated FDG uptake in the apical segment, and underestimated FDG uptake in only three posteroseptal segments. A three-grade score was used to classify diagnosis of viability by FDG PET in 136 segments with reduced perfusion as assessed by SPET. Compared with ring PET, non-ac-hybrid PET showed concordant diagnoses in 80 segments (59%) and ac-hybrid PET in 101 segments (74%) (P<0.001). Agreement between ring PET and non-ac-hybrid PET was best in the basal lateral wall and in the

  18. Regional exploration of pulmonary function using xenon 133. Value of the gamma camera connected to a computer

    Energy Technology Data Exchange (ETDEWEB)

    Moyses, B; Gerard, G; Methlin, G [Centre Paul-Strauss, 67 - Strasbourg (France); Weitzenblum, E [Centre Hospitalier Universitaire, 67 - Strasbourg (France)

    1978-06-17

    Regional isotopic exploration of ventilation and pulmonary perfusion is not yet widely applied in clinical practice, by virtue of the complexity of the equipment required, but also because of the complicated and lengthy analysis of the results. In this respect, connection of the scintillation camera to a computer represents a major advance which other authors have already emphasized. Our own experience in this area and our method of exploration in a group of 43 cases of chronic obstructive lung disease (33 patients of the chronic bronchitis type, 10 patients with emphysema) are analysed and discussed. The results indicate the following: in chronic bronchitis, a very marked fall in ventilation of the bases with inversion of the normal vertical ventilation gradient, and a fall in the ventilation/perfusion ratio of the bases; in emphysema, a fall in ventilation, but also and above all in regional perfusion of all territories with preservation of normal or even increased regional ventilation/perfusion ratios. Regional exploration may also be of value in the detection of early stages of obstructive lung disease, and in pre-operative assessment in thoracic surgery.

  19. The regional exploration of pulmonary function using xenon 133. Value of the gamma camera connected to a computer

    International Nuclear Information System (INIS)

    Moyses, B.; Gerard, G.; Methlin, G.; Weitzenblum, E.

    1978-01-01

    Regional isotopic exploration of ventilation and pulmonary perfusion is not yet widely applied in clinical practice, by virtue of the complexity of the equipment required, but also because of the complicated and lengthy analysis of the results. In this respect, connection of the scintillation camera to a computer represents a major advance which other authors have already emphasized. Our own experience in this area and our method of exploration in a group of 43 cases of chronic obstructive lung disease (33 patients of the chronic bronchitis type, 10 patients with emphysema) are analysed and discussed. The results indicate the following: in chronic bronchitis, a very marked fall in ventilation of the bases with inversion of the normal vertical ventilation gradient, and a fall in the ventilation/perfusion ratio of the bases; in emphysema, a fall in ventilation, but also and above all in regional perfusion of all territories with preservation of normal or even increased regional ventilation/perfusion ratios. Regional exploration may also be of value in the detection of early stages of obstructive lung disease, and in pre-operative assessment in thoracic surgery [fr

  20. [Dynamics of food transit in gastrectomized patients with and without dumping syndrome studied with the gamma camera and a marked meal].

    Science.gov (United States)

    Palermo, F; Boccaletto, F; Allegri, F; Tommaseo, T; Chiara, G

    1988-01-01

    Scintigraphy was performed on a group of patients following the administration of a solid radiolabelled meal. As a tracer, human albumin microspheres were used with 99mTc, mixed with fresh scrambled eggs, eaten as a sandwich in two slices of white bread. The analysis of transit and emptying-rate of the radiolabelled meal in the gastric or derivative loop areas was performed by means of a medium field (300 mm) gamma camera interfaced with a digital computer; the data were collected at 15" frames for 90'-120'. Twenty-nine patients were examined who had undergone sub-total gastrectomy: 11 of them were "dumpers" and 18 "non-dumpers"; moreover, 9 volunteers without any history of gastrointestinal diseases and 11 patients with different gastric disorders were checked. In the first group of gastrectomized patients the half-emptying time (T50) was significantly shorter than in the 11 people being checked (Md = 27.5 +/- 10.8 versus 69.6 +/- 19 minutes); in "non-dumpers" T50 was even shorter (Md = 24.2 +/- 13 min). There was no significant statistical difference between the two classes of gastroresected patients in both T50 and emptying-rate of the radioactive solid food, which excludes the accelerated transit as a factor in the functional post-prandial symptoms of the dumping syndrome. On the contrary, the dynamic selective analysis of the radiolabelled food transit through derivative afferent and efferent loops showed different patterns in the two groups of gastroresected patients: the progression of the propulsive wave was very irregular and constantly hyperperistaltic only in the dumpers.

  1. PET with coincidence gamma cameras - clinical benefit from the radiooncologists' point of view; PET mit Koinzidenz-Gammakameras - klinischer Nutzen aus der Sicht des Radioonkologen

    Energy Technology Data Exchange (ETDEWEB)

    Richter, E; Feyerabend, T; Stallmann, C; Lauer, I; Baehre, M [Universitaetsklinikum Luebeck (Germany). Klinik fuer Strahlentherapie und Nuklearmedizin

