WorldWideScience

Sample records for pixel detector upgrade

  1. The ALICE pixel detector upgrade

    Science.gov (United States)

    Reidt, F.

    2016-12-01

    The ALICE experiment at the CERN LHC is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma, using proton-proton, proton-nucleus and nucleus-nucleus collisions. The ALICE collaboration is preparing a major upgrade of the experimental apparatus to be installed during the second long LHC shutdown in the years 2019-2020. A key element of the ALICE upgrade is the new, ultra-light, high-resolution Inner Tracking System. With respect to the current detector, the new Inner Tracking System will significantly enhance the pointing resolution, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a Monolithic Active Pixel Sensor with a pixel pitch of about 30×30 μm2. A key feature of the new Inner Tracking System, which is optimised for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material budget of 0.3% X0 per layer. This contribution presents the design goals and layout of the upgraded ALICE Inner Tracking System, summarises the R&D activities focussing on the technical implementation of the main detector components, and the projected detector performance.

  2. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  3. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  4. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  5. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  6. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2083994

    2016-01-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  7. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  8. The phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Verzocchi, Marco

    2016-01-01

    The CMS collaboration is building a replacement for the pixel detector that will be installed in the extended end of year shutdown 2016-2017. This contribution reviews the motivations for the upgrade, the technological choices made, the status of the construction of this new detector and the plans for installation and commissioning.

  9. Near Future Upgrades for the CMS Pixel Detector

    CERN Document Server

    Kumar, Ashish

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The current pixel detector is designed to operate at a maximum luminosity of $1\\times10^{34}cm^{-2}s^{-1}$. Before 2018 the instantaneous luminosity of the LHC is expected to reach $2\\times10^{34}cm^{-2}s^{-1}$, which will significantly increase the number of interactions per bunch crossing. The performance of the current pixel detector in such high occupancy environment will be degraded due to substantial data-loss and effects of radiation damage of sensors, built up over the operational period. In order to maintain or exceed its current performance, the CMS pixel detector will be replaced by a new lightweight system with additional detection layers, better acceptance and improved readout electronics. The upgraded pixel detector will provide improved track and vertex reconstruction, standalone tracking capabilities, as well as identification of ...

  10. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  11. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  12. The phase-1 upgrade of the CMS pixel detector

    CERN Document Server

    Weber, Hannsjorg Artur

    2016-01-01

    The pixel detector of the CMS experiment will be upgraded during the extended end of year shutdown during winter 2016/2017. The upgraded detector will operate at full efficiency at an instantaneous luminosity of ${2\\times10^{34}}$\\,cm$^{{-2}}$s$^{{-1}}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. The design and technological choices will be reviewed, and the status of the construction of the detector and the performance of its components as measured in system tests are discussed.

  13. Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  14. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  15. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  16. Phase 1 upgrade of the CMS Pixel Detector

    CERN Document Server

    Saha, Anirban

    2016-01-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of $\\rm 1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to $\\rm 2\\times10^{34} cm^{-2}s^{-1}$, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are the a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with hi...

  17. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    CERN Document Server

    Buchanan, Emma

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  18. ATLAS IBL Pixel Upgrade

    CERN Document Server

    La Rosa, A

    2011-01-01

    The upgrade for ATLAS detector will undergo different phase towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module is presented in this paper

  19. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  20. The Phase-1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  1. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  2. Pixel Detector Developments for Tracker Upgrades of the High Luminosity LHC

    CERN Document Server

    Meschini, Marco; Dalla Betta, G. F; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Mendicino, R; Messineo, Alberto; Moroni, Luigi; Ronchin, S; Sultan, D.M.S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    and 3D devices. The results on the 3D pixel sensors before irradiation are very satisfactory and % make us confident support the conclusion that columnar devices are % 3D devices very good candidates for the inner layers of the upgrade pixel detectors.

  3. Qualification of the modules for the Phase 1 upgrade of the CMS forward pixel detector

    Science.gov (United States)

    Sandoval Gonzalez, Irving; CMS Collaboration

    2017-01-01

    The innermost component of the Compact Muon Solenoid (CMS) detector, the silicon pixel tracker, will be replaced by a new device in early 2017 to cope with the significant increase in instantaneous luminosity expected for the remainder of Run 2 of the Large Hadron Collider. The upgraded detector is composed of two subcomponents: the barrel pixel (BPIX) and the forward pixel (FPIX). In this work, we describe the testing and calibration procedures that the FPIX detector subcomponents underwent as well as the quality assurance criteria used for selecting the best detector modules for the final installation. NSF

  4. Qualification of Barrel Pixel Detector Modules for the Phase 1 Upgrade of the CMS Vertex Detector

    CERN Document Server

    Kudella, Simon

    2016-01-01

    To withstand the higher particle rates of LHC Runs 2 and 3, with expected luminosities of up to $2\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$, the current CMS pixel detector at the LHC will be replaced as part of the CMS Phase I Upgrade during the extended winter shutdown in 2016/17. The new pixel detector features a new geometry with one additional detector layer in the barrel region~(BPIX) and one pair of additional disks in the forward region~(FPIX), new digital readout chips as well as a new CO$_{2}$-based cooling system for both the barrel and forward region. The BPIX detector module production is summarized, with special focus on the different stages of quality assurance. The quality tests as well as the calibrations which all produced modules undergo in a temperature and humidity controlled environment are described. Exemplarily, the KIT/Aachen production line and its subprocesses are presented together with its quality and yields.

  5. Development of DC-DC converters for the upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Sammet, Jan; Wlochal, Michael [RWTH Aachen University (Germany)

    2012-07-01

    Around 2017, the pixel detector of the CMS experiment at LHC will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the available supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing to provide the power at higher voltages and thereby to facilitate the supply of the required currents with the present cable plant. The talk introduces the foreseen powering scheme of the pixel upgrade and summarizes the results of system test measurements with CMS pixel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, measurements of the converter efficiency and performance before, after and during thermal cycling are presented.

  6. Pixel architectures in a HV-CMOS process for the ATLAS inner detector upgrade

    Science.gov (United States)

    Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Krüger, H.; Lachkar, M.; Liu, J.; Orsini, F.; Pangaud, P.; Rymaszewski, P.; Wang, T.

    2016-12-01

    In this paper, design details and simulation results of new pixel architectures designed in LFoundry 150 nm high voltage CMOS process in the framework of the ATLAS high luminosity inner detector upgrade are presented. These pixels can be connected to the FE-I4 readout chip via bump bonding or glue and some of them can also be tested without a readout chip. Negative high voltage is applied to the high resistivity (> 2 kΩ .cm) substrate in order to deplete the deep n-well charge collection diode, ensuring good charge collection and radiation tolerance. In these pixels, the front-end has been implemented inside the diode using both NMOS and PMOS transistors. The pixel pitch is 50 μm × 250 μm for all pixels. These pixels have been implemented in a demonstrator chip called LFCPIX.

  7. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  8. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  9. ATLAS-IBL Pixel Upgrade

    CERN Document Server

    LaRosa, A; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phase towards Super-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (SLHC Phase I). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reduction of the pixel size and of the material budget. Three different promising sensor technologies (Planar-Si, 3D-Si and Diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module studies, irradiation and beam test plans will be presented.

  10. Test Beam Performance Measurements for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    Dragicevic, M.; Hrubec, J.; Steininger, H.; Gädda, A.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Winkler, A.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Donckt, M.Vander; Viret, S.; Bonnin, C.; Charles, L.; Gross, L.; Hosselet, J.; Tromson, D.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Pierschel, G.; Preuten, M.; Rauch, M.; Wlochal, M.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garcia, J.Garay; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schütze, P.; Sola, V.; Spannagel, S.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; Boer, W.De; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Kiss, T.; Siklér, F.; Tölyhi, T.; Veszprémi, V.; Cariola, P.; Creanza, D.; Palma, M.De; Robertis, G.De; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Costa, S.; Mattia, A.Di; Giordano, F.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Focardi, E.; Dinardo, M.E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R.A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; Solestizi, L.Alunni; Biasini, M.; Bilei, G.M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ceccanti, M.; Ciocci, M.A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M.T.; Ligabue, F.; Magazzu, G.; Mammini, P.; Mariani, F.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Profeti, A.; Raffaelli, F.; Ragonesi, A.; Rizzi, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P.G.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bonnaud, J.; Daguin, J.; D'Auria, A.; Detraz, S.; Dondelewski, O.; Engegaard, B.; Faccio, F.; Frank, N.; Gill, K.; Honma, A.; Kornmayer, A.; Labaza, A.; Manolescu, F.; McGill, I.; Mersi, S.; Michelis, S.; Onnela, A.; Ostrega, M.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Postema, H.; Rapacz, K.; Sigaud, C.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Verlaat, B.; Vichoudis, P.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Arbol, P.Martinez Ruiz del; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Tsai, J.F.; Tzeng, Y.M.; Cussans, D.; Goldstein, J.; Grimes, M.; Newbold, D.; Hobson, P.; Reid, I.D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Durkin, T.; Harder, K.; Shepherd-Themistocleous, C.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B.R.; Dominguez, A.; Bartek, R.; Bentele, B.; Cumalat, J.P.; Ford, W.T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S.R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J.N.; Canepa, A.; Cheung, H.W.K.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Kwan, S.; Lei, C.M.; Lipton, R.; Sá, R.Lopes De; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Siehl, K.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D.R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Gerber, C.E.; Makauda, S.; Mills, C.; Gonzalez, I.D.Sandoval; Alimena, J.; Antonelli, L.J.; Francis, B.; Hart, A.; Hill, C.S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Schmitz, E.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D.R.; Fangmeier, C.; Suarez, R.Gonzalez; Monroy, J.; Siado, J.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Vargas, J.E.Ramirez; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K.M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; D'Angelo, P.; Johns, W.; Rose, K.

    2017-05-30

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These upgrades allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. In this paper, comprehensive test beam studies are presented which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency has been determined to be ($99.95 \\pm 0.05$) \\%, while the intrinsic spatial resolution has been measured to be ($4.80 \\pm 0.25$) $\\mu$m and ($7.99 \\pm 0.21$...

  11. Module production for the Phase 1 upgrade of the CMS forward pixel detector

    Science.gov (United States)

    Siado Castaneda, Joaquin

    2017-01-01

    For Run 2 the Large Hadron Collider will run at a much higher instantaneous luminosity, which requires an upgrade of the CMS pixel detector. The detector consists of rectangular silicon sensors, segmented into 100 μm by 150 μm pixels, bonded to readout chips, with one sensor and a 8x2 array of readout chips forming a module. Due to its high granularity and good spatial resolution, about 10 μm for a single hit, the pixel detector is used for track reconstruction, pileup mitigation, and b-quark tagging in many physics analyses. Being the innermost sub-detector of CMS it receives the most radiation damage, and therefore needs to be replaced most often. For the phase 1 upgrade an additional disk in the forward region and increased buffer space in the readout chip will improve the pixel performance by increasing efficiency and reducing fake rates. The University of Nebraska-Lincoln is one of the two sites where modules are being assembled. This talk features the steps of the assembly process as well as challenges encountered and overcome during production of over 500 modules. The CMS Collaboration.

  12. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S., E-mail: satoshi@fnal.gov

    2016-09-21

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (−20 °C).

  13. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Hasegawa, S.

    2016-09-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (-20 °C).

  14. The construction of the phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Weber, Hannsjorg Artur

    2017-01-01

    The innermost layers of the original CMS tracker were built out of pixel detectors arranged in three barrel layers and two forward disks in each endcap. The original CMS detector was designed for the nominal instantaneous LHC luminosity of $1\\times10^{34}\\,\\text{cm}^{-2}\\text{s}^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two of the instantaneous luminosity, the CMS pixel detector would have seen a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS collaboration has installed during the recent extended end of year shutdown a replacement pixel detector. The phase-1 upgrade of the CMS pixel detector will operate at high efficiency at an instantaneous luminosity of $2\\times10^{34}\\,\\text{cm}^{-2}\\text{s}^{-1}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. These goals are achieved using a new read-out chip and modified powering and rea...

  15. Performance verification of the CMS Phase 1 Upgrade pixel detector with collision data

    CERN Document Server

    Veszpremi, Viktor

    2017-01-01

    The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3\\,cm and 110\\,cm in radius and up to 280\\,cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2\\,m$^2$ total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200\\,m$^2$ total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC. The performance of the silicon strip detector continues to be of high quality. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suite...

  16. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  17. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  18. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Darbo, Giovanni; Gemme, Claudia [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); La Rosa, Alessandro; Pernegger, Heinz [CERN-PH, CH-1211 Geneve 23 (Switzerland); Piemonte, Claudio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Povoli, Marco [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Zoboli, Andrea [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy)

    2011-04-21

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  19. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    Betta, G -F Dalla; Darbo, G; Gemme, C; La Rosa, A; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are here discussed.

  20. Prototypes and system test stands for the Phase1 upgrade of the CMS pixel detector

    CERN Document Server

    Hasegawa, Satoshi

    2015-01-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/17. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line as the trigger rate increase. This increase is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was conf...

  1. A DC-DC converter based powering scheme for the upgrade of the CMS pixel detector

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J.; Wlochal, M.

    2011-11-01

    Around 2016, the pixel detector of the CMS experiment will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the currently installed supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing the provision of power at higher voltages, thereby facilitating the supply of the required currents with the present cable plant. This conference report introduces the foreseen powering scheme of the pixel upgrade. For the first time, system tests have been conducted with pixel barrel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, studies of the stability of different powering schemes under various conditions are summarized. In particular the impact of large and fast load variations, which are related to the bunch structure of the LHC beam, has been studied.

  2. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  3. Readout board upgrade for the Pixel Detectors: reasons, status and results in ATLAS

    CERN Document Server

    Giangiacomi, Nico; The ATLAS collaboration

    2017-01-01

    The increase of luminosity in the LHC accelerator at CERN constitutes a challenge for the data readout since the rate of data to be transmitted depends on both pileup and trigger frequency. In the ATLAS experiment, the effect of the increased luminosity is most evident in the Pixel Detector, which is the detector closest to the beam pipe. In order to face the difficult experimental challenges, the readout system was upgraded during the last few years. The main purpose of the upgrade was to provide a higher bandwidth by exploiting more recent technologies. The new readout system is composed by two paired electronic boards named Back Of Crate (BOC) and ReadOut Driver (ROD). In this work the main readout limitation related to increased luminosity will be discussed as well as the strategy and the technological solutions adopted in order to cope with the future operational challenges. In addition the general progresses and achievements will be presented.

  4. The Shunt-LDO regulator to power the upgraded ATLAS pixel detector

    CERN Document Server

    Gonella, L; Hügging, F; Krüger, H; Wermes, N

    2012-01-01

    The shunt-LDO regulator is a new regulator concept which combines a shunt and a Low Drop-Out (LDO) regulator. Designed as an improved shunt regulator to match the needs of serially powered detector systems, it can also be used as a pure LDO regulator for general application in powering schemes requiring linear regulation. The flexibility of the design makes the shunt-LDO regulator a good candidate for use in the powering schemes envisaged for the upgrades of the ATLAS pixel detector. Two shunt-LDO regulators integrated in the prototype of the next ATLAS pixel front-end chip, the FE-I4A, are used to demonstrate the feasibility of the proposed powering solutions.

  5. Performance and track-based alignment of the Phase-1 upgraded CMS pixel detector

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The Compact Muon Solenoid (CMS) detector is a multi-purpose detector constructed in order to study high-energy particle collisions at the Large Hadron Collider (LHC) at CERN. The all-silicon design of the tracking system of the CMS experiment provided excellent resolution for charged tracks and an efficient tagging of jets during Run 1 and Run 2 of the LHC. After the pixel detector of the CMS experiment was upgraded and installed during the shutdown in the beginning of 2017, the positions and orientations of the tracker modules needed to be determined with a precision of several micrometers. The alignment also needs to be quickly recalculated each time the state of the CMS magnet is changed between 0 T and 3.8 T. The latest results of the CMS tracker performance in the 2017 run are presented, with a special focus on alignment and resolution performance using several million reconstructed tracks from cosmic rays and collision data.

  6. Development of pixel detectors for the IBL and HL-LHC ATLAS experiment upgrade

    CERN Document Server

    Baselga Bacardit, Marta

    2016-03-18

    This thesis presents the development of advanced silicon technology detectors fabricated at CNM-Barcelona for High Energy Physics (HEP) experiments. The pixel size of the tracking silicon detectors for the upgrade of the HL-LHC will have to decrease in size in order to enhance the resolution in position for the measurements and they need to have lower occupancy for the electronics. The future experiments at CERN will cope with fuences up to 2 x 10^^16 neq/cm2, and the smaller 3D silicon detectors will have less trapping of the electron-holes generated in the bulk leading to a better performance under high radiation environment. This thesis studies silicon detectors fabricated at CNM-Barcelona applied to HEP experiments with two different kinds of novel technologies: 3D and Low Gain Avalanche Detectors (LGAD). The 3D detectors make it possible to reduce the size of the depleted region inside the detector and to work at lower voltages, whereas the LGAD detectors have an intrinsic gain which increases the collec...

