WorldWideScience

Sample records for pixel sensor prototypes

  1. Characterisation of pixel sensor prototypes for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix [CERN (Switzerland); Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    ALICE is preparing a major upgrade of its experimental apparatus to be installed in the second long LHC shutdown (LS2) in the years 2018-2019. A key element of the upgrade is the replacement of the Inner Tracking System (ITS) deploying Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have a reduced material budget while increasing the pixel density and readout rate capabilities. The novel design leads to higher pointing and momentum resolution as well as a p{sub T} acceptance extended to lower values. The corresponding sensor prototypes were qualified in laboratory measurements and beam tests with respect to their radiation tolerance and detection efficiency. This talk summarises recent results on the characterisation of prototypes belonging to the ALPIDE family.

  2. IV and CV curves for irradiated prototype BTeV silicon pixel sensors

    International Nuclear Information System (INIS)

    Coluccia, Maria R.

    2002-01-01

    The authors present IV and CV curves for irradiated prototype n + /n/p + silicon pixel sensors, intended for use in the BTeV experiment at Fermilab. They tested pixel sensors from various vendors and with two pixel isolation layouts: p-stop and p-spray. Results are based on exposure with 200 MeV protons up to 6 x 10 14 protons/cm 2

  3. Test beam results of a depleted monolithic active pixel sensor (DMAPS) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Obermann, Theresa; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Bonn Univ. (Germany); Schwenker, Benjamin [Goettingen Univ. (Germany); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    New monolithic detector concepts are currently being explored for future particle physics experiments, in particular for the upgrade of the ATLAS detector. Common to monolithic pixel detectors is the integration of the front-end circuitry and the sensor on the same silicon substrate. The DMAPS concept makes use of high resistive silicon as substrate. It enables the application of a high bias voltage to create a drift field for the charge collection in the sensor part as well as the full usage of CMOS logic in the same piece of silicon. DMAPS prototypes from several foundries are available since three years and have been extensively characterized in the lab. In this talk, results of test beam campaigns, with neutron irradiated prototypes implemented in the ESPROS process, are presented.

  4. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    Science.gov (United States)

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  5. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    Science.gov (United States)

    Benoit, M.; Braccini, S.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Weston, T.; Wu, W.; Xu, L.; Zaffaroni, E.

    2018-02-01

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1× 1014 and 5× 1015 1-MeV- neq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1× 1015 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.

  6. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, A., E-mail: alessandro.larosa@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Cobal, M. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Dalla Betta, G.-F. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Da Via, C. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Darbo, G. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Gallrapp, C. [CERN, Geneva 23, CH-1211 (Switzerland); Gemme, C. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Huegging, F.; Janssen, J. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Micelli, A. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Pernegger, H. [CERN, Geneva 23, CH-1211 (Switzerland); Povoli, M. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Wermes, N. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Zorzi, N. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-07-21

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non-optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 Multiplication-Sign 10{sup 15}n{sub eq}cm{sup -2}, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  7. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    CERN Document Server

    La Rosa, A; Cobal, M; Betta, G -F Dalla; Da Via, C; Darbo, G; Gallrapp, C; Gemme, C; Huegging, F; Janssen, J; Micelli, A; Pernegger, H; Povoli, M; Wermes, N; Zorzi, N

    2012-01-01

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 x 10**15 neq/cm2, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  8. Position dependence of charge collection in prototype sensors for the CMS pixel detector

    CERN Document Server

    Rohe, Tilman; Chiochia, Vincenzo; Cremaldi, Lucien M; Cucciarelli, Susanna; Dorokhov, Andrei; Konecki, Marcin; Prokofiev, Kirill; Regenfus, Christian; Sanders, David A; Son Seung Hee; Speer, Thomas; Swartz, Morris

    2004-01-01

    This paper reports on the sensor R&D activity for the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence1 of 1 multiplied by 10**1**5 n //e//q/cm**2 at the CERN PS. Afterward, they were bump bonded to unirradiated readout chips and tested using high energy pions in the H2 beam line of the CERN SPS. The readout chip allows a nonzero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The position dependence of signal is presented and the differences between the two sensor options are discussed. 20 Refs.

  9. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    Science.gov (United States)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  10. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    CERN Document Server

    Vigani, L.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-01-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  11. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  12. Analysis of test beam data of ALPIDE, the final Monolithic Active Pixel Sensor (MAPS) prototype for the ALICE ITS upgrade

    CERN Document Server

    Emriskova, Natalia

    2017-01-01

    The ALICE collaboration is currently preparing a major upgrade of its apparatus, planned for installation during the second long shutdown of the Large Hadron Collider in 2019-20. The main pillar of the upgrade is the replacement of the current Inner Tracking System (ITS) with a new, low-material, high resolution silicon pixel detector, made of Monolithic Active Pixel Sensors (MAPS). This technology, combining front-end circuitry and sensitive layer in a single device, will lead to a higher granularity of the detector and therefore a better pointing resolution. The silicon pixel chips, called ALPIDEs, developed specifically for the new ITS, are currently characterized using test beams. A part of this characterization is presented in this work. The project involves the very first analysis of test beam data with inclined tracks. The tested ALPIDE is rotated with respect to the beam, hence the particles cross the chip with an inclined incidence angle. The influence of these rotations on the efficiency profile...

  13. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  14. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  15. Development and characterisation of Monolithic Active Pixel Sensor prototypes for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Collu, Alberto

    ALICE (A Large Ion Collider Experiment) is dedicated to the study and characterisation of the Quark-­‐Gluon Plasma (QGP), exploiting the unique potential of ultrarelativistic heavy-­‐ion collisions at the CERN Large Hadron Collider (LHC). The increase of the LHC luminosity leading up to about 50 kHz Pb-­‐Pb interaction rate after the second long shutdown (in 2018-­‐2019) will offer the possibility to perform high precision measurements of rare probes over a wide range of momenta. These measurements are statistically limited or not even possible with the present experimental set up. For this reason, an upgrade strategy for several ALICE detectors is being pursued. In particular, it is foreseen to replace the Inner Tracking System (ITS) by a new detector which will significantly improve the tracking and vertexing capabilities of ALICE in the upgrade scenario. The new ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which will...

  16. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  17. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  18. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  19. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  20. Electrical and functional characterisation with single chips and module prototypes of the 1.2 Gb/s serial data link of the monolithic active pixel sensor for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Bonora, Matthias; Aglieri Rinella, Gianluca; Hillemanns, Hartmut; Kim, Daehyeok; Kugathasan, Thanushan; Lattuca, Alessandra; Mazza, Giovanni; Sielewicz, Krzysztof Marek; Snoeys, Walter

    2017-01-01

    The upgrade of the ALICE Inner Tracking System uses a newly developed monolithic active pixel sensor (ALPIDE) which will populate seven tracking layers surrounding the interaction point. Chips communicate with the readout electronics using a 1.2 Gb/s data link and a 40 Mb/s bidirectional control link. Event data are transmitted to the readout electronics over microstrips on a Flexible Printed Circuit and a 6 m long twinaxial cable. This paper outlines the characterisation effort for assessing the Data Transmission Unit performance of single sensors and prototypes of the detector modules. It describes the different prototypes used, the test system and procedures, and results of laboratory and irradiation tests.

  1. Design studies on sensors for the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F G

    2002-01-01

    For the ATLAS Pixel Detector, prototype sensors have been successfully developed. For the sensors design, attention was given to survivability of the harsh LHC radiation environment leading to the need to operate them at several hundreds of volts, while maintaining a good charge collection efficiency, small cell size and minimal multiple scattering. For a cost effective mass production, a bias grid is implemented to test the sensors before assembly under full bias. (6 refs).

  2. Quality control on planar n-in-n pixel sensors — Recent progress of ATLAS planar pixel sensors

    International Nuclear Information System (INIS)

    Klingenberg, R.

    2013-01-01

    To extend the physics reach of the Large Hadron Collider (LHC), upgrades to the accelerator are planned which will increase the peak luminosity by a factor 5–10. To cope with the increased occupancy and radiation damage, the ATLAS experiment plans to introduce an all-silicon inner tracker with the high luminosity upgrade (HL-LHC). To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Upgrade Planar Pixel Sensor (PPS) R and D Project was established. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edges to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. The Insertable b-layer (IBL) is the first upgrade project within the ATLAS experiment and will employ a new detector layer consisting of silicon pixel sensors, which were improved and prototyped in the framework of the planar pixel sensor R and D project. A special focus of this paper is the status of the development and testing of planar n-in-n pixel sensors including the quality control of the on-going series production and postprocessing of sensor wafers. A high yield of produced planar sensor wafers and FE-I4 double chip sensors after first steps of post-processing including under bump metallization and dicing is observed. -- Highlights: ► Prototypes of irradiated planar n-in-n sensors have been successfully tested under laboratory conditions. ► A quality assurance programme on the series production of planar sensors for the IBL has started. ► A high yield of double chip sensors during the series production is observed which are compatible to the specifications to this detector component.

  3. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    International Nuclear Information System (INIS)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-01-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed

  4. High-voltage pixel sensors for ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Perić, I., E-mail: ivan.peric@ziti.uni-heidelberg.de [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Kreidl, C.; Fischer, P. [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M. [CPPM, Marseille (France); Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B. [CERN, Geneve (Switzerland); Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A. [University of Geneve (Switzerland); and others

    2014-11-21

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  5. Characterization of active CMOS pixel sensors on high resistive substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)

    2016-07-01

    Active CMOS pixel sensors are very attractive as radiation imaging pixel detector because they do not need cost-intensive fine pitch bump bonding. High radiation tolerance and time resolution are required to apply those sensors to upcoming particle physics experiments. To achieve these requirements, the active CMOS pixel sensors were developed on high resistive substrates. Signal charges are collected faster by drift in high resistive substrates than in standard low resistive substrates yielding also a higher radiation tolerance. A prototype of the active CMOS pixel sensor has been fabricated in the LFoundry 150 nm CMOS process on 2 kΩcm substrate. This prototype chip was thinned down to 300 μm and the backside has been processed and can contacted by an aluminum contact. The breakdown voltage is around -115 V, and the depletion width has been measured to be as large as 180 μm at a bias voltage of -110 V. Gain and noise of the readout circuitry agree with the designed values. Performance tests in the lab and test beam have been done before and after irradiation with X-rays and neutrons. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  6. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    International Nuclear Information System (INIS)

    Degerli, Y; Guilloux, F; Orsini, F

    2014-01-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented

  7. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    Science.gov (United States)

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  8. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  9. Fabrication of ATLAS pixel detector prototypes at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Betta, G.-F. Dalla; Gregori, P.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed

  10. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  11. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  12. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  13. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  14. JPL CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  15. Application-specific architectures of CMOS monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France)]. E-mail: michal.szelezniak@ires.in2p3.fr; Besson, Auguste [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Claus, Gilles; Colledani, Claude; [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Degerli, Yavuz [CEA Saclay, DAPNIA, Gif-sur-Yvette Cedex (France); Deptuch, Grzegorz [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Deveaux, Michael [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); GSI, Planckstrasse 1, Darmstadt 64291 (Germany); Dorokhov, Andrei [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Dulinski, Wojciech [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Fourches, Nicolas [CEA Saclay, DAPNIA, Gif-sur-Yvette Cedex (France); Goffe, Mathieu [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Grandjean, Damien; Guilloux, Fabrice [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Heini, Sebastien [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France)]|[GSI, Planckstrasse 1, Darmstadt 64291 (Germany); Himmi, Abdelkader [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Hu, Christine [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Jaaskelainen, Kimmo; Li, Yan; Lutz, Pierre; Orsini, Fabienne [CEA Saclay, DAPNIA, Gif-sur-Yvette Cedex (France); Pellicioli, Michel; Shabetai, Alexandre; Valin, Isabelle; Winter, Marc [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France)

    2006-11-30

    Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e{sup -}, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.

  16. A prototype pixel readout chip for asynchronous detection applications

    International Nuclear Information System (INIS)

    Raymond, D.M.; Hall, G.; Lewis, A.J.; Sharp, P.H.

    1991-01-01

    A two-dimensional array of amplifier cells has been fabricated as a prototype readout system for a matching array of silicon diode detectors. Each cell contains a preamplifier, shaping amplifier, comparator and analogue signal storage in an area of 300 μmx320 μm using 3 μm CMOS technology. Full size chips will be bump bonded to pixel detector arrays. Low noise and asynchronous operation are novel design features. With noise levels of less than 250 rms electrons for input capacitances up to 600 fF, pixel detectors will be suitable for autoradiography, synchrotron X-ray and high energy particle detection applications. The design of the prototype chip is presented and future developments and prospects for applications are discussed. (orig.)

  17. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  18. Test-beam results of a SOI pixel detector prototype

    CERN Document Server

    Bugiel, Roma; Dannheim, Dominik; Fiergolski, Adrian; Hynds, Daniel; Idzik, Marek; Kapusta, P; Kucewicz, Wojciech; Munker, Ruth Magdalena; Nurnberg, Andreas Matthias

    2018-01-01

    This paper presents the test-beam results of a monolithic pixel-detector prototype fabricated in 200 nm Silicon-On-Insulator (SOI) CMOS technology. The SOI detector was tested at the CERN SPS H6 beam line. The detector is fabricated on a 500 μm thick high-resistivity float- zone n-type (FZ-n) wafer. The pixel size is 30 μm × 30 μm and its readout uses a source- follower configuration. The test-beam data are analysed in order to compute the spatial resolution and detector efficiency. The analysis chain includes pedestal and noise calculation, cluster reconstruction, as well as alignment and η-correction for non-linear charge sharing. The results show a spatial resolution of about 4.3 μm.

  19. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  20. Sensor Development for the CMS Pixel Detector

    CERN Document Server

    Rohe, T; Chiochia, V; Cremaldi, L M; Cucciarelli, S; Dorkhov, A; Konecki, M; Prokofiev, K; Regenfus, C; Sanders, D A; Son, S; Speer, T; Swartz, M

    2003-01-01

    This paper reports on a current R&D activity for the sensor part of the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence of 1E15 (1MeV Neutron)/cm**2 at the CERN PS. Afterwards they have been bump bonded to unirradiated readout chips. The chip allows a non zero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The samples have been tested using high energy pions in the H2 beam line of the CERN SPS in June and September 2003. The results of this test beam are presented and the differences between the sensor options are discussed.

  1. Radiation effects on active pixel sensors (APS)

    International Nuclear Information System (INIS)

    Cohen, M.; David, J.P.

    1999-01-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using 60 Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity

  2. Development of a versatile readout and test system and characterization of a capacitively coupled active pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jens; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany); Peric, Ivan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    With the availability of high voltage and high resistivity CMOS processes, active pixel sensors are becoming increasingly interesting for radiation detection in high energy physics experiments. Although the pixel signal-to-noise ratio and the sensor radiation tolerance were improved, active pixel sensors cannot yet compete with state-of-the-art hybrid pixel detector in a high radiation environment. Hence, active pixel sensors are possible candidates for the outer tracking detector in HEP experiments where production cost plays a role. The investigation of numerous prototyping steps and different technologies is still ongoing and requires a versatile test and readout system, which will be presented in this talk. A capacitively coupled active pixel sensor fabricated in AMS 180 nm high voltage CMOS process is investigated. The sensor is designed to be glued to existing front-end pixel readout chips. Results from the characterization are presented in this talk.

  3. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  4. Development of the Continuous Acquisition Pixel (CAP) sensor for high luminosity lepton colliders

    International Nuclear Information System (INIS)

    Varner, G.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Martin, E.; Mueller, J.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Yang, Q.; Yarema, R.

    2006-01-01

    A future higher luminosity B-factory detector and concept study detectors for the proposed International Linear Collider require precision vertex reconstruction while coping with high track densities and radiation exposures. Compared with current silicon strip and hybrid pixels, a significant reduction in the overall detector material thickness is needed to achieve the desired vertex resolution. Considerable progress in the development of thin CMOS-based Monolithic Active Pixel Sensors (MAPS) in recent years makes them a viable technology option and feasibility studies are being actively pursued. The most serious concerns are their radiation hardness and their readout speed. To address these, several prototypes denoted as the Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25μm process with a 5-deep Correlated Double Sample (CDS) pair pipeline in each pixel. A setup with several CAP3 sensors is under evaluation to assess the performance of a full-scale pixel readout system running at realistic readout speed. Given the similarity in the occupancy numbers and hit throughput requirements, per unit area, between a Belle vertex detector upgradation and the requirements for a future ILC pixel detector, this effort can be considered a small-scale functioning prototype for such a future system. The results and plans for the next stages of R and D towards a full Belle Pixel Vertex Detector (PVD) are presented

  5. Development of a super B-factory monolithic active pixel detector-the Continuous Acquisition Pixel (CAP) prototypes

    International Nuclear Information System (INIS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-01-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R and D issues are presented

  6. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    Science.gov (United States)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  7. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  8. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    Science.gov (United States)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  9. Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line

    Science.gov (United States)

    Pohl, D.-L.; Hemperek, T.; Caicedo, I.; Gonella, L.; Hügging, F.; Janssen, J.; Krüger, H.; Macchiolo, A.; Owtscharenko, N.; Vigani, L.; Wermes, N.

    2017-06-01

    Pixel sensors using 8'' CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 × 1015 neq cm-2. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.

  10. Characterization of pixel sensor designed in 180 nm SOI CMOS technology

    Science.gov (United States)

    Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.

    2018-01-01

    A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.

  11. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  12. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    International Nuclear Information System (INIS)

    Kim, D.; Rinella, G. Aglieri; Cavicchioli, C.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Mager, M.; Chanlek, N.; Collu, A.; Degerli, Y.; Flouzat, C.; Guilloux, F.; Dorokhov, A.; Gajanana, D.; Gao, C.; Kwon, Y.; Lattuca, A.

    2016-01-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m 2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented

  13. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    Science.gov (United States)

    Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.

    2016-02-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.

  14. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    OpenAIRE

    Kim, D; Rinella, G Aglieri; Cavicchioli, C; Chanlek, N; Collu, A; Degerli, Y; Dorokhov, A; Flouzat, C; Gajanana, D; Gao, C; Guilloux, F; Hillemanns, H; Hristozkov, S; Junique, A; Keil, M

    2016-01-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m(2) tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the ...

  15. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shun, E-mail: s-ono@champ.hep.sci.osaka-u.ac.jp [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), 1-1 Oho, Tsukuba (Japan)

    2017-02-11

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm{sup 2} pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  16. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  17. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    Science.gov (United States)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  18. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  19. Active pixel sensor array as a detector for electron microscopy.

    Science.gov (United States)

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  20. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  1. Active pixel sensor with intra-pixel charge transfer

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  2. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    Science.gov (United States)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  3. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  4. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    Science.gov (United States)

    Mager, M.; ALICE Collaboration

    2016-07-01

    A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.

  5. Planar sensors for the upgrade of the CMS pixel detector

    International Nuclear Information System (INIS)

    Rohe, T.; Bean, A.; Radicci, V.; Sibille, J.

    2011-01-01

    A replacement of the present CMS pixel detector with a better performing light weight four-layer system is foreseen in 2016. In the lifetime of this new system the LHC will reach and exceed its nominal luminosity of 10 34 cm -2 s -1 . Therefore the radiation hardness of all parts of the pixel system has to be reviewed. For the construction of the much larger four-layer pixel system, the replacement of the present double sided sensors by much cheaper single sided ones is considered. However, the construction of pixel modules with such sensors is challenging due to the small geometrical distance of the sensor high voltage and the ground of the readout electronics. This small distance limits the sensor bias to about 500 V in the tested samples.

  6. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  7. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  8. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  9. New results on diamond pixel sensors using ATLAS frontend electronics

    International Nuclear Information System (INIS)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K.K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Riester, J.L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented

  10. New results on diamond pixel sensors using ATLAS frontend electronics

    CERN Document Server

    Keil, Markus; Berdermann, E; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  11. New results on diamond pixel sensors using ATLAS frontend electronics

    Energy Technology Data Exchange (ETDEWEB)

    Keil, M. E-mail: markus.keil@cern.ch; Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K.K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Riester, J.L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M

    2003-03-21

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  12. New results on diamond pixel sensors using ATLAS frontend electronics

    Science.gov (United States)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K. K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Riester, J. L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-03-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  13. Small pitch pixel sensors for the CMS Phase II upgrade

    CERN Document Server

    AUTHOR|(CDS)2069790

    2016-01-01

    The CMS collaboration has undertaken two sensor R\\&D programs on thin n-in-p planar and 3D silicon sensor technologies. To cope with the increase in instantaneous luminosity, the pixel area has to be reduced to approximately 2500 $\\mu$m$^{2}$ to keep the occupancy at the percent level. Suggested pixel cell geometries to match this requirement are {50$\\times$50 }$\\mu$...

  14. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    CERN Document Server

    Benoit, M.

    2016-07-21

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  15. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    Science.gov (United States)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  16. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  17. The ATLAS Planar Pixel Sensor R and D project

    International Nuclear Information System (INIS)

    Beimforde, M.

    2011-01-01

    Within the R and D project on Planar Pixel Sensor Technology for the ATLAS inner detector upgrade, the use of planar pixel sensors for highest fluences as well as large area silicon detectors is investigated. The main research goals are optimizing the signal size after irradiations, reducing the inactive sensor edges, adjusting the readout electronics to the radiation induced decrease of the signal sizes, and reducing the production costs. Planar n-in-p sensors have been irradiated with neutrons and protons up to fluences of 2x10 16 n eq /cm 2 and 1x10 16 n eq /cm 2 , respectively, to study the collected charge as a function of the irradiation dose received. Furthermore comparisons of irradiated standard 300μm and thin 140μm sensors will be presented showing an increase of signal sizes after irradiation in thin sensors. Tuning studies of the present ATLAS front end electronics show possibilities to decrease the discriminator threshold of the present FE-I3 read out chips to less than 1500 electrons. In the present pixel detector upgrade scenarios a flat stave design for the innermost layers requires reduced inactive areas at the sensor edges to ensure low geometric inefficiencies. Investigations towards achieving slim edges presented here show possibilities to reduce the width of the inactive area to less than 500μm. Furthermore, a brief overview of present simulation activities within the Planar Pixel R and D project is given.

  18. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    International Nuclear Information System (INIS)

    Pernegger, H.; Hoorne, J.W. van; Kugathasan, T.; Musa, L.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E.J.; Snoeys, W.; Bates, R.; Buttar, C.; Maneuski, D.; Dalla, M.; Sbarra, C.

    2017-01-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 10"1"5 n _e_q/cm"2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  19. Active pixel sensor array with electronic shuttering

    Science.gov (United States)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  20. A Prototype Tactile Sensor Array.

    Science.gov (United States)

    1982-09-15

    Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial

  1. E-Beam Effects on CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Kang, Dong Ook; Jo, Gyu Seong; Kim, Hyeon Daek; Kim, Hyunk Taek; Kim, Jong Yeol; Kim, Chan Kyu

    2011-01-01

    Three different CMOS active pixel structures manufactured in a deep submicron process have been evaluated with electron beam. The devices were exposed to 1 MeV electron beam up to 5kGy. Dark current increased after E-beam irradiation differently at each pixel structure. Dark current change is dependent on CMOS pixel structures. CMOS image sensors are now good candidates in demanding applications such as medical image sensor, particle detection and space remote sensing. In these situations, CISs are exposed to high doses of radiation. In fact radiation is known to generate trapped charge in CMOS oxides. It can lead to threshold voltage shifts and current leakages in MOSFETs and dark current increase in photodiodes. We studied ionizing effects in three types of CMOS APSs fabricated by 0.25 CMOS process. The devices were irradiated by a Co 60 source up to 50kGy. All irradiation took place at room temperature. The dark current in the three different pixels exhibits increase with electron beam exposure. From the above figure, the change of dark current is dependent on the pixel structure. Double junction structure has shown relatively small increase of dark current after electron beam irradiation. The dark current in the three different pixels exhibits increase with electron beam exposure. The contribution of the total ionizing dose to the dark current increase is small here, since the devices were left unbiased during the electron beam irradiation. Radiation hardness in dependent on the pixel structures. Pixel2 is relatively vulnerable to radiation exposure. Pixel3 has radiation hardened structure

  2. CMOS Pixel Sensors for High Precision Beam Telescopes and Vertex Detectors

    International Nuclear Information System (INIS)

    Masi, R. de; Baudot, J.; Fontaine, J.-Ch.

    2009-01-01

    CMOS sensors of the MIMOSA (standing for Minimum Ionising particle MOS Active pixel sensor) series are developed at IPHC since a decade and have ended up with full scale devices used in beam telescopes and in demonstrators of future vertex detectors. The sensors deliver analogue, unfiltered, signals and are therefore limited to read-out frequencies of ∼ 1 kframe/s. Since a few years, a fast architecture is being developed in collaboration with IRFU, which aims to speed up the read-out by 1-2 orders of magnitude. The first full scale sensor based on this architecture was fabricated recently and is being tested. Made of 660,000 pixels (18 μm pitch) covering an active area of ∼ 2 cm 2 , it delivers zero-suppressed binary signals, which allow running at ∼ 10 kframes/s. It will equip the beam telescope of the E.U. project EUDET and serve as a forerunner of the sensor equipping the 2 layers of the PIXEL detector of the STAR experiment at RHIC. The contribution to the conference will overview the main features and test results of this pioneering sensor. It will next describe its evolution towards read-out frequencies approaching 100 kframes/s, as required for the vertex detectors of the CBM experiment at FAIR and at the ILC. Finally, the issue of radiation tolerance will be addressed, in the context of a newly available CMOS process using a depleted substrate. A prototype sensor was fabricated in a such CMOS process. The talk will summarise beam test results showing, for the first time, that fluences of 10 14 n eq /cm 2 may be tolerable for CMOS sensors. Overall, the talk provides an overview of the status and plans of CMOS pixel sensors at the frontier of their achievements and outreach. (author)

  3. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    CERN Document Server

    Turchetta, R; Manolopoulos, S; Tyndel, M; Allport, P P; Bates, R; O'Shea, V; Hall, G; Raymond, M

    2003-01-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to ta...

  4. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  5. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    2017-02-01

    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  6. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  7. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    Science.gov (United States)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  8. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    International Nuclear Information System (INIS)

    Aglieri, G; Cavicchioli, C; Hillemanns, H; Junique, A; Keil, M; Kugathasan, T; Mager, M; Tobon, C A Marin; Martinengo, P; Chalmet, P L; Mugnier, H; Chanlek, N; Collu, A; Marras, D; Giubilato, P; Mattiazzo, S; Kim, D; Kim, J; Lattuca, A; Mazza, G

    2013-01-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified

  9. Characterisation of individual pixel efficiency in the PILATUS II sensor

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, A., E-mail: aschub@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, 3010 (Australia); CRCBID Cooperative Research Centre for Biomedical Imaging, Bundoora, Victoria 3083 (Australia); Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); O' Keefe, G.J. [Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); School of Physics, University of Melbourne, Parkville, 3010 (Australia); Sobott, B.A. [School of Physics, University of Melbourne, Parkville, 3010 (Australia); CRCBID Cooperative Research Centre for Biomedical Imaging, Bundoora, Victoria 3083 (Australia); Kirby, N.M. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); Rassool, R.P. [School of Physics, University of Melbourne, Parkville, 3010 (Australia); CRCBID Cooperative Research Centre for Biomedical Imaging, Bundoora, Victoria 3083 (Australia)

    2010-11-15

    Synchrotron applications such as protein crystallography and small-angle X-ray scattering (SAXS) demand precise knowledge of detector pixel efficiency for data corrections. Current techniques used to determine detector efficiency are only applicable for the specific set-up for which the calibration is performed. Here the effect of comparator thresholding on pixel efficiency for PILATUS is presented for standard amplifier and shaper gain settings, allowing users to make necessary corrections to their intensity data for various threshold settings without requiring repeated empirical calibrations. A three-dimensional TCAD simulation of the sensor is also presented and is used to confirm the experimental result.