    2001-11-01

    Positron emission tomography with FDG (FDG-PET) is a new technique, which displays the cellular metabolic activity. Since tumors exhibit an increased metabolic activity when compared to normal tissue, this imaging modality has a particularly high importance. FDG-PET is not only useful for localizing and staging of malignant tumors, but also to evaluate therapy response. In this context, PET is superior to morphologically orientated modalities, because therapeutically induced changes in glucose metabolism precede morphologic alterations. Numerous studies indicate, that PET will play an important role in radiooncology concerning therapy planning and monitoring the effects of therapy during and after treatment. Further clinical studies are necessary to evaluate the information provided by FDG-PET more precisely. Coincidence gamma cameras with adequate imaging characteristics will gain enhanced importance to meet these increasing demands. (orig.) [German] Die Positronenemissionstomographie mit FDG (FDG-PET) ist ein neues Verfahren, das die Stoffwechselaktivitaet von Zellen bildlich wiedergibt. Da Tumorgewebe im Vergleich zu normalem Gewebe einen erhoehten Stoffwechsel aufweist, hat dieses Untersuchungsverfahren in der Onkologie einen besonders hohen Stellenwert. Neben der Lokalisations- und Ausbreitungsdiagnostik eignet sich die FDG-PET zur Erfolgsbeurteilung. Die PET ist hierin den anderen morphologischen Verfahren ueberlegen, da die Veraenderungen des Glukosemetabolismus durch therapeutische Massnahmen morphologischen Veraenderungen vorausgehen. Zahlreiche Untersuchungen lassen erkennen, dass die PET fuer die Radioonkologie einen wichtigen Stellenwert einnehmen wird. Dies betrifft die Bestrahlungsplanung und das Therapiemonitoring waehrend und nach einer Behandlung. Weitere klinische Studien sind notwendig, um die Aussagekraft der FDG-PET besser zu evaluieren. Den Koinzidenz-Gammakameras mit adaequaten Bildgebungseigenschaften kommt eine zunehmende Bedeutung zu, um

  2. 18F-FDG imaging with a coincidence dual-headed gamma camera (Co-PET) in the diagnosis, staging and management of lung cancer

    International Nuclear Information System (INIS)

    Lin, P.; Chu, J.; Pocock, N.; Quach, T.; Sorensen, B.

    1999-01-01

    Full text: FDG-PET has an established role in the management of lung cancer, while the experience with FDG-Co-PET is limited. Our study aims to demonstrate the feasibility of Co-PET in staging and management of lung cancer. Thirty-nine Co-PET studies were performed on our first 36 patients (pts) with primary lung cancer between November 1997 and October 1998. Tomography of brain and torso with an ADAC Solus MCD gamma camera was performed (60 min after 200 MBq of 18 FFDG and > 6 h fasting). Histology subgroups included squamous (14 pts), small cell (1), adeno-carcinoma (11), broncho-alveolar (1), large cell (8), carcinoid (1). CT/clinical staging subgroups included 18 pts in stage 1, 4 in stage 2, 7 in stage 3a, 2 in stage 3b, 8 in stage 4. Compared with CT/clinical staging, FDG upstaged 5 pts (14%) with regional nodal metastases (mets) and 8 pts (22%) with distant mets (cervical = 2, lung = 1, brain = 3, bone = 3, abdomen = 4). FDG under-staged 2 pts in 3 sites (all < 15 mm). Surgical nodal staging was performed in 14 pts: false-positives occurred in 3 CT and 1 Co-PET studies, and false-negatives in one CT/Co-PET. Site sensitivities for primary (smallest 7 mm) and regional lymph nodes are 100% and 88% respectively. Specificities for primary and regional nodes are 100% and 96% respectively. Co-PET also has impact on management: treatment intent (6 pts), radiotherapy fields (1), diagnosis of lung mets (2) and radiation pneumonitis (1). In conclusion, our initial data demonstrate FDG-Co-PET scanning could provide a valuable addition to conventional imaging studies in diagnosis, staging and management of lung cancer

  3. Breast-specific gamma camera imaging with 99mTc-MIBI has better diagnostic performance than magnetic resonance imaging in breast cancer patients: A meta-analysis.

    Science.gov (United States)

    Zhang, Aimi; Li, Panli; Liu, Qiufang; Song, Shaoli

    2017-01-01

    This study aimed to evaluate the diagnostic role of breast-specific gamma camera imaging (BSGI) with technetium-99m-methoxy isobutyl isonitrile ( 99m Tc-MIBI) and magnetic resonance imaging (MRI) in patients with breast cancer through a meta-analysis. Three reviewers searched articles published in medical journals before June 2016 in MEDLINE, EMBASE and Springer Databases; the references listed in original articles were also retrieved. We used the quality assessment of diagnostic accuracy studies (QUADAS) tool to assess the quality of the included studies. Heterogeneity, pooled sensitivity and specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR) and summary receiver operating characteristic (SROC) curves were calculated by Meta-DiSc software to estimate the diagnostic performance of BSGI and MRI. Ten studies with 517 patients were included after meeting the inclusion criteria. We did a subgroup analysis of the same data type. The pooled sensitivities of BSGI and MRI were: 0.84 (95% CI, 0.79-0.88) and 0.89 (95% CI, 0.84-0.92) respectively, and the pooled specificities of BSGI and MRI were: 0.82 (95% CI, 0.74-0.88) and 0.39 (95% CI, 0.30-0.49) respectively. The areas under the SROC curve of BSGI and MRI were 0.93 and 0.72 respectively. The results of our meta-analysis indicated that compared with MRI, BSGI has similar sensitivity, higher specificity, better diagnostic performance, and can be widely used in clinical practice.

  4. PIXEL 2010 - A Resume

    International Nuclear Information System (INIS)

    Wermes, N.

    2011-01-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This resume attempts to extract the main statements of the results and developments presented at this conference.

  5. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    Science.gov (United States)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based cla