  7. Construction and commissioning of the Phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Bartek, Rachel

    2017-01-01

    The Phase 1 upgrade of the CMS pixel detector, installed by the CMS collaboration during the recent extended end-of-year technical stop, is built out of four barrel layers (BPIX) and three forward disks in each endcap (FPIX). It comprises a total of 124M pixel channels, in 1,856 modules and it is designed to withstand instantaneous luminosities of up to $2 \\rm{x} 10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. These goals are achieved using a new readout chip and modified powering and readout schemes, one additional tracking layer both in the barrel and in the disks, and new detector supports including a $\\rm{CO}_2$ based evaporative cooling system. Different parts of the detector have been assembled over the last year and later brought to CERN for installation inside the CMS tracker. At various stages during the assembly tests have been performed to ensure that the readout and power electro...

  8. Readout board upgrade for the Pixel Detectors: reasons, status and results in ATLAS

    CERN Document Server

    Giangiacomi, Nico; The ATLAS collaboration

    2017-01-01

    At LHC the design luminosity, 1034 cm -2 s -1 , has already been reached during Summer 2016. LHC is planning, in the short term future, to further enhance the luminosity, resulting in a higher trigger frequency and an increased pileup. These factors constitute a challenge for the data readout since the rate of data to be transmitted depends on both pileup and trigger frequency. In the ATLAS experiment, the effect of the increased luminosity is most evident in the Pixel Detector, which is the detector closest to the beam pipe. In order to face the difficult experimental challenges, the readout system was upgraded during the last few years. The main purpose of the upgrade was to provide a higher bandwidth by exploiting recent technologies. The new readout system is composed by two paired electronic boards, Back Of Crate (BOC) and ReadOut Driver (ROD). In this presentation the main readout limitation related to increased luminosity will be discussed as well as the strategy and the technological solutions adopted...

  9. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  10. Performance of the modules for layer 1 of the CMS phase 1 pixel detector upgrade

    CERN Document Server

    Meinhard, Maren Tabea; Berger, Pirmin; Starodumov, Andrey

    2017-01-01

    The instantaneous luminosity of the Large Hadron Collider will increase to up to 2x10$^{34}$\\;cm$^{-2}$s$^{-1}$ by 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced in January 2017. The upgraded detector features four sensitive layers in the barrel part. A designated readout chip (PROC600V2) is used for layer 1, which is closest to the interaction point and therefore has to handle larger particle fluxes. An irradiation campaign has been performed with PROC600V2 to verify its radiation tolerance up to the maximum expected dose for 2017 of 0.2\\;MGy. Modules for layer 1 have been built with PROC600V2 for the detector production. The quality of every inserted module was assessed in a number of tests, some of which were performed using X-radiation. The characteristics of the modules used in the detector as well as the main failure modes will be presented.

  11. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00016406

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  12. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Daniel, E-mail: daniel.dobos@cern.ch

    2016-07-11

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  13. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  14. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  15. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  16. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  17. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2 at the LHC

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented using collision data.

  18. Performance and description of the upgraded readout with the new back-end electronics for the ATLAS Pixel detector

    CERN Document Server

    Yajima, Kazuki; The ATLAS collaboration

    2017-01-01

    LHC increased drastically its performance during the RUN2 data taking, starting from a peak instantaneous luminosity of up to $5\\times10^{33} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ in 2015 to conclude with the record value of $1.4\\times10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ in November 2016. The concurrent increase of the trigger rate and event size forced the ATLAS experiment to exploit its sub-detectors to the maximum, approaching and possibly overcoming the design parameters. The ATLAS Pixel data acquisition system was upgraded to avoid possible bandwidth limitations. Two upgrades of the read-out electronics have been done. The first one during 2015/16 YETS, when the outermost pixel layer (Layer-2) was upgraded and its bandwidth was doubled. This upgrade partly contributed to maintain the data taking efficiency of the Pixel detector at a relatively high level ($\\sim$99%) during the 2016 run. A similar upgrade of the read-out system for the middle layer (Layer-1) is ongoing during 2016/17 EYETS. The details o...

  19. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  20. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  1. Module Production and Qualification for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2086689

    2015-01-01

    After consolidation of the LHC in 2013/14 its centre-of-mass energy will increase to 13TeV and the luminosity will reach $2 \\cdot 10^{34}\\, \\textnormal{cm}^{-2} \\textnormal{s}^{-1}$, which is twice the design luminosity. The latter will result in more simultaneous particle collisions, which would significantly increase the dead time of the current readout chip of the CMS pixel detector. Therefore the entire CMS pixel detector is replaced in 2016/17 and a new digital readout with larger buffers will be used to handle increasing pixel hit rates. An additional fourth barrel-layer provides more space points to improve track reconstruction. Half of the required modules for layer four is being produced at Karlsruhe Institute of Technology (KIT). This poster deals with the smallest discrete subunit of the pixel detector, the module and its assembly process. Moreover first production experience will be shown.

  2. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  3. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  4. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    INSPIRE-00304438; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  5. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  6. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2016-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges arising from the increased hit rate will have to be solved by designing faster and more complex readout electronics that will also have to withstand unprecedented radiation doses. Developing such integrated circuit requires a significant R and D effort and resources, therefore a joint development project between several institutes (including ours) was started. This collaboration, named RD53, aims to develop a pixel readout chip suitable for ATLAS' and CMS' upgrades using a 65nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology are discussed. Most of the talk is allocated to presenting some of the circuits designed by our group (focusing on developments connected to RD53 collaboration), along with their performance measurement results.

  7. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  8. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, M

    2016-01-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for me...

  9. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  10. Performance of Silicon Pixel Detectors at Small Track Incidence Angles for the ATLAS Inner Tracker Upgrade

    CERN Document Server

    Viel, Simon; The ATLAS collaboration; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian Choate; Wu, Sau Lan; Yang, Hongtao

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  11. Evaluation of Irradiated Barrel Detector Modules for the Upgrade of the CMS Pixel Detector

    CERN Document Server

    Sibille, Jennifer Ann

    2013-01-01

    Prototype detector modules comprising sensors and the new readout chips were assembled and irradiated with protons at the CERN PS, and readout chips without sensors have been irradiated with protons at the Karls...

  12. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  13. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    Science.gov (United States)

    Korol, I.

    2015-10-01

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb-1 of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation.

  14. The INFN R\\&D: new pixel detector for the High Luminosity Upgrade of the LHC

    CERN Document Server

    Dinardo, Mauro

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few $10^{16}$~ particles/cm$^2$ at $\\sim$3~cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R\\&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planar sensors, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS and ATLAS readout chips have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  15. Beam Test Characterization of CMS Silicon Pixel Detectors for the Phase-1 Upgrade

    CERN Document Server

    Korol, Ievgen

    2015-01-01

    a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution.\\\\ Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking effici...

  16. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  17. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  18. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    CERN Document Server

    Miucci, A; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; Rosa, A.La; Muenstermann, D.; George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J.C.; Liu, J; Barbero, M.; Rozanov, A

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. 1Corresponding author. c CERN 2014, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI. doi:10.1088/1748-0221/9/05/C050642014 JINST 9 C05064 A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation a...

  19. An Introduction to ATLAS Pixel Detector DAQ and Calibration Software Based on a Year's Work at CERN for the Upgrade from 8 to 13 TeV

    CERN Document Server

    Dreyer, Nicholas David

    An overview is presented of the ATLAS pixel detector Data Acquisition (DAQ) system obtained by the author during a year-long opportunity to work on calibration software for the 2015-16 Layer‑2 upgrade. It is hoped the document will function more generally as an easy entry point for future work on ATLAS pixel detector calibration systems. To begin with, the overall place of ATLAS pixel DAQ within the CERN Large Hadron Collider (LHC), the purpose of the Layer-2 upgrade and the fundamentals of pixel calibration are outlined. This is followed by a brief look at the high level structure and key features of the calibration software. The paper concludes by discussing some difficulties encountered in the upgrade project and how these led to unforeseen alternative enhancements, such as development of calibration “simulation” software allowing the soundness of the ongoing upgrade work to be verified while not all of the actual readout hardware was available for the most comprehensive testing.

  20. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  1. Preliminary results of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    La Rosa, Alessandro; Dalla Betta, G F; Darbo, G; Gemme, C; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N; Bolle, E; Borri, M; Da Via, C; Dong, S; Fazio, S; Grenier, P; Grinstein, S; Gjersdal, H; Hansson, P; Huegging, F; Jackson, P; Kocian, M; Rivero, F; Rohne, O; Sandaker, H; Sjobak, K; Slavicek, T; Tsung, W; Tsybychev, D; Wermes, N; Young, C

    2009-01-01

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200um, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110um to 150um. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am241 gamma-ray sources, charge collection tests with Sr90 beta-source and an overview of preliminary results from the CERN beam test.

  2. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  3. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  4. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  5. Submission of the first full scale prototype chip for upgraded ATLAS pixel detector at LHC, FE-I4A

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Marlon, E-mail: barbero@physik.uni-bonn.de [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Arutinov, David [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Beccherle, Roberto; Darbo, Giovanni [INFN Genova, via Dodecaseno 33, IT-16146 Genova (Italy); Dube, Sourabh; Elledge, David; Fleury, Julien [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Fougeron, Denis [CPPM Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Garcia-Sciveres, Maurice [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Gensolen, Fabrice [CPPM Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gnani, Dario [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Gromov, Vladimir [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands); Jensen, Frank [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Hemperek, Tomasz; Karagounis, Michael [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Kluit, Ruud [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands); Kruth, Andre [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Mekkaoui, Abderrezak [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Menouni, Mohsine [CPPM Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Schipper, Jan David [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands); and others

    2011-09-11

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25{mu}m CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250{mu}m{sup 2}, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences between the FE-I4A IC and the final FE-I4 as envisioned for IBL.

  6. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  7. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  8. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  9. Test Beam Measurements for the Upgrade of the CMS Pixel Detector and Measurement of the Top Quark Mass from Differential Cross Sections

    CERN Document Server

    Spannagel, Simon

    2016-01-01

    In this dissertation, two different topics are addressed which are vital for the realization ofmodern high-energy physics experiments: detector development and data analysis. The first partfocuses on the development and characterization of silicon pixel detectors. To account for theexpected increase in luminosity of the Large Hadron Collider, the pixel detector of the CompactMuon Solenoid (CMS) experiment will be replaced by an upgraded detector with new front-endelectronics. Comprehensive test beam studies are presented which have been conducted to verifythe design and to quantify the performance of the new front-end in terms of tracking efficiency+0.3and spatial resolution. The tracking efficiency has been determined to be 99.7 −0.5 %, whilethe spatial resolution has been measured to be (4.80 ± 0.29) µm and (7.99 ± 0.23) µm along the100 µm and 150 µm pixel pitch, respectively. Furthermore, a new cluster interpolation method isproposed which utilizes the third central moment of the cluster charge d...

  10. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  11. Study and Development of a novel Silicon Pixel Detector for the Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    van Hoorn, Jacobus Willem; Riedler, Petra

    ALICE (A Large Ion Collider Experiment) is the heavy-ion experiment at the CERN Large Hadron Collider (LHC). As an important part of its upgrade plans, the ALICE experiment schedules the installation of a new Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2019/20. The new ITS will consist of seven concentric layers, covering about 10m2 with Monolithic Active Pixel Sensors (MAPS). This choice of technology has been guided by the tight requirements on the material budget of 0.3 % x/X0 per layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS process on wafers with a high-resistivity epitaxial layer on top of the substrate. During the R&D phase several chip architectures have been investigated, which take full advantage of a particular process feature, the deep p-well, that allows for full CMOS circuitry within the pixel matrix while retaining full charge colle...

  12. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  13. DC-DC powering for the CMS pixel upgrade

    Science.gov (United States)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  14. DC-DC Powering for the CMS Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2013-01-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  15. DC–DC powering for the CMS pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@rwth-aachen.de; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-21

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC–DC converters close to the sensitive detector volume. This paper reviews the DC–DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC–DC converters is compared to conventional powering. The integration of the DC–DC powering scheme into the pixel detector is described and system design issues are reviewed.

  16. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  17. Development of enhanced double-sided 3D radiation sensors for pixel detector upgrades at HL-LHC

    CERN Document Server

    Povoli, Marco

    The upgrades of High Energy Physics (HEP) experiments at the Large Hadron Collider (LHC) will call for new radiation hard technologies to be applied in the next generations of tracking devices that will be required to withstand extremely high radiation doses. In this sense, one of the most promising approaches to silicon detectors, is the so called 3D technology. This technology realizes columnar electrodes penetrating vertically into the silicon bulk thus decoupling the active volume from the inter-electrode distance. 3D detectors were first proposed by S. Parker and collaborators in the mid ’90s as a new sensor geometry intended to mitigate the effects of radiation damage in silicon. 3D sensors are currently attracting growing interest in the field of High Energy Physics, despite their more complex and expensive fabrication, because of the much lower operating voltages and enhanced radiation hardness. 3D technology was also investigated in other laboratories, with the intent of reducing the fabrication co...

  18. Physics performance of the ATLAS Pixel Detector

    CERN Document Server

    Tsuno, Soshi; The ATLAS collaboration

    2016-01-01

    One noticeable upgrade from Run-1 to Run-2 with ATLAS detector in proton-proton collisions at LHC is the introduction of the new pixel detector, IBL, located on the beam pipe as the extra innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level object such a $b$-quark jet tagging, in turn, it leads the better physics results. This note summarizes what is the impact on the IBL detector to the physics results especially focusing on the analyses using the $b$-quark jets throughout 2016 summer physics program.

  19. The LHCb Detector Upgrade

    CERN Document Server

    Schindler, H

    2013-01-01

    The LHCb collaboration presented a Letter of Intent (LOI) to the LHCC in March 2011 for a major upgrading of the detector during Long Shutdown 2 (2018) and intends to collect a data sample of 50/fb in the LHC and High-Luminosity-LHC eras. The aim is to operate the experiment at an instantaneous luminosity 2.5 times above the present operational luminosity, which has already been pushed to twice the design value. Reading out the detector at 40MHz allows to increase the trigger efficiencies especially for the hadronic decay modes. The physics case and the strategy for the upgrade have been endorsed by the LHCC. This paper presents briefly the physics motivations for the LHCb upgrade and the proposed changes to the detector and trigger.

  20. Design Studies of a Low Power Serial Data Link for a possible Upgrade of the CMS Pixel Detector

    CERN Document Server

    Meier, B

    2008-01-01

    The material budget inside the sensitive tracking volume is highly dependent on the dissipated power for data transmission. It is therefore important to have a very low power serial data link, which allows transmission of digital data over short distances within the tracking volume. This low power ohmic data transmission through micro-twisted transmission lines aims for a transmission speed of 160/320 MHz and allows concentration of the tracker data to multi gigabit optical data hubs. For such a future link we need low swing differential drivers and receivers with PLLs for frequency multipliers and clock recovery. We have implemented in radiation hard layout all the necessary components on a recently submitted 250nm CMOS test chip. After reporting on the experience gained with low power data transmission in the current CMS pixel detector, we present the design considerations and first results for this new 160/320 MHz serial link that may work with differential signal levels as low as 10mV.

  1. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  2. Pixelated gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  3. Radiation hardness studies of silicon pixel detectors

    CERN Document Server

    Lari, T

    2006-01-01

    At the LHC silicon vertex detectors will be exposed to hadron fluences of the order of . In order to study the effects of radiation damage on the performances of the ATLAS Pixel Vertex Detector, several full-size detector modules were irradiated to a fluence of and tested in a beam at CERN. After irradiation only a modest degradation of the detector performances is observed. At the operating ATLAS bias voltage of 600 V the average signal is still 80% of the pre-irradiation value, the spatial resolution is and the detection efficiency is 98.2%. The LHC luminosity upgrade will increase the radiation hardness requirements by a factor of 10 and will require the development of new ultra-radiation hard vertex detectors. A detailed simulation of silicon pixel detectors irradiated to very high fluence is presented and used to study the possibility to use silicon pixel detectors at the LHC after the luminosity upgrade. The charge collection properties and the detector response were computed for different silicon mater...