  10. The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors

    Science.gov (United States)

    de Haas, A. P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Röhrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.

    2018-01-01

    A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixel size of 30 μm it allows digital calorimetry, i.e. the particle's energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. In this article the construction and tuning of the prototype is described. Results from beam tests are compared with predictions of GEANT-based Monte Carlo simulations. The shape of showers caused by electrons is shown in unprecedented detail. Results for energy and position resolution are also given.

  11. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  12. CMOS monolithic active pixel sensors for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoeys, W., E-mail: walter.snoeys@cern.ch

    2014-11-21

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  13. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10 34 cm -2 s -1 . A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10 34 cm -2 s -1 . As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10 34 cm -2 s -1 , twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ eq =2.10 16 cm -2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb -1 . Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in

  14. New generation of monolithic active pixel sensors for charged particle detection

    International Nuclear Information System (INIS)

    Deptuch, G.

    2002-09-01

    Vertex detectors are of great importance in particle physics experiments, as the knowledge of the event flavour is becoming an issue for the physics programme at Future Linear Colliders. Monolithic Active Pixel Sensors (MAPS) based on a novel detector structure have been proposed. Their fabrication is compatible with a standard CMOS process. The sensor is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer. The basic pixel configuration comprises only three MOS transistors and a diode collecting the charge through thermal diffusion. The charge is generated in the thin non-depleted epitaxial layer underneath the readout electronics. This approach provides, at low cost, a high resolution and thin device with the whole area sensitive to radiation. Device simulations using the ISE-TCAD package have been carried out to study the charge collection mechanism. In order to demonstrate the viability of the technique, four prototype chips have been fabricated using different submicrometer CMOS processes. The pixel gain has been calibrated using a 55 Fe source and the Poisson sequence method. The prototypes have been exposed to high-energy particle beams at CERN. The tests proved excellent detection performances expressed in a single-track spatial resolution of 1.5 μm and detection efficiency close to 100%, resulting from a SNR ratio of more than 30. Irradiation tests showed immunity of MAPS to a level of a few times 10 12 n/cm 2 and a few hundred kRad of ionising radiation. The ideas for future work, including on-pixel signal amplification, double sampling operation and current mode pixel design are present as well. (author)

  15. Prototyping of larger structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment

    CERN Document Server

    Alvarez Feito, Diego; The ATLAS collaboration

    2017-01-01

    For the high luminosity era of the Large Hadron Collider (HL-LHC) it is forseen to replace the current inner tracker of the ATLAS experiment with a new detector to cope with the occuring increase in occupancy, bandwidth and radiation damage. It will consist of an inner pixel and outer strip detector aiming to provide tracking coverage up to |η|<4. The layout of the pixel detector is foreseen to consist of five layers of pixel silicon sensor modules in the central region and several ring-shaped layers in the forward region. It results in up to 14 m² of silicon depending on the selected layout. Beside the challenge of radiation hardness and high-rate capable silicon sensors and readout electronics many system aspects have to be considered for a fully functional detector. Both stable and low mass mechanical structures and services are important. Within the collaboration a large effort is started to prototype larger detector structures for both the central and forward region of the detector. The aspect of sy...

  16. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  17. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    Science.gov (United States)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  18. A monolithic pixel sensor (TRAPPISTe-2) for particle physics instrumentation in OKI 0.2μm SOI technology

    Science.gov (United States)

    Soung Yee, L.; Alvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2012-12-01

    A monolithic active pixel sensor for charged particle tracking has been developed within the frame of a research and development project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology). TRAPPISTe aims to study the feasibility of developing a monolithic pixel sensor with SOI technology. TRAPPISTe-2 is the second prototype in this series and was fabricated with an OKI 0.20μm fully depleted (FD-SOI) CMOS process. This device contains test transistors and amplifiers, as well as two pixel matrices with integrated 3-transistor and amplifier readout electronics. The results presented are based on the first electrical measurements performed on the test structures and laser measurements on the pixel matrices.

  19. A beam monitor using silicon pixel sensors for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: zwang@mails.ccnu.edu.cn; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming, E-mail: sphy2007@126.com; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-21

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II{sup -}, as the anode array. Topmetal-II{sup -} is a charge sensor designed in a CMOS 0.35 µm technology. Each Topmetal-II{sup -} sensor has 72×72 pixels and the pixel size is 83×83 µm{sup 2}. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 µm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  20. Research and Development of Monolithic Active Pixel Sensors for the Detection of the Elementary Particles

    International Nuclear Information System (INIS)

    Li, Y.

    2007-09-01

    In order to develop high spatial resolution and readout speed vertex detectors for the future International Linear Collider (ILC), fast CMOS Monolithic Active Pixel Sensors (MAPS) are studied on this work. Two prototypes of MAPS, MIMOSA 8 and MIMOSA 16, based on the same micro-electronic architecture were developed in CMOS processes with different thickness of epitaxial layer. The size of pixel matrix is 32 x 128: 8 columns of the pixel array are readout directly with analog outputs and the other 24 columns are connected to the column level auto-zero discriminators. The Correlated Double Sampling (CDS) structures are successfully implemented inside pixel and discriminator. The photo diode type pixels with different diode sizes are used in these prototypes. With a 55 Fe X-ray radioactive source, the important parameters, such as Temporal Noise, Fixed Pattern Noise (FPN), Signal-to-Noise Ratio (SNR), Charge-to-Voltage conversion Factor (CVF) and Charge Collection Efficiency (CCE), are studied as function of readout speed and diode size. For MIMOSA 8, the effect of fast neutrons irradiation is also. Two beam tests campaigns were made: at DESY with a 5 GeV electrons beam and at CERN with a 180 GeV pions beam. Detection Efficiency and Spatial Resolution are studied in function of the discriminator threshold. For these two parameters, the influences of diode size and SNR of the central pixel of a cluster are also discussed. In order to improve the spatial resolution of the digital outputs, a very compact (25 μm x 1 mm) and low consumption (300 μW) column level ADC is designed in AMS 0.35 μm OPTO process. Based on successive approximation architecture, the auto-offset cancellation structure is integrated. A new column level auto-zero discriminator using static latch is also designed. (author)

  1. Thin and edgeless sensors for ATLAS pixel detector upgrade

    Science.gov (United States)

    Ducourthial, A.; Bomben, M.; Calderini, G.; Marchiori, G.; D'Eramo, L.; Luise, I.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Darbo, G.; Dalla Betta, G.-F.; Giacomini, G.; Meschini, M.; Messineo, A.; Ronchin, S.; Zorzi, N.

    2017-12-01

    To cope with the harsh environment foreseen at the high luminosity conditions of HL-LHC, the ATLAS pixel detector has to be upgraded to be fully efficient with a good granularity, a maximized geometrical acceptance and an high read out rate. LPNHE, FBK and INFN are involved in the development of thin and edgeless planar pixel sensors in which the insensitive area at the border of the sensor is minimized thanks to the active edge technology. In this paper we report on two productions, a first one consisting of 200 μm thick n-on-p sensors with active edge, a second one composed of 100 and 130 μm thick n-on-p sensors. Those sensors have been tested on beam, both at CERN-SPS and at DESY. In terms of hit-efficiency, the first production reaches 99 % before irradiation and the second one reaches 96.3% after a fluence in excess of 1× 1016neq/cm2. The performances of those two productions before and after irradiation will be presented in details.

  2. LePIX: First results from a novel monolithic pixel sensor

    International Nuclear Information System (INIS)

    Mattiazzo, S.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.; Wyss, J.

    2013-01-01

    We present a monolithic pixel sensor developed in the framework of the LePIX project aimed at tracking/triggering tasks where high granularity, low power consumption, material budget, radiation hardness and production costs are a concern. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This maintains the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, but offers charge collection by drift from a depleted region and therefore an excellent signal to noise ratio and a radiation tolerance superior to conventional undepleted MAPS. Measurement results obtained with the first prototypes from laser, radioactive source and beam test experiments are described. The excellent signal-to-noise performance is demonstrated by the capability of the device to separate the peaks in the spectrum of a 55 Fe source. We will also highlight the interaction between pixel cell design and architecture which points toward a very precise direction in the development of such depleted monolithic pixel devices for high energy physics

  3. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    Science.gov (United States)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  4. Device Simulation of Monolithic Active Pixel Sensors: Radiation Damage Effects

    International Nuclear Information System (INIS)

    Fourches, N.T.

    2009-01-01

    Vertexing for the future International Linear Collider represents a challenging goal because of the high spatial resolution required with low material budget and high ionizing radiation tolerance. CMOS Monolithic Active Pixel Sensors (MAPS) represent a good potential solution for this purpose. Up to now many MAPS sensors have been developed. They are based on various architectures and manufactured in different processes. However, up so far, the sensor diode has not been the subject of extensive modelization and simulation. Published simulation studies of sensor-signal formation have been less numerous than measurements on real sensors. This is a cause for concern because such sensor is physically based on the partially depleted diode, in the vicinity of which the electric field collects the minority carriers generated by an incident MIP (minimum ionizing particle). Although the microscopic mechanisms are well known and modelled, the global physical mechanisms for signal formation are not very rigorously established. This is partly due to the presence of a predominant diffusion component in the charge transport. We present here simulations mainly based on the S-PISCES code, in which physical mechanisms affecting transport are taken into account. Diffusion, influence of residual carrier concentration due to the doping level in the sensitive volume, and more importantly charge trapping due to deep levels in the active (detecting) layer are studied together with geometric aspects. The effect of neutron irradiation is studied to assess the effects of deep traps. A comparison with available experimental data, obtained on processed MAPS before or after neutron irradiation will be introduced. Simulated reconstruction of the Minimum Ionizing Particle (MIP) point of impact in two dimensions is also investigated. For further steps, guidelines for process choices of next Monolithic Active Pixel Sensors are introduced. (authors)

  5. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    International Nuclear Information System (INIS)

    Zhang, L; Morel, F; Hu-Guo, Ch; Hu, Y

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm 2 .

  6. CMOS VLSI Active-Pixel Sensor for Tracking

    Science.gov (United States)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  7. A contextual classifier that only requires one prototype pixel for each class

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Conradsen, Knut

    2001-01-01

    constructed with experimental data is used in this stage. The algorithm was tested with the Kappa coefficient k on synthetical images and compared with K-means (k~=0.41) and a similar scheme that uses spectral means (k~=0.75) instead of histograms (k~=0.90). Results are shown on a dermatological image......A three stage scheme for classification of multi-spectral images is proposed. In each stage, statistics of each class present in the image are estimated. The user is required to provide only one prototype pixel for each class to be seeded into a homogeneous region. The algorithm starts...... by generating optimum initial training sets, one for each class, maximizing the redundancy in the data sets. These sets are the realizations of the maximal discs centered on the prototype pixels for which it is true that all the elements belong to the same class as the center one. Afterwards a region growing...

  8. A Contextual Classifier That Only Requires One Prototype Pixel for Each Class

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Conradsen, Knut

    2002-01-01

    constructed with experimental data is used in this stage. The algorithm was tested with the Kappa coefficient κ on synthetic images and compared with K-means (κ~=0.41) and a similar scheme that uses spectral means (κ~=0.75) instead of histograms (κ~=0.90). The results are shown on a dermatological image......A three-stage scheme for the classification of multispectral images is proposed. In each stage, the statistics of each class present in the image are estimated. The user is required to provide only one prototype pixel for each class to be seeded into a homogeneous region. The algorithm starts...... by generating optimum initial training sets, one for each class, maximizing the redundancy in the data sets. These sets are the realizations of the maximal discs centered on the prototype pixels for which it is true that all the elements belong to the same class as the center one. Afterwards, a region...

  9. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  10. Bonding techniques for hybrid active pixel sensors (HAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bigas, M. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: Marc.Bigas@cnm.es; Cabruja, E. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: Enric.Cabruja@cnm.es; Lozano, M. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  11. A Single-Transistor Active Pixel CMOS Image Sensor Architecture

    International Nuclear Information System (INIS)

    Zhang Guo-An; He Jin; Zhang Dong-Wei; Su Yan-Mei; Wang Cheng; Chen Qin; Liang Hai-Lang; Ye Yun

    2012-01-01

    A single-transistor CMOS active pixel image sensor (1 T CMOS APS) architecture is proposed. By switching the photosensing pinned diode, resetting and selecting can be achieved by diode pull-up and capacitive coupling pull-down of the source follower. Thus, the reset and selected transistors can be removed. In addition, the reset and selected signal lines can be shared to reduce the metal signal line, leading to a very high fill factor. The pixel design and operation principles are discussed in detail. The functionality of the proposed 1T CMOS APS architecture has been experimentally verified using a fabricated chip in a standard 0.35 μm CMOS AMIS technology

  12. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Aglieri Rinella, Gianluca, E-mail: gianluca.aglieri.rinella@cern.ch

    2017-02-11

    The ALPIDE chip is a CMOS Monolithic Active Pixel Sensor being developed for the Upgrade of the ITS of the ALICE experiment at the CERN Large Hadron Collider. The ALPIDE chip is implemented with a 180 nm CMOS Imaging Process and fabricated on substrates with a high-resistivity epitaxial layer. It measures 15 mm×30 mm and contains a matrix of 512×1024 pixels with in-pixel amplification, shaping, discrimination and multi-event buffering. The readout of the sensitive matrix is hit driven. There is no signaling activity over the matrix if there are no hits to read out and power consumption is proportional to the occupancy. The sensor meets the experimental requirements of detection efficiency above 99%, fake-hit probability below 10{sup −5} and a spatial resolution of 5 μm. The capability to read out Pb–Pb interactions at 100 kHz is provided. The power density of the ALPIDE chip is projected to be less than 35 mW/cm{sup 2} for the application in the Inner Barrel Layers and below 20 mW/cm{sup 2} for the Outer Barrel Layers, where the occupancy is lower. This contribution describes the architecture and the main features of the final ALPIDE chip, planned for submission at the beginning of 2016. Early results from the experimental qualification of full scale prototype predecessors are also reported. - Highlights: • The ALPIDE chip, an innovative CMOS pixel particle detector is described. • It achieves excellent detection performance figures and very low power consumption. • The characterization of prototypes confirms the achievement of the specifications.

  13. Development of Fast and High Precision CMOS Pixel Sensors for an ILC Vertex Detector

    CERN Document Server

    Hu-Guo, Christine

    2010-01-01

    The development of CMOS pixel sensors with column parallel read-out and integrated zero-suppression has resulted in a full size, nearly 1 Megapixel, prototype with ~100 \\mu s read-out time. Its performances are quite close to the ILD vertex detector specifications, showing that the sensor architecture can presumably be evolved to meet these specifications exactly. Starting from the existing architecture and achieved performances, the paper will expose the details of how the sensor will be evolved in the coming 2-3 years in perspective of the ILD Detector Baseline Document, to be delivered in 2012. Two different devices are foreseen for this objective, one being optimized for the inner layers and their fast read-out requirement, while the other exploits the dimmed background in the outer layers to reduce the power consumption. The sensor evolution relies on a high resistivity epitaxial layer, on the use of an advanced CMOS process and on the combination of column-level ADCs with a pixel array. The paper will p...

  14. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    International Nuclear Information System (INIS)

    Zhang, L.; Wang, M.; Fu, M.; Zhang, Y.; Yan, W.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm 2 .

  15. On drift fields in CMOS monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Deveaux, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2016-07-01

    CMOS Monolithic Active Pixel Sensors (MAPS) combine an excellent spatial resolution of few μm with a very low material budget of 0.05% X{sub 0}. To extend their radiation tolerance to the level needed for future experiments like e.g. CBM, it is regularly considered to deplete their active volume. We discuss the limits of this strategy accounting for the specific features of the sensing elements of MAPS. Moreover, we introduce an alternative approach to generate the drift fields needed to provoke a faster charge collection by means of doping gradients.

  16. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    Science.gov (United States)

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  17. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  18. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  19. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  20. Electronic dosimetry and neutron metrology by CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Vanstalle, M.

    2011-01-01

    This work aims at demonstrating the possibility to use active pixel sensors as operational neutron dosemeters. To do so, the sensor that has been used has to be γ-transparent and to be able to detect neutrons on a wide energy range with a high detection efficiency. The response of the device, made of the CMOS sensor MIMOSA-5 and a converter in front of the sensor (polyethylene for fast neutron detection and 10 B for thermal neutron detection), has been compared with Monte Carlo simulations carried out with MCNPX and GEANT4. These codes have been before-hand validated to check they can be used properly for our application. Experiments to characterize the sensor have been performed at IPHC and at IRSN/LMDN (Cadarache). The results of the sensor irradiation to photon sources and mixed field ( 241 AmBe source) show the γ-transparency of the sensor by applying an appropriate threshold on the deposited energy (around 100 keV). The associated detection efficiency is satisfactory with a value of 10 -3 , in good agreement with MCNPX and GEANT4. Other features of the device have been tested with the same source, like the angular response. The last part of this work deals with the detection of thermal neutrons (eV-neutrons). Assays have been done in Cadarache (IRSN) with a 252 Cf source moderated with heavy water (with and without cadmium shell). Results asserted a very high detection efficiency (up to 6*10 -3 for a pure 10 B converter) in good agreement with GEANT4. (author)

  1. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  2. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  3. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    Science.gov (United States)

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  4. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A.

    2017-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  5. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-09-21

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  6. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  7. Performance of Radiation Hard Pixel Sensors for the CMS Experiment

    CERN Document Server

    Dorokhov, Andrei

    2005-01-01

    Position sensitive detectors in particle physics experiments are used for the detection of the particles trajectory produced in high energy collisions. To study physics phenomena at high energies the high particle interaction rate is unavoidable, as the number of interesting events falls with the energy and the total number of events is dominated by the soft processes. The position resolution of vertex detectors has to be of few microns in order to distinguish between particle tracks produced in b-quark or tau-decays, because of the short flight path before the decay. The high spatial position resolution and the ability to detect a large number of superimposed track are the key features for tracking detectors. Modern silicon microstrip and pixel detectors with high resolution are currently most suitable devices for the tracking systems of high energy physics experiments. In this work the performance of the sensors designed for the CMS pixel detector are studied and the position resolution is estimated. In the...

  8. Beam test performance and simulation of prototypes for the ALICE silicon pixel detector

    International Nuclear Information System (INIS)

    Conrad, J.; Anelli, G.; Antinori, F.

    2007-01-01

    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed

  9. Prototype of the front-end circuit for the GOSSIP (Gas On Slimmed Silicon Pixel) chip in the 0.13 μm CMOS technology

    CERN Document Server

    Gromov, V; van der Graaf, H

    2007-01-01

    The new GOSSIP detector, capable to detect single electrons in gas, has certain advantages with respect silicon (pixel) detectors. It does not require a Si sensor; it has a very low detector parasitic capacitance and a zero bias current at the pixel input. These are attractive features to design a compact, low-noise and low-power integrated input circuit. A prototype of the integrated circuit has been developed in 0.13 μm CMOS technology. It includes a few channels equipped with preamplifier, discriminator and the digital circuit to study the feasibility of the TDC-perpixel concept. The design demonstrates very low input referred noise (60e- RMS) in combination with a fast peaking time (40 ns) and an analog power dissipation as low as 2 μW per channel. Switching activity on the clock bus (up to 100 MHz) in the close vicinity of the pixel input pads does not cause noticeable extra noise.

  10. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    International Nuclear Information System (INIS)

    Molnar, L.

    2014-01-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented

  11. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    Science.gov (United States)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  12. Pitch dependence of the tolerance of CMOS monolithic active pixel sensors to non-ionizing radiation

    International Nuclear Information System (INIS)

    Doering, D.; Deveaux, M.; Domachowski, M.; Fröhlich, I.; Koziel, M.; Müntz, C.; Scharrer, P.; Stroth, J.

    2013-01-01

    CMOS monolithic active pixel sensors (MAPS) have demonstrated excellent performance as tracking detectors for charged particles. They provide an outstanding spatial resolution (a few μm), a detection efficiency of ≳99.9%, very low material budget (0.05%X 0 ) and good radiation tolerance (≳1Mrad, ≳10 13 n eq /cm 2 ) (Deveaux et al. [1]). This makes them an interesting technology for various applications in heavy ion and particle physics. Their tolerance to bulk damage was recently improved by using high-resistivity (∼1kΩcm) epitaxial layers as sensitive volume (Deveaux et al. [1], Dorokhov et al. [2]). The radiation tolerance of conventional MAPS is known to depend on the pixel pitch. This is as a higher pitch extends the distance, which signal electrons have to travel by thermal diffusion before being collected. Increased diffusion paths turn into a higher probability of loosing signal charge due to recombination. Provided that a similar effect exists in MAPS with high-resistivity epitaxial layer, it could be used to extend their radiation tolerance further. We addressed this question with MIMOSA-18AHR prototypes, which were provided by the IPHC Strasbourg and irradiated with reactor neutrons. We report about the results of this study and provide evidences that MAPS with 10μm pixel pitch tolerate doses of ≳3×10 14 n eq /cm 2

  13. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    International Nuclear Information System (INIS)

    Esposito, M.; Waltham, C.; Allinson, N.M.; Anaxagoras, T.; Evans, P.M.; Poludniowski, G.; Green, S.; Parker, D.J.; Price, T.; Manolopoulos, S.; Nieto-Camero, J.

    2015-01-01

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs

  14. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  15. A novel source–drain follower for monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C., E-mail: chaosong.gao@mails.ccnu.edu.cn [Central China Normal University, Wuhan (China); Aglieri, G.; Hillemanns, H. [CERN, Geneva (Switzerland); Huang, G., E-mail: gmhuang@phy.ccnu.edu.cn [Central China Normal University, Wuhan (China); Junique, A.; Keil, M. [CERN, Geneva (Switzerland); Kim, D. [Dongguk University, Seoul (Korea, Republic of); Yonsei University, Seoul (Korea, Republic of); Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C.A.; Martinengo, P. [CERN, Geneva (Switzerland); Mugnier, H. [Mind, Archamps (France); Musa, L. [CERN, Geneva (Switzerland); Lee, S. [Dongguk University, Seoul (Korea, Republic of); Yonsei University, Seoul (Korea, Republic of); Reidt, F. [CERN, Geneva (Switzerland); Ruprecht-Karls-Universitat Heidelberg, Heidelberg (Germany); Riedler, P. [CERN, Geneva (Switzerland); Rousset, J. [Mind, Archamps (France); Sielewicz, K.M. [CERN, Geneva (Switzerland); Warsaw University of Technology, Warsaw (Poland); Snoeys, W. [CERN, Geneva (Switzerland); and others

    2016-09-21

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/C{sub eff} or decrease the effective sensing node capacitance C{sub eff} because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source–drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to C{sub eff}. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to C{sub eff}, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a {sup 55}Fe source. Increasing reverse substrate bias from −1 V to −6 V reduces C{sub eff} by 38% and the equivalent noise charge

  16. A novel source–drain follower for monolithic active pixel sensors

    International Nuclear Information System (INIS)

    Gao, C.; Aglieri, G.; Hillemanns, H.; Huang, G.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C.A.; Martinengo, P.; Mugnier, H.; Musa, L.; Lee, S.; Reidt, F.; Riedler, P.; Rousset, J.; Sielewicz, K.M.; Snoeys, W.

    2016-01-01

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/C_e_f_f or decrease the effective sensing node capacitance C_e_f_f because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source–drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to C_e_f_f. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to C_e_f_f, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a "5"5Fe source. Increasing reverse substrate bias from −1 V to −6 V reduces C_e_f_f by 38% and the equivalent noise charge (ENC) by 22% for the

  17. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Science.gov (United States)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.; CMS Collaboration

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  18. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    International Nuclear Information System (INIS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F.R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-01-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  19. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Bhardwaj, A.; Dalal, R. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Eber, R. [Institute fur Experimentelle Kernphysik (Germany); Eichorn, T. [Deutsches Elektronen Synchrotron (Germany); Fernandez, M. [Instituto de Fisica de Cantabria (Spain); Lalwani, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Messineo, A. [Universita di Pisa & INFN sez. di Pisa (Italy); Palomo, F.R. [Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Peltola, T. [Helsinki Institute of Physics (Finland); Printz, M. [Institute fur Experimentelle Kernphysik (Germany); Ranjan, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Villa, I. [Instituto de Fisica de Cantabria (Spain); Hidalgo, S. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica (Spain)

    2016-07-11

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  20. Gas filled prototype of a CdZnTe pixel detector

    International Nuclear Information System (INIS)

    Ramsey, B.; Sharma, D.; Sipila, H.; Gostilo, V.; Loupilov, A.

    2001-01-01

    CdZnTe pixel structures are currently the most promising detectors for the focal planes of hard X-ray telescopes, for astronomical observation in the range 5-100 keV. In Sharma et al. (Proc. SPIE 3765 (1999) 822) and Ramsey et al. (Nucl. Instrum. Methods A 458 (2001) 55) we presented preliminary results on the development of prototype 4x4 CdZnTe imaging detectors operated under vacuum. These pixel detectors were installed inside vacuum chambers on three-stage Peltier coolers providing detector temperatures down to -40 deg. C. A miniature sputter ion pump inside each chamber maintained the necessary vacuum of 10 -5 Torr. At a temperature of -20 deg. C we achieved an FWHM energy resolution of between 2% and 3% at 60 keV and ∼15% at 5.9 keV; however, the dependency on temperature was weak and at +20 deg. C the respective resolutions were 3% and 20%. As the detectors could be operated at room temperature without loss of their good characteristics it was possible to exclude the sputter ion pump and fill the chamber with dry nitrogen instead. We have tested a nitrogen-filled CdZnTe (5x5x1 mm 3 ) prototype having 0.65x0.65 mm 2 readout pads on a 0.75 mm pitch. The interpixel resistance at an applied voltage of 10 V was higher than 50 GΩ and the pixel leakage currents at room temperature with a bias of 200 V between each pad and the common electrode did not exceed 0.8 nA. The pixel detector inside the microassembly, which also contained the input stages of the preamplifiers, was installed on a Peltier cooler to maintain the detector temperature at +20 deg. C. To define real leakage currents of the pixels in their switched-on state we have checked the voltage on the preamplifiers feedback resistors. The resulting currents were 10-50 pA at a detector bias of 500 V. Under test, the typical energy resolution per pixel at +20 deg. C was ∼3% at energy 59.6 keV and ∼20% at energy 5.9 keV, which are similar to the values obtained in the vacuum prototype at room temperature

  1. Improvement to the signaling interface for CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhan, E-mail: sz1134@163.com [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China); Tang, Zhenan, E-mail: tangza@dlut.edu.cn [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China); Feng, Chong [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China); Dalian Minzu University, No.18 Liaohe West Road, 116600 Dalian (China); Cai, Hong [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China)

    2016-10-01

    The development of the readout speed of CMOS pixel sensors (CPS) is motivated by the demanding requirements of future high energy physics (HEP) experiments. As the interface between CPS and the data acquisition (DAQ) system, which inputs clock from the DAQ system and outputs data from CPS, the signaling interface should also be improved in terms of data rates. Meanwhile, the power consumption of the signaling interface should be maintained as low as possible. Consequently, a reduced swing differential signaling (RSDS) driver was adopted instead of a low-voltage differential signaling (LVDS) driver to transmit data from CPS to the DAQ system. In order to increase the capability of data rates, a serial source termination technique was employed. A LVDS/RSDS receiver was employed for transmitting clock from the DAQ system to CPS. A new method of generating hysteresis and a special current comparator were used to achieve a higher speed with lower power consumption. The signaling interface was designed and submitted for fabrication in a 0.18 µm CMOS image sensor (CIS) process. Measurement results indicate that the RSDS driver and the LVDS receiver can operate correctly at a data rate of 2 Gb/s with a power consumption of 19.1 mW.