  4. Test beam measurements for the upgrade of the CMS pixel detector and measurement of the top quark mass from differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, Simon

    2016-05-15

    In this dissertation, two different topics are addressed which are vital for the realization of modern high-energy physics experiments: detector development and data analysis. The first part focuses on the development and characterization of silicon pixel detectors. To account for the expected increase in luminosity of the Large Hadron Collider, the pixel detector of the Compact Muon Solenoid (CMS) experiment will be replaced by an upgraded detector with new front-end electronics. Comprehensive test beam studies are presented which have been conducted to verify the design and to quantify the performance of the new front-end in terms of tracking efficiency and spatial resolution. The tracking efficiency has been determined to be 99.7{sup +0.3}{sub -0.5} %, while the spatial resolution has been measured to be (4.80±0.29) μm and (7.99±0.23) μm along the 100 μm and 150 μm pixel pitch, respectively. Furthermore, a new cluster interpolation method is proposed which utilizes the third central moment of the cluster charge distribution and achieves improvements of the position resolution of up to 40% over the conventional center of gravity algorithm. In the second part of the thesis, an alternative measurement of the top quark mass is presented. The mass is measured from the normalized differential production cross sections of dileptonic top quark pair events with an additional jet. The measurement is performed on data recorded by the CMS experiment at √(s)=8 TeV, corresponding to an integrated luminosity of 19.7 fb{sup -1}. Using theoretical predictions at next-to-leading order in perturbative QCD, the top quark pole mass is measured to be m{sup pole}{sub t}= 168.2{sup +4.7}{sub -2.1} GeV with a precision of about 2.0%. The measurement is in agreement with other measurements of the top quark pole mass within the assigned uncertainties.

  5. CMS Forward Pixel Upgrade Electronics and System Testing

    CERN Document Server

    Weber, Hannsjorg Artur

    2016-01-01

    This note discusses results of electronics and system testing of the CMS forward pixel (FPIX) detector upgrade for Phase 1. The FPIX detector is comprised of four stand-alone half cylinders, each of which contains frontend readout electronic boards, power regulators, cables and fibers in addition to the pixel modules. All of the components undergo rigorous testing and quality assurance before assembly into the half cylinders. Afterwards, we perform full system tests on the completely assembled half cylinders, including calibrations at final operating temperatures, characterization of the realistic readout chain, and system grounding and noise studies. The results from all these tests are discussed.

  6. Production of the new pixel detector for the upgrade of the CMS experiment and study of anomalous couplings in the non-resonant Higgs bosons pair production in p-p collisions at $\\sqrt{s}$ = 13 TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367286; Dorigo, Tommaso

    2016-01-01

    The present Ph.D thesis describes the work done within the CMS collaboration on the pixel detector upgrade and on the search for non-resonant di-Higgs production in p-p collision at LHC. The CMS upgrade project foresees, inter alia, the production of a new pixel detector (CMS Phase 1 Pixel Upgrade) to be commissioned at the beginning of 2017. Crucial part of the upgrade is the new readout chip (ROC) for the silicon sensor, psi46digV2respin, designed at the Paul Scherrer Institute (PSI) with a 250 nm CMOS technology. The thesis concerns the study and the development of test procedures for this new readout chip. Thanks to a long stay at PSI, I could provide an important contribution to the debug phases of the first version of the ROC and TBM, the chip that handles the various ROCs in the pixel module, and to the development of the software used by the whole collaboration for the ROC and module testing. Furthermore, I managed the ROC wafers test from the early project phases. The ROCs are produced on silicon wa...

  7. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  8. VNR CMS Pixel detector replacement

    CERN Document Server

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  9. CMS Barrel Pixel Detector Overview

    CERN Document Server

    Kästli, H C; Erdmann, W; Gabathuler, K; Hörmann, C; Horisberger, Roland Paul; König, S; Kotlinski, D; Meier, B; Robmann, P; Rohe, T; Streuli, S

    2007-01-01

    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.

  10. Upgrade of the LHCb VELO detector

    Science.gov (United States)

    Williams, Mark

    2017-01-01

    The LHCb experiment is a single-arm forward spectrometer optimised for performing heavy-flavour physics analyses, using proton-proton collisions provided by the LHC machine. A major upgrade of the LHCb experiment will take place prior to the start of Run 3 operations in 2021. The upgraded Vertex Locator (VELO) is an essential component of this upgrade. Its main role is to enable high precision track and vertex reconstruction, with data-driven readout to the software trigger at 40 MHz, in the higher-luminosity environment of Run 3. To achieve this goal, significant improvements are planned with respect to the current detector, including a switch from microstrips to pixels, upgraded electronics, and a new cooling system. I will briefly motiviate the need for an upgrade, describe the main aspects of the VELO upgrade design, and show highlights of recent sensor characterisation studies using the CERN SPS test beam.

  11. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    Science.gov (United States)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  12. ATLAS Detector Upgrade Prospects

    Science.gov (United States)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  13. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC is ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred f b −1 expected for LHC running to 3000 f b −1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of ext...

  14. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  15. ATLAS Phase-II-Upgrade Pixel Data Transmission Development

    CERN Document Server

    Wensing, Marius; The ATLAS collaboration

    2016-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbps per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  16. ATLAS Phase-II Upgrade Pixel Data Transmission Development

    CERN Document Server

    Nielsen, Jason; The ATLAS collaboration

    2017-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbps per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  17. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  18. The CMS pixel readout chip for the Phase 1 Upgrade

    CERN Document Server

    Hits, Dmitry

    2015-01-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25\\,ns and to be efficient up to the nominal instantaneous luminosity of 10$^{34} \\rm cm^{-2} \\rm s^{-1}$. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach $2\\times10^{34} \\rm cm^{-2} \\rm s^{-1}$ before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250\\,nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented togeth...

  19. The CMS Pixel Readout Chip for the Phase 1 Upgrade

    Science.gov (United States)

    Hits, D.; Starodumov, A.

    2015-05-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25 ns and to be efficient up to the nominal instantaneous luminosity of 1034 cm-2 s-1. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach 2×1034 cm-2 s-1 before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250 nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented together with measured performance of the chip.

  20. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2015-01-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...

  1. ATLAS Detector : Performance and Upgrades

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2016-01-01

    Describe the ATLAS detector and summarize most relevant and recent information about the detector performance in 2016 with LHC colliding bunches at sqrt(s)=13 TeV with luminosity above the nominal value. Describe the different upgrade phases previewed for the detector and main activities already ongoing.

  2. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  3. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  4. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  5. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  6. Packaging and assembly technologies for the pixel detector upgrade and measurement of $\\tau\\tau$ final states with the CMS experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00380602; Quast, Gunter; Husemann, Ulrich

    The work, performed in the context of the CMS experiment at the LHC, is related to the assembly of the future CMS pixel detector and to improvements in the identification of hadronically decaying tau leptons. The performance of the tau identification has been evaluated in the data collected by CMS in 2015 and a measurement of the inclusive Z production cross section at 13 TeV has been performed.

  7. The Upgrade of the ATLAS Inner Detector

    CERN Document Server

    Ferrere, D; The ATLAS collaboration

    2012-01-01

    With the Large Hadron Collider (LHC) successfully collecting data at 7 TeV and even at 8 TeV since April 2012, plans are actively advancing for a series of upgrades in phase with the three long shutdown periods leading to detector improvement. The ATLAS collaboration will upgrade at the next shutdown in 2013-2014 its semiconductor pixel tracking detector with a new Insertable BLayer (IBL) between the existing innermost pixel layer and the vacuum pipe of the LHC. The extreme operating conditions at this location led considering the development of new radiation hard pixel sensor technologies and a new front-end readout chip. The IBL community is currently working for producing modules with silicon planar and 3D technology towards the loading on 14 local stave structures as well as the integration around the beam pipe and in the ATLAS detector. The High-Luminosity LHC (HL-LHC) will eventually increase to about five times the LHC design-luminosity some 10-years from now requiring a complete Inner Detector replace...

  8. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    CERN Document Server

    Ochi, Atsuhiko; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    2012-01-01

    The Micro Pixel Chamber (μ-PIC) is being developed a sacandidate for the muon system of the ATLAS detector for upgrading in LHC experiments. The μ-PIC is a micro-pattern gaseous detector that doesn’t have floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to the ATLAS cavern. Spark rates are measured using several gas mixtures under 7 MeV neutron irradiation, and good properties were observed using neon, ethane, and CF4 mixture of gases.Using resistive materials as electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  9. The Upgraded D0 Detector

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, J T; Anderson, S; Andrieu, B; Angstadt, R; Anosov, V; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Badaud, F; Baden, A; Baffioni, S; Bagby, L; Baldin, B; Balm, P W; Banerjee, P; Banerjee, S; Barberis, E; Bardon, O; Barg, W; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bhattacharjee, M; Baturitsky, M A; Bauer, D; Bean, A; Baumbaugh, B; Beauceron, S; Begalli, M; Beaudette, F; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Beutel, D; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Bishoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Bockenthein, E; Bodyagin, V; Böhnlein, A; Boeriu, O; Bolton, T A; Bonamy, P; Bonifas, D; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Bowden, M; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, D; Butler, J M; Cammin, J; Caron, S; Bystrický, J; Canal, L; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Chi, E; Chiche, R; Cho, D K; Choate, R; Choi, S; Choudhary, B; Chopra, S; Christenson, J H; Christiansen, T; Christofek, L; Churin, I; Cisko, G; Claes, D; Clark, A R; Clement, B; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Das, M; Davies, B; Davies, G; Davis, G A; Davis, W; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; de La Taille, C; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Delsart, P A; Del Signore, K; De Maat, R; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doets, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dvornikov, O; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fagan, J; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferapontov, A V; Ferbel, T; Ferreira, M J; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fitzpatrick, T; Flattum, E; Fleuret, F; Flores, R; Foglesong, J; Fortner, M; Fox, H; Franklin, C; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Gillberg, D; Geurkov, G; Ginther, G; Gobbi, B; Goldmann, K; Golling, T; Gollub, N; Golovtsov, V L; Gómez, B; Gómez, G; Gómez, R; Goodwin, R W; Gornushkin, Y; Gounder, K; Goussiou, A; Graham, D; Graham, G; Grannis, P D; Gray, K; Greder, S; Green, D R; Green, J; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gu, W; Guglielmo, J; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggard, E; Haggerty, H; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hance, R; Hanagaki, K; Hanlet, P; Hansen, S; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hazen, E; Hebbeker, T; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Houben, P; Hu, Y; Huang, J; Huang, Y; Hynek, V; Huffman, D; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jacquier, Y; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jayanti, R; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Jouravlev, N I; Juárez, M; Juste, A; Kaan, A P; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Kalmani, S D; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Kim, K H; Kim, T J; Kirsch, N; Klima, B; Klute, M; Kohli, J M; Konrath, J P; Komissarov, E V; Kopal, M; Korablev, V M; Kostritskii, A V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Kuznetsov, O; Krane, J; Kravchuk, N; Krempetz, K; Krider, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kubinski, R; Kuchinsky, N; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Kuznetsov, V E; Kwarciany, R; Lager, S; Lahrichi, N; Landsberg, G L; Larwill, M; Laurens, P; Lavigne, B; Lazoflores, J; Le Bihan, A C; Le Meur, G; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leitner, R; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Lindenmeyer, C; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Litmaath, M; Lizarazo, J; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L; Luo, C; Lynker, M; Lyon, A L; Machado, E; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Maity, M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Manakov, V; Mao, H S; Maravin, Y; Markley, D; Markus, M; Marshall, T; Martens, M; Martin, M; Martin-Chassard, G; Mattingly, S E K; Matulik, M; Mayorov, A A; McCarthy, R; McCroskey, R; McKenna, M; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Mendoza, D; Mendoza, L; Meng, X; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miao, C; Miettinen, H; Mihalcea, D; Mikhailov, V; Miller, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Moulik, T; Muanza, G S; Mostafa, M; Moua, S; Mulders, M; Mundim, L; Mutaf, Y D; Nagaraj, P; Nagy, E; Naimuddin, M; Nang, F; Narain, M; Narasimhan, V S; Narayanan, A; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neuenschwander, R T; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nozdrin, A; Nunnemann, T; Nurczyk, A; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Olis, D; Oliveira, N; Olivier, B; Olsen, J; Oshima, N; Oshinowo, B O; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Polosov, P; Pope, B G; Popkov, E; Porokhovoy, S; Prado da Silva, W L; Pritchard, W; Prokhorov, I; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Ramberg, E; Ramirez-Gomez, R; Rani, K J; Ranjan, K; Rao, M V S; Rapidis, P A; Rapisarda, S; Raskowski, J; Ratoff, P N; Ray, R E; Reay, N W; Rechenmacher, R; Reddy, L V; Regan, T; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Roco, M T; Rotolo, C; Royon, C; Rubinov, P; Ruchti, R; Rucinski, R; Rud, V I; Rusakovich, N; Russo, P; Sabirov, B; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Satyanarayana, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shankar, H C; Shary, V; Shchukin, A A; Sheahan, P; Shephard, W D; Shivpuri, R K; Shishkin, A A; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Skubic, P L; Slattery, P F; Smith, D E; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Spartana, N; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stefanik, A; Steinberg, J L; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tentindo-Repond, S; Tamburello, P; Taylor, W; Telford, P; Temple, J; Terentyev, N K; Teterin, V; Thomas, E; Thompson, J; Thooris, B; Titov, M; Toback, D; Tokmenin, V V; Tolian, C; Tomoto, M; Tompkins, D; Toole, T; Torborg, J; Touze, F; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Utes, M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van den Berg, P J; Van Gemmeren, P; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Vaz, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vigneault, M; Villeneuve-Séguier, F; Vishwanath, P R; Vlimant, J R; Von Törne, E; Vorobyov, A; Vreeswijk, M; Vu-Anh, T; Vysotsky, V S; Wahl, H D; Walker, R; Wallace, N; Wang, L; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; Wetstein, M; White, A; White, V; Whiteson, D; Wicke, D; Wijnen, T A M; Wijngaarden, D A; Wilcer, N; Willutzki, H; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Wu, Z; Xie, Y; Xu, Q; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yarema, R J; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Yoffe, F; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zanabria, M; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zmuda, T; Zutshi, V; Zviagintsev, S; Zverev, E G; Zylberstejn, A

    2005-01-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  10. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  11. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  12. Construction of the Phase I Forward Pixel Detector

    Science.gov (United States)

    Neylon, Ashton; Bartek, Rachel

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The original CMS detector was designed for the nominal instantaneous LHC luminosity of 1 x 1034 cm-2s-1 . The LHC has already started to exceed this luminosity causing the CMS pixel detector to see a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS Collaboration has been building an upgraded pixel detector which is scheduled for installation during an extended year end technical stop during winter 2016/2017. The phase 1 upgrade includes four barrel layers and three forward disks, providing robust tracking and vertexing for LHC luminosities up to 2 x 1034 cm-2s-1 . The upgrade incorporates new readout chips, front-end electronics, DC-DC powering, and dual-phase CO2 cooling to achieve performance exceeding that of the present detector with a lower material budget. This contribution will review the design and technology choices of the Phase I detector and discuss the status of the detector. The challenges and difficulties encountered during the construction will also be presented, as well as the lessons learned for future upgrades. National Science Foundation.

  13. CMS Pixel Detector design for HL-LHC

    CERN Document Server

    Migliore, Ernesto

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5$\\times$10$^{34}$cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation.In order to maintain its physics reach the CMS Collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimations.

  14. CMS Pixel Detector design for HL-LHC

    Science.gov (United States)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  15. Readout electronics and test bench for the CMS Phase I pixel detector

    CERN Document Server

    Del Burgo, Riccardo

    2016-01-01

    The present CMS pixel detector will be replaced with an upgraded pixel system during the LHC extended technical stop in winter 2016/2017. The CMS Phase 1 pixel upgrade combines a new pixel readout chip, which minimizes detection inefficiencies, with several other design improvements to maintain the excellent tracking performance of CMS at the higher luminosity conditions foreseen for the coming years. The upgraded detector features new readout electronics which require detailed evaluation. For this purpose a test stand has been setup, including a slice of the CMS pixel DAQ system, all components of the upgraded readout chain together with a number of detector modules. The test stand allows for detailed evaluation and verification of all detector components, and is also crucial to develop tests and procedures to be used during the detector assembly and the commissioning and calibration of the detector. In this talk the system test and its functionalities will be described with a focus on the tests performed fo...