  2. Transfer Function and Fluorescence Measurements on New CMOS Pixel Sensor for ATLAS

    CERN Document Server

    Kaemingk, Michael

    2017-01-01

    A new generation of pixel sensors is being designed for the phase II upgrade of the ATLAS Inner Tracker (ITk). These pixel sensors are being tested to ensure that they meet the demands of the ATLAS detector. As a summer student, I was involved in some of the measurements taken for this purpose.

  3. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    International Nuclear Information System (INIS)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-01-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a ∼10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38

  4. Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR

    International Nuclear Information System (INIS)

    Greiner, L.; Matis, H.S.; Ritter, H.G.; Rose, A.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; Vu, C.; Wieman, H.

    2008-01-01

    We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment

  5. Design and prototype of an augmented reality display with per-pixel mutual occlusion capability.

    Science.gov (United States)

    Wilson, Austin; Hua, Hong

    2017-11-27

    State-of-the-art optical see-through head-mounted displays for augmented reality (AR) applications lack mutual occlusion capability, which refers to the ability to render correct light blocking relationship when merging digital and physical objects, such that the virtual views appear to be ghost-like and lack realistic appearance. In this paper, using off-the-shelf optical components, we present the design and prototype of an AR display which is capable of rendering per-pixel mutual occlusion. Our prototype utilizes a miniature organic light emitting display coupled with a liquid crystal on silicon type spatial light modulator to achieve an occlusion capable AR display offering a 30° diagonal field of view and an angular resolution of 1.24 arcminutes, with an optical performance of > 0.4 contrast over the full field at the Nquist frequency of 24.2 cycles/degree. We experimentally demonstrate a monocular prototype achieving >100:1 dynamic range in well-lighted environments.

  6. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  7. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  8. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    Science.gov (United States)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  9. A Prototype of a New Generation Readout ASIC in 65 nm CMOS for Pixel Detectors at HL-LHC

    CERN Document Server

    Pacher, L.; Paternò, A; Panati, S; Demaria, L; Rivetti, A; Da Rocha Rolo, M; Dellacasa, G; Mazza, G; Rotondo, F; Wheadon, R; Loddo, F; Licciulli, F; Ciciriello, F; Marzocca, C; Gaioni, L; Traversi, G; Re, V; De Canio, F; Ratti, L; Marconi, S; Placidi, P; Magazzù, G; Stabile, A; Mattiazzo, S

    2018-01-01

    The prototype is composed of a matrix of 64×64 pixels with 50 μm × 50 μm cells featuring a compact design, low-noise and low-power performance. The pixel array integrates two diffe- rent analogue front-end architectures working in parallel, one with asynchronous and one with synchronous hit discriminators. Common characteristics are a compact layout able to fit int...

  10. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    Science.gov (United States)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  11. Radiation hardness of CMOS monolithic active pixel sensors manufactured in a 0.18 μm CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Linnik, Benjamin [Goethe-Universitaet Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2015-07-01

    CMOS Monolithic Active Pixels Sensors (MAPS) are considered as the technology of choice for various vertex detectors in particle and heavy-ion physics including the STAR HFT, the upgrade of the ALICE ITS, the future ILC detectors and the CBM experiment at FAIR. To match the requirements of those detectors, their hardness to radiation is being improved, among others in a joined research activity of the Goethe University Frankfurt and the IPHC Strasbourg. It was assumed that combining an improved high resistivity (1-8 kΩcm) sensitive medium with the features of a 0.18 μm CMOS process, is suited to reach substantial improvements in terms of radiation hardness as compared to earlier sensor designs. This strategy was tested with a novel generation of sensor prototypes named MIMOSA-32 and MIMOSA-34. We show results on the radiation hardness of those sensors and discuss its impact on the design of future vertex detectors.

  12. Pixel sensor evaluation and online event selection for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom

    2017-10-27

    Despite having survived numerous experimental tests, the standard model of particle physics is not a complete description of nature. The Mu3e experiment tests theories beyond the standard model by searching for the lepton flavour violating decay μ→e{sup +}e{sup -}e{sup +}, aiming at a branching ratio sensitivity of 2.10{sup -15} in a first phase of the experiment. A high precision magnetic spectrometer combined with scintillation detectors will measure the momenta, vertices and timing of the decay products of 1.10{sup 8} μ/s stopped on a target. In this work, a prototype of the high voltage monolithic active pixel sensor envisaged for the spectrometer was characterised. With an efficiency >99% and a time resolution of 14 ns, it meets the requirements imposed on the final sensor. Furthermore, an online signal selection process was developed and implemented on a graphics processing unit (GPU), keeping 98% of signal decays, while reducing the data rate of 80 Gbit/s by a factor of 140; resulting in a rate that can be stored to disk. With the computing performance achieved on the GPU, the selection process can run on the hardware planned for the experiment. Both the online selection and the silicon sensor are key aspects for the success of Mu3e.

  13. Photodiode area effect on performance of X-ray CMOS active pixel sensors

    Science.gov (United States)

    Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.

    2018-02-01

    Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.

  14. Comparison of relevant parameters of multi-pixel sensors for tracker detectors after irradiation with high proton and neutron fluences

    International Nuclear Information System (INIS)

    Bergholz, Matthias

    2016-03-01

    The further increase of the luminosity of the Large Hadron Collider (LHC) at CERN requires new sensors for the tracking detector of the Compact Muon Soleniod (CMS) experiment. These sensors must be more radiation hard and of a finer granularity to lower the occupancy. In addition the new sensor modules must have a lower material budget and have to be self triggering. Sensor prototypes, the so called ''MPix''-sensors, produced on different materials were investigated for their radiation hardness. These sensors were fully characterized before and after irradiation. Of particular interest was the comparison of different bias methods, different materials and the influence of various geometries. The degeneration rate differs for the different sensor materials. The increase of the dark current of Float-Zone-Silicon is stronger for thicker sensors and less than for Magnetic-Czochralski-Silicon sensors. Both tested bias structures are damaged by the irradiation. The poly silicon resistance increases after irradiation by fifty percent. The Punch-Through-Structure is more effected by irradiation. The punch-through voltage increase by a factor of two. Due to the higher pixel current, the working point of the sensor is shifted to smaller differential resistances.

  15. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    International Nuclear Information System (INIS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-01-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R and D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision

  16. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    Science.gov (United States)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  17. First Results from Cherwell, a Monolithic Active Pixel Sensor for Particle Physics

    CERN Document Server

    Nooney, Tamsin; Borri, Marcello; Crooks, Jamie; Headspith, Jon; Inguglia, Gianluca; Kolya, Scott; Lazarus, Ian; Lemmon, Roy; Mylroie-Smith, James; Turchetta, Renato; Velthuis, Jaap; Wilson, Fergus

    2014-01-01

    Cherwell is a CMOS Monolithic Active Pixel Sensor (MAPS) developed for digital calorimetry and charged particle tracking applications. Here, we outline the initial tests carried out to charac- terise the performance of Cherwell, give details of the test beam carried out at CERN and include the first results from this analysis. Three variations of the chip were tested; Type A, a high re- sistivity, low noise sensor, Type B, a standard resisivity, low noise sensor and Type C, a standard resistivity, standard noise sensor. The sensors yield an average RMS noise value per pixel of 9.6 e

  18. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    Science.gov (United States)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  19. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  20. Test-beam Results from a RICH Detector Prototype Using Aerogel Radiator and Pixel Hybrid Photon Detectors

    CERN Document Server

    Aglieri-Rinella, G; Van Lysebetten, A; Piedigrossi, D; Wyllie, K; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Somerville, L P; Newby, C; Easo, S; Wotton, S

    2006-01-01

    A test-beam study was performed at CERN with a Ring Imaging Cherenkov (RICH) prototype using three pixel Hybrid Photon Detectors. Results on the photon yield and Cherenkov angle resolution are presented here, for the Aerogel radiator and also for reference runs taken with Nitrogen radiator.

  1. The effect of split pixel HDR image sensor technology on MTF measurements

    Science.gov (United States)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  2. Status and perspectives of pixel sensors based on 3D vertical integration

    Energy Technology Data Exchange (ETDEWEB)

    Re, Valerio [Università di Bergamo, Dipartimento di Ingegneria, Viale Marconi, 5, 24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi, 6, 27100 Pavia (Italy)

    2014-11-21

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP.

  3. Status and perspectives of pixel sensors based on 3D vertical integration

    International Nuclear Information System (INIS)

    Re, Valerio

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP

  4. Simulation study of LYSO crystal pixels for In-Beam TOF-PET prototype

    International Nuclear Information System (INIS)

    Chen Ze; Hu Zhengguo; Chen Jinda; Zhang Xiuling

    2014-01-01

    In-beam TOF-PET is currently the only feasible method implemented for in-situ and noninvasive monitoring of the precision of the treatment in highly conformal ion radiotherapy. It ensures the safety of patient and accurate implementation of treatment plan. Therefore, we intent to carry out the development of In-beam TOF-PET prototype, which is made of LYSO crystal, for ion radiotherapy. LYSO crystal has perfect properties such as high light yield, fast decay time, good energy and time resolution, which makes it a good candidate. In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection and energy resolution is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte Carlo simulations play an important role in guiding research in detector designs and popular software such as Gate now include models of light transport in scintillators. This study uses Gate software to investigate the influence of crystal length and wrapping materials to the light collection. Accurate physical modeling of scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal pixel length, light yield, decay time, attenuation length and surface treatment. The dependence of light output and energy resolution is studied and compared with experiment results. The results show that LYSO pixel with length of 5 mm has better light yield and energy resolution, meanwhile prove that it is possible to accurately simulate the light output using Gate. (authors)

  5. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Science.gov (United States)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  6. 3D monolithically stacked CMOS active pixel sensor detectors for particle tracking applications

    International Nuclear Information System (INIS)

    Passeri, D; Placidi, P; Servoli, L; Meroli, S; Magalotti, D; Marras, A

    2012-01-01

    In this work we propose an innovative approach to particle tracking based on CMOS Active Pixel Sensors layers, monolithically integrated in an all-in-one chip featuring multiple, stacked, fully functional detector layers capable to provide momentum measurement (particle impact point and direction) within a single detector. This will results in a very low material detector, thus dramatically reducing multiple scattering issues. To this purpose, we rely on the capabilities of the CMOS vertical scale integration (3D IC) technology. A first chip prototype has been fabricated within a multi-project run using a 130 nm CMOS Chartered/Tezzaron technology, featuring two layers bonded face-to-face. Tests have been carried out on full 3D structures, providing the functionalities of both tiers. To this purpose, laser scans have been carried out using highly focussed spot size obtaining coincidence responses of the two layers. Tests have been made as well with X-ray sources in order to calibrate the response of the sensor. Encouraging results have been found, fostering the suitability of both the adopted 3D-IC vertical scale fabrication technology and the proposed approach for particle tracking applications.

  7. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  8. Characterization study of an intensified complementary metal-oxide-semiconductor active pixel sensor

    Science.gov (United States)

    Griffiths, J. A.; Chen, D.; Turchetta, R.; Royle, G. J.

    2011-03-01

    An intensified CMOS active pixel sensor (APS) has been constructed for operation in low-light-level applications: a high-gain, fast-light decay image intensifier has been coupled via a fiber optic stud to a prototype "VANILLA" APS, developed by the UK based MI3 consortium. The sensor is capable of high frame rates and sparse readout. This paper presents a study of the performance parameters of the intensified VANILLA APS system over a range of image intensifier gain levels when uniformly illuminated with 520 nm green light. Mean-variance analysis shows the APS saturating around 3050 Digital Units (DU), with the maximum variance increasing with increasing image intensifier gain. The system's quantum efficiency varies in an exponential manner from 260 at an intensifier gain of 7.45 × 103 to 1.6 at a gain of 3.93 × 101. The usable dynamic range of the system is 60 dB for intensifier gains below 1.8 × 103, dropping to around 40 dB at high gains. The conclusion is that the system shows suitability for the desired application.

  9. Active pixel sensors: The sensor of choice for future space applications

    OpenAIRE

    Leijtens, J.; Theuwissen, A.; Rao, P.R.; Wang, X.; Xie, N.

    2007-01-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at t...

  10. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    Science.gov (United States)

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  11. Hard X-ray test and evaluation of a prototype 32x32 pixel gallium-arsenide array

    International Nuclear Information System (INIS)

    Erd, C.; Owens, A.; Brammertz, G.; Bavdaz, M.; Peacock, A.; Laemsae, V.; Nenonen, S.; Andersson, H.; Haack, N.

    2002-01-01

    We report X-ray measurements on a prototype 1.1 cm 2 , 32x32 GaAs pixel array with a pixel size of 350x350 μm 2 produced to assess the technological feasibility of making large area, almost Fano-limited arrays, which operate near room temperature. Measurements were carried out on four widely separated pixels both in our laboratories and using monochromatic X-ray pencil beams at the HASYLAB synchrotron research facility in Hamburg, Germany. The pixels were found to be very uniform both in their energy and spatial responses. For example, typical energy resolutions of ∼280 eV at 10.5 keV, rising to ∼560 eV at 60 keV were achieved. The corresponding resolutions measured under full-pixel illumination were found to be the same within statistics, indicating uniform crystallinity and stoichiometry. Likewise, by scanning a 15 keV, 15x15 μm 2 beam across the entire surface of each of the pixels, the gain uniformity across the pixels (and by implication the entire array) was determined to be statistically flat

  12. Beam test results for the RAPS03 non-epitaxial CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Biagetti, Daniele; Marras, Alessandro; Meroli, Stefano; Passeri, Daniele; Placidi, Pisana; Servoli, Leonello; Tucceri, Paola

    2011-01-01

    Recently our group has been investigating the possibility of using a standard CMOS technology - featuring no epitaxial layer - to fabricate a sensor for charged particle detection. In this work we present the results obtained exposing sensors with 256x256 pixels (10x10μm pixel size, two different pixel layouts) to 180 GeV protons and positrons at the SuperProtoSynchrotron facility (CERN). We have investigated the different response of the two architectural options in terms of S/N, cluster width, intrinsic spatial resolution, efficiency. The results show a good Landau response, S/N about 22 with an average cluster size of 4.5 pixels, and an intrinsic spatial resolution of 1.5μm (order of 1/7th of the pixel size).

  13. Test beam evaluation of newly developed n-in-p planar pixel sensors for use in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K., E-mail: kimihiko@hep.phys.titech.ac.jp [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Yamaguchi, D.; Motohashi, K. [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Nakamura, K.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Jinnouchi, O. [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Altenheiner, S. [Experimentelle Physik IV, Technische Universität Dortmund, 44221 Dortmund (Germany); Blue, A. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom); Bomben, M. [CNRS/IN2P3 (France); Laboratoire de physique nucléaire et de hautes energies (LPNHE), Univ. Paris-UMPC, 4 Place Jussieu, 75005 Paris (France); Univ. Paris Diderot (France); Butter, A. [LAL, University Paris-Sud (France); CNRS/IN2P3 (France); Université Paris-Saclay, Orsay (France); Cervelli, A. [Universität Bern, Laboratory for High Energy Physics, Sidlerstrasse 55, CH-3012 Bern (Switzerland); Crawley, S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom); Ducourthial, A. [CNRS/IN2P3 (France); Laboratoire de physique nucléaire et de hautes energies (LPNHE), Univ. Paris-UMPC, 4 Place Jussieu, 75005 Paris (France); Univ. Paris Diderot (France); Gisen, A. [Experimentelle Physik IV, Technische Universität Dortmund, 44221 Dortmund (Germany); Hagihara, M. [Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8751 (Japan); and others

    2016-09-21

    Radiation-tolerant n-in-p planar pixel sensors have been under development in cooperation with Hamamatsu Photonics K.K. (HPK). This is geared towards applications in high-radiation environments, such as for the future Inner Tracker (ITk) placed in the innermost part of the ATLAS detector in the high luminosity LHC (HL-LHC) experiment. Prototypes of those sensors have been produced, irradiated, and evaluated over the last few years. In the previous studies, it was reported that significant drops in the detection efficiency were observed after irradiation, especially under bias structures. The bias structures are made up of poly-Si or Al bias rails and poly-Si bias resistors. The structure is implemented on the sensors to allow quality checks to be performed before the bump-bonding process, and to ensure that charge generated in floating pixels due to non-contacting or missing bump-bonds is dumped in a controlled way in order to avoid noise. To minimize the efficiency drop, several new pixel structures have been designed with bias rails and bias resistors relocated. Several test beams have been carried out to evaluate the drops in the detection efficiency of the new sensor structures after irradiation. Newly developed sensor modules were irradiated with proton-beams at the Cyclotron and Radio-Isotope Center (CYRIC) in Tohoku University to see the effect of sensor-bulk damage and surface charge-up. An irradiation with γ-rays was also carried out at Takasaki Advanced Radiation Research Center, with the goal of decoupling the effect of surface charge-up from that of bulk damage. Those irradiated sensors have been evaluated with particle beams at DESY and CERN. Comparison between different sensor structures confirmed significant improvements in minimizing efficiency loss under the bias structures after irradiation. The results from γ-irradiation also enabled cross-checking the results of a semiconductor technology simulation program (TCAD). - Highlights: • The

  14. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  15. Radiation effects on active pixel sensors (APS); Effets de l'irradiation sur les capteurs a pixels actifs (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.; David, J.P. [ONERA-CERT/, 31 - Toulouse (France)

    1999-07-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using {sup 60}Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity.

  16. Radiation effects on active pixel sensors (APS); Effets de l'irradiation sur les capteurs a pixels actifs (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M; David, J P [ONERA-CERT/, 31 - Toulouse (France)

    1999-07-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using {sup 60}Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity.

  17. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  18. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  19. Status and perspectives of pixel sensors based on 3D vertical integration

    CERN Document Server

    Re, V

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors.

  20. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    International Nuclear Information System (INIS)

    Miucci, A; Gonzalez-Sevilla, S; Ferrere, D; Iacobucci, G; Rosa, A La; Muenstermann, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Obermann, T; Wermes, N; Garcia-Sciveres, M; Backhaus, M; Capeans, M; Feigl, S; Nessi, M; Pernegger, H; Ristic, B; George, M

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

  1. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L., E-mail: liang.zhang@iphc.cnrs.fr [School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, 250100 Jinan (China); Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS/IN2P3/UDS, 23 rue du loess, BP 28, 67037 Strasbourg (France); Morel, F.; Hu-Guo, C.; Hu, Y. [Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS/IN2P3/UDS, 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2014-07-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm{sup 2}. The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/−0.28 LSB and 0.29/−0.20 LSB, respectively. - Highlights: • CMOS sensor integrated with column-level ADC is proposed for ILC VTX outer layers. • A low-power and small-area column-level ADC for high frame-rate CPS is presented. • The test results demonstrate the power and area efficiency. • The architecture is suitable for the outer layer CMOS sensors.

  2. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    International Nuclear Information System (INIS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Hu, Y.

    2014-01-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm 2 . The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/−0.28 LSB and 0.29/−0.20 LSB, respectively. - Highlights: • CMOS sensor integrated with column-level ADC is proposed for ILC VTX outer layers. • A low-power and small-area column-level ADC for high frame-rate CPS is presented. • The test results demonstrate the power and area efficiency. • The architecture is suitable for the outer layer CMOS sensors

  3. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  4. Development of radiation hard CMOS active pixel sensors for HL-LHC

    International Nuclear Information System (INIS)

    Pernegger, Heinz

    2016-01-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  5. High accuracy injection circuit for the calibration of a large pixel sensor matrix

    International Nuclear Information System (INIS)

    Quartieri, E.; Comotti, D.; Manghisoni, M.

    2013-01-01

    Semiconductor pixel detectors, for particle tracking and vertexing in high energy physics experiments as well as for X-ray imaging, in particular for synchrotron light sources and XFELs, require a large area sensor matrix. This work will discuss the design and the characterization of a high-linearity, low dispersion injection circuit to be used for pixel-level calibration of detector readout electronics in a large pixel sensor matrix. The circuit provides a useful tool for the characterization of the readout electronics of the pixel cell unit for both monolithic active pixel sensors and hybrid pixel detectors. In the latter case, the circuit allows for precise analogue test of the readout channel already at the chip level, when no sensor is connected. Moreover, it provides a simple means for calibration of readout electronics once the detector has been connected to the chip. Two injection techniques can be provided by the circuit: one for a charge sensitive amplification and the other for a transresistance readout channel. The aim of the paper is to describe the architecture and the design guidelines of the calibration circuit, which has been implemented in a 130 nm CMOS technology. Moreover, experimental results of the proposed injection circuit will be presented in terms of linearity and dispersion

  6. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, Thomas, E-mail: thomas.bergauer@oeaw.ac.at

    2016-09-21

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb{sup −1} over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p–p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow p{sub T} discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  7. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  8. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manghisoni, M.; Re, V.; Traversi, G.

    2011-01-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12μm to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6μm) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  9. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Universita di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Universita di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-10-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12{mu}m to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6{mu}m) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  10. A monolithic active pixel sensor for ionizing radiation using a 180 nm HV-SOI process

    Energy Technology Data Exchange (ETDEWEB)

    Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany)

    2016-07-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-180 nm High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. Standard FD-SOI MAPS suffer from radiation damage such as transistor threshold voltage shifts due to trapped charge in the buried oxide layer and charged interface states created at the silicon oxide boundaries (back gate effect). The X-FAB 180 nm HV-SOI technology offers an additional isolation using a deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection. The design and measurement results from first prototypes are presented including radiation tolerance to total ionizing dose and charge collection properties of neutron irradiated samples.

  11. A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process

    Energy Technology Data Exchange (ETDEWEB)

    Hemperek, Tomasz, E-mail: hemperek@uni-bonn.de; Kishishita, Tetsuichi; Krüger, Hans; Wermes, Norbert

    2015-10-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffers from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.

  12. A CMOS Image Sensor With In-Pixel Buried-Channel Source Follower and Optimized Row Selector

    NARCIS (Netherlands)

    Chen, Y.; Wang, X.; Mierop, A.J.; Theuwissen, A.J.P.

    2009-01-01

    This paper presents a CMOS imager sensor with pinned-photodiode 4T active pixels which use in-pixel buried-channel source followers (SFs) and optimized row selectors. The test sensor has been fabricated in a 0.18-mum CMOS process. The sensor characterization was carried out successfully, and the

  13. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  14. First tests of CHERWELL, a Monolithic Active Pixel Sensor: A CMOS Image Sensor (CIS) using 180 nm technology

    Energy Technology Data Exchange (ETDEWEB)

    Mylroie-Smith, James, E-mail: j.mylroie-smith@qmul.ac.uk [Queen Mary, University of London (United Kingdom); Kolya, Scott; Velthuis, Jaap [University of Bristol (United Kingdom); Bevan, Adrian; Inguglia, Gianluca [Queen Mary, University of London (United Kingdom); Headspith, Jon; Lazarus, Ian; Lemon, Roy [Daresbury Laboratory, STFC (United Kingdom); Crooks, Jamie; Turchetta, Renato; Wilson, Fergus [Rutherford Appleton Laboratory, STFC (United Kingdom)

    2013-12-11

    The Cherwell is a 4T CMOS sensor in 180 nm technology developed for the detection of charged particles. Here, the different test structures on the sensor will be described and first results from tests on the reference pixel variant are shown. The sensors were shown to have a noise of 12 e{sup −} and a signal to noise up to 150 in {sup 55}Fe.

  15. The upgrade of the ALICE Inner Tracking System - Status of the R&D; on monolithic silicon pixel sensors

    CERN Document Server

    Van Hoorne, Jacobus Willem

    2014-01-01

    s a major part of its upgrade plans, the ALICE experiment schedules the installation of a novel Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2018/19. It will replace the present silicon tracker with seven layers of Monolithic Active Pixel Sensors (MAPS) and significantly improve the detector performance in terms of tracking and rate capabilities. The choice of technology has been guided by the tight requirements on the material budget of 0 : 3 % X = X 0 /layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Within the ongoing R&D; phase, several sensor chip prototypes have been developed and produced on different epitaxial layer thicknesses and resistivities. These chips are being characterized for their performance before and after irradiation using source tests, test beam and measu...

  16. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Science.gov (United States)

    Cavicchioli, C.; Chalmet, P. L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J. W.; Yang, P.

    2014-11-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget ( 0.3 %X0 in total for each inner layer) and higher granularity ( 20 μm × 20 μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ > 1 kΩ cm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1-5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  17. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Cavicchioli, C., E-mail: costanza.cavicchioli@cern.ch [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Chalmet, P.L. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Giubilato, P. [Università and INFN, Padova (Italy); Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Marin Tobon, C.A. [Valencia Polytechnic University, Valencia (Spain); Martinengo, P. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Mattiazzo, S. [Università and INFN, Padova (Italy); Mugnier, H. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Musa, L. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Pantano, D. [Università and INFN, Padova (Italy); Rousset, J. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Reidt, F. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg (Germany); Riedler, P.; Snoeys, W. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Van Hoorne, J.W. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Technische Universitaet Wien, Vienna (Austria); Yang, P. [Central China Normal University CCNU, Wuhan (China)

    2014-11-21

    Within the R and D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (∼0.3%X{sub 0} in total for each inner layer) and higher granularity (∼20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a {sup 55}Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  18. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Cavicchioli, C.; Chalmet, P.L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C.A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J.W.; Yang, P.

    2014-01-01

    Within the R and D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (∼0.3%X 0 in total for each inner layer) and higher granularity (∼20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55 Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented

  19. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors

    International Nuclear Information System (INIS)

    Koenig, Thomas; Schulze, Julia; Zuber, Marcus; Rink, Kristian; Oelfke, Uwe; Butzer, Jochen; Hamann, Elias; Cecilia, Angelica; Zwerger, Andreas; Fauler, Alex; Fiederle, Michael

    2012-01-01

    Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution. (paper)

  20. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, M., E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, L. [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa (Italy); INFN Sez. di Pisa, Pisa (Italy); Chauveau, J. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  1. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown

  2. Development of thin pixel sensors and a novel interconnection technology for the SLHC

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Dubbert, J.; Ghodbane, N.; Kortner, O.; Kroha, H.; Moser, H.G.; Nisius, R.; Richter, R.H.

    2008-01-01

    We present an R and D activity aiming to develop a new detector concept in the framework of the ATLAS pixel detector upgrade in view of the Super-LHC. The new devices combine 75-150 μm thick pixels sensors with a vertical integration technology. A new production of thin pixel sensors on n- and p-type material is under way at the MPI Semiconductor Laboratory. These devices will be connected to the ATLAS read-out electronics with the new Solid-Liquid InterDiffusion technique as an alternative to the bump-bonding process. We also plan for the signals to be extracted from the back of the electronics wafer through Inter-Chip-Vias. The compatibility of the Solid-Liquid InterDiffusion process with the silicon sensor functionality has already been demonstrated by measurements on two wafers hosting diodes with an active thickness of 50 μm

  3. Initial testing of a pixelated silicon detector prototype in proton therapy.

    Science.gov (United States)

    Wroe, Andrew J; McAuley, Grant; Teran, Anthony V; Wong, Jeannie; Petasecca, Marco; Lerch, Michael; Slater, James M; Rozenfeld, Anatoly B

    2017-09-01

    As technology continues to develop, external beam radiation therapy is being employed, with increased conformity, to treat smaller targets. As this occurs, the dosimetry methods and tools employed to quantify these fields for treatment also have to evolve to provide increased spatial resolution. The team at the University of Wollongong has developed a pixelated silicon detector prototype known as the dose magnifying glass (DMG) for real-time small-field metrology. This device has been tested in photon fields and IMRT. The purpose of this work was to conduct the initial performance tests with proton radiation, using beam energies and modulations typically associated with proton radiosurgery. Depth dose and lateral beam profiles were measured and compared with those collected using a PTW parallel-plate ionization chamber, a PTW proton-specific dosimetry diode, EBT3 Gafchromic film, and Monte Carlo simulations. Measurements of the depth dose profile yielded good agreement when compared with Monte Carlo, diode and ionization chamber. Bragg peak location was measured accurately by the DMG by scanning along the depth dose profile, and the relative response of the DMG at the center of modulation was within 2.5% of that for the PTW dosimetry diode for all energy and modulation combinations tested. Real-time beam profile measurements of a 5 mm 127 MeV proton beam also yielded FWHM and FW90 within ±1 channel (0.1 mm) of the Monte Carlo and EBT3 film data across all depths tested. The DMG tested here proved to be a useful device at measuring depth dose profiles in proton therapy with a stable response across the entire proton spread-out Bragg peak. In addition, the linear array of small sensitive volumes allowed for accurate point and high spatial resolution one-dimensional profile measurements of small radiation fields in real time to be completed with minimal impact from partial volume averaging. © 2017 The Authors. Journal of Applied Clinical Medical Physics published

  4. Probing and irradiation tests of ALICE pixel chip wafers and sensors

    CERN Document Server

    Cinausero, M; Antinori, F; Chochula, P; Dinapoli, R; Dima, R; Fabris, D; Galet, G; Lunardon, M; Manea, C; Marchini, S; Martini, S; Moretto, S; Pepato, Adriano; Prete, G; Riedler, P; Scarlassara, F; Segato, G F; Soramel, F; Stefanini, G; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    In the framework of the ALICE Silicon Pixel Detector (SPD) project a system dedicated to the tests of the ALICE1LHCb chip wafers has been assembled and is now in use for the selection of pixel chips to be bump-bonded to sensor ladders. In parallel, radiation hardness tests of the SPD silicon sensors have been carried out using the 27 MeV proton beam delivered by the XTU TANDEM accelerator at the SIRAD facility in LNL. In this paper we describe the wafer probing and irradiation set-ups and we report the obtained results. (6 refs).

  5. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  6. Measurement of the two track separation capability of hybrid pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, F.J., E-mail: Francisca.MunozSanchez@manchester.ac.uk [University of Manchester (United Kingdom); Battaglia, M. [University of California, Santa Cruz, United States of America (United States); CERN, The European Organization for Nuclear Research (Switzerland); Da Vià, C. [University of Manchester (United Kingdom); La Rosa, A. [University of California, Santa Cruz, United States of America (United States); Dann, N. [University of Manchester (United Kingdom)

    2017-02-11

    Large Hadron Collider experiments face new challenges in Run-2 conditions due to the increased beam energy, the interest for searches of new physics signals with higher jet pT and the consequent longer decay length of heavy hadrons. In this new scenario, the capability of the innermost pixel sensors to distinguish tracks in very dense environment becomes crucial for efficient tracking and flavour tagging performance. In this work, we discuss the measurement in a test beam of the two track separation capability of hybrid pixel sensors using the interaction particles out of the collision of high energy pions on a thin copper target. With this method we are able to evaluate the effect of merged hits in the sensors under test due to tracks closer than the sensor spatial granularity in terms of collected charge, multiplicity and reconstruction efficiency. - Highlights: • Measurement of the two-track separation capability of hybrid pixel sensors. • Emulating track dense environment with a cooper target in a test beam. • Cooper target in between telescope arms to create vertices. • Validation of simulation and reconstruction algorithm for future vertex detectors. • New qualification method for pixel modules in track dense environments.

  7. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    Science.gov (United States)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-11-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge.

  8. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    International Nuclear Information System (INIS)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-01-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge. - Highlights: • We achieved a tolerance of 1000 V with a 250-μm edge by Al2O3 side wall passivation. • Above is a wafer process and suitable for mass production. • For edge-spark protection, we suggest N+ edge with an isolation

  9. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  10. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    CERN Document Server

    Cavicchioli, C; Giubilato, P; Hillemanns, H; Junique, A; Kugathasan, T; Mager, M; Marin Tobon, C A; Martinengo, P; Mattiazzo, S; Mugnier, H; Musa, L; Pantano, D; Rousset, J; Reidt, F; Riedler, P; Snoeys, W; Van Hoorne, J W; Yang, P

    2014-01-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (~0.3%X0~0.3%X0 in total for each inner layer) and higher granularity (View the MathML source~20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity View the MathML source(ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge c...

  11. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Guo-Neng Lu

    2009-01-01

    Full Text Available We present a single-transistor pixel for CMOS image sensors (CIS. It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  12. A 45 nm Stacked CMOS Image Sensor Process Technology for Submicron Pixel.

    Science.gov (United States)

    Takahashi, Seiji; Huang, Yi-Min; Sze, Jhy-Jyi; Wu, Tung-Ting; Guo, Fu-Sheng; Hsu, Wei-Cheng; Tseng, Tung-Hsiung; Liao, King; Kuo, Chin-Chia; Chen, Tzu-Hsiang; Chiang, Wei-Chieh; Chuang, Chun-Hao; Chou, Keng-Yu; Chung, Chi-Hsien; Chou, Kuo-Yu; Tseng, Chien-Hsien; Wang, Chuan-Joung; Yaung, Dun-Nien

    2017-12-05

    A submicron pixel's light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e - /s at 60 °C, an ultra-low read noise of 0.90 e - ·rms, a high full well capacity (FWC) of 4100 e - , and blooming of 0.5% in 0.9 μm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 μm pixels is discussed.

  13. A measurement of Lorentz Angle of radiation-hard Pixel Sensors

    CERN Document Server

    Aleppo, M

    2001-01-01

    Silicon pixel detectors developed to meet LHC requirements were tested in a beam at CERN in the framework of the ATLAS collaboration. The experimental behaviour of irradiated and not-irradiated sensors in a magnetic field is discussed. The measurement of the Lorentz angle for these sensors at different operating conditions is presented. A simple model of the charge drift in silicon before and after irradiation is presented. The good agreement between the model predictions and the experimental results is shown.

  14. Submission of the First Full Scale Prototype Chip for Upgraded ATLAS Pixel Detector at LHC, FE-I4A

    CERN Document Server

    Barbero, M; The ATLAS collaboration; Beccherle, R; Darbo, G; Dube, S; Elledge, D; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Gensolen, F; Gnani, D; Gromov, V; Jensen, F; Hemperek, T; Karagounis, M; Kluit, R; Kruth, A; Mekkaoui, A; Menouni, M; Schipper, JD; Wermes, N; Zivkovic, V

    2010-01-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 250nm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250um^2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences b...

  15. Photon small-field measurements with a CMOS active pixel sensor.

    Science.gov (United States)

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  16. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Science.gov (United States)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  17. [High-Performance Active Pixel X-Ray Sensors for X-Ray Astronomy

    Science.gov (United States)

    Bautz, Mark; Suntharalingam, Vyshnavi

    2005-01-01

    The subject grants support development of High-Performance Active Pixel Sensors for X-ray Astronomy at the Massachusetts Institute of Technology (MIT) Center for Space Research and at MIT's Lincoln Laboratory. This memo reports our progress in the second year of the project, from April, 2004 through the present.

  18. CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems

    Science.gov (United States)

    Fossum, Eric R.

    1996-01-01

    The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.

  19. Secure Group Formation Protocol for a Medical Sensor Network Prototype

    DEFF Research Database (Denmark)

    Andersen, Jacob

    2009-01-01

    , and experience from user workshops and observations of clinicians at work on a hospital ward show that if the security mechanisms are not well designed, the technology is either rejected altogether, or they are circumvented leaving the system wide open to attacks. Our work targets the problem of designing......Designing security mechanisms such as privacy and access control for medical sensor networks is a challenging task; as such systems may be operated very frequently, at a quick pace, and at times in emergency situations. Understandably, clinicians hold extra unproductive tasks in low regard...... wireless sensors to be both secure and usable by exploring different solutions on a fully functional prototype platform. In this paper, we present an Elliptic Curve Cryptography (ECC) based protocol, which offers fully secure sensor set-up in a few seconds on standard (Telos) hardware. We evaluate...

  20. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D Project

    International Nuclear Information System (INIS)

    George, M

    2014-01-01

    After the foreseen upgrade of the LHC towards the HL-LHC, coming along with higher beam energies and increased peak luminosities, the experiments have to upgrade their detector systems to cope with the expected higher occupancies and radiation damages. In case of the ATLAS experiment a new Inner Tracker will be installed in this context. The ATLAS Planar Pixel Sensor R and D Project (PPS) is investigating the possibilities to cope with these new requirements, using planar pixel silicon sensors, working in a collaboration of 17 institutions and more than 80 scientists. Since the new Inner Tracker is supposed to have an active area on the order of 8 m 2 on the one side and has to withstand extreme irradiation on the other side, the PPS community is working on several approaches to reduce production costs, while increasing the radiation tolerance of the sensors. Another challenge is to produce sensors in such large quantities. During the production of the Insertable b-Layer (IBL) modules, the PPS community has proven to be able to produce a large scale production of planar silicon sensors with a high yield. For cost reduction reasons, it is desirable to produce larger sensors. There the PPS community is working on so called quad- and hex-modules, which have a size of four, respectively six FE-I4 readout chips. To cope with smaller radii and strict material budget requirements for the new pixel layers, developments towards sensors with small inactive areas are in the focus of research. Different production techniques, which even allow the production of sensors with active edges, have been investigated and the designs were qualified using lab and testbeam measurements. The short distance between the new innermost pixel layers and the interaction point, combined with the increase in luminosity, requires designs which are more radiation tolerant. Since charge collection on the one hand decreases with irradiation and on the other hand is not uniform within the pixel cells

  1. Active pixel sensors: the sensor of choice for future space applications?

    Science.gov (United States)

    Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning

    2007-10-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important

  2. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bagolini, A; Boscardin, M; Giacomini, G; Zorzi, N; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given

  3. Evaluation of testing strategies for the radiation tolerant ATLAS n **+-in-n pixel sensor

    CERN Document Server

    Klaiber Lodewigs, Jonas M

    2003-01-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m**2 with 1.1 multiplied by 10 **8 read-out channels usable for a particle fluence up to 10 **1**5 cm**-**2 (1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n **+-in-n silicon pixel cell design with a standard cell size of 50 multiplied by 400 mum**2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operati...

  4. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Terzo, S; Macchiolo, A; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 10 16 n eq /cm 2

  5. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  6. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Püllen, Lukas; Boek, Jennifer; Kersten, Susanne; Kind, Peter; Mättig, Peter; Zeitnitz, Christian

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  7. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Boek, J; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerators luminosity by a factor of 10. In the context of this upgrade, the inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  8. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    Energy Technology Data Exchange (ETDEWEB)

    Mattiazzo, S., E-mail: serena.mattiazzo@pd.infn.it [Università degli Studi di Padova, Padova IT 35131 (Italy); Aimo, I. [Politecnico di Torino and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino, Torino IT 10129 (Italy); Baudot, J. [Universitè de Strasbourg, IPHC, Strasbourg F67037 (France); CNRS, MMR7178, Strasbourg F67037 (France); Bedda, C. [Politecnico di Torino and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino, Torino IT 10129 (Italy); La Rocca, P. [Università di Catania and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Catania, Catania IT 95123 (Italy); Perez, A. [Universitè de Strasbourg, IPHC, Strasbourg F67037 (France); CNRS, MMR7178, Strasbourg F67037 (France); Riggi, F. [Università di Catania and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Catania, Catania IT 95123 (Italy); Spiriti, E. [Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Frascati and Sezione di Roma 3, Roma IT 00146 (Italy)

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018–2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  9. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    International Nuclear Information System (INIS)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-01-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018–2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV

  10. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    Science.gov (United States)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  11. 3D-FBK Pixel sensors: recent beam tests results with irradiated devices

    CERN Document Server

    Micelli, A; Sandaker, H; Stugu, B; Barbero, M; Hugging, F; Karagounis, M; Kostyukhin, V; Kruger, H; Tsung, J W; Wermes, N; Capua, M; Fazio, S; Mastroberardino, A; Susinno, G; Gallrapp, C; Di Girolamo, B; Dobos, D; La Rosa, A; Pernegger, H; Roe, S; Slavicek, T; Pospisil, S; Jakobs, K; Kohler, M; Parzefall, U; Darbo, G; Gariano, G; Gemme, C; Rovani, A; Ruscino, E; Butter, C; Bates, R; Oshea, V; Parker, S; Cavalli-Sforza, M; Grinstein, S; Korokolov, I; Pradilla, C; Einsweiler, K; Garcia-Sciveres, M; Borri, M; Da Via, C; Freestone, J; Kolya, S; Lai, C H; Nellist, C; Pater, J; Thompson, R; Watts, S J; Hoeferkamp, M; Seidel, S; Bolle, E; Gjersdal, H; Sjobaek, K N; Stapnes, S; Rohne, O; Su, D; Young, C; Hansson, P; Grenier, P; Hasi, J; Kenney, C; Kocian, M; Jackson, P; Silverstein, D; Davetak, H; DeWilde, B; Tsybychev, D; Dalla Betta, G F; Gabos, P; Povoli, M; Cobal, M; Giordani, M P; Selmi, L; Cristofoli, A; Esseni, D; Palestri, P; Fleta, C; Lozano, M; Pellegrini, G; Boscardin, M; Bagolini, A; Piemonte, C; Ronchin, S; Zorzi, N; Hansen, T E; Hansen, T; Kok, A; Lietaer, N; Kalliopuska, J; Oja, A

    2011-01-01

    The Pixel detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider (LHC), and plays a key role in the reconstruction of the primary and secondary vertices of short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration (VLSI) and Micro-Electro-Mechanical-Systems (MEMS) where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradi...

  12. Shashlyk EM calorimeter prototype read out by MAPD with superhigh pixel density for COMPASS II

    International Nuclear Information System (INIS)

    Anfimov, N.; Anosov, V.; Chirikov-Zorin, I.

    2012-01-01

    A new-generation high-granularity Shashlyk EM calorimeter read out by micropixel avalanche photodiodes (MAPD) with precision thermostabilization based on the Peltier element was designed, constructed and tested. MAPD-3N with a superhigh pixel density of 1.5·10 4 mm -2 and an area of 3x3 mm manufactured by the Zecotek Company were used in the photodetector unit

  13. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    Science.gov (United States)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  14. A pixel design for X-ray imaging with CdTe sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lambropoulos, C.P.; Zervakis, E.G. [Technological Educational Institute of Halkis, Psahna - Evia (Greece); Loukas, D. [Institute of Nuclear Physics, NCSR Demokritos, Agia Paraskevi - Attiki (Greece)

    2008-07-01

    A readout architecture appropriate for X-ray Imaging using charge integration has been designed. Each pixel consists of a capacitive transimpedance amplifier, a sample and hold circuit a comparator and an 8 bit DRAM. Pixel level A/D conversion and local storage of the digitized signal is performed. The target sensors are 100{mu}m x 100 {mu}m CdTe pixel detectors and integration time of 1ms or less can be achieved. Special measures have been taken to minimize the gain fixed pattern noise and the reset noise, while purely digital correlation double sampling can be performed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A pixel design for X-ray imaging with CdTe sensors

    International Nuclear Information System (INIS)

    Lambropoulos, C.P.; Zervakis, E.G.; Loukas, D.

    2008-01-01

    A readout architecture appropriate for X-ray Imaging using charge integration has been designed. Each pixel consists of a capacitive transimpedance amplifier, a sample and hold circuit a comparator and an 8 bit DRAM. Pixel level A/D conversion and local storage of the digitized signal is performed. The target sensors are 100μm x 100 μm CdTe pixel detectors and integration time of 1ms or less can be achieved. Special measures have been taken to minimize the gain fixed pattern noise and the reset noise, while purely digital correlation double sampling can be performed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Performance of new radiation tolerant thin n-in-p Silicon pixel sensors for the CMS experiment at High Luminosity LHC

    CERN Document Server

    Dalla Betta, G.F; Darbo, G; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Rivera, Ryan Allen; Ronchin, S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 10$^{16}$ particles/cm$^2$ at $\\sim$3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R and D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planars, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS readout chip have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  17. Performance of a Fast Binary Readout CMOS Active Pixel Sensor Chip Designed for Charged Particle Detection

    Science.gov (United States)

    Deerli, Yavuz; Besanon, Marc; Besson, Auguste; Claus, Gilles; Deptuch, Grzegorz; Dulinski, Wojciech; Fourches, Nicolas; Goffe, Mathieu; Himmi, Abdelkader; Li, Yan; Lutz, Pierre; Orsini, Fabienne; Szelezniak, Michal

    2006-12-01

    We report on the performance of the MIMOSA8 (HiMAPS1) chip. The chip is a 128times32 pixels array where 24 columns have discriminated binary outputs and eight columns analog test outputs. Offset correction techniques are used extensively in this chip to overcome process related mismatches. The array is divided in four blocks of pixels with different conversion factors and is controlled by a serially programmable sequencer. MIMOSA8 is a representative of the CMOS sensors development option considered as a promising candidate for the Vertex Detector of the future International Linear Collider (ILC). The readout technique, implemented on the chip, combines high spatial resolution capabilities with high processing readout speed. Data acquisition, providing control of the chip and signal buffering and linked to a VME system, was made on the eight analog outputs. Analog data, without and with a 55Fe X-ray source, were acquired and processed using off-line analysis software. From the reconstruction of pixel clusters, built around a central pixel, we deduce that the charge spread is limited to the closest 25 pixels and almost all the available charge is collected. The position of the total charge collection peak (and subsequently the charge-to-voltage conversion factor) stays unaffected when the clock frequency is increased even up to 150 MHz (13.6 mus readout time per frame). The discriminators, placed in the readout chain, have proved to be fully functional. Beam tests have been made with high energy electrons at DESY (Germany) to study detection efficiency. The results prove that MIMOSA8 is the first and fastest successful monolithic active pixel sensor with on-chip signal discrimination for detection of MIPs

  18. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  19. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    Science.gov (United States)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on

  20. Geant4-based simulations of charge collection in CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Esposito, M.; Allinson, N.M.; Price, T.; Anaxagoras, T.

    2017-01-01

    Geant4 is an object-oriented toolkit for the simulation of the interaction of particles and radiation with matter. It provides a snapshot of the state of a simulated particle in time, as it travels through a specified geometry. One important area of application is the modelling of radiation detector systems. Here, we extend the abilities of such modelling to include charge transport and sharing in pixelated CMOS Active Pixel Sensors (APSs); though similar effects occur in other pixel detectors. The CMOS APSs discussed were developed in the framework of the PRaVDA consortium to assist the design of custom sensors to be used in an energy-range detector for proton Computed Tomography (pCT). The development of ad-hoc classes, providing a charge transport model for a CMOS APS and its integration into the standard Geant4 toolkit, is described. The proposed charge transport model includes, charge generation, diffusion, collection, and sharing across adjacent pixels, as well as the full electronic chain for a CMOS APS. The proposed model is validated against experimental data acquired with protons in an energy range relevant for pCT.

  1. Two-dimensional pixel image lag simulation and optimization in a 4-T CMOS image sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yu Junting; Li Binqiao; Yu Pingping; Xu Jiangtao [School of Electronics Information Engineering, Tianjin University, Tianjin 300072 (China); Mou Cun, E-mail: xujiangtao@tju.edu.c [Logistics Management Office, Hebei University of Technology, Tianjin 300130 (China)

    2010-09-15

    Pixel image lag in a 4-T CMOS image sensor is analyzed and simulated in a two-dimensional model. Strategies of reducing image lag are discussed from transfer gate channel threshold voltage doping adjustment, PPD N-type doping dose/implant tilt adjustment and transfer gate operation voltage adjustment for signal electron transfer. With the computer analysis tool ISE-TCAD, simulation results show that minimum image lag can be obtained at a pinned photodiode n-type doping dose of 7.0 x 10{sup 12} cm{sup -2}, an implant tilt of -2{sup 0}, a transfer gate channel doping dose of 3.0 x 10{sup 12} cm{sup -2} and an operation voltage of 3.4 V. The conclusions of this theoretical analysis can be a guideline for pixel design to improve the performance of 4-T CMOS image sensors. (semiconductor devices)

  2. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    CERN Document Server

    INSPIRE-00219560; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 $\\mu$m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of $5\\times 10^{15}$ \

  3. Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Sanchez Castro, Xitzel; Winter, Marc

    2014-01-01

    CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

  4. New generation of monolithic active pixel sensors for charged particle detection; Developpement d'un capteur de nouvelle generation et son electronique integree pour les collisionneurs futurs

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, G

    2002-09-01

    Vertex detectors are of great importance in particle physics experiments, as the knowledge of the event flavour is becoming an issue for the physics programme at Future Linear Colliders. Monolithic Active Pixel Sensors (MAPS) based on a novel detector structure have been proposed. Their fabrication is compatible with a standard CMOS process. The sensor is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer. The basic pixel configuration comprises only three MOS transistors and a diode collecting the charge through thermal diffusion. The charge is generated in the thin non-depleted epitaxial layer underneath the readout electronics. This approach provides, at low cost, a high resolution and thin device with the whole area sensitive to radiation. Device simulations using the ISE-TCAD package have been carried out to study the charge collection mechanism. In order to demonstrate the viability of the technique, four prototype chips have been fabricated using different submicrometer CMOS processes. The pixel gain has been calibrated using a {sup 55}Fe source and the Poisson sequence method. The prototypes have been exposed to high-energy particle beams at CERN. The tests proved excellent detection performances expressed in a single-track spatial resolution of 1.5 {mu}m and detection efficiency close to 100%, resulting from a SNR ratio of more than 30. Irradiation tests showed immunity of MAPS to a level of a few times 10{sup 12} n/cm{sup 2} and a few hundred kRad of ionising radiation. The ideas for future work, including on-pixel signal amplification, double sampling operation and current mode pixel design are present as well. (author)

  5. New generation of monolithic active pixel sensors for charged particle detection; Developpement d'un capteur de nouvelle generation et son electronique integree pour les collisionneurs futurs

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, G

    2002-09-01

    Vertex detectors are of great importance in particle physics experiments, as the knowledge of the event flavour is becoming an issue for the physics programme at Future Linear Colliders. Monolithic Active Pixel Sensors (MAPS) based on a novel detector structure have been proposed. Their fabrication is compatible with a standard CMOS process. The sensor is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer. The basic pixel configuration comprises only three MOS transistors and a diode collecting the charge through thermal diffusion. The charge is generated in the thin non-depleted epitaxial layer underneath the readout electronics. This approach provides, at low cost, a high resolution and thin device with the whole area sensitive to radiation. Device simulations using the ISE-TCAD package have been carried out to study the charge collection mechanism. In order to demonstrate the viability of the technique, four prototype chips have been fabricated using different submicrometer CMOS processes. The pixel gain has been calibrated using a {sup 55}Fe source and the Poisson sequence method. The prototypes have been exposed to high-energy particle beams at CERN. The tests proved excellent detection performances expressed in a single-track spatial resolution of 1.5 {mu}m and detection efficiency close to 100%, resulting from a SNR ratio of more than 30. Irradiation tests showed immunity of MAPS to a level of a few times 10{sup 12} n/cm{sup 2} and a few hundred kRad of ionising radiation. The ideas for future work, including on-pixel signal amplification, double sampling operation and current mode pixel design are present as well. (author)

  6. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    Science.gov (United States)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  7. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    Directory of Open Access Journals (Sweden)

    Serhan O Isikman

    Full Text Available We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2. This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total. Furthermore, by changing the illumination angle (e.g., ± 50° and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3 across a sample volume of ~5 mm(3, which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  8. Design of a radiation hard silicon pixel sensor for X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Schwandt, Joern

    2014-06-15

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p{sup +} pixels of dimensions 200 μm x 200 μm, made of 16 p{sup +}nn{sup +}- silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10{sup 4} photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and

  9. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  10. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Andricek, L. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Moser, H.-G.; Nisius, R. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Richter, R.H. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany)

    2014-11-21

    We present an R and D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5×10{sub 15}n{sub eq}/cm{sup 2}. We will also report on the R and D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  11. OMEGAPIX 3D integrated circuit prototype dedicated to the ATLAS upgrade Super LHC pixel project

    CERN Document Server

    Thienpont, D; de La Taille, C; Seguin-Moreau, N; Martin-Chassard, G; Guo b, Y

    2009-01-01

    In late 2008, an international consortium for development of vertically integrated (3D) readout electronics was created to explore features available from this technology. In this paper, the OMEGAPIX circuit is presented. It is the first front-end ASIC prototype designed at LAL in 3D technology. It has been submitted on May 2009. At first, a short reminder of 3D technology is presented. Then the IC design is explained: analogue tier, digital tier and testability.

  12. Experience from design, prototyping and production of a DC–DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@cern.ch; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-11

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC–DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC–DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  13. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC

    Science.gov (United States)

    Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.

    2018-06-01

    We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.

  14. Characterization of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Eckstein, Doris; Eichhorn, Thomas [Deutsches Elektronen Synchrotron (DESY) (Germany)

    2016-07-01

    The high-luminosity upgrade of the Large Hadron Collider, foreseen for 2025, necessitates the replacement of the tracker of the CMS experiment. The innermost layer of the new pixel detector will be exposed to severe radiation corresponding to a 1 MeV neutron equivalent fluence up to Φ{sub eq} = 2 . 10{sup 16} cm{sup -2} and an ionizing dose of ∼ 10 MGy after an integrated luminosity of 3000 fb{sup -1}. Silicon crystals grown with different methods and sensor designs are under investigation in order to optimize the sensors for such high fluences. Thin planar silicon sensors are good candidates to achieve this goal, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Epitaxial pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 . 10{sup 16} cm{sup -2} have been characterized in laboratory measurements and beam tests at the DESY II facility. The active thickness of the strip sensors and pad diodes is 100 μm. In addition, strip sensors produced using other growth techniques with a thickness of 200 μm have been studied. In this talk, the results obtained for p-bulk sensors are shown.