  16. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  17. Pilot System for the Phase 1 Pixel Upgrade

    CERN Document Server

    AUTHOR|(CDS)2072269

    2015-01-01

    The CMS phase 1 pixel upgrade is planned for installation in 2016-2017, incorporating new front-end ASICs with digital 400 Mbps data links to handle a higher instantaneous luminosity of up to 2.5 $x$ 10$^{34}$ cm$^{-2}$ s$^{-1}$ and trigger rates of 100 kHz with bunch spacing scenarios of 25 or 50 ns. The new digital readout requires new back-end electronics incorporating faster optical receivers and firmware for decoding the new data format. Additionally the phase 1 upgrade is powered from DC-DC converters installed inside CMS close to the modules. To gain experience with this new readout chain and DC-DC converters under realistic operating conditions (trigger rates, backgrounds, high data occupancy, and possible single-event upsets) a pilot detector system comprising eight sensor modules, service electronics, optical links, and back-end electronics has been prepared using pre-production parts. The pilot system was installed with the present forward pixel detector in 2014 during long shutdown 1 (LS1). The pi...

  18. The ATLAS tracker Pixel detector for HL-LHC

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current Inner Detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLAS Pixel detector developments as well as the various layout options are reviewed.

  19. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  20. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  1. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  2. Recent results of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    AUTHOR|(CDS)2073610

    2011-01-01

    The ATLAS detector has to undergo significant updates at the end of the current decade, in order to withstand the increased occupancy and radiation damage that will be produced by the high-luminosity upgrade of the Large Hadron Collider. In this presentation we give an overview of the recent accomplishments of the R&D activity on the planar pixel sensors for the ATLAS Inner Detector upgrade.

  3. The LHC Luminosity Upgrade and Related ATLAS Detector Plans

    CERN Document Server

    Hartjes, F; The ATLAS collaboration

    2009-01-01

    3rd draft of the proposed talk about Atlas Upgrade for MPGD2009 (Instrumentation conference on gaseous pixel detectors) on Friday June 12, 2009. I concentrated my presentation on the upgrade plans and schedule of the LHC and on detector technologies for the new Inner Tracker, putting less emphasis on other subdetectors. Compared to the 2nd draft I modified and clarified a few items about trigger, muon detection and calorimetry and did a number of cosmetic adaptions.

  4. Operational experience of ATLAS SCT and Pixel Detector

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Detector based on silicon sensors is consisting of a strip detector (SCT) and a pixel detector. It is the crucial component for vertexing and tracking in the ATLAS experiment. With the excellent performance of the LHC well beyond the original specification the silicon tracking detectors are facing substantial challenges in terms of data acquisition, radiation damage to the sensors, and SEUs in the readout ASICs. The approaches on how the detector systems cope with the demands of high luminosity operation while maintaining excellent performance through hardware upgrades, software and firmware algorithms, and operational settings, are presented.

  5. Associated Z+Higgs Boson Production in the Leptonic+Beauty Final State and the Upgrade of the Pixel Detector at CMS

    CERN Document Server

    Eller, Philipp

    A standard model Higgs boson, radiated off by a leptonically decaying Z boson, is searched for in the b ¯b-quark decay mode by analyzing the full 7+8 TeV LHC dataset recorded with the CMS detector. The used methods are discussed in detail and finally the results shown, including combinations with other search channels. The diboson production cross section for the processes W Z and ZZ are measured at 8 TeV using the same framework. Furthermore, event generators for the future of this analysis are reviewed for the signal process as well as the most important source of backgrounds. The pixel detector, one of the key elements to this analysis and the innermost component of CMS, will be replaced in the coming years. The transition to the new readout electronics and the qualification procedures for detector modules is part of this thesis. A complete set of results obtained using the developed testing procedures are presented for one of the first prototype modules.

  6. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  7. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  8. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  9. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  10. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  11. Development of planar pixel modules for the ATLAS high luminosity LHC tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Allport, P.P. [Department of Physics, University of Liverpool (United Kingdom); Ashby, J.; Bates, R.L.; Blue, A. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Burdin, S. [Department of Physics, University of Liverpool (United Kingdom); Buttar, C.M., E-mail: craig.buttar@glasgow.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Casse, G.; Dervan, P. [Department of Physics, University of Liverpool (United Kingdom); Doonan, K. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Forshaw, D. [Department of Physics, University of Liverpool (United Kingdom); Lipp, J. [The Science and Technology Facilities Council, Rutherford Appleton Laboratory (United Kingdom); McMullen, T. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Pater, J. [School of Physics and Astronomy, University of Manchester (United Kingdom); Stewart, A. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Tsurin, I. [Department of Physics, University of Liverpool (United Kingdom)

    2014-11-21

    The high-luminosity LHC will present significant challenges for tracking systems. ATLAS is preparing to upgrade the entire tracking system, which will include a significantly larger pixel detector. This paper reports on the development of large area planar detectors for the outer pixel layers and the pixel endcaps. Large area sensors have been fabricated and mounted onto 4 FE-I4 readout ASICs, the so-called quad-modules, and their performance evaluated in the laboratory and testbeam. Results from characterisation of sensors prior to assembly, experience with module assembly, including bump-bonding and results from laboratory and testbeam studies are presented.

  12. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  13. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  14. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  15. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Bhardwaj, A.; Dalal, R. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Eber, R. [Institute fur Experimentelle Kernphysik (Germany); Eichorn, T. [Deutsches Elektronen Synchrotron (Germany); Fernandez, M. [Instituto de Fisica de Cantabria (Spain); Lalwani, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Messineo, A. [Universita di Pisa & INFN sez. di Pisa (Italy); Palomo, F.R. [Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Peltola, T. [Helsinki Institute of Physics (Finland); Printz, M. [Institute fur Experimentelle Kernphysik (Germany); Ranjan, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Villa, I. [Instituto de Fisica de Cantabria (Spain); Hidalgo, S. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica (Spain)

    2016-07-11

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  16. The DC-DC conversion power system of the CMS Phase-1 pixel upgrade

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, St.; Wlochal, M.

    2015-01-01

    The pixel detector of the CMS experiment will be exchanged during the year-end technical stop in 2016/2017, as part of the experiment's Phase-1 upgrade. The new device will feature approximately twice the number of readout channels, and consequently the power consumption will be doubled. By moving to a DC-DC conversion powering scheme, it is possible to power the new pixel detector with the existing power supplies and cable plant. The power system of the Phase-1 pixel detector is described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, is detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance is discussed.

  17. Physics performance of the ATLAS pixel detector

    Science.gov (United States)

    Tsuno, S.

    2017-01-01

    In preparation for LHC Run-2 the ATLAS detector introduced a new pixel detector, the Insertable B-Layer (IBL). This detector is located between the beampipe and what was the innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level objects such a b-quark jet tagging. This in turn, leads to better physics results. This note summarizes the impact of the IBL detector on physics results, especially focusing on the analyses using b-quark jets throughout 2016 summer physics program.

  18. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  19. UPGRADES

    CERN Multimedia

    J. Spalding and D. Contardo

    2012-01-01

      The CMS Upgrade Programme consists of four classes of projects: (a) Detector and Systems upgrades which are ongoing and largely (though not entirely) target LS1. (b) Full system upgrades for three projects that are preparing TDRs: Pixels, HCAL and L1 Trigger. The projects target completion by LS2. (c) Infrastructure consolidation and upgrades to improve operational robustness and to support the above projects. (d) Phase 2 replacement of the Tracker and major upgrades of the Trigger and Forward Detectors. For (a) and (c), detailed costing exists and is being integrated into a common reporting system. The schedule milestones for each project will be linked into the overall schedule planning for LS1. For the three TDR projects, the designs have progressed significantly since the Technical Proposal in 2010. Updated detailed cost estimates and schedules will be prepared with the TDRs to form the basis for tracking the projects through completion. To plan the upgrades and the supporting simulati...

  20. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  1. LISe pixel detector for neutron imaging

    Science.gov (United States)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  2. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  3. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  4. Integration and testing of the DAQ system for the CMS phase 1 pixel upgrade

    CERN Document Server

    Akgun, Bora

    2016-01-01

    The CMS pixel detector phase 1 upgrade in 2017 requires an upgraded DAQ to accept higher data rates. A new DAQ system has been developed based on a combination of custom and standard microTCA parts. Custom mezzanines on FC7 AMCs provide a front-end driver for readout, and front-end controller for configuration, clock and trigger. The DAQ system is undergoing a series of integration tests including readout of the pilot pixel detector already installed in CMS, checkout of the phase 1 detector during its assembly, and testing with the CMS central DAQ. This paper describes the DAQ system, integration tests and results, and an outline of the activities up to commissioning the final system at CMS in 2017.

  5. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  6. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  7. 3D electronics for hybrid pixel detectors – TWEPP-09

    CERN Document Server

    Godiot, S; Chantepie, B; Clémens, J C; Fei, R; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Hemperek, T; Karagounis, M; Krueger, H; Mekkaoui, A; Pangaud, P; Rozanov, A; Wermes, N

    2009-01-01

    Future hybrid pixel detectors are asking for smaller pixels in order to improve spatial resolution and to deal with an increasing counting rate. Facing these requirements is foreseen to be done by microelectronics technology shrinking. However, this straightforward approach presents some disadvantages in term of performances and cost. New 3D technologies offer an alternative way with the advantage of technology mixing. For the upgrade of ATLAS pixel detector, a 3D conception of the read-out chip appeared as an interesting solution. Splitting the pixel functionalities into two separate levels will reduce pixel size and open the opportunity to take benefit of technology's mixing. Based on a previous prototype of the read-out chip FE-I4 (IBM 130nm), this paper presents the design of a hybrid pixel read-out chip using threedimensional Tezzaron-Chartered technology. In order to disentangle effects due to Chartered 130nm technology from effects involved by 3D architecture, a first translation of FEI4 prototype had ...

  8. A DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    Science.gov (United States)

    Feld, L.; Fleck, M.; Friedrichs, M.; Hensch, R.; Karpinski, W.; Klein, K.; Sammet, J.; Wlochal, M.

    2013-02-01

    The CMS pixel detector was designed for a nominal instantaneous LHC luminosity of 1ṡ1034 cm-2s-1. During Phase-1 of the LHC upgrade, the instantaneous luminosity will be increased to about twice this value. To preserve the excellent performance of the pixel detector despite the increase in particle rates and track densities, the CMS Collaboration foresees the exchange of its pixel detector in the shutdown 2016/2017. The new pixel detector will be improved in many respects, and will comprise twice the number of readout channels. A powering scheme based on DC-DC conversion will be adopted, which will enable the provision of the required power with the present cable plant. The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking between DC-DC converters.

  9. Novel Silicon n-in-p Pixel Sensors for the future ATLAS Upgrades

    CERN Document Server

    La Rosa, A; Macchiolo, A; Nisius, R; Pernegger, H; Richter,R H; Weigell, P

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the Inner Detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost eectiveness, that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 1016 1-MeV $n_{eq}cm^{-2}$, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  10. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, A., E-mail: alessandro.larosa@cern.ch [Section de Physique (DPNC), Université de Genève, 24 quai Ernest Ansermet, Genève 4, CH-1211 (Switzerland); Gallrapp, C. [CERN, Geneva 23, CH-1211 (Switzerland); Macchiolo, A.; Nisius, R. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 München (Germany); Pernegger, H. [CERN, Geneva 23, CH-1211 (Switzerland); Richter, R.H. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Weigell, P. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 München (Germany)

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10{sup 16}1-MeV n{sub eq}cm{sup −2}, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  11. The CMS Silicon Pixel detector for HL-LHC

    CERN Document Server

    Steinbrueck, Georg

    2016-01-01

    The LHC is planning an upgrade program which will bring the luminosity to about 5~$\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with the goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges of higher data rates and increased radiation. To maintain its physics potential in this harsh environment, the CMS detector will undergo a major upgrade program known as the Phase II upgrade. The new Phase II pixel detector will require a high bandwidth readout system and highly radiation tolerant sensors and on-detector ASICs. Several technologies for the sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs with acceptance extended from $\\vert\\eta\\vert<2.4$ to $\\vert\\eta\\vert<4$, are presented together with performance estimates.

  12. The ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4 cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and sensors which can stand radiation levels beyond 5$ imes$10$^{15}$ n$_{eq}$/cm$^{2}$ . ATLAS has developed the new FEI4 chip and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation length and allows detector cooling with CO$_{2}$ at -40 $^{circ}$C coolant temperature. Currently the overall integration and installation procedure is being developed and tested ready for installation in 2013. The paper summarizes the current state of development of IBL modules, first preliminary test results of the new chip ...

  13. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  14. Characterisation of pixel sensor prototypes for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix [CERN (Switzerland); Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    ALICE is preparing a major upgrade of its experimental apparatus to be installed in the second long LHC shutdown (LS2) in the years 2018-2019. A key element of the upgrade is the replacement of the Inner Tracking System (ITS) deploying Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have a reduced material budget while increasing the pixel density and readout rate capabilities. The novel design leads to higher pointing and momentum resolution as well as a p{sub T} acceptance extended to lower values. The corresponding sensor prototypes were qualified in laboratory measurements and beam tests with respect to their radiation tolerance and detection efficiency. This talk summarises recent results on the characterisation of prototypes belonging to the ALPIDE family.

  15. Towards spark-proof gaseous pixel detectors

    Science.gov (United States)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  16. Anode readout for pixellated CZT detectors

    Science.gov (United States)

    Narita, Tomohiko; Grindlay, Jonathan E.; Hong, Jaesub; Niestemski, Francis C.

    2004-02-01

    Determination of the photon interaction depth offers numerous advantages for an astronomical hard X-ray telescope. The interaction depth is typically derived from two signals: anode and cathode, or collecting and non-collecting electrodes. We present some preliminary results from our depth sensing detectors using only the anode pixel signals. By examining several anode pixel signals simultaneously, we find that we can estimate the interaction depth, and get sub-pixel 2-D position resolution. We discuss our findings and the requirements for future ASIC development.

  17. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  18. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  19. Optimization of the thermal performances of the Alpine Pixel Detector

    CERN Document Server

    Zhang, Zhan; Di Ciaccio, Lucia

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  20. Alignment of the VELO pixel detector

    CERN Document Server

    Petersson Sjogren, Anna

    2017-01-01

    The LHCb experiment is designed to perform high precision measurements to study CP-violation and rare decays of beauty and charm hadrons. During LS2, prior to Run 3 of the LHC, the LHCb detector will go through a major upgrade. One of the sub-detectors that will be upgraded is the Vertex Locator (VELO) which after the upgrade will be capable of readout at 40 MHz at a luminosity of 2· 1033 cm−2s−1. VELO is a high precision detector designed to reconstruct and discriminate between primary and secondary vertices close to the interaction point. Due to safety of the detector, the VELO is divided into two retractable halves which prior to each fill into LHC are retracted from the beam-line, and closed once stable beam is declared. Best possible performance of the VELO requires the halves of the VELO, and the individual detector elements of it, to be aligned for correct reconstruction of tracks and vertices.

  1. Physics benchmarks for the Belle II pixel detector

    Science.gov (United States)

    Li Gioi, L.

    2015-03-01

    SuperKEKB, the massive upgrade of the asymmetric electron positron collider KEKB in Tsukuba, Japan, aims at an integrated luminosity in excess of 50 ab-1. It will deliver an instantaneous luminosity of 8 ṡ 1035 cm-2s-1, which is 40 times higher than the world record set by KEKB. At this high luminosity, a large increase of the background relative to the previous KEKB machine is expected. This and the more demanding physics rate ask for an entirely new tracking system. The expected increase of background would in fact create an unacceptable high occupancy for a silicon strip detector, making an efficient tracks reconstruction and vertexing impossible. The solution for Belle II is a pixel detector which intrinsically provides three dimensional space points. The new two layers silicon pixel vertex detector, based on DEPFET technology, will be mounted directly on the beam pipe. It will provide an accurate measurement of the tracks position in order to precisely reconstruct the decay vertex of the short living particles.In this paper we will discuss the physics performance of the Belle II pixel vertex detector which will be essential for the precise measurement of the CP parameters in various B and D decay modes.