  15. Analysis of 3D stacked fully functional CMOS Active Pixel Sensor detectors

    International Nuclear Information System (INIS)

    Passeri, D; Servoli, L; Meroli, S

    2009-01-01

    The IC technology trend is to move from 3D flexible configurations (package on package, stacked dies) to real 3D ICs. This is mainly due to i) the increased electrical performances and ii) the cost of 3D integration which may be cheaper than to keep shrinking 2D circuits. Perspective advantages for particle tracking and vertex detectors applications in High Energy Physics can be envisaged: in this work, we will focus on the capabilities of the state-of-the-art vertical scale integration technologies, allowing for the fabrication of very compact, fully functional, multiple layers CMOS Active Pixel Sensor (APS) detectors. The main idea is to exploit the features of the 3D technologies for the fabrication of a ''stack'' of very thin and precisely aligned CMOS APS layers, leading to a single, integrated, multi-layers pixel sensor. The adoption of multiple-layers single detectors can dramatically reduce the mass of conventional, separated detectors (thus reducing multiple scattering issues), at the same time allowing for very precise measurements of particle trajectory and momentum. As a proof of concept, an extensive device and circuit simulation activity has been carried out, aiming at evaluate the suitability of such a kind of CMOS active pixel layers for particle tracking purposes.

  16. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Aglieri Rinella, Gianluca

    2017-01-01

    The ALPIDE chip is a CMOS Monolithic Active Pixel Sensor being developed for the Upgrade of the ITS of the ALICE experiment at the CERN Large Hadron Collider. The ALPIDE chip is implemented with a 180 nm CMOS Imaging Process and fabricated on substrates with a high-resistivity epitaxial layer. It measures 15 mm×30 mm and contains a matrix of 512×1024 pixels with in-pixel amplification, shaping, discrimination and multi-event buffering. The readout of the sensitive matrix is hit driven. There is no signaling activity over the matrix if there are no hits to read out and power consumption is proportional to the occupancy. The sensor meets the experimental requirements of detection efficiency above 99%, fake-hit probability below 10−5 and a spatial resolution of 5 μm. The capability to read out Pb–Pb interactions at 100 kHz is provided. The power density of the ALPIDE chip is projected to be less than 35 mW/cm2 for the application in the Inner Barrel Layers and below 20 mW/cm2 for the Outer Barrel Layers, ...

  17. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    International Nuclear Information System (INIS)

    Esposito, M; Evans, P M; Wells, K; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Allinson, N M

    2014-01-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  18. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  19. A monolithic active pixel sensor for particle detection in 0.25 μm CMOS technology

    International Nuclear Information System (INIS)

    Velthuis, J.J.; Allport, P.P.; Casse, G.; Evans, A.; Turchetta, R.; Villani, G.

    2006-01-01

    We are developing CMOS monolithic active pixel sensors (MAPS) for High Energy Physics applications. We have successfully produced 3 test structures. They feature several different pixel types including: standard 3MOS, 4MOS allowing Correlated Double Sampling (CDS), charge amplifier pixels and a flexible APS (FAPS). The FAPS has a 10 deep pipeline on each pixel. This is specifically designed with the beam structure of the TESLA proposal for the Linear Collider in mind. Results of a laser test on our first device and source test results on two more recent test structures will be presented

  20. A Sensitive Dynamic and Active Pixel Vision Sensor for Color or Neural Imaging Applications.

    Science.gov (United States)

    Moeys, Diederik Paul; Corradi, Federico; Li, Chenghan; Bamford, Simeon A; Longinotti, Luca; Voigt, Fabian F; Berry, Stewart; Taverni, Gemma; Helmchen, Fritjof; Delbruck, Tobi

    2018-02-01

    Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast. The temporal contrast thresholds can be set down to 1% for negative changes in logarithmic intensity (OFF events) and down to 3.5% for positive changes (ON events). The achievement is possible through the adoption of an in-pixel preamplification stage. This preamplifier reduces the effective intrascene DR of the sensor (70 dB for OFF and 50 dB for ON), but an automated operating region control allows up to at least 110-dB DR for OFF events. A second contribution of this paper is the development of characterization methodology for measuring DVS event detection thresholds by incorporating a measure of signal-to-noise ratio (SNR). At average SNR of 30 dB, the DVS temporal contrast threshold fixed pattern noise is measured to be 0.3%-0.8% temporal contrast. Results comparing monochrome and RGBW color filter array DVS events are presented. The higher sensitivity of SDAVIS192 make this sensor potentially useful for calcium imaging, as shown in a recording from cultured neurons expressing calcium sensitive green fluorescent protein GCaMP6f.

  1. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, Marco, E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Bagolini, Alvise; Boscardin, Maurizio [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, Luciano [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, and INFN Sez. di Pisa, Pisa (Italy); Chauveau, Jacques [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, Alessandro [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-06-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×10{sup 15}n{sub eq}/cm{sup 2} comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb{sup −1}) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach. -- Highlights: ► We conceive n-on-p edgeless planar silicon sensors. ► These sensors are aimed at the Phase-II of the ATLAS experiment. ► Simulations show sensors can be operated well in overdepletion. ► Simulations show the sensor capability to collect charge at the periphery. ► Simulations prove the above statements to be true even after irradiation.

  2. A novel simulation method to evaluate the collection performance of a monolithic active pixel sensor

    International Nuclear Information System (INIS)

    Fu Min; Tang Zhen'an

    2011-01-01

    A novel simulation method is presented in this paper to evaluate the collection performance of monolithic active pixel sensor (MAPS) devices for minimum ionizing particle tracking. A simplified 3D matrix pixel structure is built using the computer aided design software Sentaurus. The virtual device is then divided into hundreds of parts and an independent customized X photon model is involved in each part to simulate the conditions under 55 Fe radiation. After data processing and analysis, charge collection efficiency, collection time and diffusion conditions can be estimated in detail. In order to verify the reliability of the method, comparisons are made between the simulations and experiments. Although there are some defects, it can be concluded that the proposed idea is a feasible method for the evaluation of the MAPS collection performance. (authors)

  3. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D project

    International Nuclear Information System (INIS)

    Casse, G

    2014-01-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed

  4. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    Science.gov (United States)

    Rimoldi, M.

    2017-12-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detectors based on CMOS technology. Such detectors can provide charge collection, analog amplification and digital processing in the same silicon wafer. The radiation hardness is improved thanks to multiple nested wells which give the embedded CMOS electronics sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC . A number of alternative solutions have been explored and characterised. In this document, test results of the sensors fabricated in different CMOS processes are reported.

  5. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector

    International Nuclear Information System (INIS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.

    2017-01-01

    IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.

  6. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science

    International Nuclear Information System (INIS)

    Waltham, N.R.; Prydderch, M.; Mapson-Menard, H.; Pool, P.; Harris, A.

    2007-01-01

    We describe our programme to develop a large-format, science-grade, monolithic CMOS active pixel sensor for future space science missions, and in particular an extreme ultraviolet (EUV) spectrograph for solar physics studies on ESA's Solar Orbiter. Our route to EUV sensitivity relies on adapting the back-thinning and rear-illumination techniques first developed for CCD sensors. Our first large-format sensor consists of 4kx3k 5 μm pixels fabricated on a 0.25 μm CMOS imager process. Wafer samples of these sensors have been thinned by e2v technologies with the aim of obtaining good sensitivity at EUV wavelengths. We present results from both front- and back-illuminated versions of this sensor. We also present our plans to develop a new sensor of 2kx2k 10 μm pixels, which will be fabricated on a 0.35 μm CMOS process. In progress towards this goal, we have designed a test-structure consisting of six arrays of 512x512 10 μm pixels. Each of the arrays has been given a different pixel design to allow verification of our models, and our progress towards optimizing a design for minimal system readout noise and maximum dynamic range. These sensors will also be back-thinned for characterization at EUV wavelengths

  7. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  8. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  9. FDTD-based optical simulations methodology for CMOS image sensors pixels architecture and process optimization

    Science.gov (United States)

    Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon

    2008-02-01

    This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.

  10. A high speed, low power consumption LVDS interface for CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhan, E-mail: sz1134@163.com [Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian (China); Tang, Zhenan, E-mail: tangza@dlut.edu.cn [Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian (China); Tian, Yong [Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian (China); Pham, Hung; Valin, Isabelle; Jaaskelainen, Kimmo [IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-01-01

    The use of CMOS Pixel Sensors (CPSs) offers a promising approach to the design of vertex detectors in High Energy Physics (HEP) experiments. As the CPS equipping the upgraded Solenoidal Tracker at RHIC (STAR) pixel detector, ULTIMATE perfectly illustrates the potential of CPSs for HEP applications. However, further development of CPSs with respect to readout speed is required to fulfill the readout time requirement of the next generation HEP detectors, such as the upgrade of A Large Ion Collider Experiment (ALICE) Inner Tracking System (ITS), the International Linear Collider (ILC), and the Compressed Baryonic Matter (CBM) vertex detectors. One actual limitation of CPSs is related to the speed of the Low-Voltage Differential Signaling (LVDS) circuitry implementing the interface between the sensor and the Data Acquisition (DAQ) system. To improve the transmission rate while keeping the power consumption at a low level, a source termination technique and a special current comparator were adopted for the LVDS driver and receiver, respectively. Moreover, hardening techniques are used. The circuitry was designed and submitted for fabrication in a 0.18-µm CMOS Image Sensor (CIS) process at the end of 2011. The test results indicated that the LVDS driver and receiver can operate properly at the data rate of 1.2 Gb/s with power consumption of 19.6 mW.

  11. Performance of irradiated thin n-in-p planar pixel sensors for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Savić, N.; Beyer, J.; Hiti, B.; Kramberger, G.; La Rosa, A.; Macchiolo, A.; Mandić, I.; Nisius, R.; Petek, M.

    2017-12-01

    The ATLAS collaboration will replace its tracking detector with new all silicon pixel and strip systems. This will allow to cope with the higher radiation and occupancy levels expected after the 5-fold increase in the luminosity of the LHC accelerator complex (HL-LHC). In the new tracking detector (ITk) pixel modules with increased granularity will implement to maintain the occupancy with a higher track density. In addition, both sensors and read-out chips composing the hybrid modules will be produced employing more radiation hard technologies with respect to the present pixel detector. Due to their outstanding performance in terms of radiation hardness, thin n-in-p sensors are promising candidates to instrument a section of the new pixel system. Recently produced and developed sensors of new designs will be presented. To test the sensors before interconnection to chips, a punch-through biasing structure was implemented. Its design was optimized to decrease the possible tracking efficiency losses observed. After irradiation, they were caused by the punch-through biasing structure. A sensor compatible with the ATLAS FE-I4 chip with a pixel size of 50×250 μm2, subdivided into smaller pixel implants of 30×30 μm2 size was designed to investigate the performance of the 50×50 μm2 pixel cells foreseen for the HL-LHC. Results on sensor performance of 50×250 and 50×50 μm2 pixel cells in terms of efficiency, charge collection and electric field properties are obtained with beam tests and the Transient Current Technique.

  12. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  13. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  14. Simulation of Heavily Irradiated Silicon Pixel Sensors and Comparison with Test Beam Measurements

    CERN Document Server

    Chiochia, Vincenzo; Bortoletto, Daniela; Cremaldi, Lucien; Cucciarelli, Susanna; Dorokhov, Andrei; Hoermann, Christoph; Kim, Dongwook; Konecki, Marcin; Kotlinski, Danek; Prokofiev, Kirill; Regenfus, Christian; Rohe, Tilman; Sanders, David A.; Son, Seunghee; Speer, Thomas; Chiochia, Vincenzo; Swartz, Morris; Bortoletto, Daniela; Cremaldi, Lucien; Cucciarelli, Susanna; Dorokhov, Andrei; Hoermann, Christoph; Kim, Dongwook; Konecki, Marcin; Kotlinski, Danek; Prokofiev, Kirill; Regenfus, Christian; Rohe, Tilman; Sanders, David A.; Son, Seunghee; Speer, Thomas

    2004-01-01

    Charge collection measurements performed on heavily irradiated p-spray DOFZ pixel sensors with a grazing angle hadron beam provide a sensitive determination of the electric field within the detectors. The data are compared with a complete charge transport simulation of the sensor which includes signal trapping and charge induction effects. A linearly varying electric field based upon the standard picture of a constant type-inverted effective doping density is inconsistent with the data. A two-trap double junction model implemented in the ISE TCAD software can be tuned to produce a doubly-peaked electric field which describes the data reasonably well. The modeled field differs somewhat from previous determinations based upon the transient current technique. The model can also account for the level of charge trapping observed in the data.

  15. Intelligent error correction method applied on an active pixel sensor based star tracker

    Science.gov (United States)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  16. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Šuljić, M.

    2016-01-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ∼10 m 2 , thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10 −6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 10 13 1 MeV n eq /cm 2 , which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm 2 . This contribution will provide a summary of the ALPIDE features and main test results.

  17. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    Science.gov (United States)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  18. The APSEL4D Monolithic Active Pixel Sensor and its Usage in a Single Electron Interference Experiment

    CERN Document Server

    Alberghi, Gian Luigi

    We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at ...

  19. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  20. Development of a prototype lignin concentration sensor. Final report. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  1. Conceptual design of 3D integrated pixel sensors for the innermost layer of the ILC vertex detector

    International Nuclear Information System (INIS)

    Fu, Y; Hu-Guo, C; Dorokhov, A; Zhao, W; Hu, Y; Torheim, O

    2011-01-01

    The paper presents a design of CMOS Pixel Sensor (CPS) using the vertical integration technology (3DIT), expected to alleviate the most essential limitations of 2D-CPS. Our objective is to develop an intelligent architecture in order to meet the requirements of the innermost layer of the International Linear Collider (ILC) vertex detectors, which are particularly demanding in spatial resolution of less than 3 μm and associated frame readout time of 10 μs. The sensor, with a pixel pitch of 23 μm, will be composed of 3-tiers Integrated Circuits (IC) with different functionalities: detection with in pixel analogue processing, pixel-level 3-bit Analogue to Digital Conversion (ADC) and fast parallel sparse readout.

  2. Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18 μm CMOS process

    Science.gov (United States)

    Zhang, Ying; Zhu, Hongbo; Zhang, Liang; Fu, Min

    2016-09-01

    The proposed Circular Electron Positron Collider (CEPC) will be primarily aimed for precision measurements of the discovered Higgs boson. Its innermost vertex detector, which will play a critical role in heavy-flavor tagging, must be constructed with fine-pitched silicon pixel sensors with low power consumption and fast readout. CMOS pixel sensor (CPS), as one of the most promising candidate technologies, has already demonstrated its excellent performance in several high energy physics experiments. Therefore it has been considered for R&D for the CEPC vertex detector. In this paper, we present the preliminary studies to improve the collected signal charge over the equivalent input capacitance ratio (Q / C), which will be crucial to reduce the analog power consumption. We have performed detailed 3D device simulation and evaluated potential impacts from diode geometry, epitaxial layer properties and non-ionizing radiation damage. We have proposed a new approach to improve the treatment of the boundary conditions in simulation. Along with the TCAD simulation, we have designed the exploratory prototype utilizing the TowerJazz 0.18 μm CMOS imaging sensor process and we will verify the simulation results with future measurements.

  3. Production and characterization of SLID interconnected n-in-p pixel modules with 75 micron thin silicon sensors

    CERN Document Server

    Andricek, L; Macchiolo, A; Moser, H.G; Nisius, R; Richter, R.H; Terzo, S; Weigell, P

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. T...

  4. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  5. Development of ultra-light pixelated systems based on CMOS sensors for future high precision vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Marc [Institut Pluridisciplinaire Hubert Curien - IPHC, 23 rue du loess - BP28, 67037 Strasbourg cedex 2 (France)

    2010-07-01

    CMOS pixel sensors have demonstrated attractive performances in terms of spatial resolution and material budget. The recent emergence of high resistivity substrates in mass production CMOS processes has originated particularly high signal-to-noise ratios and improved the non-ionising radiation tolerance to fluences close to 10{sup 14} Neq/cm{sup 2}. These achievements, obtained with MIMOSA sensors developed at IPHC (Strasbourg) and IRFU (Saclay) will be overviewed and put in perspective of the numerous applications of the sensors. These include collider experiments at RHIC, LHC, ILC and CLIC. The development of ultra-light ladders composed of these sensors and featuring 0.1% to 0.3% of radiation length, will be summarised. The contribution to the conference will also address the evolution of these pixelated systems, including on-going R on multi-tier sensors exploiting vertical integration technologies. (author)

  6. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2084134; Bolla, Gino; Rivera, Ryan Allen; Uplegger, Lorenzo; Zoi, Irene

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120~GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x10$^{15}$ n$_{eq}/$cm$^2$ fluence. Preliminary results of the data analysis are presented.

  7. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernieri, Caterina, E-mail: cvernier@fnal.gov [Fermilab, Batavia, IL 60510 (United States); Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo [Fermilab, Batavia, IL 60510 (United States); Zoi, Irene [Fermilab, Batavia, IL 60510 (United States); University of Florence, Firenze, 50121 (Italy)

    2017-02-11

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2×10{sup 15} n{sub eq}/cm{sup 2} fluence. Preliminary results of the data analysis are presented.

  8. Characterization and Beam Tests Results of Non-Uniformly Irradiated 3D Pixel Sensors for HEP Experiments

    International Nuclear Information System (INIS)

    Lopez, I.; Grinstein, S.; Micelli, A.; Tsiskaridze, S.

    2013-06-01

    3D Pixel detectors, with cylindrical electrodes that penetrate the silicon substrate, offer advantages over standard planar sensors in terms of radiation hardness, since the charge collection distance can be reduced independently of the bulk thickness. In the framework of the ATLAS Forward Physics (AFP) program, work has been carried out to study the suitability of 3D pixel devices for forward proton tracking. The AFP tracker unit will consist of an array of five pixel sensors placed at 2-3 mm from the Large Hadron Collider (LHC) proton beam. The proximity to the beam is essential for the AFP physics program as it directly increases the sensitivity of the experiment. Thus, there are two critical requirements for the AFP pixel detector. First, the dead region of the sensor has to be minimized. Second, the device has to be able to cope with a very inhomogeneous radiation distribution. Recent results of the characterization and beam test studies of in-homogeneously irradiated 3D pixel sensors produced at CNM-Barcelona will be presented. (authors)

  9. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    Science.gov (United States)

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  10. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    Science.gov (United States)

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  11. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  12. 14C autoradiography with a novel wafer scale CMOS Active Pixel Sensor

    International Nuclear Information System (INIS)

    Esposito, M; Wells, K; Anaxagoras, T; Allinson, N M; Larner, J

    2013-01-01

    14 C autoradiography is a well established technique for structural and metabolic analysis of cells and tissues. The most common detection medium for this application is film emulsion, which offers unbeatable spatial resolution due to its fine granularity but at the same time has some limiting drawbacks such as poor linearity and rapid saturation. In recent years several digital detectors have been developed, following the technological transition from analog to digital-based detection systems in the medical and biological field. Even so such digital systems have been greatly limited by the size of their active area (a few square centimeters), which have made them unsuitable for routine use in many biological applications where sample areas are typically ∼ 10–100 cm 2 . The Multidimensional Integrated Intelligent Imaging (MI3-Plus) consortium has recently developed a new large area CMOS Active Pixel Sensor (12.8 cm × 13.1 cm). This detector, based on the use of two different pixel resolutions, is capable of providing simultaneously low noise and high dynamic range on a wafer scale. In this paper we will demonstrate the suitability of this detector for routine beta autoradiography in a comparative approach with widely used film emulsion.

  13. A radiation-hardened two transistor memory cell for monolithic active pixel sensors in STAR experiment

    International Nuclear Information System (INIS)

    Wei, X; Dorokhov, A; Hu, Y; Gao, D

    2011-01-01

    Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) is dramatically decreased when intellectual property (IP) memories are integrated for fast readout application. This paper presents a new solution to improve radiation hardness and avoid latch-up for memory cell design. The tradeoffs among radiation tolerance, area and speed are significantly considered and analyzed. The cell designed in 0.35 μm process satisfies the radiation tolerance requirements of STAR experiment. The cell size is 4.55 x 5.45 μm 2 . This cell is smaller than the IP memory cell based on the same process and is only 26% of a radiation tolerant 6T SRAM cell used in previous contribution. The write access time of the cell is less than 2 ns, while the read access time is 80 ns.

  14. Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors

    CERN Document Server

    Swartz, M.; Allkofer, Y.; Bortoletto, D.; Cremaldi, L.; Cucciarelli, S.; Dorokhov, A.; Hoermann, C.; Kim, D.; Konecki, M.; Kotlinski, D.; Prokofiev, Kirill; Regenfus, Christian; Rohe, T.; Sanders, D.A.; Son, S.; Speer, T.

    2006-01-01

    We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

  15. Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.

  16. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    Science.gov (United States)

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  17. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  18. Observations of sensor bias dependent cluster centroid shifts in a prototype sensor for the LHCb Vertex Locator detector

    CERN Document Server

    Papadelis, Aras

    2006-01-01

    We present results from a recent beam test of a prototype sensor for the LHCb Vertex Locator detector, read out with the Beetle 1.3 front-end chip. We have studied the effect of the sensor bias voltage on the reconstructed cluster positions in a sensor placed in a 120GeV pion beam at a 10° incidence angle. We find an unexplained sysematic shift in the reconstructed cluster centroid when increasing the bias voltage on an already overdepleted sensor. The shift is independent of strip pitch and sensor thickness.

  19. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  20. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.

    Science.gov (United States)

    Seco, Joao; Depauw, Nicolas

    2011-02-01

    Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The

  1. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for

  2. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    International Nuclear Information System (INIS)

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C.; Patel, Tushita

    2015-01-01

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e − ) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm 2 ) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K a < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K a ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 m

  3. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Konstantinidis, Anastasios C. [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Diagnostic Radiology and Radiation Protection, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom); Patel, Tushita [Department of Physics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  4. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: An experimental study of a single-pixel prototype

    International Nuclear Information System (INIS)

    Mei, X.; Pang, G.

    2005-01-01

    Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted

  5. First functionality tests of a 64 × 64 pixel DSSC sensor module connected to the complete ladder readout

    Science.gov (United States)

    Donato, M.; Hansen, K.; Kalavakuru, P.; Kirchgessner, M.; Kuster, M.; Porro, M.; Reckleben, C.; Turcato, M.

    2017-03-01

    The European X-ray Free Electron Laser (XFEL.EU) will provide every 0.1 s a train of 2700 spatially coherent ultrashort X-ray pulses at 4.5 MHz repetition rate. The Small Quantum Systems (SQS) instrument and the Spectroscopy and Coherent Scattering instrument (SCS) operate with soft X-rays between 0.5 keV-6 keV. The DEPFET Sensor with Signal Compression (DSSC) detector is being developed to meet the requirements set by these two XFEL.EU instruments. The DSSC imager is a 1 mega-pixel camera able to store up to 800 single-pulse images per train. The so-called ladder is the basic unit of the DSSC detector. It is the single unit out of sixteen identical-units composing the DSSC-megapixel camera, containing all representative electronic components of the full-size system and allows testing the full electronic chain. Each DSSC ladder has a focal plane sensor with 128× 512 pixels. The read-out ASIC provides full-parallel readout of the sensor pixels. Every read-out channel contains an amplifier and an analog filter, an up-to 9 bit ADC and the digital memory. The ASIC amplifier have a double front-end to allow one to use either DEPFET sensors or Mini-SDD sensors. In the first case, the signal compression is a characteristic intrinsic of the sensor; in the second case, the compression is implemented at the first amplification stage. The goal of signal compression is to meet the requirement of single-photon detection capability and wide dynamic range. We present the first results of measurements obtained using a 64× 64 pixel DEPFET sensor attached to the full final electronic and data-acquisition chain.

  6. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue

    International Nuclear Information System (INIS)

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-01-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable

  7. Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques

    International Nuclear Information System (INIS)

    Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo

    2017-01-01

    Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.

  8. Characterization of the column-based priority logic readout of Topmetal-II− CMOS pixel direct charge sensor

    International Nuclear Information System (INIS)

    An, M.; Zhang, W.; Xiao, L.; Gao, C.; Chen, C.; Huang, G.; Ji, R.; Liu, J.; Pei, H.; Sun, X.; Wang, K.; Yang, P.; Zhou, W.; Han, M.; Mei, Y.; Li, X.; Sun, Q.

    2017-01-01

    We present the detailed study of the digital readout of Topmetal-II - CMOS pixel direct charge sensor. Topmetal-II - is an integrated sensor with an array of 72×72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators in each pixel with individually adjustable thresholds. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic features with a full clock-less circuitry hence there is no continuously running clock distributed in the pixel and matrix logic. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments. We studied the detailed working behavior and performance of this readout, and demonstrated its functional validity and potential in imaging applications.

  9. Development and Testing of Prototype Commercial Gasifier Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Moery, Nathan [Gas Technology Inst., Des Plaines, IL (United States); Wu, Mengbai [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [Gas Technology Inst., Des Plaines, IL (United States)

    2015-01-31

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of the sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.

  10. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10{sup 35}/cm{sup 2}s{sup 1} is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10{sup 16} 1-MeV-neutrons per square centimeter (n{sub eq}/cm{sup 2}). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 {mu}m and 150 {mu}m proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive

  11. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Beimforde, Michael

    2010-01-01

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10 35 /cm 2 s 1 is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10 16 1-MeV-neutrons per square centimeter (n eq /cm 2 ). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 μm and 150 μm proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive edge demonstrate that the active

  12. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  13. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  14. Analysis of test beam data of ALPIDE, the Monolithic Active Pixel Sensor (MAPS) for the ALICE ITS upgrade

    CERN Document Server

    Lazareva, Tatiana

    2017-01-01

    The ALICE experiment has scheduled a major upgrade of its experimen- tal apparatus for the Long Shutdown 2 of LHC in 2019-2020. Within this enterprise, CERN is strongly involved in the development of a novel Inner Tracking System (ITS). The ITS will be based on Monolithic Active Pixel Sensors (MAPS), a cutting-edge technology that will allow to improve the detector performance signicantly. The nal sensor, called ALPIDE, is in production since December 2016. This project is focused on the characterization of irradiated ALPIDE sensors.

  15. Noise analysis of a novel hybrid active-passive pixel sensor for medical X-ray imaging

    International Nuclear Information System (INIS)

    Safavian, N.; Izadi, M.H.; Sultana, A.; Wu, D.; Karim, K.S.; Nathan, A.; Rowlands, J.A.

    2009-01-01

    Passive pixel sensor (PPS) is one of the most widely used architectures in large area amorphous silicon (a-Si) flat panel imagers. It consists of a detector and a thin film transistor (TFT) acting as a readout switch. While the PPS is advantageous in terms of providing a simple and small architecture suitable for high-resolution imaging, it directly exposes the signal to the noise of data line and external readout electronics, causing significant increase in the minimum readable sensor input signal. In this work we present the operation and noise performance of a hybrid 3-TFT current programmed, current output active pixel sensor (APS) suitable for real-time X-ray imaging. The pixel circuit extends the application of a-Si TFT from conventional switching element to on-pixel amplifier for enhanced signal-to-noise ratio and higher imager dynamic range. The capability of operation in both passive and active modes as well as being able to compensate for inherent instabilities of the TFTs makes the architecture a good candidate for X-ray imaging modalities with a wide range of incoming X-ray intensities. Measurement and theoretical calculations reveal a value for input refferd noise below the 1000 electron noise limit for real-time fluoroscopy. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Gossipo-3 A prototype of a Front-End Pixel Chip for Read-Out of Micro-Pattern Gas Detectors

    CERN Document Server

    Brezina, Christpoh; van der Graaf, Haryy; Gromov, Vladimir; Kluit, Ruud; Kruth, Andre; Zappon, Francesco

    2009-01-01

    In a joint effort of Nikhef (Amsterdam) and the University of Bonn, the Gossipo-3 integrated circuit (IC) has been developed. This circuit is a prototype of a chip dedicated for read-out of various types of position sensitive Micro-Pattern Gas detectors (MPGD). The Gossipo-3 is defined as a set of building blocks to be used in a future highly granulated (60 μm) chip. The pixel circuit can operate in two modes. In Time mode every readout pixel measures the hit arrival time and the charge deposit. For this purpose it has been equipped with a high resolution TDC (1.7 ns) covering dynamic range up to 102 μs. Charge collected by the pixel will be measured using Time-over- Threshold method in the range from 400 e- to 28000 e- with accuracy of 200 e- (standard deviation). In Counting mode every pixel operates as a 24-bit counter, counting the number of incoming hits. The circuit is also optimized to operate at low power consumption (100 mW/cm2) that is required to avoid the need for massive power transport and coo...