  2. Test beam results of 3D silicon pixel sensors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, P., E-mail: grenier@slac.stanford.ed [SLAC National Accelerator Laboratory (United States); Alimonti, G. [INFN Sezione di Milano (Italy); Barbero, M. [Bonn University (Germany); Bates, R. [Glasgow University (United Kingdom); Bolle, E. [Oslo University (Norway); Borri, M. [University of Manchester (United Kingdom); Boscardin, M. [FBK-irst, Trento (Italy); Buttar, C. [Glasgow University (United Kingdom); Capua, M. [INFN Gruppo Collegato di Cosenza and Universita della Calabria (Italy); Cavalli-Sforza, M. [IFAE Barcelona (Spain); Cobal, M.; Cristofoli, A. [INFN Gruppo Collegato di Udine and Universita di Udine (Italy); Dalla Betta, G.-F. [INFN Gruppo Collegato di Trento and DISI Universita di Trento (Italy); Darbo, G. [INFN Sezione di Genova (Italy); Da Via, C. [University of Manchester (United Kingdom); Devetak, E.; DeWilde, B. [Stony Brook University (United States); Di Girolamo, B.; Dobos, D. [CERN (Switzerland); Einsweiler, K. [Lawrence Berkeley National Laboratory (United States)

    2011-05-11

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS inner detector solenoid field. Sensors were bump-bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  3. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    CERN Document Server

    Grenier, P; Barbero, M; Bates, R; Bolle, E; Borri, M; Boscardin, M; Buttar, C; Capua, M; Cavalli-Sforza, M; Cobal, M; Cristofoli, A; Dalla Betta, G F; Darbo, G; Da Via, C; Devetak, E; DeWilde, B; Di Girolamo, B; Dobos, D; Einsweiler, K; Esseni, D; Fazio, S; Fleta, C; Freestone, J; Gallrapp, C; Garcia-Sciveres, M; Gariano, G; Gemme, C; Giordani, M P; Gjersdal, H; Grinstein, S; Hansen, T; Hansen, T E; Hansson, P; Hasi, J; Helle, K; Hoeferkamp, M; Hugging, F; Jackson, P; Jakobs, K; Kalliopuska, J; Karagounis, M; Kenney, C; Köhler, M; Kocian, M; Kok, A; Kolya, S; Korokolov, I; Kostyukhin, V; Krüger, H; La Rosa, A; Lai, C H; Lietaer, N; Lozano, M; Mastroberardino, A; Micelli, A; Nellist, C; Oja, A; Oshea, V; Padilla, C; Palestri, P; Parker, S; Parzefall, U; Pater, J; Pellegrini, G; Pernegger, H; Piemonte, C; Pospisil, S; Povoli, M; Roe, S; Rohne, O; Ronchin, S; Rovani, A; Ruscino, E; Sandaker, H; Seidel, S; Selmi, L; Silverstein, D; Sjøbaek, K; Slavicek, T; Stapnes, S; Stugu, B; Stupak, J; Su, D; Susinno, G; Thompson, R; Tsung, J W; Tsybychev, D; Watts, S J; Wermes, N; Young, C; Zorzi, N

    2011-01-01

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  4. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2016-01-01

    We present feasibility studies to investigate the performance and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of rare physics events from the large pile-up of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total Level-1 trigger rate while keeping a high selection capability. This is quite an innovative and challenging objective for the upgrade of the experiments for the High Luminosity LHC.

  5. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We present feasibility studies to investigate the performances and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on the real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC).

  6. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  7. Planar Pixel Sensors for the ATLAS Upgrade: Beam Tests results

    CERN Document Server

    Weingarten, J; Beimforde, M; Benoit, M; Bomben, M; Calderini, G; Gallrapp, C; George, M; Gibson, S; Grinstein, S; Janoska, Z; Jentzsch, J; Jinnouchi, O; Kishida, T; La Rosa, A; Libov, V; Macchiolo, A; Marchiori, G; Münstermann, D; Nagai, R; Piacquadio, G; Ristic, B; Rubinskiy, I; Rummler, A; Takubo, Y; Troska, G; Tsiskaridtze, S; Tsurin, I; Unno, Y; Weigel, P; Wittig, T

    2012-01-01

    Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing between neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.

  8. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  9. On-detector Electronics for the LHCb VELO Upgrade

    Science.gov (United States)

    Naik, S.

    2017-02-01

    The LHCb Experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. The experiment will be upgraded to a trigger-less system reading out the full detector at a 40 MHz event rate with all selection algorithms executed in a CPU farm. The upgraded Vertex Locator will be a hybrid pixel detector read out by the VeloPix ASIC with on-chip zero-suppression. The overview of the system and the design of the VELO on-detector electronics that include the front-end hybrid, the opto-conversion and power distribution boards will be summarised. The results from the evaluation of these prototypes and further enhancement techniques will be discussed.

  10. Thermal Grease Evaluation for ATLAS Upgrade Micro-Strip Detector.

    CERN Document Server

    Barbier, G; The ATLAS collaboration; Clark, A; Ferrère, D; Pernecker, S; Perrin, E; Streit, KP; Weber, M

    2010-01-01

    The ATLAS upgrade detector foreseen at the phase 2 upgrade of LHC requires a complete new inner detector using silicon pixel and strip detectors. For both technologies, a specific mechanical and thermal design is required. Such a design may use soft thermal interfaces such as grease between the various parts. One foreseeable use would be between the cooling pipe and the thermal block allowing the strip modules to be decoupled from the mechanical and cooling structure. This note describes the technique used and the results obtained when characterizing a few grease samples. The results have been compared with thermal FEA simulations. A thermal conductivity measurement for each sample could be extracted from the measurements, with a systematic uncertainty of less than 6%. Some samples were irradiated to the expected fluence at sLHC and their resulting thermal conductivity compared with the non-irradiated samples.

  11. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  12. Operational Experience with the ALICE Pixel detector

    CERN Document Server

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  13. The BABAR detector: Upgrades, operation and performance

    Science.gov (United States)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O'Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T'Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S.-J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P.-A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D'Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O'Grady, C. P.; O'Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  14. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  15. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  16. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, P.; /SLAC; Alimonti, G.; /INFN, Milan; Barbero, M.; /Bonn U.; Bates, R.; /Glasgow U.; Bolle, E.; /Oslo U.; Borri, M.; /Manchester U.; Boscardin, M.; /Fond. Bruno Kessler, Povo; Buttar, C.; /Glasgow U.; Capua, M.; /Calabria U. /INFN, Cosenza; Cavalli-Sforza, M.; /Barcelona, IFAE; Cobal, M.; /Udine U. /INFN, Udine; Cristofoli, A.; /Udine U. /INFN, Udine; Dalla Betta, G.F.; /Trento U. /INFN, Trento; Darbo, G.; /INFN, Genoa; Da Via, C.; /Manchester U.; Devetak, E.; /SUNY, Stony Brook; DeWilde, B.; /SUNY, Stony Brook; Di Girolamo, B.; /CERN; Dobos, D.; /CERN; Einsweiler, K.; /LBL, Berkeley; Esseni, D.; /Udine U. /INFN, Udine /Calabria U. /INFN, Cosenza /Barcelona, Inst. Microelectron. /Manchester U. /CERN /LBL, Berkeley /INFN, Genoa /INFN, Genoa /Udine U. /INFN, Udine /Oslo U. /ICREA, Barcelona /Barcelona, IFAE /SINTEF, Oslo /SINTEF, Oslo /SLAC /SLAC /Bergen U. /New Mexico U. /Bonn U. /SLAC /Freiburg U. /VTT Electronics, Espoo /Bonn U. /SLAC /Freiburg U. /SLAC /SINTEF, Oslo /Manchester U. /Barcelona, IFAE /Bonn U. /Bonn U. /CERN /Manchester U. /SINTEF, Oslo /Barcelona, Inst. Microelectron. /Calabria U. /INFN, Cosenza /Udine U. /INFN, Udine /Manchester U. /VTT Electronics, Espoo /Glasgow U. /Barcelona, IFAE /Udine U. /INFN, Udine /Hawaii U. /Freiburg U. /Manchester U. /Barcelona, Inst. Microelectron. /CERN /Fond. Bruno Kessler, Povo /Prague, Tech. U. /Trento U. /INFN, Trento /CERN /Oslo U. /Fond. Bruno Kessler, Povo /INFN, Genoa /INFN, Genoa /Bergen U. /New Mexico U. /Udine U. /INFN, Udine /SLAC /Oslo U. /Prague, Tech. U. /Oslo U. /Bergen U. /SUNY, Stony Brook /SLAC /Calabria U. /INFN, Cosenza /Manchester U. /Bonn U. /SUNY, Stony Brook /Manchester U. /Bonn U. /SLAC /Fond. Bruno Kessler, Povo

    2011-08-19

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance. Full and partial 3D pixel detectors have been tested, with and without a 1.6T magnetic field, in high energy pion beams at the CERN SPS North Area in 2009. Sensors characteristics have been measured as a function of the beam incident angle and compared to a regular planar pixel device. Overall full and partial 3D devices have similar behavior. Magnetic field has no sizeable effect on 3D performances. Due to electrode inefficiency 3D devices exhibit some loss of tracking efficiency for normal incident tracks but recover full efficiency with tilted tracks. As expected due to the electric field configuration 3D sensors have little charge sharing between cells.

  17. The ultralight DEPFET pixel detector of the Belle II experiment

    Science.gov (United States)

    Luetticke, Florian

    2017-02-01

    An upgrade of the existing Japanese flavor factory (KEKB in Tsukuba, Japan) is under construction and foreseen for commissioning by the end of 2017. This new e+e- machine (SuperKEKB) will deliver an instantaneous luminosity 40 times higher than the luminosity world record set by KEKB. To fully exploit the increased number of events and provide high precision measurements of B-meson decay vertices in such a harsh environment, the Belle detector will be upgraded to Belle II, featuring a new silicon vertex detector with two pixel layers close to the interaction point based on the DEPFET (DEpleted P-channel Field Effect Transistor) technology. This technology combines particle detection together with in-pixel amplification by integrating a field effect transistor into a fully depleted silicon bulk. In Belle II, DEPFET sensors thinned down to 75 μm with low power consumption and low intrinsic noise will be used. The first large thin multi-chip production modules have been produced and characterization results on both large modules as well as small test systems will be presented in this contribution.

  18. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    Science.gov (United States)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  19. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  20. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  1. Tests of CMS Phase 1 Pixel Upgrade Back-End Electronics

    Science.gov (United States)

    Kilpatrick, Matthew

    2016-03-01

    The CMS detector will be upgraded so that it can handle the higher instantaneous luminosity of the 13-14 TeV collisions. The Phase 1 Pixel detector will experience a higher density of particle interactions requiring new front-end and read-out electronics. A front-end pixel data emulator was developed to validate the back-end readout electronics prior to installation and operation. A FPGA-based design emulates 400 Mbps data patterns from the front-end read-out chips and will be used to confirm that each Front End Driver (FED) can correctly decode and process the expected data patterns and error conditions. A FED test bench using the emulator can produce LHC-like conditions for stress testing FED hardware, firmware and online software. The design of the emulator and initial test results will be reported.

  2. CMS 2017 Pixel detector replacement - A roll and B roll

    CERN Multimedia

    Paola Catapano

    2017-01-01

    On Thursday 2 March 2017 CERN physicists and engineers have carried out a highly complex operation right at the heart of one of the four main experiments of the Large Hadron Collider (LHC): the CMS detector, located 100 m below ground under French territory, at one of the LHC’s collision points. CMS is one of the four main detectors on the 27km LHC accelerator., and one of the two experiments which found the Higgs boson in 2012. The heart of the CMS experiment is the pixel detector, the innermost instrument in the very heart of the CMS apparatus, the very point where new particles, such as the Higgs boson, are produced by the energy of the proton proton collisions of the LHC accelerator. With thousands of silicon sensors, the new Pixel Tracker is now being upgraded to improve the particle-tracking capabilities of CMS. This operation, started on Tuesday Feb 28 when the first components of the new instrument were descended into the experiment’s cavern, is one of the most significant milestones ahead of the ...

  3. Planar n{sup +}-in-n silicon pixel sensors for the ATLAS IBL upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, C.; Klingenberg, R. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Muenstermann, D., E-mail: Daniel.Muenstermann@TU-Dortmund.de [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Rummler, A.; Troska, G.; Wittig, T. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany)

    2011-09-11

    The ATLAS experiment at the LHC is planning to upgrade its pixel detector by the installation of a 4th pixel layer, the insertable b-layer IBL with a mean sensor radius of only 32 mm from the beam axis. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5x10{sup 15} n{sub eq} cm{sup -2} at their end-of-life. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for IBL fluences, n{sup +}-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a {sup 90}Sr source in the laboratory. The collected charge was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. With an expected threshold of 3000-4000 electrons, this result suggests that planar n{sup +}-in-n pixel sensors are radiation hard enough to be used as IBL sensor technology.

  4. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  5. Operational Experience and Performance with the ATLAS Pixel detector with emphasis on radiation damage

    CERN Document Server

    Butti, Pierfrancesco; The ATLAS collaboration

    2017-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  6. Operational Experience and Performance with the ATLAS Pixel detector with emphasis on radiation damage

    CERN Document Server

    Garcia Pascual, Juan Antonio; The ATLAS collaboration

    2017-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10$^{34}$ cm$^{-2}$ s$^{-1}$ recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  7. Tracking triggers for the upgraded DOe detector

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, S. [California Univ., Davis (United States); Bloom, P. [California Univ., Davis (United States); Mani, S. [California Univ., Davis (United States); Pellett, D. [California Univ., Davis (United States); Costa, J. [CBPF/LAFEX, Rio de Janeiro (Brazil); Moreira, L. [CBPF/LAFEX, Rio de Janeiro (Brazil); Baumbaugh, A. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Blazey, G. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Borcherding, F. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Johnson, M. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Wilcox, J. [Northeastern University, Boston, MA (United States)

    1995-06-01

    The high luminosity environment of the upgraded Tevatron will require not only the upgrade of various DOe subdetectors, but the trigger system as well. With respect to the present system, the upgraded trigger system must operate faster and provide a higher degree of background rejection while extending the physics acceptance beyond that of the current system. This will be accomplished in part by incorporating the scintillating fiber tracker and the preshower detector into the Level 1 trigger. Track logic, implemented in commercial FPGAs, will be used to identify tracks in the scintillating fiber tracker with P{sub T}>1.5 GeV/c and electron candidates in the preshower detector. Integration of the trigger logic and readout electronics permits the identification of all tracks in a few hundred nanoseconds. Here, preliminary designs for the readout and trigger electronics are presented along with simulation results for trigger efficiencies and rejection factors. (orig.).

  8. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  9. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  10. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  11. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  12. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  13. New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    CERN Document Server

    Neyret, D.; Anfreville, M.; Bedfer, Y.; Burtin, E.; Coquelet, C.; d'Hose, N.; Desforge, D.; Giganon, A.; Jourde, D.; Kunne, F.; Magnon, A.; Makke, N.; Marchand, C.; Paul, B.; Platchkov, S.; Thibaud, F.; Usseglio, M.; Vandenbroucke, M.

    2012-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very go...

  14. ALFA detector upgrade before LHC Run 2

    CERN Document Server

    Vorobel, Vit; The ATLAS collaboration

    2016-01-01

    The operation experience with ATLAS ALFA detectors in the LHC environment during the Run1 period has shown significant beam-induced heating. Subsequent comprehensive studies revealed that heating effects could be disastrous in the case of the larger beam intensities foreseen for higher luminosities in the LHC Run2. During the first LHC long shutdown (LS1) all ALFA detectors have been removed from the LHC tunnel and their covers - Roman Pots - underwent a geometry upgrade to minimize the impedance losses. It will be shown that this modification together with a system improving the internal heat transfer and an air cooling system, significantly shifted the temperatures of ALFA detectors away from the critical limits throughout the LHC Run2. Also ALFA trigger system was considerably upgraded to keep measured data safely inside the Run2 ATLAS latency budget and to minimize dead time. The needed hardware changes of the trigger system will be presented in the second part of the talk.

  15. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    CERN Document Server

    Cavicchioli, C; Giubilato, P; Hillemanns, H; Junique, A; Kugathasan, T; Mager, M; Marin Tobon, C A; Martinengo, P; Mattiazzo, S; Mugnier, H; Musa, L; Pantano, D; Rousset, J; Reidt, F; Riedler, P; Snoeys, W; Van Hoorne, J W; Yang, P

    2014-01-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (~0.3%X0~0.3%X0 in total for each inner layer) and higher granularity (View the MathML source~20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity View the MathML source(ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge c...

  16. The Phase-II ATLAS ITk pixel upgrade

    Science.gov (United States)

    Terzo, S.

    2017-07-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase-II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 m2 of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| carbon-based materials cooled by evaporative carbon dioxide circulated in thin-walled titanium pipes embedded in the structures. Planar, 3D, and CMOS sensors are being investigated to identify the optimal technology, which may be different for the various layers. The RD53 Collaboration is developing the new readout chip. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system. A readout speed of up to 5 Gb/s per data link will be needed in the innermost layers going down to 640 Mb/s for the outermost. Because of the very high radiation level inside the detector, the first part of the transmission has to be implemented electrically, with signals converted for optical transmission at larger radii. Extensive tests are being carried out to prove the feasibility of implementing serial powering, which has been chosen as the baseline for the ITk pixel system due to the reduced material in the servicing cables foreseen for this option.

  17. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  18. Strip Detector for the ATLAS Detector Upgrade for the High - Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  19. Strip Detector for the ATLAS Detector Upgrade for the High-Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  20. The Phase II ATLAS Pixel Upgrade: The Inner Tracker (ITk)

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ITk (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m^2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to eta < 3.2 and two to eta < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions. Support...