  17. Study of Monolithic Active Pixel Sensors for the Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00531401

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (LS2 in 2019-2020) of the CERN Large Hadron Collider (LHC). The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of $\\sim$10 m$^2$, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The scope of this thesis is twofold; to report on the activity on the development and the characterisation of a MAPS for the ITS upgrade and to study the charge collection process using a first-principles Monte Carlo simulation. The performance of a MAPS depends on a large number of design and operational parameters, such as collection diode geometry, reverse bias voltage, and epitaxial layer thickness. I have studied this dependence by measuring the INVESTIGATOR chip response to X-rays emitted by an $^{55}$Fe source and to minimum ionising particles. In particular, I ha...

  18. arXiv Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    CERN Document Server

    Paolozzi, L.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-12

    The TT-PET collaboration is developing a PET scanner for small animals with  30 ps  time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below  600 e− RMS  and a pulse rise time of less than  2 ns , in accordance with the simulations. The pixels with a capacitance of  0.8 pF  were measured to have a detection efficiency greater than  99%  and, although in the absence of the post-processing, a time resolution of approximately  200 ps .

  19. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Andricek, L. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany); Beimforde, M., E-mail: mibei@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Macchiolo, A. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Moser, H.-G. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany); Nisius, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Richter, R.H. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany)

    2011-04-21

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150{mu}m has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 10{sup 15} n{sub eq} cm{sup -2} have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  20. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.

    2011-01-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 10 15 n eq cm -2 have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  1. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Zhao, C; Kanicki, J; Konstantinidis, A C; Zheng, Y; Speller, R D; Anaxagoras, T

    2015-01-01

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm −1 and a DQE of around 0.5 at spatial frequencies  <1 mm −1 . In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNR i ) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (∼1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered. (paper)

  2. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    CERN Document Server

    Beimforde, Michael

    To extend the discovery potential of the experiments at the LHC accelerator a luminosity upgrade towards the super LHC (sLHC) with an up to ten-fold peak luminosity is planned. Within this thesis a new module concept was developed and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector.

  3. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  4. Evaluation of a Prototype pCO2 Optical Sensor

    Science.gov (United States)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.

    2016-12-01

    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  5. Prototyping Service Discovery and Usage in Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    2007-01-01

    Heterogeneous Wireless Sensor Networks (WSNs) are envisioned to provide different types of services in an open and dynamic environment. This paper presents the design, implementation and evaluation of a service discovery and usage solution for heterogeneous WSNs. The users have the possibility to

  6. Probing Defects in a Small Pixellated CdTe Sensor Using an Inclined Mono Energetic X-Ray Micro Beam

    Science.gov (United States)

    Fröjdh, Erik; Fröjdh, C.; Gimenez, E. N.; Krapohl, D.; Maneuski, D.; Norlin, B.; O'Shea, V.; Wilhelm, H.; Tartoni, N.; Thungström, G.; Zain, R. M.

    2013-08-01

    High quantum efficiency is important in X-ray imaging applications. This means using high-Z sensor materials. Unfortunately many of these materials suffer from defects that cause non-ideal charge transport. In order to increase the understanding of these defects, we have mapped the 3D response of a number of defects in two 1 mm thick CdTe sensors with different pixel sizes (55 μm and 110 μm) using a monoenergetic microbeam at 79 keV. The sensors were bump bonded to Timepix read out chips. Data was collected in photon counting as well as time-over-threshold mode. The time-over-threshold mode is a very powerful tool to investigate charge transport properties and fluorescence in pixellated detectors since the signal from the charge that each photon deposits in each pixel can be analyzed. Results show distorted electrical field around the defects, indications of excess leakage current and large differences in behavior between electron collection and hole collection mode. The experiments were carried out on the Extreme Conditions Beamline I15 at Diamond Light Source.

  7. Production and characterisation of SLID interconnected n-in-p pixel modules with 75 μm thin silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Andricek, L. [Halbleiterlabor der Max-Planck-Gesellschaft, Otto Hahn Ring 6, D-81739 München (Germany); Beimforde, M.; Macchiolo, A.; Moser, H.-G. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Nisius, R., E-mail: Richard.Nisius@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Richter, R.H. [Halbleiterlabor der Max-Planck-Gesellschaft, Otto Hahn Ring 6, D-81739 München (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany)

    2014-09-11

    The performance of pixel modules built from 75 μm thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 μm thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. Targeting at a usage at the high luminosity upgrade of the LHC accelerator called HL-LHC, the results were obtained before and after irradiation up to fluences of 10{sup 16}n{sub eq}/cm{sup 2}.

  8. Research and Development of Monolithic Active Pixel Sensors for the Detection of the Elementary Particles; Recherche et developpement de capteurs actifs monolithiques CMOS pour la detection de particules elementaires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y

    2007-09-15

    In order to develop high spatial resolution and readout speed vertex detectors for the future International Linear Collider (ILC), fast CMOS Monolithic Active Pixel Sensors (MAPS) are studied on this work. Two prototypes of MAPS, MIMOSA 8 and MIMOSA 16, based on the same micro-electronic architecture were developed in CMOS processes with different thickness of epitaxial layer. The size of pixel matrix is 32 x 128: 8 columns of the pixel array are readout directly with analog outputs and the other 24 columns are connected to the column level auto-zero discriminators. The Correlated Double Sampling (CDS) structures are successfully implemented inside pixel and discriminator. The photo diode type pixels with different diode sizes are used in these prototypes. With a {sup 55}Fe X-ray radioactive source, the important parameters, such as Temporal Noise, Fixed Pattern Noise (FPN), Signal-to-Noise Ratio (SNR), Charge-to-Voltage conversion Factor (CVF) and Charge Collection Efficiency (CCE), are studied as function of readout speed and diode size. For MIMOSA 8, the effect of fast neutrons irradiation is also. Two beam tests campaigns were made: at DESY with a 5 GeV electrons beam and at CERN with a 180 GeV pions beam. Detection Efficiency and Spatial Resolution are studied in function of the discriminator threshold. For these two parameters, the influences of diode size and SNR of the central pixel of a cluster are also discussed. In order to improve the spatial resolution of the digital outputs, a very compact (25 {mu}m x 1 mm) and low consumption (300 {mu}W) column level ADC is designed in AMS 0.35 {mu}m OPTO process. Based on successive approximation architecture, the auto-offset cancellation structure is integrated. A new column level auto-zero discriminator using static latch is also designed. (author)

  9. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  10. Results from CHIPIX-FE0, a Small-Scale Prototype of a New Generation Pixel Readout ASIC in 65 nm CMOS for HL-LHC

    CERN Document Server

    Pacher, L.; Demaria, N.; Rivetti, A.; Da Rocha Rolo, M.; Dellacasa, G.; Mazza, G.; Rotondo, F.; Wheadon, R.; Paternò, A.; Panati, S.; Loddo, F.; Licciulli, F.; Ciciriello, F.; Marzocca, C.; Gaioni, L.; Traversi, G.; Re, V.; De Canio, F.; Ratti, L.; Marconi, S.; Placidi, P.; Magazzù, G.; Stabile, A.; Mattiazzo, S.

    2018-01-01

    A prototype of a new-generation readout ASIC targeting High-Luminosity (HL) LHC pixel detector upgrades has been designed and fabricated as part of the Italian INFN CHIPIX65 project using a commercial 65 nm CMOS technology. This demonstrator, hereinafter referred to as CHIPIX-FE0, is composed of a matrix of 64 × 64 pixels with 50 μm × 50 μm pixel size embedding two different architectures of analog front-ends working in parallel. The final layout of the chip was submitted and accepted for fabrication on July 2016. Chips were received back from the foundry on October 2016 and successfully characterized before irradiation. Several irra- diation campaigns with X-rays have been accomplished during 2017 at Padova INFN and CERN EP/ESE facilities under different uniformity and temperature conditions up to 630 Mrad Total Ionizing Dose (TID). These studies corfirmed negligible degradation of analog front-ends per- formance after irradiation. First sample chips have been also bump-bonded to 50 μm × 50 μm and sin...

  11. Test Beam Results of Geometry Optimized Hybrid Pixel Detectors

    CERN Document Server

    Becks, K H; Grah, C; Mättig, P; Rohe, T

    2006-01-01

    The Multi-Chip-Module-Deposited (MCM-D) technique has been used to build hybrid pixel detector assemblies. This paper summarises the results of an analysis of data obtained in a test beam campaign at CERN. Here, single chip hybrids made of ATLAS pixel prototype read-out electronics and special sensor tiles were used. They were prepared by the Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration, IZM, Berlin, Germany. The sensors feature an optimized sensor geometry called equal sized bricked. This design enhances the spatial resolution for double hits in the long direction of the sensor cells.

  12. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Chamberlain, Darol [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.

  13. Development of a Large-Format Science-Grade CMOS Active Pixel Sensor, for Extreme Ultra Violet Spectroscopy and Imaging in Space Science

    National Research Council Canada - National Science Library

    Waltham, N. R; Prydderch, M; Mapson-Menard, H; Morrissey, Q; Turchetta, R; Pool, P; Harris, A

    2005-01-01

    We describe our programme to develop a large-format science-grade CMOS active pixel sensor for future space science missions, and in particular an extreme ultra-violet spectrograph for solar physics...

  14. Demonstration of a Prototype Hydrogen Sensor and Electronics Package - Progress Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Amanda S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brosha, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    This is the second progress report on the demonstration of a prototype hydrogen sensor and electronics package. It goes into detail about the five tasks, four of which are already completed as of August 2016, with the final to be completed by January 26, 2017. Then the budget is detailed along with the planned work for May 27, 2016 to July 27, 2016.

  15. Insertable B-Layer integration in the ATLAS experiment and development of future 3D silicon pixel sensors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371528; Røhne, Ole

    This work has two distinct objectives: the development of software for the integration of the Insertable B-Layer (IBL) in the ATLAS offline software framework and the study of the performance of 3D silicon sensors produced by SINTEF for future silicon pixel detectors. The former task consists in the implementation of the IBL byte stream converter. This offline tool performs the decoding of the binary-formatted data coming from the detector into information (e.g. hit position and Time over Threshold) that is stored in a format used in the reconstruction data flow. It also encodes the information extracted from simulations into a simulated IBL byte stream. The tool has been successfully used since the beginning of the LHC Run II data taking. The experimental work on SINTEF 3D sensors was performed in the framework of the development of pixel sensors for the next generation of tracking detectors. Preliminary tests on SINTEF 3D sensors showed that the majority of these devices suffers from high leakage currents, ...

  16. Prototype Si microstrip sensors for the CDF-II ISL detector

    CERN Document Server

    Hara, K; Kanao, K; Kim, S; Ogasawara, M; Ohsugi, T; Shimojima, M; Takikawa, K

    1999-01-01

    Prototype Si microstrip sensors for the CDF-II ISL were fabricated by Hamamatsu Photonics and SEIKO Instruments using 4'' technology. The sensor is AC coupled and double-sided forming a stereo angle of 1.207 degree sign . The strip pitch is 112 mu m on both sides. The main differences between the two manufacturers lie on the technologies of passivation and the structure of coupling capacitors. We describe the design of the sensor and evaluation results of the performance. The evaluations include the total and individual strip currents and interstrip capacitance measured before and after sup 6 sup 0 Co gamma irradiation. (author)

  17. Investigation of charge-collection efficiency of Kyoto's X-ray astronomical SOI pixel sensors, XRPIX

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Hideaki, E-mail: matumura@cr.scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tsuru, Takeshi Go; Tanaka, Takaaki; Nakashima, Shinya; Ryu, Syukyo G. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeda, Ayaki [Department of Particle and Nuclear Physics, Graduate School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2014-11-21

    We are developing a monolithic active pixel sensor referred to as XRPIX for X-ray astronomy on the basis of silicon-on-insulator CMOS technology. A crucial issue in our recent development is the impact of incomplete charge collection on the spectroscopic performance. In this paper, we report the spectral responses of several devices having different intra-pixel structures or produced from different wafers. We found that an emission line spectrum exhibits large low-energy tails when the size of the buried p-well, which acts as the charge-collection node, is small. Moreover, in charge sharing events, the peak channels of the emission lines shift toward channels lower than those without charge sharing. This peak shift is more pronounced as the distance between the pixel center and the position of incident photon increases. This suggests that the charge-collection efficiency is degraded at the pixel boundary. We also found that the charge-collection efficiency depends on the strength of the electric field at the interface of the depletion and insulator layers.

  18. Active pixel image sensor with a winner-take-all mode of operation

    Science.gov (United States)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor); Mead, Carver (Inventor)

    2003-01-01

    An integrated CMOS semiconductor imaging device having two modes of operation that can be performed simultaneously to produce an output image and provide information of a brightest or darkest pixel in the image.

  19. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    International Nuclear Information System (INIS)

    Weigell, Philipp

    2013-01-01

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb -1 , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10 35 cm -2 s -1 as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10 16 n eq /cm 2 . A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering within the tracking system and leads

  20. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    Energy Technology Data Exchange (ETDEWEB)

    Weigell, Philipp

    2013-01-15

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb{sup -1}, the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10{sup 35} cm{sup -2}s{sup -1} as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10{sup 16} n{sub eq}/cm{sup 2}. A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering

  1. Communication and logging hub for rapid prototyping of environmental sensors: presenting the Smartphone.

    Science.gov (United States)

    Hut, R.

    2017-12-01

    When desiging prototype sensors for environmental variables a critical step is a comparison campaign where the new sensor is compared to current state of the art sensors. In this step one of the headaches for researchers can be connecting their sensor to a logging or communication device. I present a simple solution: to use smartphone that scans for Bluetooth Low Energy transmissions and uploads any measurement to a data server. In this way the prototype sensor only has to transmit its measurement values over BLE, which can be done using off-the-shelf components. The sensors don't have to be physically connected to the phone, allowing for very rapid deployment of sensors in locations that have a communication hub (ie. phone) installed. The communication and logging hub consists of nothing more than a low cost Android smartphone running a dedicated app. The phone is encased in a waterproof box with a large powerbank and a solar panel. I will demonstrate this live at the Fall Meeting. By installing these phones along permanent WMO certified station locations, comparisons campaigns can use the "golden standard" from the WMO without much problems.

  2. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Science.gov (United States)

    Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-01-01

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935

  3. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.

    Science.gov (United States)

    Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia

    2013-07-29

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  4. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  5. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Directory of Open Access Journals (Sweden)

    Amaia Méndez Zorrilla

    2013-07-01

    Full Text Available This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor, another one under the fifth metatarsal (left and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor and 100% (heel and bending sensors. Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  6. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaguo

    2013-06-15

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO{sub 2} interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO{sub 2} to the Si-SiO{sub 2} interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An

  7. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    International Nuclear Information System (INIS)

    Zhang, Jiaguo

    2013-06-01

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO 2 interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO 2 to the Si-SiO 2 interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An electron

  8. A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission

    Science.gov (United States)

    Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.

    2009-12-01

    Land Surface Model (LSM) predictions are regular in time and space, but these predictions are influenced by errors in model structure, input variables, parameters and inadequate treatment of sub-grid scale spatial variability. Consequently, LSM predictions are significantly improved through observation constraints made in a data assimilation framework. Several multi-sensor satellites are currently operating which provide multiple global observations of the land surface, and its related near-atmospheric properties. However, these observations are not optimal for addressing current and future land surface environmental problems. To meet future earth system science challenges, NASA will develop constellations of smart satellites in sensor web configurations which provide timely on-demand data and analysis to users, and can be reconfigured based on the changing needs of science and available technology. A sensor web is more than a collection of satellite sensors. That means a sensor web is a system composed of multiple platforms interconnected by a communication network for the purpose of performing specific observations and processing data required to support specific science goals. Sensor webs can eclipse the value of disparate sensor components by reducing response time and increasing scientific value, especially when the two-way interaction between the model and the sensor web is enabled. The study of a prototype Land Information Sensor Web (LISW) is sponsored by NASA, trying to integrate the Land Information System (LIS) in a sensor web framework which allows for optimal 2-way information flow that enhances land surface modeling using sensor web observations, and in turn allows sensor web reconfiguration to minimize overall system uncertainty. This prototype is based on a simulated interactive sensor web, which is then used to exercise and optimize the sensor web modeling interfaces. The Land Information Sensor Web Service-Oriented Architecture (LISW-SOA) has been

  9. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detector based on CMOS pixel techology. Such detectors provide charge collection, analog and digital amplification in the same silicon bulk. The radiation hardness is obtained with multiple nested wells that have embedded the CMOS electronics with sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC. A number of alternative solutions have been explored and characterised, and are presented in this document.

  10. The upgrade of the ALICE Inner Tracking System - Status of the R&D; on monolithic silicon pixel sensors

    OpenAIRE

    Van Hoorne, Jacobus Willem

    2014-01-01

    s a major part of its upgrade plans, the ALICE experiment schedules the installation of a novel Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2018/19. It will replace the present silicon tracker with seven layers of Monolithic Active Pixel Sensors (MAPS) and significantly improve the detector performance in terms of tracking and rate capabilities. The choice of technology has been guided by the tight requirements on the material budget of 0 : 3 % X = X 0 /layer fo...

  11. ANUSANSKAR: a 16 channel frontend electronics (FEE) ASIC targeted for silicon pixel array detector based prototype Alice FOCAL

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sourav; Chandratre, V.B.; Sukhwani, Menka; Pithawa, C.K.; Singaraju, Ramnarayan; Muhuri, Sanjib; Nayak, T.; Khan, S.A.; Saini, Jogendra

    2013-01-01

    ANUSANSKAR is a 16 channel pulse processing ASIC with analog multiplexed output designed in 0.7 um standard CMOS technology with each channel consisting of CSA, Semi Gaussian pulse shaper, DC cancellation and pedestal control, track and hold, output buffer blocks. The ASIC's analog multiplexed output can be read serially in daisy-chain topology. Testing, characterization and validation of ANUSANSKAR ASIC as readout for prototype ALICE forward calorimeter (FOCAL) has been carried out in PS beam line at CERN with up to 6 GeV of pion and electron beam. This paper describes the ANUSANSKAR ASIC along with the experimental results. (author)

  12. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  13. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  14. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications.

    Science.gov (United States)

    Díez, Jorge A; Catalán, José M; Blanco, Andrea; García-Perez, José V; Badesa, Francisco J; Gacía-Aracil, Nicolás

    2018-02-07

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  15. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    Science.gov (United States)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  16. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications

    Directory of Open Access Journals (Sweden)

    Jorge A. Díez

    2018-02-01

    Full Text Available This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  17. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    International Nuclear Information System (INIS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Taliercio, C.; Trevisan, L.; Schiesko, L.

    2014-01-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values

  18. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    Science.gov (United States)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  19. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    Science.gov (United States)

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  20. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste and INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2014-11-21

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R and D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  1. Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor

    International Nuclear Information System (INIS)

    Moreau, Ph.; Le-Luyer, A.; Malard, P.; Pastor, P.; Saint-Laurent, F.; Spuig, P.; Lister, J.; Toussaint, M.; Marmillod, P.; Testa, D.; Peruzzo, S.; Knaster, J.; Vayakis, G.; Hughes, S.; Patel, K.M.

    2013-01-01

    Highlights: ► ITER Continuous External Rogowski (CER) are designed for plasma and vacuum vessel current measurement. ► CER are located in the casing of Toroidal Field Coils and thus will operate at 4 K. ► The design of the sensors has been completed. ► CER prototypes have been manufactured by 2 suppliers. ► The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER. -- Abstract: The measurement of the plasma current in ITER plays an outstanding role as it is part of the machine protection and is a safety-relevant measurement: it will be used in relation with regulatory limits to show that the operation remains within the safe envelope defined in the ITER license. The Continuous External Rogowski (CER) is an inductive sensor designed for current measurements and located in the casing of 3 Toroidal Field Coils (TFCs). After the completion of the design of the CER, 4 prototypes of the sensor were manufactured and R and D activities were performed under a Grant with the European Domestic Agency (F4E-GRT-012). The work was carried out between 2010 and 2011 by the ITERMAG consortium comprising 3 laboratories: CRPP (Switzerland) as leader, CEA (France) and RFX (Italy). The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER in terms of electrical, thermal, mechanical and also of vacuum compatibility. From these results, electromagnetic modeling of the CER response was performed. It is demonstrated that the CER fulfills ITER requirements. However, the vacuum compatibility of the prototype has to be improved and solutions to cope with this issue are proposed

  2. Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Ph., E-mail: philippe.jacques.moreau@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Le-Luyer, A.; Malard, P.; Pastor, P.; Saint-Laurent, F.; Spuig, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lister, J.; Toussaint, M.; Marmillod, P.; Testa, D. [Centre de Recherches en Physique des Plasmas, EPFL (Switzerland); Peruzzo, S. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Knaster, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); IFMIF EVEDA, Rokkasho (Japan); Vayakis, G.; Hughes, S.; Patel, K.M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► ITER Continuous External Rogowski (CER) are designed for plasma and vacuum vessel current measurement. ► CER are located in the casing of Toroidal Field Coils and thus will operate at 4 K. ► The design of the sensors has been completed. ► CER prototypes have been manufactured by 2 suppliers. ► The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER. -- Abstract: The measurement of the plasma current in ITER plays an outstanding role as it is part of the machine protection and is a safety-relevant measurement: it will be used in relation with regulatory limits to show that the operation remains within the safe envelope defined in the ITER license. The Continuous External Rogowski (CER) is an inductive sensor designed for current measurements and located in the casing of 3 Toroidal Field Coils (TFCs). After the completion of the design of the CER, 4 prototypes of the sensor were manufactured and R and D activities were performed under a Grant with the European Domestic Agency (F4E-GRT-012). The work was carried out between 2010 and 2011 by the ITERMAG consortium comprising 3 laboratories: CRPP (Switzerland) as leader, CEA (France) and RFX (Italy). The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER in terms of electrical, thermal, mechanical and also of vacuum compatibility. From these results, electromagnetic modeling of the CER response was performed. It is demonstrated that the CER fulfills ITER requirements. However, the vacuum compatibility of the prototype has to be improved and solutions to cope with this issue are proposed.

  3. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  4. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    Science.gov (United States)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  5. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    International Nuclear Information System (INIS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P.L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C.A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.

    2015-01-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented

  6. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: yangping0710@126.com [Central China Normal University, Wuhan (China); Aglieri, G.; Cavicchioli, C. [CERN, 1210 Geneva 23 (Switzerland); Chalmet, P.L. [MIND, Archamps (France); Chanlek, N. [Suranaree University of Technology, Nakhon Ratchasima (Thailand); Collu, A. [University of Cagliari, Cagliari (Italy); INFN (Italy); Gao, C. [Central China Normal University, Wuhan (China); Hillemanns, H.; Junique, A. [CERN, 1210 Geneva 23 (Switzerland); Kofarago, M. [CERN, 1210 Geneva 23 (Switzerland); University of Utrecht, Utrecht (Netherlands); Keil, M.; Kugathasan, T. [CERN, 1210 Geneva 23 (Switzerland); Kim, D. [Dongguk and Yonsei University, Seoul (Korea, Republic of); Kim, J. [Pusan National University, Busan (Korea, Republic of); Lattuca, A. [University of Torino, Torino (Italy); INFN (Italy); Marin Tobon, C.A. [CERN, 1210 Geneva 23 (Switzerland); Marras, D. [University of Cagliari, Cagliari (Italy); INFN (Italy); Mager, M.; Martinengo, P. [CERN, 1210 Geneva 23 (Switzerland); Mazza, G. [University of Torino, Torino (Italy); INFN (Italy); and others

    2015-06-11

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  7. Silicon telescope for prototype sensor characterisation using particle beam and cosmic rays

    CERN Multimedia

    Fu, Jinlin

    2016-01-01

    We present the design and the performance of a silicon strip telescope that we have built and recently used as reference tracking system for prototype sensor characterisation. The telescope was operated on beam at the CERN SPS and also using cosmic rays in the laboratory. We will describe the data acquisition system, based on a custom electronic board that we have developed, and the online monitoring system to control the quality of the data in real time.

  8. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor.

    Science.gov (United States)

    Chakir, Mostafa; Akhamal, Hicham; Qjidaa, Hassan

    2017-01-01

    The CMOS Monolithic Active Pixel Sensor (MAPS) for the International Linear Collider (ILC) vertex detector (VXD) expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC). This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18  μ m CMOS process with a pixel pitch of 35  μ m. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76  μ m 2 . The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/-0.0787 LSB and 0.0811/-0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  9. A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain

    Science.gov (United States)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H.; Ratcliffe, N. M.; Sivanand, P. S.; Spencer-Phillips, P. T. N.

    2003-04-01

    Sensors based on composites of metal oxides were fabricated and tested extensively under high-humidity and high-flow conditions with exposure to vapours reported to increase in the headspace of wheat grain (Triticum aestivum cv Hereward) colonized by fungi. The sensors that exhibited high sensitivity to target vapours combined with high stability were selected for inclusion into a four-sensor array prototype system. A sampling protocol aligned to parallel gas chromatography-mass spectrometry and human olfactory assessment studies was established for use with the sensor system. The sensor system was utilized to assess irradiated wheat samples that had been conditioned to 25% moisture content and inoculated with pathogens known to cause spoilage of grain in storage. These included the fungi Penicillium aurantiogriseum, Penicillium vulpinum, Penicillium verrucosum, Fusarium culmorum, Aspergillus niger, and Aspergillus flavus and the actinomycete, Streptomyces griseus. The sensor system successfully tracked the progress of the infections from a very early stage and the results were compared with human olfactory assessment panels run concurrently. A series of dilution studies were undertaken using previously infected grain mixed with sound grain, to improve the sensitivity and maximize the differentiation of the sensor system. An optimum set of conditions including incubation temperature, incubation time, sampling time, and flow rate were ascertained utilizing this method. The sensor system differentiated samples of sound grain from samples of sound grain with 1% (w/w) fungus infected grain added. Following laboratory trials, the prototype sensor system was evaluated in a commercial wheat grain intake facility. Thresholds calculated from laboratory tests were used to differentiate between sound and infected samples (classified by intake laboratory technicians) collected routinely from trucks delivering grain for use in food manufacture. All samples identified as having

  10. Performance of thin pixel sensors irradiated up to a fluence of 10{sup 16}n{sub eq}cm{sup -2} and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Andricek, L. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Beimforde, M. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Moser, H.-G. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Nisius, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Richter, R.H. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Weigell, P. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany)

    2011-09-11

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R and D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150{mu}m has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  11. Performance of thin pixel sensors irradiated up to a fluence of 1016neqcm-2 and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Weigell, P.