  1. The Phase-II ATLAS ITk Pixel Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349918; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase~2 shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 $\\mathrm{m^2}$ of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| $<4$. Supporting structures will be based on low mass, highly stabl...

  2. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Science.gov (United States)

    Cavicchioli, C.; Chalmet, P. L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J. W.; Yang, P.

    2014-11-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget ( 0.3 %X0 in total for each inner layer) and higher granularity ( 20 μm × 20 μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ > 1 kΩ cm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1-5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  3. The BABAR detector: Upgrades, operation and performance

    OpenAIRE

    Barate, R.; Boutigny, D.; Couderc, F; Sanchez, PDA; Gaillard, J-M; Hicheur, A.; Karyotakis, Y; Lees, JP; Poireau, V.; Prudent, X.; Wogsland, BJ; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.

    2013-01-01

    This article is the Preprint version of the final published article which can be accessed at the link below. The BaBar detector operated successfully at the PEP-II asymmetric e+e− collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking. This work has b...

  4. The phase-1 upgrade of the CMS vertex detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The operation of the present pixel detector has started in 2010 with LHC operating at a center of mass (CM) energy of 7\\,TeV. At the beginning of 2012 the CM energy was increased to 8\\,TeV and within December 2012 a total of 19\\,fb$^{-1}$ integrated luminosity has been delivered, with instantaneous peak luminosities approaching $7\\times 10^{33}$\\,cm$^{-2}$s$^{-1}$. The present pixel detector was originally designed for a luminosity of $1\\times 10^{34}$\\,cm$^{-2}$s$^{-1}$ and a pileup (number of inelastic interaction per bunch crossing) of 25 for 25\\,ns bunch spacing. These beam parameters will be reached in the middle of the data taking period 2015-2017 (with an additional increase in the center of mass energy up to the value of 13-14\\,TeV) and then the peak luminosity will keep increasing until 2017, when it will reach the value of $1.5\\times 10^{34}$\\,cm$^{-2}$s$^{-1}$. The present detector will remain operative until the end of 2016 and will be replaced with an upgraded detector before Long Shutdown 2 (LS2...

  5. ATLAS detector upgrade plans and perspectives

    CERN Document Server

    Salzburger, A; The ATLAS collaboration

    2011-01-01

    With the LHC collecting first data at 7 TeV, plans are already advancing for a series of upgrades leading eventually to about five times the LHC design-luminosity some 10 years from now in the high luminosity LHC (HL-LHC) project. The goal is to extend the data set from about 300 fb-1 proposed for LHC running to 3000 fb-1 by around 2030. Coping with the high instantaneous and integrated luminosity will require many changes to the ATLAS detector. ATLAS is planning a multi-phase detector upgrade procedure, starting with initial modifications of the existing detector setup as early as 2013 towards large scale replacements of detector components during later shut down periods. The designs are developing rapidly for an all-new inner-tracker, big changes in the calorimeter and muon systems, as well as improved triggers. This talk summarises the environment expected at the HL-LHC and the status of the improvements to the ATLAS detector.

  6. FE-I4 Firmware Development and Integration with FELIX for the Pixel Detector

    CERN Document Server

    Yadav, Amitabh; Sharma, Abhishek; CERN. Geneva. EP Department

    2017-01-01

    CERN has planned a series of upgrades for the LHC. The last in this current series of planned upgrades is designated the HL-LHC. At the same time, the ATLAS Experiment will be extensively changed to meet the challenges of this upgrade (termed as the “Phase-II” upgrade). The Inner Detector will be completely rebuilt for the phase-II. The TRT, SCT and Pixel will be replaced by the all-silicon tracker, termed as the Inner Tracker (ITk). The read-out of this future ITk detector is an engineering challenge for the routing of services and quality of the data. This document describes the FPGA firmware development that integrates the GBT, Elink and Rx-Tx Cores for communication between the FE-I4 modules and the FELIX read-out system.

  7. Hit efficiency study of CMS prototype forward pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  8. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    CERN Document Server

    Savic, N

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more ra- diation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 {\\mu}m recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of th...

  9. Testing and Integration of the Service Cylinders for the CMS Phase 1 pixel detector

    CERN Document Server

    Ngadiuba, Jennifer

    2016-01-01

    The present 3-layer CMS pixel detector will be replaced with a new 4-layer pixel system, referred to as Phase~1 upgrade, during the LHC extended technical stop in winter 2016/2017. The upgraded detector will allow to maintain the excellent tracking performance of CMS at the upcoming higher luminosity conditions at the LHC. The addition of an extra layer, closer to the beam pipe, demands a complete redesign of its services. The barrel pixel detector is attached to four half cylinders which carry the services along the beam pipe, accommodate the cooling lines and house the electronics for detector readout and control. The service cylinders are a complex system in design as well as in production due to the large number of channels and tight space requirements. In this document we present the design of the system and discuss the construction and testing of the service cylinders for the barrel pixel detector. Furthermore, we present results of the testing and calibrations carried out with a set of new digital dete...

  10. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    Energy Technology Data Exchange (ETDEWEB)

    Krzywda, A., E-mail: akrzywda@purdue.edu [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Alagoz, E.; Bubna, M. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); INFN, Sezione di Torino, Torino (Italy); Solano, A. [Università di Torino, Torino (Italy); INFN, Sezione di Torino, Torino (Italy); Arndt, K. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Uplegger, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Betta, G.F. Dalla [TIFPA INFN and Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, I-38123 Povo di Trento, TN (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, Via Sommarive 18, I-38123 Povo di Trento, TN (Italy); Ngadiuba, J. [Università di Milano-Bicocca, Milan (Italy); Rivera, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Menasce, D.; Moroni, L.; Terzo, S. [Università di Milano-Bicocca, Milan (Italy); Bortoletto, D. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Prosser, A.; Adreson, J.; Kwan, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Osipenkov, I. [Texas A and M University, Department of Physics, College Station, TX 77843 (United States); Bolla, G. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); and others

    2014-11-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10{sup 15} n {sub eq}/cm{sup 2}.

  11. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    Science.gov (United States)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  12. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    Science.gov (United States)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  13. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Soldevila, U; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&amp;D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a...

  14. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Bernabeu, J; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  15. Radiation hardness studies of n{sup +}-in-n planar pixel sensors for the ATLAS upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Muenstermann, D., E-mail: Daniel.Muenstermann@TU-Dortmund.de [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Rummler, A.; Troska, G.; Wittig, T. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany)

    2011-12-01

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with the increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 to about 3000 fb{sup -1} which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5 Multiplication-Sign 10{sup 15}n{sub eq}cm{sup -2} at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2 Multiplication-Sign 10{sup 16}n{sub eq}cm{sup -2}. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for these fluences, n{sup +}-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a {sup 90}Sr source in the laboratory. The collected charge after IBL fluences was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. After SLHC fluences, still reliable operation of the devices could be observed with a collected charge of more than 5000 electrons per MIP.

  16. From vertex detectors to inner trackers with CMOS pixel sensors

    Science.gov (United States)

    Besson, A.; Pérez, A. Pérez; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2017-02-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R & D results for the conception of a CPS well adapted for the ALICE-ITS.

  17. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A; Spiriti, E.; Baudot, J.; Claus, G.; Goffe, M.; Winter, M.

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  18. Small pixel CZT detector for hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew David, E-mail: Matt.Wilson@stfc.ac.uk [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom); Cernik, Robert [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Chen, Henry [Redlen Technologies, Saanichton, British Columbia (Canada); Hansson, Conny [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Iniewski, Kris [Redlen Technologies, Saanichton, British Columbia (Canada); Jones, Lawrence L.; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom)

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20x20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20x20 pixels on a 250 {mu}m pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A {sup 241}Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09{+-}0.46 to 1.50{+-}0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20x20 array. A large area 80x80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  19. Small pixel CZT detector for hard X-ray spectroscopy

    Science.gov (United States)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  20. The COMPASS RICH-1 detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Colantoni, M.L.; Panzieri, D. [Univ E Piemonte, Alessandria (Italy); Joosten, R.; Naehle, O. [Univ Bonn, Helmholtz Inst Strahlen and Kernphys, D-5300 Bonn (Germany); Kolosov, V.N. [CERN, European Org Nucl Res, CH-1211 Geneva (Switzerland); Eyrich, W.; Lehmann, A.; Schroeder, W.; Teufel, A. [Univ Erlangen Nurnberg, Inst Phys, D-8520 Erlangen (Germany); Fischer, H.; Hagemann, R.; Heinsius, F.H.; Konigsmann, K.; Mutter, A.; Nerling, F.; Schill, C.; Wollny, H. [Univ Freiburg, Inst Phys, Freiburg (Germany); Kramer, D.; Polak, J.; Sulc, M.; Svec, M. [Tech Univ Liberec, Liberec (Czech Republic); Silva, L. [LIP, P-1000 Lisbon (Portugal); Von Harrach, D. [Johannes Gutenberg Univ Mainz, Inst Kernphys, D-6500 Mainz (Germany); Angerer, H.; Gerassimov, S.; Ketzer, B.; Konorov, I.; Mann, A.; Paul, S. [Tech Univ Munich, Dept Phys, D-8046 Garching (Germany); Finger, M.; Finger, M. Jr.; Slunecka, M.; Steiger, L. [Joint Inst Nucl Res Dubna, Dubna, (Russian Federation); Finger, M.; Finger, M. Jr.; Slunecka, M.; Steiger, L. [Charles Univ Prague, Prague (Czech Republic); Abbon, P.; Dafni, T.; Delagnes, E.; Deschamps, H.; Kunne, F.; Magnon, A.; Neyret, D.; Panebianco, S.; Rebourgeard, P.; Robinet, F. [CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette (France); Alekseev, M.; Busso, L.; Chiosso, M.; Costa, S.; Dibiase, N.; Faso, D.; Ferrero, A.; Maggiora, A. [Univ Turin, Turin (Italy); Alekseev, M.; Busso, L.; Chiosso, M.; Costa, S.; Dibiase, N.; Faso, D.; Ferrero, A.; Maggiora, A. [Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, (Italy); Apollonio, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Ciliberti, P.; Torre, S. Dalla; Diaz, V.; Duic, V.; Giorgi, M.; Gobbo, B.; Levorato, S.; Martin, A.; Menon, G.; Pagano, P.; Pesaro, G.; Rocco, E.; Schiavon, P.; Sozzi, F.; Tessarotto, F. [Univ Trieste, Trieste (Italy); Apollonio, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Ciliberti, P.; Torre, S. Dalla; Diaz, V.; Duic, V.; Giorgi, M.; Gobbo, B.; Levorato, S.; Martin, A. [and others

    2008-07-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging Cherenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 10{sup 6}/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photo-multiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electronics based on the MAD4 amplifier-discriminator and the dead-time free F1 TDC chip. The project was completely designed and implemented in less than two years: The upgraded detector is in operation since the 2006 CERN SPS run. We present the photon detection design, constructive aspects and test studies to characterise the single photon response of the MAPMTs coupled to the read-out system as well as the detector performance based on the 2006 data. (authors)

  1. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  2. SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades

    CERN Document Server

    Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P

    2012-01-01

    We present the results of the characterization of pixel modules composed of 75 μm thick n-in-p sensors and ATLAS FE-I3 chips, interconnected with the SLID (Solid Liquid Inter-Diffusion) technology. This technique, developed at Fraunhofer-EMFT, is explored as an alternative to the bump-bonding process. These modules have been designed to demonstrate the feasibility of a very compact detector to be employed in the future ATLAS pixel upgrades, making use of vertical integration technologies. This module concept also envisages Inter-Chip-Vias (ICV) to extract the signals from the backside of the chips, thereby achieving a higher fraction of active area with respect to the present pixel module design. In the case of the demonstrator module, ICVs are etched over the original wire bonding pads of the FE-I3 chip. In the modules with ICVs the FE-I3 chips will be thinned down to 50 um. The status of the ICV preparation is presented.

  3. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  4. Silicon Strip Detectors for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called High Luminosity LHC (HL-LHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity up to 5 x 1034 cm-2 s-1. The ATLAS experiment will need to build a new tracker for HL operation, which would cope with the increase in pile-up backgrounds at the higher luminosity. A new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of different designs. The irradiated sensors were subsequently tested in order to study the radiation-induced degradation, and determine their performance after irradiation of up to ...

  5. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  6. Detector apparatus having a hybrid pixel-waveform readout system

    Science.gov (United States)

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  7. Test of CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Qiang; Jung, Ira; Groza, Michael; Dowkontt, Paul; Bose, Richard; Simburger, Garry; Burger, Arnold; Krawczynski, Henric

    2007-01-01

    The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.

  8. \\title{Low-Cost Bump-Bonding Processes for High Energy Physics Pixel Detectors}

    CERN Document Server

    Caselle, Michele; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2015-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area at reasonable costs are required. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of the production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin ($15\\,\\rm{\\mu m}$) gold wire is presented. This technique allows producing metal bumps with diameters down to $30\\,\\rm{\\mu m}$ without using photolithography processes, which are typically required to provide suitable under bu...

  9. Data encoding efficiency in pixel detector readout with charge information

    CERN Document Server

    Garcia-Sciveres, Maurice

    2016-01-01

    The minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the bits used for by the FE-I4 pixel readout chip of the ATLAS experiment.

  10. Data encoding efficiency in pixel detector readout with charge information

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, Maurice, E-mail: mgs@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wang, Xinkang [University of Chicago, Chicago, IL (United States)

    2016-04-11

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  11. Monolithic CMOS pixel detector for international linear collider vertex detection

    Indian Academy of Sciences (India)

    J E Brau; O Igonkina; N Sinew; D Strom; C Baltay; W Emmet; H Neal; D Rabinowitz

    2007-12-01

    A monolithic CMS pixel detector is under development for an ILC experiment. This chronopixel array provides a time stamp resolution of one bunch crossing, a critical feature for background suppression. The status of this effort is summarized.

  12. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  13. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  14. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Science.gov (United States)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  15. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  16. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Q; Dowkontt, P; Martín, J; Beilicke, M; Jung, I; Groza, M; Bürger, A; De Geronimo, G; Krawczynski, H

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pixel anodes fabricated on the anode surface with the area up to 2 cm x2 cm and the thickness of CZT detectors ranges from 0.5 cm to 1 cm. Energy spectra resolution and electron mobility-lifetime products of 8x8 pixels CZT detector with different thicknesses have been investigated.

  17. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  18. Geneva University: Pixel Detectors – trends and options for the future

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25 April 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE Science III, Auditoire 1S081 30Science III, Auditoire 1S081 30 Pixel Detectors – trends and options for the future Prof. Norbert Wermes - University of Bonn  Pixel detectors have been invented in the early 90s with the advancement of micro technologies. With the advent of the LHC, big vertex detectors have demonstrated that the pixel detector type is holding many of the promises it had made before. Meanwhile new, different or just improved variants of the pixel technology are being studied for their suitability for future experiments or experiment upgrades. The talk will address the various pro's and con's comparing hybrid and monolithic pixel technologies and their su...

  19. Signal height in silicon pixel detectors irradiated with pions and protons

    CERN Document Server

    Rohe, T.; Bean, A.; Dambach, S.; Erdmann, W.; Langenegger, U.; Martin, C.; Meier, B.; Radicci, V.; Sibille, J.; Trub, P.

    2009-01-01

    Pixel detectors are used in the innermost part of multi purpose experiments at the Large Hadron Collider (LHC) and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of the detectors has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade the fluence will be much higher and it is not yet clear up to which radii the present pixel technology can be used. In order to establish such a limit, pixel sensors of the size of one CMS pixel readout chip (PSI46V2.1) have been bump bonded and irradiated with positive pions up to 6E14 Neq/cm^2 at PSI and with protons up to 5E15 Neq/cm^2. The sensors were taken from production wafers of the CMS barrel pixel detector. They use n-type DOFZ material with a resistance of about 3.7kOhm cm and an n-side read out. As the performance of silicon sensors is limited by trapping, the response to a Sr-90 source was investigated. The highly e...

  20. HEXITEC ASIC-a pixellated readout chip for CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)], E-mail: l.l.jones@stfc.ac.uk; Seller, Paul; Wilson, Matthew; Hardie, Alec [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20x20 pixel ASIC has been developed and manufactured on a standard 0.35 {mu}m CMOS process.

  1. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    Science.gov (United States)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  2. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  3. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  4. Diamond Detectors for the TOTEM Timing Upgrade

    CERN Document Server

    Antchev, G.; The TOTEM collaboration; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.;; Bozzo, M.; Broulim, P.; Buzzo, A.; Cafagna, F.S.; Campanella, C.E.; Catanesi, M.G.; Csanad, M.; Csorgo, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kavspar, J.; Kopal, J.; Kosinski, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajivcek, M.V.; Losurdo, L; Lo Vetere, M.; Lucas-Rodriguez, F.; Lucsanyi, D.; Macri, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Palocko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Prochazka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P; Zielinski, K

    2016-01-01

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons’ TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed sampling the waveform. After introducing the physics studies that will most profit from the addition of...

  5. The COMPASS RICH-1 detector upgrade

    CERN Document Server

    Abbon, P; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Busso, L; Chiosso, M; Ciliberti, P; Colantoni, M L; Costa, S; Dalla Torre, S; Dafni, T; Delagnes, E; Deschamps, H; Díaz, V; Dibiase, N; Duic, V; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K C; Kolosov, V N; Konorov, I; Kramer, Daniel; Kunne, F; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Nerling, F; Neyret, D; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Polak, J; Rebourgeard, P; Robinet, F; Rocco, E; Schiavon, P; Schill, C; Schröder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging CHerenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 10$^{6}$/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electr...

  6. Pixel-level Analog-To-Digital Converters for Hybrid Pixel Detectors with energy sensitivity

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  7. Design of pixel-level ADCs for energy-sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  8. Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg

    2015-01-01

    The high-luminosity upgrade fo the large hadron collider foreseen for 2023 resulted in the decision to replace the tracker system of the CMS experiment. The innermost layer of the new pixel detector will experience fluences in the order of $\\phi_{eq} \\approx 10^{16}$~cm$^{-2}$ and a dose of $\\approx 5$~MGy after an integrated luminosity of 3000~fb$^{-1}$. Several materials and designs are under investigation in order to build a detector that can withstand such high fluences. Thin planar silicon sensors are good canditates to achieve this goal since the degradation of the signal produced by traversing particles is less severe than for thicker devices. A study has been carried out in order to characterize highly irradiated planar epitaxial silicon sensors with an active thickness of 100~$\\mu$m. The investigation includes pad diodes and strip detectors irradiated up to a fluence of $\\phi_{eq} = 1.3 \\times 10^{16}$~cm$^{-2}$. The electrical properties of diodes have bee...

  9. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  10. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  11. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  12. 3D silicon pixel detectors for the High-Luminosity LHC

    Science.gov (United States)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  13. Challenges of small-pixel infrared detectors: a review

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  14. Fabrication of ATLAS pixel detector prototypes at IRST

    CERN Document Server

    Boscardin, M; Gregori, P; Zen, M; Zori, N

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed. (5 refs).

  15. Charge induction in semiconductor detectors with pixellated structure

    NARCIS (Netherlands)

    Samedov, Victor V.

    2007-01-01

    Considerable interest is now being attracted to the next generation of compound semiconductor detectors with pixellated structure in application to x-ray and gamma-astronomy, nuclear spectroscopy and nuclear medicine. The spatial resolution of this type of detectors is mainly determined by the proce

  16. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    CERN Document Server

    Baselga, Marta

    2017-01-01

    The LHC is expected to reach luminosities up to 3000fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade, shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large $\\eta$ angles.

  17. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    Science.gov (United States)

    Baselga, M.; Pellegrini, G.; Quirion, D.

    2017-03-01

    The LHC is expected to reach luminosities up to 3000 fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  18. Pixels simultaneous detection probabilities and spatial resolution determination of pixelized detectors by means of correlation measurements

    CERN Document Server

    Grabskii, V

    2007-01-01

    A novel method to estimate the pixels simultaneous detection probability and the spatial resolution of pixelized detectors is proposed, which is based on the determination of the statistical correlations between detector neighbor pixels. The correlations are determined by means of noise variance measurement for a isolated pixels and the difference between neighbor pixels. The method is validated using images from the two different GE Senographe 2000D mammographic units. The pixelized detector has been irradiated using x-rays along its entire surface. It is shown that the pixel simultaneous detection probabilities can be estimated within accuracy 0.001 - 0.003, where the systematic error is estimated to be smaller than 0.005. The presampled two-dimensional point-spread function (PSF0) is determined using a single Gaussian and a sum of two Gaussian approximations. The obtained results for the presampled PSF0 show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximatio...

  19. Testbeam and laboratory test results of irradiated 3D CMS pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bubna, Mayur [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907-1396 (United States); Alagoz, Enver, E-mail: enver.alagoz@cern.ch [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Cervantes, Mayra; Krzywda, Alex; Arndt, Kirk [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Obertino, Margherita; Solano, Ada [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino (Italy); Dalla Betta, Gian-Franco [INFN Padova (Gruppo Collegato di Trento) (Italy); Dipartimento di Ingegneria e Scienzadella Informazione, Universitá di Trento, I-38123 Povo di Trento (Italy); Menace, Dario; Moroni, Luigi [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Universitá degli Studi di Milano Bicocca, 20126 Milano (Italy); Uplegger, Lorenzo; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Osipenkov, Ilya [Texas A and M University, Department of Physics, College Station, TX 77843-4242 (United States); Andresen, Jeff [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Bolla, Gino; Bortoletto, Daniela [Purdue University, Department of Physics, West Lafayette, IN 47907-1396 (United States); Boscardin, Maurizio [Centro per i Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, I-38123 Povo di Trento (Italy); Marie Brom, Jean [Strasbourg IPHC, Institut Pluriedisciplinaire Hubert Curien, F-67037 Strasbourg Cedex (France); Brosius, Richard [State University of New York at Buffalo (SUNY), Department of Physics, Buffalo, NY 14260-1500 (United States); Chramowicz, John [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); and others

    2013-12-21

    The CMS silicon pixel detector is the tracking device closest to the LHC p–p collisions, which precisely reconstructs the charged particle trajectories. The planar technology used in the current innermost layer of the pixel detector will reach the design limit for radiation hardness at the end of Phase I upgrade and will need to be replaced before the Phase II upgrade in 2020. Due to its unprecedented performance in harsh radiation environments, 3D silicon technology is under consideration as a possible replacement of planar technology for the High Luminosity-LHC or HL-LHC. 3D silicon detectors are fabricated by the Deep Reactive-Ion-Etching (DRIE) technique which allows p- and n-type electrodes to be processed through the silicon substrate as opposed to being implanted through the silicon surface. The 3D CMS pixel devices presented in this paper were processed at FBK. They were bump bonded to the current CMS pixel readout chip, tested in the laboratory, and testbeams carried out at FNAL with the proton beam of 120 GeV/c. In this paper we present the laboratory and beam test results for the irradiated 3D CMS pixel devices. -- Highlights: •Pre-irradiation and post-irradiation electrical properties of 3D sensors and 3D diodes from various FBK production batches were measured and analyzed. •I–T measurements of gamma irradiated diodes were analyzed to understand leakage current generation mechanism in 3D diodes. •Laboratory measurements: signal to noise ratio and charge collection efficiency of 3D sensors before and after irradiation. •Testbeam measurements: pre- and post-irradiation pixel cell efficiency and position resolution of 3D sensors.

  20. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  1. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  2. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  3. Small pitch pixel sensors\\\\ for the CMS Phase II upgrade

    CERN Document Server

    Steinbrueck, Georg

    2015-01-01

    The CMS collaboration has undertaken two sensor R\\&D programs on thin n-in-p planar and 3D silicon sensor technologies. To cope with the increase in instantaneous luminosity, the pixel area has to be reduced to approximately 2500 $\\mu$m$^{2}$ to keep the occupancy at the percent level. Suggested pixel cell geometries to match this requirement are {50$\\times$50 }$\\mu$...

  4. A 65 nm CMOS analog processor with zero dead time for future pixel detectors

    Science.gov (United States)

    Gaioni, L.; Braga, D.; Christian, D. C.; Deptuch, G.; Fahim, F.; Nodari, B.; Ratti, L.; Re, V.; Zimmerman, T.

    2017-02-01

    Next generation pixel chips at the High-Luminosity (HL) LHC will be exposed to extremely high levels of radiation and particle rates. In the so-called Phase II upgrade, ATLAS and CMS will need a completely new tracker detector, complying with the very demanding operating conditions and the delivered luminosity (up to 5×1034 cm-2 s-1 in the next decade). This work is concerned with the design of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier featuring a detector leakage compensation circuit, and a compact, single ended comparator that guarantees very good performance in terms of channel-to-channel dispersion of threshold without needing any pixel-level trimming. A flash ADC is exploited for digital conversion immediately after the charge amplifier. A thorough discussion on the design of the charge amplifier and the comparator is provided along with an exhaustive set of simulation results.

  5. Performance of silicon pixel detectors at small track incidence angles

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN, as well as simulated data.

  6. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  7. Evaporative CO$_2$ microchannel cooling for the LHCb VELO pixel upgrade

    CERN Document Server

    de Aguiar Francisco, Oscar A; Collins, Paula; Dumps, Raphael; John, Malcolm; Mapelli, Alessandro; Romagnoli, Giulia

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO$_2$ circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO$_2$, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO$_2$ cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use o...

  8. Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade

    Science.gov (United States)

    de Aguiar Francisco, O. A.; Buytaert, J.; Collins, P.; Dumps, R.; John, M.; Mapelli, A.; Romagnoli, G.

    2015-05-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO2 circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO2, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO2 cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use of restrictions implemented before the entrance to a race track like layout of the main cooling channels. The coolant flow and pressure drop have been simulated as well as the thermal performance of the device. This proceeding describes the design and optimization of the cooling system for LHCb and the latest prototyping results.

  9. Leakage current measurements on pixelated CdZnTe detectors

    NARCIS (Netherlands)

    Dirks, B.P.F.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R&D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9×0.9 mm2) or 256 (0.5×0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several

  10. Silicon pixel detector prototyping in SOI CMOS technology

    Science.gov (United States)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  11. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  12. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  13. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  14. Real-time control of the beam attenuation with XPAD hybrid pixel detector

    Science.gov (United States)

    Dawiec, A.; Garreau, Y.; Bisou, J.; Hustache, S.; Kanoute, B.; Picca, F.; Renaud, G.; Coati, A.

    2016-12-01

    In order to fully benefit from a beam produced by modern synchrotron light sources, characterised by a wide and continuous energy spectrum, high brightness and a very high intensity, advancement in detector technology has been made over the last decades. However, one of the main limitations of the state-of-the-art counting hybrid pixel detectors is the maximum count-rate that is very often few orders of magnitudes lower than of the incident, reflected or diffracted beam flux. Therefore, direct beam attenuation is mandatory in order to perform the measurements according to the detector's characteristics. In this work we present a major upgrade of a fast attenuation system developed at Synchrotron SOLEIL, which allows for a dynamical change of the beam attenuation as a function of the photon flux received by XPAD S140 photon counting detector. The system performs a cyclic real-time estimation of the flux received by every pixel during acquisition of an image and searches for clusters of at least two pixels that exceed user defined levels of counts/s. The beam attenuation is immediately and automatically changed in order to guarantee that the detector will always operate in its linear range even during a long continuous scan, by acting on the direct attenuators.

  15. UPGRADES

    CERN Multimedia

    D. Contardo and J. Spalding

    2012-01-01

      Good progress is being made on the projects that will be installed during LS1. CSC chamber production for ME4/2 is progressing at a rate of four chambers per month, with 25 built so far, and the new electronics for ME1/1 is undergoing a pre-production integration testing. For the RPC chambers, gap production is underway with first deliveries to the chamber assembly sites at CERN and Ghent. The third site at Mumbai will begin production next month. For the PMT replacement in the forward hadron calorimeters (HF), the 1728 PMTs are all characterised and ready to be installed. Testing of the electronics boards is going well. Preparations to replace the HPDs in the outer calorimeter (HO) with SiPMs are also on-track. All components are at CERN and burn-in of the new front-end electronics is proceeding. There are three major upgrade projects targeting the period from LS1 through LS2: a new pixel detector, upgraded photo-detectors and electronics for HCAL, and development of a new L1 Trigger. The new ...

  16. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  17. A prototype hybrid pixel detector ASIC for the CLIC experiment

    CERN Document Server

    Valerio, P; Arfaoui, S; Ballabriga, R; Benoit, M; Bonacini, S; Campbell, M; Dannheim, D; De Gaspari, M; Felici, D; Kulis, S; Llopart, X; Nascetti, A; Poikela, T; Wong, W S

    2014-01-01

    A prototype hybrid pixel detector ASIC specifically designed to the requirements of the vertex detector for CLIC is described and first electrical measurements are presented. The chip has been designed using a commercial 65 nm CMOS technology and comprises a matrix of 64x64 square pixels with 25 μm pitch. The main features include simultaneous 4-bit measure- ment of Time-over-Threshold (ToT) and Time-of-Arrival (ToA) with 10 ns accuracy, on-chip data compression and power pulsing capability.

  18. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  19. Signal and noise of Diamond Pixel Detectors at High Radiation Fluences

    CERN Document Server

    Tsung, Jieh-Wen; Hügging, Fabian; Kagan, Harris; Krüger, Hans; Wermes, Norbert

    2012-01-01

    CVD diamond is an attractive material option for LHC vertex detectors because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 10$^{15}$ n$_{eq}$ cm$^{-2}$, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the chang...

  20. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-01-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  1. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  2. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  3. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  4. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237541; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will al...

  5. ATLAS pixel detector design for the HL-LHC

    Science.gov (United States)

    Smart, B.

    2017-02-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector is called the Inner Tracker (ITk). The ITk will cover an extended η-range: at least to |η|<3.2, and likely up to 0|η|<4.. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into `extended' and `inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will also be discussed.

  6. KPIX a pixel detector imaging chip

    CERN Document Server

    Cadeddu, S; Caria, M

    2002-01-01

    We present a VLSI custom device, named KPIX, developed in a 0.6 mu m CMOS technology. The circuit is dedicated to readout solid-state detectors covering large areas (on the order of square centimetre) and featuring very small currents. KPIX integrates 1024 channels (current amplifiers) and 8 ADCs on a 15.5x4 mm sup 2 area. Both an analogue and digital readout are allowed, with a 10 bit amplitude resolution. Amplifiers are organized in 8 columns of 128 rows. When choosing the digital or the analogue readout, the complete set of channels can be read out in about 30 ms. The specific design of the amplification cells allows to measure very small input current levels, on the order of fractions of pico-ampere. Power consumption has also been kept at the level of 80 mu W per cell and 150 mW (peak value) in total. The specific chip architecture and geometry allow use of many KPIX circuits together in order to serve a large detector sensitive area. The KPIX structure is presented along with some measurements character...

  7. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  8. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  9. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    OpenAIRE

    Li, Q.; Garson, A.; Dowkontt, P.; Martin, J.; Beilicke, M; Jung, I.; Groza, M.; A. Burger; De Geronimo, G.; Krawczynski, H.; .

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pi...

  10. Charge amplitude distribution of the Gossip gaseous pixel detector

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, Cora; Schmitz, Jurriaan; Smits, Sander M.; Timmermans, J.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few

  11. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  12. A DC-DC Conversion Powering Scheme for the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Sammet, Jan Domenik; Wlochal, Michael

    2012-01-01

    The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking betwe...

  13. The DC-DC Conversion Power System of the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    Klein, Katja

    2014-01-01

    The power system of the Phase-1 pixel detector will be described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, will be detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance will be discussed.

  14. Automated procedures for the assembly of the CMS Phase 1 upgrade pixel modules

    Science.gov (United States)

    Wade, Alex; CMS Collaboration

    2016-03-01

    The Phase 1 upgrade of the pixel tracker for the CMS experiment requires the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. The precision assembly of modules in this volume is made possible using several robotic processes for dispensing epoxy,positioning of sensor components, automatic wire-bonding and robotic deposition of elastomer for wire bond encapsulation. We will describe the these processes in detail, along with the measurements that quanitfy the quality of assembled modules, and describe the subsequent steps in which the sensor modules are used in the construction of the Phase 1 pixel tracker. With support from USCMS.

  15. Pixel hybrid photon detectors for the ring imaging Cherenkov detectors of LHCb

    CERN Document Server

    Somerville, L

    2005-01-01

    A Pixel Hybrid Photon Detector (pixel HPD) has been developed for the LHCb Ring Imaging Cherenkov (RICH) detectors. The pixel HPD is a vacuum tube with a multi-alkali photocathode, high-voltage cross- focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a CMOS readout chip; the readout chip is thus fully encapsulated in the device. The pixel HPD fulfils the stringent requirements for the RICH detectors of LHCb, combining single photon sensitivity, high signal-to-noise ratio and fast readout with an ~8cm diameter active area and an effective pixel size of 2.5mm 2.5mm at the photocathode. The performance and characteristics of two prototype pixel HPDs have been studied in laboratory measurements and in recent beam tests. The results of all measurements agree with expectations and fulfil the LHCb RICH requirements. In readiness for production of the ~500pixel HPDs for the RICH detectors, a test programme was designed and implemented to ensure component quality control at eac...