    2011-01-01

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R and D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150μm has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  12. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    Science.gov (United States)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  13. Charged particle detection performances of CMOS pixel sensors produced in a 0.18μm process with a high resistivity epitaxial layer

    Energy Technology Data Exchange (ETDEWEB)

    Senyukov, S., E-mail: serhiy.senyukov@cern.ch; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz0.18μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 10{sup 13}n{sub eq}/cm{sup 2} was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz0.18μm CMOS process for the ALICE ITS upgrade.

  14. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    Science.gov (United States)

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  15. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    CERN Document Server

    Miucci, A; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; Rosa, A.La; Muenstermann, D.; George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J.C.; Liu, J; Barbero, M.; Rozanov, A

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. 1Corresponding author. c CERN 2014, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI. doi:10.1088/1748-0221/9/05/C050642014 JINST 9 C05064 A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation a...

  16. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    Science.gov (United States)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  17. A Novel Low-Cost Sensor Prototype for Monitoring Temperature during Wine Fermentation in Tanks

    Directory of Open Access Journals (Sweden)

    Carlos de Castro

    2013-02-01

    Full Text Available This paper presents a multipurpose and low cost sensor for temperature control over the wine fermentation process, in order to steadily communicate data through wireless modules in real time to a viticulturist’s mobile or fixed device. The advantage of our prototype is due to the fact that it will be used by small winemakers in the “Ribera del Duero” area, and as it is a cheaper sensor and easy to use for the control and monitoring of the grape fermentation process, it will probably be used by other business men with the same necessities in the region. The microcontroller MSP430G2553 is among the components that make up the sensor, that are integrated onto a motherboard. It communicates with the RN-42 Bluetooth module through an UART interface. After verifying that all elements are working correctly, the parts are assembled to form the final prototype. This device has been tested in a winery in the region, fulfilling the initial project specifications.

  18. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    Science.gov (United States)

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. CAcTμS: High-Voltage CMOS Monolithic Active Pixel Sensor for tracking and time tagging of charged particles

    CERN Document Server

    Guilloux, F.; Degerli, Y.; Elhosni, M.; Guyot, C.; Hemperek, T.; Lachkar, M.; Meyer, JP.; Ouraou, A.; Schwemling, P.; Vandenbroucke, M.

    2018-01-01

    The increase of luminosity foreseen for the Phase-II HL-LHC upgrades calls for new solutions to fight against the expected pile-up effects. One approach is to measure very accurately the time of arrival of the particles with a resolution of a few tens of picoseconds. In addition, a spatial granularity better than a few millimeter will be needed to obtain a fake jet rejection rate acceptable for physics analysis. These goals could be achieved by using the intrinsic benefits of a standard High-Voltage CMOS technology – in conjunction with a high-resistivity detector material – leading to a fast, integrated, rad-hard, fully depleted monolithic active pixel sensor ASIC.

  20. First large DEPFET pixel modules for the Belle II Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix; Avella, Paola; Kiesling, Christian; Koffmane, Christian; Moser, Hans-Guenther; Valentan, Manfred [Max-Planck-Institut fuer Physik, Muenchen (Germany); Andricek, Ladislav; Richter, Rainer [Halbleiterlabor der Max-Planck-Gesellschaft, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with a low material budget. They will be used at Belle II and are a candidate for an ILC vertex detector. The pixels are integrated in a monolithic piece of silicon which also acts as PCB providing the signal and control routings for the ASICs on top. The first prototype DEPFET sensor modules for Belle II have been produced. The modules have 192000 pixels and are equipped with SMD components and three different kinds of ASICs to control and readout the pixels. The entire readout chain has to be studied; the metal layer interconnectivity and routings need to be verified. The modules are fully characterized, and the operation voltages and control sequences of the ASICs are investigated. An overview of the DEPFET concept and first characterization results is presented.

  1. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  2. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor

    Directory of Open Access Journals (Sweden)

    Mostafa Chakir

    2017-01-01

    Full Text Available The CMOS Monolithic Active Pixel Sensor (MAPS for the International Linear Collider (ILC vertex detector (VXD expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC. This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18 μm CMOS process with a pixel pitch of 35 μm. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76 μm2. The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/−0.0787 LSB and 0.0811/−0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  3. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    CERN Document Server

    Rescigno, R; Juliani, D; Spiriti, E; Baudot, J; Abou-Haidar, Z; Agodi, C; Alvarez, M A G; Aumann, T; Battistoni, G; Bocci, A; Böhlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Scheidenberger, C; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Tropea, S; Vanstalle, M; Younis, H

    2014-01-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different...

  4. Architecture and characterization of the P4DI CMOS hybrid pixel sensor

    International Nuclear Information System (INIS)

    Chatzistratis, D.; Theodoratos, G.; Kazas, I.; Loukas, D.; Zervakis, E.; Lambropoulos, C.P.

    2017-01-01

    Gamma ray imaging can be used for the extraction either of the activity map of a source or of the attenuation map of an object or both, as well as for the identification of the material composition of the emitting source or the object. All these imaging modalities can benefit from instruments giving the information of the energy of the converted photons and also the spatial and time coordinates of the conversion. The P4DI CMOS and hybrid provides the core technology for this task being a 2-D array based on Cd(Zn)Te material for the sensing layer. It consists of 1250 pixels with 400 μ m pitch. The energy resolution of the 241 Am photopeak is 3.5 keV, time resolution is less than 12 μ s and power consumption is less than 100 mW. Architecture and characterization are described.

  5. Characterisation of Irradiated Thin Silicon Sensors for the CMS Phase II Pixel Upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg; bigskip; Institut fur Experimentalphysik; Luruper Chaussee; Hamburg; Deutsches Elektronen-Synchrotron Notkestra; e; Hamburg

    2016-01-01

    In this paper, the results obtained from the characterisation of 100 and 200\\,$\\mu$m thick p-bulk pad diodes and strip sensors irradiated up to fluences of $\\Phi_{eq} = 1.3 \\times 10^{16}$ cm$^{-2}$ are shown.

  6. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  7. A Novel Event-Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS).

    Science.gov (United States)

    Rigi, Amin; Baghaei Naeini, Fariborz; Makris, Dimitrios; Zweiri, Yahya

    2018-01-24

    In this paper, a novel approach to detect incipient slip based on the contact area between a transparent silicone medium and different objects using a neuromorphic event-based vision sensor (DAVIS) is proposed. Event-based algorithms are developed to detect incipient slip, slip, stress distribution and object vibration. Thirty-seven experiments were performed on five objects with different sizes, shapes, materials and weights to compare precision and response time of the proposed approach. The proposed approach is validated by using a high speed constitutional camera (1000 FPS). The results indicate that the sensor can detect incipient slippage with an average of 44.1 ms latency in unstructured environment for various objects. It is worth mentioning that the experiments were conducted in an uncontrolled experimental environment, therefore adding high noise levels that affected results significantly. However, eleven of the experiments had a detection latency below 10 ms which shows the capability of this method. The results are very promising and show a high potential of the sensor being used for manipulation applications especially in dynamic environments.

  8. Development of CMOS Monolithic Active Pixel Sensors for the ALICE-ITS Outer Barrel and for the CBM-MVD

    CERN Document Server

    Deveaux, Michael

    2015-01-01

    After more than a decade of R&D;, CMOS Monolithic Active Pixel Sensors (MAPS or CPS) have proven to offer concrete answers to the demanding requirements of subatomic physics experi- ments. Their main advantages result from their low material budget, their very high granularity and their integrated signal processing circuitry, which allows coping with high particle rates. Moreover, they offer a valuable radiation tolerance and may be produced at low cost. Sensors of the MIMOSA series have offered an opportunity for nuclear and particle physics exper- iments to address with improved sensitivity physics studies requiring an accurate reconstruction of short living and soft particles. One of their major applications is the STAR-PXL detector, which is the first vertex detector based on MAPS. While this experiment is successfully taking data since two years, it was found that the 0.35 m CMOS technology used for this purpose is not suited for upcoming applications like the CBM micro-vertex detector (MVD) and the ...

  9. A Prototype Flood Early Warning SensorWeb System for Namibia

    Science.gov (United States)

    Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.

    2010-12-01

    During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.

  10. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    Science.gov (United States)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.

  11. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, R., E-mail: regina.rescigno@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Finck, Ch.; Juliani, D. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Spiriti, E. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Roma 3 (Italy); Baudot, J. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Abou-Haidar, Z. [CNA, Sevilla (Spain); Agodi, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Alvarez, M.A.G. [CNA, Sevilla (Spain); Aumann, T. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Battistoni, G. [Istituto Nazionale di Fisica Nucleare - Sezione di Milano (Italy); Bocci, A. [CNA, Sevilla (Spain); Böhlen, T.T. [European Organization for Nuclear Research CERN, Geneva (Switzerland); Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Boudard, A. [CEA-Saclay, IRFU/SPhN, Gif sur Yvette Cedex (France); Brunetti, A.; Carpinelli, M. [Istituto Nazionale di Fisica Nucleare - Sezione di Cagliari (Italy); Università di Sassari (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Cortes-Giraldo, M.A. [Departamento de Fisica Atomica, Molecular y Nuclear, University of Sevilla, 41080-Sevilla (Spain); Cuttone, G.; De Napoli, M. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Durante, M. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); and others

    2014-12-11

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  12. Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-03-01

    Full Text Available We developed a confined microfluidic cell culture system with a bottom plate made of a microscopic slide with planar platinum sensors for the measurement of acidification, oxygen consumption, and cell adhesion. The slides were commercial slides with indium tin oxide (ITO plating or were prepared from platinum sputtering (100 nm onto a 10-nm titanium adhesion layer. Direct processing of the sensor structures (approximately three minutes per chip by an ultrashort pulse laser facilitated the production of the prototypes. pH-sensitive areas were produced by the sputtering of 60-nm Si3N4 through a simple mask made from a circuit board material. The system body and polydimethylsiloxane (PDMS molding forms for the microfluidic structures were manufactured by micromilling using a printed circuit board (PCB milling machine for circuit boards. The microfluidic structure was finally imprinted in PDMS. Our approach avoided the use of photolithographic techniques and enabled fast and cost-efficient prototyping of the systems. Alternatively, the direct production of metallic, ceramic or polymeric molding tools was tested. The use of ultrashort pulse lasers improved the precision of the structures and avoided any contact of the final structures with toxic chemicals and possible adverse effects for the cell culture in lab-on-a-chip systems.

  13. The first fully functional 3D CMOS chip with Deep N-well active pixel sensors for the ILC vertex detector

    International Nuclear Information System (INIS)

    Traversi, G.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.

    2013-01-01

    This work presents the characterization of Deep N-well (DNW) active pixel sensors fabricated in a vertically integrated technology. The DNW approach takes advantage of the triple well structure to lay out a sensor with relatively large charge collecting area (as compared to standard three transistor MAPS), while the readout is performed by a classical signal processing chain for capacitive detectors. This new 3D design relies upon stacking two homogeneous tiers fabricated in a 130 nm CMOS process where the top tier is thinned down to about 12μm to expose through silicon vias (TSV), therefore making connection to the buried circuits possible. This technology has been used to design a fine pitch 3D CMOS sensor with sparsification capabilities, in view of vertexing applications to the International Linear Collider (ILC) experiments. Results from the characterization of different kind of test structures, including single pixels, 3×3 and 8×8 matrices, are presented

  14. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    CERN Document Server

    Macchiolo, A

    2013-01-01

    The R&D activity presented is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 um or 150 um, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge devices, the charge collection properties of the edge pixels before irradiation is discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond ...

  15. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H.G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2013-01-01

    This R and D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid–Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75μm or 150μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×10 15 n eq /cm 2 . For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3μm×10μm, at the positions of the original wire bonding pads

  16. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Andricek, L. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Ellenburg, M. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Moser, H.G. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Nisius, R. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Richter, R.H. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany)

    2013-12-11

    This R and D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid–Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75μm or 150μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×10{sup 15}n{sub eq}/cm{sup 2}. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3μm×10μm, at the positions of the original wire bonding pads.

  17. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  18. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  19. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    International Nuclear Information System (INIS)

    Wermes, N.

    2015-01-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R and D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R and D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R and D, not hiding the difficulties

  20. Studio di un algoritmo lineare di ricostruzione analogica della posizione per il rivelatore a pixel di ATLAS

    CERN Document Server

    Arelli-Maffioli, A; Troncon, C; Lari, T

    2007-01-01

    A detailed study of spatial resolution of Atlas pixel sensors prototypes was performed. Charge interpolation was used and allowed for a significant improvement with respect to digital resolution. A simplified algorithm for charge interpolation was developed. Its application to both unirradiated and irradiated sensors is presented and discussed.

  1. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    Science.gov (United States)

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  2. Characterisation of a monolithic active pixel sensor for electron detection in the energy range 10-20 keV

    International Nuclear Information System (INIS)

    Matheson, J.; Moldovan, G.; Clark, A.; Prydderch, M.; Turchetta, R.; Derbyshire, G.; Kirkland, A.; Allinson, N.

    2009-01-01

    As part of a feasibility study into the use of novel electron detectors for X-ray photoelectron emission microscopes (XPEEM), we have characterised the imaging performance of a back-illuminated monolithic active pixel sensor (MAPS) operating under both integrating and counting modes for electrons in the energy range 10-20 keV. For integrating mode, we present the detective quantum efficiency (DQE), which shows marked improvements over conventional indirect detectors based on microchannel plates. We also present the modulation transfer function (MTF) and noise power spectrum (NPS), again demonstrating significantly improved performance. For counting mode, we present the quantum efficiency (QE) as a function of incident electron energy. We have evaluated the charge collection efficiency (CCE) and we thereby demonstrate the presence of a ∼200 nm thick dead layer that is linked with reduced CCE at low electron energies. Based on our findings, we believe that the MAPS technology is well matched to future XPEEM instruments using aberration correction.

  3. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, M.; Bolton, T.; Carnes, K.; /Kansas State U.; Demarteau, M.; /Fermilab; Demina, R.; /Rochester U.; Gray, T.; /Kansas State U.; Korjenevski, S.; /Rochester U.; Lehner, F.; /Zurich U.; Lipton, R.; Mao, H.S.; /Fermilab; McCarthy, R.; /SUNY, Stony Brook /Kansas State U. /Fermilab

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10{sup 14} p/cm{sup 2} at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  4. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    International Nuclear Information System (INIS)

    Ahsan, M.; Bolton, T.; Carnes, K.; Demarteau, M.; Demina, R.; Gray, T.; Korjenevski, S.; Lehner, F.; Lipton, R.; Mao, H.S.; McCarthy, R.

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10 14 p/cm 2 at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  5. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    Science.gov (United States)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  6. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  7. Probing active-edge silicon sensors using a high precision telescope

    NARCIS (Netherlands)

    Akiba, K.; Artuso, M.; van Beveren, V.; van Beuzekom, M.; Boterenbrood, H.; Buytaert, J.; Collins, P.; Dumps, R.; van der Heijden, B.; Hombach, C.; Hynds, D.; Hsu, D.; John, M.; Koffeman, E.; Leflat, A.; Li, Y.; Longstaff, I.; Morton, A.; PérezTrigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Perez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Wysokiński, M.

    2015-01-01

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100-200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope

  8. A time-resolved image sensor for tubeless streak cameras

    Science.gov (United States)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  9. Transition-Edge Sensor Pixel Parameter Design of the Microcalorimeter Array for the X-Ray Integral Field Unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  10. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  11. Depleted Monolithic Pixels (DMAPS) in a 150 nm technology: lab and beam results

    International Nuclear Information System (INIS)

    Obermann, T.; Hemperek, T.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Schwenker, B.

    2017-01-01

    The fully depleted monolithic active pixel sensor (DMAPS) is a new concept integrating full CMOS circuitry onto a fully depletable silicon substrate wafer. The realization of prototypes of the DMAPS concept relies on the availability of multiple well CMOS processes and high resistive substrates. The CMOS foundry ESPROS Photonics offers both and was chosen for prototyping. Two prototypes, EPCB01 and EPCB02, were developed in a 150 nm process on a high resistive n-type wafer of 50 μm thickness. The prototypes have 352 square pixels of 40 μm pitch and small n-well charge collection node with very low capacitance (n + -implantation size: 5 μm by 5 μm) and about 150 transistors per pixel (CSA and discriminator plus a small digital part).

  12. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    Directory of Open Access Journals (Sweden)

    Orly Yadid-Pecht

    2012-07-01

    Full Text Available Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR and Dynamic Range (DR as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  13. Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.

    Science.gov (United States)

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.

  14. Beam Test Results of Thin n-in-p 3D and Planar Pixel Sensors for the High Luminosity LHC Tracker Upgrade at CMS

    CERN Document Server

    Zoi, Irene; Dalla Betta, G. F; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Mendicino, R; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Ronchin, S; Sultan, D.M.S; Uplegger, Lorenzo; Vernieri, Caterina; Viliani, Lorenzo; Zuolo, Davide

    2017-01-01

    This is necessary for the pixel tracker that is the closest to the interaction point and will be replaced. In this paper, the results, from beam tests performed at Fermilab Test Beam Facility, of thin (100 $\\mu$m and 130 $\\mu$m thick) n-in-p type sensors, assembled into hybrid single chip modules bump bonded to the PSI46dig readou...

  15. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    International Nuclear Information System (INIS)

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-01-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 μm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10 5 electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 μm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at ∼0.44 μC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can

  16. Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    CERN Document Server

    Albert, J; Alimonti, Gianluca; Allport, Phil; Altenheiner, Silke; Ancu, Lucian; Andreazza, Attilio; Arguin, Jean-Francois; Arutinov, David; Backhaus, Malte; Bagolini, Alvise; Ballansat, Jacques; Barbero, Marlon; Barbier, Gérard; Bates, Richard; Battistin, Michele; Baudin, Patrick; Beau, Tristan; Beccherle, Roberto; Beck, Hans Peter; Benoit, Mathieu; Bensinger, Jim; Bomben, Marco; Borri, Marcello; Boscardin, Maurizio; Botelho Direito, Jose Antonio; Bousson, Nicolas; Boyd, George Russell Jr; Breugnon, Patrick; Bruni, Graziano; Bruschi, Marco; Buchholz, Peter; Buttar, Craig; Cadoux, Franck; Calderini, Giovanni; Caminada, Leah; Capeans, Mar; Casse, Gianluigi; Catinaccio, Andrea; Cavalli-Sforza, Matteo; Chauveau, Jacques; Chu, Ming-Lee; Ciapetti, Marco; Cindro, Vladimir; Citterio, Mauro; Clark, Allan; Cobal, Marina; Coelli, Simone; Colijn, Auke-Pieter; Colin, Daly; Collot, Johann; Crespo-Lopez, Olivier; Dalla Betta, Gian-Franco; Darbo, Giovanni; DaVia, Cinzia; David, Pierre-Yves; Debieux, Stéphane; Delebecque, Pierre; Devetak, Erik; DeWilde, Burton; Di Girolamo, Beniamino; Dinu, Nicoleta; Dittus, Fridolin; Diyakov, Denis; Djama, Fares; Dobos, Daniel Adam; Doonan, Kate; Dopke, Jens; Dorholt, Ole; Dube, Sourabh; Dushkin, Andrey; Dzahini, Daniel; Egorov, Kirill; Ehrmann, Oswin; Elldge, David; Elles, Sabine; Elsing, Markus; Eraud, Ludovic; Ereditato, Antonio; Eyring, Andreas; Falchieri, Davide; Falou, Aboud; Fang, Xiaochao; Fausten, Camille; Favre, Yannick; Ferrere, Didier; Fleta, Celeste; Fleury, Julien; Flick, Tobias; Forshaw, Dean; Fougeron, Denis; Fritzsch, Thomas; Gabrielli, Alessandro; Gaglione, Renaud; Gallrapp, Christian; Gan, K; Garcia-Sciveres, Maurice; Gariano, Giuseppe; Gastaldi, Thibaut; Gemme, Claudia; Gensolen, Fabrice; George, Matthias; Ghislain, Patrick; Giacomini, Gabriele; Gibson, Stephen; Giordani, Mario Paolo; Giugni, Danilo; Gjersdal, Håvard; Glitza, Karl Walter; Gnani, Dario; Godlewski, Jan; Gonella, Laura; Gorelov, Igor; Gorišek, Andrej; Gössling, Claus; Grancagnolo, Sergio; Gray, Heather; Gregor, Ingrid-Maria; Grenier, Philippe; Grinstein, Sebastian; Gromov, Vladimir; Grondin, Denis; Grosse-Knetter, Jörn; Hansen, Thor-Erik; Hansson, Per; Harb, Ali; Hartman, Neal; Hasi, Jasmine; Hegner, Franziska; Heim, Timon; Heinemann, Beate; Hemperek, Tomasz; Hessey, Nigel; Hetmánek, Martin; Hoeferkamp, Martin; Hostachy, Jean-Yves; Hügging, Fabian; Husi, Coralie; Iacobucci, Giuseppe; Idarraga, John; Ikegami, Yoichi; Janoška, Zdenko; Jansen, Jens; Jansen, Luc; Jensen, Frank; Jentzsch, Jennifer; Joseph, John; Kagan, Harris; Karagounis, Michael; Kass, Richard; Kenney, Christopher J; Kersten, Susanne; Kind, Peter; Klingenberg, Reiner; Kluit, Ruud; Kocian, Martin; Koffeman, Els; Kok, Angela; Korchak, Oleksandr; Korolkov, Ilya; Kostyukhin, Vadim; Krieger, Nina; Krüger, Hans; Kruth, Andre; Kugel, Andreas; Kuykendall, William; La Rosa, Alessandro; Lai, Chung-Hang; Lantzsch, Kerstin; Laporte, Didier; Lapsien, Tobias; Lounis, abdenour; Lozano, Manuel; Lu, Yunpeng; Lubatti, Henry; Macchiolo, Anna; Mallik, Usha; Mandić, Igor; Marchand, Denis; Marchiori, Giovanni; Massol, Nicolas; Matthias, Wittgen; Mättig, Peter; Mekkaoui, Abderrazak; Menouni, Mohsine; Menu, Johann; Meroni, Chiara; Mesa, Javier; Micelli, Andrea; Michal, Sébastien; Miglioranzi, Silvia; Mikuž, Marko; Mitsui, Shingo; Monti, Mauro; Moore, J; Morettini, Paolo; Muenstermann, Daniel; Murray, Peyton; Nellist, Clara; Nelson, David J; Nessi, Marzio; Neumann, Manuel; Nisius, Richard; Nordberg, Markus; Nuiry, Francois-Xavier; Oppermann, Hermann; Oriunno, Marco; Padilla, Cristobal; Parker, Sherwood; Pellegrini, Giulio; Pelleriti, Gabriel; Pernegger, Heinz; Piacquadio, Nicola Giacinto; Picazio, Attilio; Pohl, David; Polini, Alessandro; Popule, Jiří; Portell Bueso, Xavier; Povoli, Marco; Puldon, David; Pylypchenko, Yuriy; Quadt, Arnulf; Quirion, David; Ragusa, Francesco; Rambure, Thibaut; Richards, Erik; Ristic, Branislav; Røhne, Ole; Rothermund, Mario; Rovani, Alessandro; Rozanov, Alexandre; Rubinskiy, Igor; Rudolph, Matthew Scott; Rummler, André; Ruscino, Ettore; Salek, David; Salzburger, Andreas; Sandaker, Heidi; Schipper, Jan-David; Schneider, Basil; Schorlemmer, Andre; Schroer, Nicolai; Schwemling, Philippe; Seidel, Sally; Seiden, Abraham; Šícho, Petr; Skubic, Patrick; Sloboda, Michal; Smith, D; Sood, Alex; Spencer, Edwin; Strang, Michael; Stugu, Bjarne; Stupak, John; Su, Dong; Takubo, Yosuke; Tassan, Jean; Teng, Ping-Kun; Terada, Susumu; Todorov, Theodore; Tomášek, Michal; Toms, Konstantin; Travaglini, Riccardo; Trischuk, William; Troncon, Clara; Troska, Georg; Tsiskaridze, Shota; Tsurin, Ilya; Tsybychev, Dmitri; Unno, Yoshinobu; Vacavant, Laurent; Verlaat, Bart; Vianello, Elisa; Vigeolas, Eric; von Kleist, Stephan; Vrba, Václav; Vuillermet, Raphaël; Wang, Rui; Watts, Stephen; Weber, Michele; Weber, Marteen; Weigell, Philipp; Weingarten, Jens; Welch, Steven David; Wenig, Siegfried; Wermes, Norbert; Wiese, Andreas; Wittig, Tobias; Yildizkaya, Tamer; Zeitnitz, Christian; Ziolkowski, Michal; Zivkovic, Vladimir; Zoccoli, Antonio; Zorzi, Nicola; Zwalinski, Lukasz

    2012-01-01

    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

  17. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  18. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Mathes, Markus

    2008-12-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10 16 particles per cm 2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm 2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm 2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm 2 ). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  19. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  20. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  1. Recent progress in the development of a B-factory monolithic active pixel detector

    International Nuclear Information System (INIS)

    Stanic, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-01-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R and D towards a full Pixel Vertex Detector (PVD) are presented

  2. A column level, low power, 1 M sample/s double ramp A/D converter for monolithic active pixel sensors in high energy physics

    International Nuclear Information System (INIS)

    Pillet, N.; Heini, S.; Hu, Y.

    2010-01-01

    Monolithic active pixel sensors (MAPS) using standard low cost CMOS technologies available from industrial manufacturers have demonstrated excellent tracking performances for minimum ionizing particles. The need for highly granular, fast, thin sensors with a full digital output drives an R and D effort, aiming to design and optimize a low power high speed A/D converter integrated at the column level. Following this main issue, a double digital ramp A/D converter has been proposed for CMOS monolithic active pixel sensors in this paper. This A/D converter responds to the constraints of size, power dissipation and precision for CMOS sensors for particle detection. It also represents a first step in order to reach the high speed of conversion needed for this kind of application. The A/D converter has a resolution of 4 bits for conversion speed of 1 M sample/s with only 264 μW of static consumption in a very particular pitch of 25 μmx900 μm.

  3. Development of fast and radiation hard Monolithic Active Pixel Sensors (MAPS) optimized for open charm meson detection with the CBM experiment

    International Nuclear Information System (INIS)

    Deveaux, M.

    2008-03-01

    The adequacy of CMOS MAPS (Monolithic Active Pixel Sensors) to provide high spatial resolution while submitted to high particle flux and radiation level is assessed in this work. A 55 Fe-source and minimum ionizing particle beams were used to study the performances of MAPS being irradiated either with neutrons and X-rays. As expected, ionizing radiation dominantly causes an increase of the leakage current of the pixels, which translates into increased shot noise. Non-ionizing radiation generates increases in terms of leakage currents but can reduce substantially the lifetime of the signal electrons in the pixel. The latter was found to cause a dramatic drop of the signal if the lifetime of the electrons shrinks below the time required for charge collection. The performances of irradiated detectors were studied as a function of the operation conditions, i.e. in terms of temperature and integration time of the pixel. It was demonstrated that running the detectors at low temperature ( 7 collisions per second, would shrink the lifetime of the detector to a few days. It was however demonstrated that a balanced configuration exists where, for lower beam interaction rate, enough D 0 -mesons can be collected and analyzed to investigate their production properties with a satisfactory sensitivity. (A.C.)

  4. First Results with the Prototype Detectors of the Si/W ECAL

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D; Frey, R.; /Oregon U.; Breidenbach, M.; Deng, J.; Freytag, D.; Graf, N.; Haller, G.; /SLAC; Radeka, V.; /Brookhaven

    2005-07-12

    Measurements on the prototype silicon sensors for use with an electromagnetic calorimeter with tungsten absorber are reported. The prototype sensors are based on a hexagonal geometry that optimally utilizes the space available on 6 inch silicon wafers. The sensors are segmented into approximately 750 5mm hexagonal pixels, which are connected to a bump-bonding array located at the center of the sensors. We report on those properties of the sensors that are important for linear collider applications including depletion voltage, stray capacitance and series resistance.

  5. Development of Gentle Slope Light Guide Structure in a 3.4 μm Pixel Pitch Global Shutter CMOS Image Sensor with Multiple Accumulation Shutter Technology.

    Science.gov (United States)

    Sekine, Hiroshi; Kobayashi, Masahiro; Onuki, Yusuke; Kawabata, Kazunari; Tsuboi, Toshiki; Matsuno, Yasushi; Takahashi, Hidekazu; Inoue, Shunsuke; Ichikawa, Takeshi

    2017-12-09

    CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e - temporal noise and 16,200 e - full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e - /lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.

  6. Aerometrics' laser-based lane-tracker sensor: engineering and on-the-road evaluation of advanced prototypes

    Science.gov (United States)

    Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.

    1997-02-01

    Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.

  7. Technical comparison of the commercialized Racon model 21000 Portable, Reconfigurable Line Sensor (PRLS) and original Sandia/USAF prototype

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1993-01-01

    The military has been moving from a global strategic response with fixed site asset protection to regional tactical response requirements. This change necessitates high security sensor systems that can be easily relocated and rapidly placed in operation by unskilled operators. The Portable, Reconfigurable Line Sensor (PRLS) was developed by Sandia National Laboratories with United States Air Force funding. Racon, Inc. is now commercializing the PRLS through a Cooperative Research and Development Agreement (CRDA) with the United States Air Force. The commercialized design of the new PRLS bi-static radar sensor benefits from the extensive field testing of the original Sandia/USAF-developed engineering prototype systems of the 1980s. Tests conducted in hot, cold, wind, rain, and snow conditions verified exceptional intruder detection capability, resistance to spoofing attempts, and insusceptibility to mutual interference and nuisance alarms caused by birds or small animals. The use of 1990's implementation technology combined with extensive testing information has resulted in significant product performance enhancements as well as cost savings. This paper compares technical features of the original Sandia/USAF prototypes with the new commercialized Racon model 21000 Portable, Reconfigurable Line Sensor. The PRLS advances the art of outdoor security to meet the Relocatable Sensor System (RSS) challenge of the 1990s

  8. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.

    Science.gov (United States)

    Seo, Min-Woong; Kawahito, Shoji

    2017-12-01

    A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.

  9. Development of pixel front-end electronics using advanced deep submicron CMOS technologies

    International Nuclear Information System (INIS)

    Havranek, Miroslav

    2014-09-01

    The content of this thesis is oriented on the R and D of microelectronic integrated circuits for processing the signal from particle sensors and partially on the sensors themselves. This work is motivated by ongoing upgrades of the ATLAS Pixel Detector at CERN laboratory and by exploration of new technologies for the future experiments in particle physics. Evolution of technologies for the fabrication of microelectronic circuits follows Moore's laws. Transistors become smaller and electronic chips reach higher complexity. Apart from this, silicon foundries become more open to smaller customers and often provide non-standard process options. Two new directions in pixel technologies are explored in this thesis: design of pixel electronics using ultra deep submicron (65 nm) CMOS technology and Depleted Monolithic Active Pixel Sensors (DMAPS). An independent project concerning the measurement of pixel capacitance with a dedicated measurement chip is a part of this thesis. Pixel capacitance is one of the key parameters for design of the pixel front-end electronics and thus it is closely related to the content of the thesis. The theoretical background, aspects of chip design, performance of chip prototypes and prospect for design of large pixel chips are comprehensively described in five chapters of the thesis.

  10. Development of pixel front-end electronics using advanced deep submicron CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Havranek, Miroslav

    2014-09-15

    The content of this thesis is oriented on the R and D of microelectronic integrated circuits for processing the signal from particle sensors and partially on the sensors themselves. This work is motivated by ongoing upgrades of the ATLAS Pixel Detector at CERN laboratory and by exploration of new technologies for the future experiments in particle physics. Evolution of technologies for the fabrication of microelectronic circuits follows Moore's laws. Transistors become smaller and electronic chips reach higher complexity. Apart from this, silicon foundries become more open to smaller customers and often provide non-standard process options. Two new directions in pixel technologies are explored in this thesis: design of pixel electronics using ultra deep submicron (65 nm) CMOS technology and Depleted Monolithic Active Pixel Sensors (DMAPS). An independent project concerning the measurement of pixel capacitance with a dedicated measurement chip is a part of this thesis. Pixel capacitance is one of the key parameters for design of the pixel front-end electronics and thus it is closely related to the content of the thesis. The theoretical background, aspects of chip design, performance of chip prototypes and prospect for design of large pixel chips are comprehensively described in five chapters of the thesis.

  11. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  12. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    International Nuclear Information System (INIS)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.

    2016-01-01

    The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R and D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed

  13. Prototyping a Sensor Enabled 3d Citymodel on Geospatial Managed Objects

    Science.gov (United States)

    Kjems, E.; Kolář, J.

    2013-09-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D models with consistent object definitions give us the possibility to avoid troublesome abstractions of reality, and design even complex urban systems fusing information from various sources of data. These systems are difficult to design with the traditional software development approach based on major software packages and traditional data exchange. The data stream is varying from urban domain to urban domain and from system to system why it is almost impossible to design a complete system taking care of all thinkable instances now and in the future within one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept of GMO's have been applied in various situations on various running platforms of an urban system. The paper will be focusing on user experiences and interfaces rather then core technical and developmental issues. The project was primarily focusing on prototyping rather than realistic implementations although the results concerning applicability are quite clear.

  14. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    Science.gov (United States)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  15. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 um process with a high resistivity epitaxial layer

    OpenAIRE

    Senyukov, Serhiy; Baudot, Jerome; Besson, Auguste; Claus, Gilles; Cousin, Loic; Dorokhov, Andrei; Dulinski, Wojciech; Goffe, Mathieu; Hu-Guo, Christine; Winter, Marc

    2013-01-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 um thin CMOS Pixel Sensors (CPS) covering eit...

  16. Monolithic pixel detectors in a 0.13μm CMOS technology with sensor level continuous time charge amplification and shaping

    International Nuclear Information System (INIS)

    Ratti, L.; Manghisoni, M.; Re, V.; Speziali, V.; Traversi, G.; Bettarini, S.; Calderini, G.; Cenci, R.; Giorgi, M.; Forti, F.; Morsani, F.; Rizzo, G.

    2006-01-01

    This work studies the feasibility of a new implementation of CMOS monolithic active pixel sensors (MAPS) for applications to charged particle tracking. As compared to standard three MOSFET MAPS, where the charge signal is readout by a source follower, the proposed front-end scheme relies upon a charge sensitive amplifier (CSA), embedded in the elementary pixel cell, to perform charge-to-voltage conversion. The area required for the integration of the front-end electronics is mostly provided by the collecting electrode, which consists of a deep n-type diffusion, available as a shielding frame for n-channel devices in deep submicron, triple well CMOS technologies. Based on the above concept, a chip, which includes several test structures differing in the sensitive element area, has been fabricated in a 0.13μm CMOS process. In this paper, the criteria underlying the design of the pixel level analog processor will be presented, together with some preliminary experimental results demonstrating the feasibility of the proposed approach

  17. Characterization of Thin Pixel Sensor Modules Interconnected with SLID Technology Irradiated to a Fluence of 2$\\cdot 10^{15}$\\,n$_{\\mathrm{eq}}$/cm$^2$

    CERN Document Server

    INSPIRE-00237859; Beimforde, M.; Macchiolo, A.; Moser, H.G.; Nisius, R.; Richter, R.H.

    2011-01-01

    A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to $2\\cdot10^{15}$\\,\

  18. Characterization of Thin Pixel Sensor Modules Interconnected with SLID Technology Irradiated to a Fluence of 2⋅10 15 $n_{eq}$ /cm 2

    CERN Document Server

    Weigell, P; Beimforde, M; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H

    2011-01-01

    A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to 2⋅10 15 \\,\

  19. Experimental characterization of a 10 μW 55 μm-pitch FPN-compensated CMOS digital pixel sensor for X-ray imagers

    Energy Technology Data Exchange (ETDEWEB)

    Figueras, Roger, E-mail: roger.figueras@imb-cnm.csic.es [Institut de Microelectrònica de Barcelona IMB-CNM(CSIC), Bellaterra (Spain); Martínez, Ricardo; Terés, Lluís [Institut de Microelectrònica de Barcelona IMB-CNM(CSIC), Bellaterra (Spain); Serra-Graells, Francisco [Institut de Microelectrònica de Barcelona IMB-CNM(CSIC), Bellaterra (Spain); Department of Microelectronics and Electronic Systems, Universitat Autònoma de Barcelona, Bellaterra (Spain)

    2014-10-11

    This paper presents experimental results obtained from both electrical and radiation tests of a new room-temperature digital pixel sensor (DPS) circuit specifically optimized for digital direct X-ray imaging. The 10 μW 55 μm-pitch CMOS active pixel circuit under test includes self-bias capability, built-in test, selectable e{sup −}/h{sup +} collection, 10-bit charge-integration A/D conversion, individual gain tuning for fixed pattern noise (FPN) cancellation, and digital-only I/O interface, which make it suitable for 2D modular chip assemblies in large and seamless sensing areas. Experimental results for this DPS architecture in 0.18 μm 1P6M CMOS technology are reported, returning good performance in terms of linearity, 2ke{sub rms}{sup −} of ENC, inter-pixel crosstalk below 0.5 LSB, 50 Mbps of I/O speed, and good radiation response for its use in digital X-ray imaging.

  20. arXiv Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process

    CERN Document Server

    INSPIRE-00541780; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.

    2017-10-25

    Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1x10e16 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5x10e14 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The r...

  1. Performance of capacitively coupled active pixel sensors in 180 nm HV-CMOS technology after irradiation to HL-LHC fluences

    International Nuclear Information System (INIS)

    Feigl, S

    2014-01-01

    In this ATLAS upgrade R and D project, we explore the concept of using a deep-submicron HV-CMOS process to produce a drop-in replacement for traditional radiation-hard silicon sensors. Such active sensors contain simple circuits, e.g. amplifiers and discriminators, but still require a traditional (pixel or strip) readout chip. This approach yields most advantages of MAPS (improved resolution, reduced cost and material budget, etc.), without the complication of full integration on a single chip. After outlining the basic design of the HV2FEI4 test ASIC, results after irradiation with X-rays to 862 Mrad and neutrons up to 10 16 (1 MeV n eq )/cm 2 will be presented. Finally, a brief outlook on further development plans is given

  2. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy

    2014-09-01

    The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67-3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In-Ga-Zn-O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. The result demonstrates that a large charge gain of 31-122 is achieved for the proposed high-mobility (5-20 cm2/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (sensor imager under 1 mR, indicating good image quality under low dose. A threefold reduction of current tomosynthesis dose is expected if proposed technology is combined with an advanced DBT image reconstruction method. The proposed a-IGZO APS x-ray imager with a pixel pitch6.67 lp/mm) and a low dose (<0.4 mGy) in next generation DBT systems.

  3. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronic Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-09-15

    Purpose: The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67–3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In–Ga–Zn–O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. Methods: The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. Results: The result demonstrates that a large charge gain of 31–122 is achieved for the proposed high-mobility (5–20 cm{sup 2}/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10{sup −13} A) and OPD (<10{sup −8} A/cm{sup 2}) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the

  4. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Zhao, Chumin; Kanicki, Jerzy

    2014-01-01

    Purpose: The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67–3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In–Ga–Zn–O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. Methods: The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. Results: The result demonstrates that a large charge gain of 31–122 is achieved for the proposed high-mobility (5–20 cm 2 /V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10 −13 A) and OPD (<10 −8 A/cm 2 ) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the detector entrance

  5. First results on DEPFET Active Pixel Sensors fabricated in a CMOS foundry—a promising approach for new detector development and scientific instrumentation

    Science.gov (United States)

    Aschauer, S.; Majewski, P.; Lutz, G.; Soltau, H.; Holl, P.; Hartmann, R.; Schlosser, D.; Paschen, U.; Weyers, S.; Dreiner, S.; Klusmann, M.; Hauser, J.; Kalok, D.; Bechteler, A.; Heinzinger, K.; Porro, M.; Titze, B.; Strüder, L.

    2017-11-01

    DEPFET Active Pixel Sensors (APS) have been introduced as focal plane detectors for X-ray astronomy already in 1996. Fabricated on high resistivity, fully depleted silicon and back-illuminated they can provide high quantum efficiency and low noise operation even at very high read rates. In 2009 a new type of DEPFET APS, the DSSC (DEPFET Sensor with Signal Compression) was developed, which is dedicated to high-speed X-ray imaging at the European X-ray free electron laser facility (EuXFEL) in Hamburg. In order to resolve the enormous contrasts occurring in Free Electron Laser (FEL) experiments, this new DSSC-DEPFET sensor has the capability of nonlinear amplification, that is, high gain for low intensities in order to obtain single-photon detection capability, and reduced gain for high intensities to achieve high dynamic range for several thousand photons per pixel and frame. We call this property "signal compression". Starting in 2015, we have been fabricating DEPFET sensors in an industrial scale CMOS foundry maintaining the outstanding proven DEPFET properties and adding new capabilities due to the industrial-scale CMOS process. We will highlight these additional features and describe the progress achieved so far. In a first attempt on double-sided polished 725 μm thick 200 mm high resistivity float zone silicon wafers all relevant device related properties have been measured, such as leakage current, depletion voltage, transistor characteristics, noise and energy resolution for X-rays and the nonlinear response. The smaller feature size provided by the new technology allows for an advanced design and significant improvements in device performance. A brief summary of the present status will be given as well as an outlook on next steps and future perspectives.

  6. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  7. Analog front-end for pixel sensors in a 3D CMOS technology for the SuperB Layer0

    International Nuclear Information System (INIS)

    Manazza, A.; Gaioni, L.; Re, V.

    2011-01-01

    This work is concerned with the design of two different analog channels for hybrid and monolithic pixels readout in view of applications to the SVT at the SuperB Factory. The circuits have been designed in a 130nm CMOS, vertically integrated technology, which, among others, may provide some advantages in terms of functional density and electrical isolation between the analog and the digital sections of the front-end.

  8. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  9. A low-power and high-precision miniaturized digital sun sensor

    NARCIS (Netherlands)

    Boer, B.M. de; Durkut, M.

    2013-01-01

    A prototype miniaturized digital sun sensor (miniDSS) was developed by TNO. It is expected to be launched on QuadSat for in-orbit demonstration. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing

  10. Pseudo 2-transistor active pixel sensor using an n-well/gate-tied p-channel metal oxide semiconductor field eeffect transistor-type photodetector with built-in transfer gate

    Science.gov (United States)

    Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2008-11-01

    In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.

  11. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  12. Data acquisition at the front-end of the Mu3e pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Perrevoort, Ann-Kathrin [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    The Mu3e experiment - searching for the lepton-flavour violating decay of the muon into three electrons at an unprecedented sensitivity of one in 10{sup 16} decays - is based on a pixel tracking detector. The sensors are High-Voltage Monolithic Active Pixel Sensors, a technology which allows for very fast and thin detectors, and thus is an ideal fit for Mu3e where the trajectories of low-momentum electrons at high rates are to be measured. The detector will consist of about 275 million pixels and will be operated at up to 10{sup 9} muon stops per second. Therefore, a fast and trigger-less data readout is required. The pixel sensors feature zero-suppressed data output via high-speed serial links. The data is then buffered and sorted by time on a FPGA on the front-end before being processed to the following readout stage. In this talk, the readout of the Mu3e pixel detector at the front-end is introduced. Furthermore, a first firmware implementation of this concept in a beam telescope consisting of the current pixel sensor prototype MuPix7 is presented.

  13. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process

    Directory of Open Access Journals (Sweden)

    Isao Takayanagi

    2018-01-01

    Full Text Available To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR approach.

  14. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    Science.gov (United States)

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke - . Readout noise under the highest pixel gain condition is 1 e - with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  15. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  16. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  17. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection ...

  18. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-12-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  19. Prototype Repository - Sensor data report (period 100917-110101) Report no 24

    International Nuclear Information System (INIS)

    Goudarzi, Reza

    2012-08-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. At the end of November 2010 stared the dismantling of the outer section. This report presents data from measurements in the Prototype Repository during the period 2001-09-17-2011-01-01. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  20. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-07-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  1. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-03-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  2. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-07-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  3. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-03-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  4. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-12-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  5. Prototype Repository - Sensor data report (period 100917-110101) Report no 24

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza [Clay Technology AB, Lund (Sweden)

    2012-08-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. At the end of November 2010 stared the dismantling of the outer section. This report presents data from measurements in the Prototype Repository during the period 2001-09-17-2011-01-01. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  6. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the "sociomaterial configuration" (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  7. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.C.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the “sociomaterial configuration” (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  8. A prototype Ultraviolet Light Sensor based on ZnO Nanoparticles/Graphene Oxide Nanocomposite Using Low Temperature Hydrothermal Method

    International Nuclear Information System (INIS)

    Al-Fandi, M; Oweis, R; Khwailah, H; Al-Hattami, S; Al-Shawwa, E; Albiss, B A; Al-Akhras, M-Ali; Qutaish, H; AlZoubi, T

    2015-01-01

    A new prototype UV nanosensor using ZnO nanoparticles (NPs)/graphene oxide (GO) nanocomposite (ZnO-NP/GO) on silicon substrate is reported in this paper. The hybrid nanocomposite structure has been developed by an optimized hydrothermal process at low growth temperature (∼50 °C). In this hybrid nanosensor, the ZnO nanoparticles act as UV- absorbing and charge carrier generating material, while graphene with its superior electrical conductivity has been used as a charge transporting material. Various nanostructure characterization techniques were intensively utilized including SEM, EDX, XRD, FTIR and UV-VIS. Also, the I-V measurement was employed to evaluate the prototype sensor. The morphological SEM analysis showed that the ZnO-NPs (average diameter of 20 nm) were dispersed evenly on the GO sheets. As well, the EDX spectra confirmed the exact chemical composition of the intended structure. The room temperature UV-VIS measurement revealed an enhanced optical absorption of UV-light at an absorption band centered on 375 nm. The improved optical and electrical properties were observed at an optimum relative concentration of 1:10. Under UV light illumination, the measured I-V characteristic of the prototype detector exhibited a considerable photocurrent increase of the ZnO-NP/GO nanocomposite compared to pristine ZnO nanostructure. These results can be promising for future enhanced UV- sensing applications. (paper)

  9. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Giacomini, G; Bagolini, A; Boscardin, M; Zorzi, N; Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch

  10. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  11. Operating results obtained in a nuclear power plant with a sensor surveillance prototype

    International Nuclear Information System (INIS)

    Jacquot, J.P.; Poujol, A.; Beaubatie, J.; Ciaramitaro, W.

    1983-03-01

    Surveillance methods have been validated and specific equipment have been built to measure the response time of sensors from a nuclear power plant protection channel. The reason of the choice of this parameter is twofold: the sensor response time is representative of the sensor physical status and is also part of the overall channel response time. Two surveillance methods are used: noise analysis (by AR or PSD modeling), and loop current step response (for resistance thermometer detectors only). The methods were validated on test facilities and on nuclear power plants. Two test equipments were built and tested on plants. Results are represented and conclusions are drawn on the feasibility of such methods for sensor surveillance [fr

  12. Rapid Prototyping of Power Management Protocols for Sensor Networks: A Case Study

    National Research Council Canada - National Science Library

    Arumugam, Mahesh; Wang, Limin; Kulkarni, Sandeep

    2006-01-01

    .... Specifically, existing programming platforms for sensor networks (e.g., nesC/TinyOS) use an event-driven programming model and, hence, require the designers to be responsible for stack management, buffer management, flow control, etc...

  13. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...

  14. Production and characterisation of SLID interconnected n-in-p pixel modules with 75 μm thin silicon sensors

    CERN Document Server

    Andricek, L; Macchiolo, A; Moser, H.G; Nisius, R; Richter, R.H; Terzo, S; Weigell, P

    2014-01-01

    sensors of 75 μm thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. Targeting at a ...

  15. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  16. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  17. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  18. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    International Nuclear Information System (INIS)

    Libov, Vladyslav

    2013-08-01

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb -1 . The kinematic region of the measurement is given by 5 2 2 and 0.02 2 is the photon virtuality and y is the inelasticity. A lifetime technique is used to tag the production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by E jet T >4.2(5) GeV for charm (beauty) and -1.6 jet jet T and η jet are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q 2 , y, E jet T and η jet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F cbar c 2 and F b anti b 2 , are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  19. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Libov, Vladyslav

    2013-08-15

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb{sup -1}. The kinematic region of the measurement is given by 54.2(5) GeV for charm (beauty) and -1.6<{eta}{sup jet}<2.2 for both charm and beauty, where E{sup jet}{sub T} and {eta}{sup jet} are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q{sup 2}, y, E{sup jet}{sub T} and {eta}{sup jet} are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F{sup cbar} {sup c}{sub 2} and F{sup b} {sup anti} {sup b}{sub 2}, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam

  20. Analysis of pixel systematics and space point reconstruction with DEPFET PXD5 matrices using high energy beam test data

    Energy Technology Data Exchange (ETDEWEB)

    Reuen, Lars

    2011-02-15

    To answer the current questions in particle physics vertex-detectors, the innermost sub-detector system of a multipurpose particle detector, with brilliant spatial resolution and at the same time with as little sensor material as possible are mandatory. These requirements are the driving force behind the newest generation of silicon pixel sensors like the DEPFET pixel, which incorporates the first amplification stage in form of a transistor in the fully depleted sensor bulk, allowing for a high spatial resolution even with thinned down sensors. A DEPFET pixel prototype system, build for the future TeV-scale liner collider ILC, was characterized in a high energy beam test at CERN with a spatial resolution and statistics that allowed for the first time in-pixel homogeneity measurements of DEPFET pixels. Yet, in the quest for higher precision the sensor development must be accompanied by progress in position reconstruction algorithms. A study with three novel approaches in position reconstruction was undertaken. The results of the in-pixel beam test and the performance of the new methods with an emphasis on {delta}-electrons will be presented here. (orig.)

  1. Analysis of pixel systematics and space point reconstruction with DEPFET PXD5 matrices using high energy beam test data

    International Nuclear Information System (INIS)

    Reuen, Lars

    2011-02-01

    To answer the current questions in particle physics vertex-detectors, the innermost sub-detector system of a multipurpose particle detector, with brilliant spatial resolution and at the same time with as little sensor material as possible are mandatory. These requirements are the driving force behind the newest generation of silicon pixel sensors like the DEPFET pixel, which incorporates the first amplification stage in form of a transistor in the fully depleted sensor bulk, allowing for a high spatial resolution even with thinned down sensors. A DEPFET pixel prototype system, build for the future TeV-scale liner collider ILC, was characterized in a high energy beam test at CERN with a spatial resolution and statistics that allowed for the first time in-pixel homogeneity measurements of DEPFET pixels. Yet, in the quest for higher precision the sensor development must be accompanied by progress in position reconstruction algorithms. A study with three novel approaches in position reconstruction was undertaken. The results of the in-pixel beam test and the performance of the new methods with an emphasis on δ-electrons will be presented here. (orig.)

  2. Exploring the quality of latest sensor prototypes for the CMS Tracker Phase II Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at

    2017-02-11

    The luminosity of the LHC will be increased by a factor of five to seven after the third long shutdown (LS3) scheduled in the mid of the next decade. The significant increase in luminosity along with the limitations of the current Tracker require a complete renewal of the CMS Outer Tracker, the Tracker Phase-2 Upgrade, during the LS3. New types of modules called PS and 2S modules are foreseen offering enhanced functionality and radiation hardness. Milestones in sensor R&D for the 2S modules as well as first characterization results are presented. AC-coupled silicon strip sensors of two vendors, produced on 6-inch as well as on 8-inch wafers, are considered which both are in n-on-p technology. Global as well as single strip parameters were measured providing insights into the quality of the sensors.

  3. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 um process with a high resistivity epitaxial layer

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Gilles; Cousin, Loic; Dorokhov, Andrei; Dulinski, Wojciech; Goffe, Mathieu; Hu-Guo, Christine; Winter, Marc

    2013-01-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 um thin CMOS Pixel Sensors (CPS) covering either the 3 innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 um CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJa...

  4. Investigation of Properties of Novel Silicon Pixel Assemblies Employing Thin n-in-p Sensors and 3D-Integration

    CERN Document Server

    Weigell, Philipp

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300/fb¹ , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running|especially if the luminosity is raised to about 5x10^35/(cm²s¹ ) as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost-effective pixel assemblies with...

  5. Development of the MCM-D technique for pixel detector modules

    International Nuclear Information System (INIS)

    Grah, C.

    2005-03-01

    This thesis treats a copper--polymer based thin film technology, the MCM-D technique and its application when building hybrid pixel detector modules. The ATLAS experiment at the LHC will be equipped with a pixel detector system. The basic mechanical units of the pixel detector are multi chip modules. The main components of these modules are: 16 electronic chips, a controller chip and a large sensor tile, featuring more than 46000 sensor cells. MCM-D is a superior technique to build the necessary signal bus system and the power distribution system directly on the active sensor tile. In collaboration with the Fraunhofer Institute for Reliability and Microintegration, IZM, the thin film process is reviewed and enhanced. The multi layer system was designed and optimized for the interconnection system as well as for the 46000 pixel contacts. Laboratory measurements on prototypes prove that complex routing schemes for geometrically optimized single chips are suitable and have negligible influence on the front--end chips performance. A full scale MCM-D module has been built and it is shown that the technology is suitable to build pixel detector modules. Further tests include the investigation of the impact of hadronic irradiation on the thin film layers. Single chip assemblies have been operated in a test beam environment and the feasibility of the optimization of the sensors could be shown. A review on the potential as well as the perspective for the MCM-D technique in future experiments is given

  6. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Sorokin, Iurii

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10 14 n eq /cm 2 (n eq -neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the amplitude response on

  7. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, Iurii

    2013-07-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10{sup 14} n{sub eq}/cm{sup 2} (n{sub eq}-neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the

  8. First results of a Double-SOI pixel chip for X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunpeng, E-mail: yplu@ihep.ac.cn [State Key Laboratory of Particle Detection and Electronics (Institute of High Energy Physics, CAS), Beijing 100049 (China); Ouyang, Qun [State Key Laboratory of Particle Detection and Electronics (Institute of High Energy Physics, CAS), Beijing 100049 (China); Arai, Yasuo [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org., KEK, Tsukuba 305-0801 (Japan); Liu, Yi; Wu, Zhigang; Zhou, Yang [State Key Laboratory of Particle D