  16. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, Marco, E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Bagolini, Alvise; Boscardin, Maurizio [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, Luciano [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, and INFN Sez. di Pisa, Pisa (Italy); Chauveau, Jacques [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, Alessandro [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-06-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×10{sup 15}n{sub eq}/cm{sup 2} comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb{sup −1}) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach. -- Highlights: ► We conceive n-on-p edgeless planar silicon sensors. ► These sensors are aimed at the Phase-II of the ATLAS experiment. ► Simulations show sensors can be operated well in overdepletion. ► Simulations show the sensor capability to collect charge at the periphery. ► Simulations prove the above statements to be true even after irradiation.

  17. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  18. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  19. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  20. Signal variations in high granularity Si pixel detectors

    CERN Document Server

    Tlustos, L; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Fixed pattern noise is one of the limiting factors of image quality and degrades the achievable spatial resolution. In the case of silicon sensors non-uniformities due to doping inhomogeneities can be limited by operating the sensor in strong overdepletion. For high granularity photon counting pixel detectors an additional high frequency interpixel signal variation is an important factor for the achievable signal to noise ratio (SNR). It is common practice to apply flatfield corrections to increase the SNR of the detector system. For the case of direct conversion detectors it can be shown that the Poisson limit can be reached for floodfield irradiation. However when used for imaging with spectral X-ray sources flatfield corrections are less effective. This is partly a consequence of charge sharing between adjacent pixels, which gives rise to an effective energy spectrum seen by the readout, which is different from the spectral content of the incident beam. In this paper we present simulations and measurements...

  1. Pixel detector system development at Diamond Light Source

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  2. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  3. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  4. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10{sup 35}/cm{sup 2}s{sup 1} is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10{sup 16} 1-MeV-neutrons per square centimeter (n{sub eq}/cm{sup 2}). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 {mu}m and 150 {mu}m proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive

  5. Line profile modelling for multi-pixel CZT detectors

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  6. The BaBar detector: Upgrades, operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O' Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T' Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S. -J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P. -A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D' Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P. -F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn' ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O' Grady, C. P.; O' Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va' vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  7. Achievements of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Nellist, C

    2015-01-01

    In the framework of the HL-LHC upgrade, the ATLAS experiment plans to introduce an all-silicon inner tracker to cope with the elevated occupancy. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project (PPS) was established comprising 19 institutes and more than 90 scientists. The paper provides an overview of the research and development project and highlights accomplishments, among them: beam test results with planar sensors up to innermost layer fluences (> 10^16 n_eq cm^2); measurements obtained with irradiated thin edgeless n-in-p pixel assemblies; recent studies of the SCP technique to obtain almost active edges by postprocessing already existing sensors based on scribing, cleaving and edge passivation; an update on prototyping efforts for large areas: sensor design improvements and concepts for low-cost hybridisation; comparison between Secondary Ion Mass Spectrometry results and TCAD simulations. Togethe...

  8. Comprehensive measurements of GaAs pixel detectors capacitance

    CERN Document Server

    Caria, M; D'Auria, S; Lai, A; Randaccio, P; Cadeddu, S

    2002-01-01

    We have studied GaAs pixel detectors on semi-insulating wafers with Schottky contacts. We performed comprehensive measurements on the inter-pixel and capacitance to back plane. Being semi-insulating, the behaviour is totally different with respect to other common semiconductors, such as high resistivity silicon. Non-homogeneities are also an issue, due to both the contacts and the crystal bulk. In order to detect them and their influence on capacitance, we undertook systematic measurements with different configurations of the measuring electrodes.

  9. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  10. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    Science.gov (United States)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  11. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    Science.gov (United States)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  12. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Max Rauch; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  13. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  14. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  15. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    CERN Document Server

    Grinstein, S; Boscardin, M; Christophersen, M; Da Via, C; Betta, G -F Dalla; Darbo, G; Fadeyev, V; Fleta, C; Gemme, C; Grenier, P; Jimenez, A; Lopez, I; Micelli, A; Nelist, C; Parker, S; Pellegrini, G; Phlips, B; Pohl, D L; Sadrozinski, H F -W; Sicho, P; Tsiskaridze, S

    2013-01-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  16. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, S., E-mail: sgrinstein@ifae.es [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Baselga, M. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Trento (Italy); Christophersen, M. [U.S. Naval Research Laboratory, Washington (United States); Da Via, C. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Dalla Betta, G.-F. [Universita degli Studi di Trento and INFN, Trento (Italy); Darbo, G. [INFN Sezione di Genova, Genova (Italy); Fadeyev, V. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); Fleta, C. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Gemme, C. [Universita degli Studi di Trento and INFN, Trento (Italy); Grenier, P. [SLAC National Accelerator Laboratory, Menlo Park (United States); Jimenez, A.; Lopez, I.; Micelli, A. [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Nelist, C. [INFN Sezione di Genova, Genova (Italy); Parker, S. [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley (United States); Pellegrini, G. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Phlips, B. [U.S. Naval Research Laboratory, Washington (United States); Pohl, D.-L. [University of Bonn, Bonn (Germany); Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); and others

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  17. Serial powering Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    CERN Document Server

    Ta, D B; Hugging, F; Fischer, P; Grosse-Knetter, J; Runólfsson, O; Wermes, N

    2006-01-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensive...

  18. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    Science.gov (United States)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  19. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  20. System Electronics for the ATLAS Upgraded Strip Detector

    CERN Document Server

    Affolder, T; The ATLAS collaboration; Clark, A; Dabrowskic, W; Dewitt, J; Diez Cornell, S; Dressdant, N; Fadeyev, V; Farthouat, P; Ferrere, D; Greenall, A; Grillo, A; Kaplon, J; Key-Charriere, M; La Marra, D; Lipeles, E; Lynn, D; Newcomer, M; Pereirab, F; Phillips, P; Spencer, E; Swientekc, K; Warren, M; Weidberg, A

    2013-01-01

    The basic concept of the front-end system of the Silicon Strip Detector in the Atlas Detector upgraded for the HL-LHC is being elaborated and proposed. The readout electronics of this new detector is based on front-end chips (ABC130), Hybrid Controller chips (HCC) and End of Stave Controller chips (EOSC). This document defines the basic functionality of the front-end system and of the different ASICs.

  1. Development of an X-ray imaging system with SOI pixel detectors

    Science.gov (United States)

    Nishimura, Ryutaro; Arai, Yasuo; Miyoshi, Toshinobu; Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo

    2016-09-01

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented.

  2. Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study.

    Science.gov (United States)

    Iida, Hirokazu; Ogawa, Koichi

    2011-02-01

    The aim of this work was to evaluate a pixelated semiconductor detector and non-pixelated scintillation detector in a pinhole SPECT system for small animal imaging. We assumed two pixelated CdTe semiconductor detectors (a monolithic type and a modular type) and two non-pixelated NaI(Tl) scintillation detectors (a conventional type and a large detector field type). For the monolithic semiconductor detector we assumed that the size of a pixel was 1.0 × 1.0 mm², the thickness 1 mm, and an effective detector field 128 × 128 mm². For the modular-type semiconductor detector we assumed that the size of a pixel was 2.5 × 2.5 mm², the thickness 5 mm, and an effective detector field 320 × 320 mm². For the two scintillation detectors we assumed that the size of a pixel was 1.4 × 1.4 mm² and the intrinsic spatial resolution 4.0 mm FWHM, and the thickness 9 mm. For the conventional scintillation detector we assumed that the effective detector field was 179.2 × 179.2 mm², and for the large field scintillation detector 358.2 × 358.2 mm² and the magnification factor two. In the simulation we used a pinhole collimator with a pinhole size of 0.3 mm. We reconstructed SPECT images of hot-rod and cold-channel phantoms with projection data calculated with a Monte Carlo method assuming a fixed data acquisition time, and evaluated the image quality with respect to contrast and spatial resolution. In addition, we calculated the scatter fraction to compare the amount of scattered photons between the pixelated and non-pixelated detectors. The image quality of the modular-type pixelated detector was similar to that of the non-pixelated detector operated with a twofold magnified data acquisition. The scattered photons and the parallax effect in the pixelated detector were small and similar to those in the non-pixelated detector. The performance of a modular-type pixelated semiconductor detector was almost the same as that of a non-pixelated scintillation detector with a magnified

  3. Optimisation of ROB mapping for SCT and Pixel detectors

    CERN Document Server

    Wheeler, S

    1999-01-01

    A simple object-oriented program has been written to simulate the SCT and Pixel detectors in order to determine the suitability of various ROB mapping schemes in the context of the Level 2 trigger. Layer and tower mappings have been investigated separately for the SCT barrel and endcap and for the Pixel barrel and endcap. Events containing one RoI were fired at each detector part and the number of ROBs hit determined. As a result, plots of ROB output data rates and ROB hit frequency as a function of ROB ID were obtained. In general it was found that layer mapping schemes might result in unacceptably high data rates and frequencies. This result would have to be confirmed with more detailed modelling. The tower mappings investigated, in general produced acceptable rates.

  4. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  5. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  6. Monolithic active pixel radiation detector with shielding techniques

    Science.gov (United States)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  7. Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

    CERN Document Server

    Gomez Marzoa, Manuel

    The Phase-1 upgrade of the LHC to full design luminosity, planned for 2019 at CERN, requires the modernisation of the experiments around the accelerator. The Inner Tracking System (ITS), the innermost detector at the ALICE experiment, will be upgraded by replacing the current apparatus by new silicon pixels arranged in 7 cylindrical layers. Each layer is composed by multiple independent modules, named staves, which provide mechanical support and cooling to the chips. This thesis aims to develop and validate experimentally an ultra-lightweight stave cooling system for the ITS Upgrade. The moderate thermal requirements, with a nominal power density of 0.15 W/cm^2 and a maximum chip temperature of 30ºC, are counterweighted by extreme low-mass restrictions, obliging to resort to lightweight, non-metallic materials, such as carbon fibre-reinforced polymers and plastics. Novel lightweight stave concepts were developed and experimentally validated, meeting the thermal requirements with minimal material inventory. T...

  8. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  9. Pixel diamond detectors for excimer laser beam diagnostics

    Science.gov (United States)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  10. Commissioning and Operation of the New CMS Phase-1 Pixel Detector

    CERN Document Server

    Si, Weinan

    2017-01-01

    The Phase-1 upgrade of the CMS pixel detector is built out of four barrel layers (BPix) and three forward disks in each endcap (FPix). It comprises a total of 124M pixel channels in 1,856 modules, and it is designed to withstand instantaneous luminosities of up to $2 \\times 10^{34}$\\,cm$^{-2}$s$^{-1}$. Different parts of the detector were assembled over the last year and later brought to CERN for installation inside the CMS tracker. At various stages during the assembly tests have been performed to ensure that the readout and power electronics and the cooling system meet the design specifications. After tests of the individual components, system tests were performed before the installation inside CMS. In addition to reviewing these tests, we also present results from the final commissioning of the detector in-situ using the central CMS DAQ system. Finally we review results from the initial operation of the detector first with cosmic rays and then with pp collisions.

  11. A new Data Acquisition System for the CMS Phase 1 Pixel Detector

    CERN Document Server

    Kornmayer, Andreas

    2016-01-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ s...

  12. A new data acquisition system for the CMS Phase 1 pixel detector

    Science.gov (United States)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  13. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  14. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  15. Current Status of the Pixel Phase I Upgrade in CMS: Barrel Module Production

    CERN Document Server

    Bartek, Rachel

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. Before 2018 the instantaneous luminosity of the LHC is expected to reach about 2~x~$10^{34}~\\rm{cm}^{-2}\\rm{s}^{-1}$, which will significantly increase the number of interactions per bunch crossing. To maintain a high tracking efficiency, CMS has planned to replace the current pixel system during phase I by a new lightweight detector, equipped with an additional 4th layer in the barrel, and one additional forward/backward disk. The present status of barrel modules production will be presented, including preliminary results from tests on the first production pixel modules of the new pixel tracker.

  16. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  17. Pixel hybrid photon detector magnetic distortions characterization and compensation

    CERN Document Server

    Aglieri-Rinella, G; D'Ambrosio, Carmelo; Forty, Roger W; Gys, Thierry; Patel, Mitesh; Piedigrossi, Didier; Van Lysebetten, Ann

    2004-01-01

    The LHCb experiment requires positive kaon identification in the momentum range 2-100 GeV/c. This is provided by two ring imaging Cherenkov detectors. The stringent requirements on the photon detectors are fully satisfied by the novel pixel hybrid photon detector, HPD. The HPD is a vacuum tube with a quartz window, S20 photo-cathode, cross-focusing electron optics and a silicon anode encapsulated within the tube. The anode is a 32*256 pixels hybrid detector, with a silicon sensor bump-bonded onto a readout chip containing 8192 channels with analogue front-end and digital read-out circuitry. An external magnetic field influences the trajectory of the photoelectrons and could thereby degrade the inherent excellent space resolution of the HPD. The HPDs must be operational in the fringe magnetic field of the LHCb magnet. This paper reports on an extensive experimental characterization of the distortion effects. The characterization has allowed the development of parameterisations and of a compensation algorithm. ...

  18. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  19. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  20. Test-beam activities and results for the ATLAS ITk pixel detector

    CERN Document Server

    Bisanz, Tobias; The ATLAS collaboration

    2017-01-01

    The Phase-II upgrade of the LHC will result in an increase of the instantaneous luminosity up to about 5×1034 cm−2s−1. To cope with the challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300~hits/FE/s as well as a fluence of 2×1016neqcm−2. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about 10~m2. These range from thin planar silicon, over 3D silicon, to active CMOS sensors. After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in ITk. The setups used in the ITk Pixel testbeam campaigns will be presented, inclu...

  1. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  2. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  3. Silicon pixel-detector R&D for CLIC

    Science.gov (United States)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  4. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  5. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  6. The Phase-II ATLAS Pixel Tracker Upgrade: Layout and Mechanics

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    In early 2017 a new layout will be decided for the ATLAS experiment as it undergoes an upgrade of its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The various layouts are described and a description of the supporting structures are presented, along with results from testing of prototypes.

  7. Development and characterisation of Monolithic Active Pixel Sensor prototypes for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Collu, Alberto

    ALICE (A Large Ion Collider Experiment) is dedicated to the study and characterisation of the Quark-­‐Gluon Plasma (QGP), exploiting the unique potential of ultrarelativistic heavy-­‐ion collisions at the CERN Large Hadron Collider (LHC). The increase of the LHC luminosity leading up to about 50 kHz Pb-­‐Pb interaction rate after the second long shutdown (in 2018-­‐2019) will offer the possibility to perform high precision measurements of rare probes over a wide range of momenta. These measurements are statistically limited or not even possible with the present experimental set up. For this reason, an upgrade strategy for several ALICE detectors is being pursued. In particular, it is foreseen to replace the Inner Tracking System (ITS) by a new detector which will significantly improve the tracking and vertexing capabilities of ALICE in the upgrade scenario. The new ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which will...

  8. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Terzo, Stefano; Nisius, R.; Paschen, B.

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The perfo...

  9. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  10. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  11. Imaging performance of the hybrid pixel detectors XPAD3-S.

    Science.gov (United States)

    Brunner, F Cassol; Clemens, J C; Hemmer, C; Morel, C

    2009-03-21

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures ( approximately 0.1-400 microGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than approximately 5000 photons has been found, corresponding to exposures above approximately 110 microGy and approximately 50 microGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses ( approximately 3, 30 and 300 microGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of approximately 1, thanks to its high efficiency ( approximately 100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is approximately 0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of

  12. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    INSPIRE-00517212; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2016-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 um. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 um and a novel design with the optimized biasing structure and small pixel cells (50 um x 50 um and 25 um x 100 um). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represen...

  13. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  14. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  15. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    Hynds, Daniel

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X0 per layer for the vertex region and ~1% X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hy- brid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tracking region,...

  16. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  17. Prototype Active Silicon Sensor in 150 nm HR-CMOS Technology for ATLAS Inner Detector Upgrade

    CERN Document Server

    Rymaszewski, Piotr; Breugnon, Patrick; Godiot, Stépahnie; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Rozanov, Alexandre; Wang, Anqing; Wermes, Norbert

    2016-01-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  18. FE-I4, the new ATLAS pixel chip for upgraded LHC luminosities

    Energy Technology Data Exchange (ETDEWEB)

    Arutinov, David; Barbero, Marlon; Gronewald, Markus; Hemperek, Tomasz; Karagounis, Michael; Krueger, Hans; Kruth, Andre; Wermes, Norbert [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany)

    2010-07-01

    The new ATLAS pixel chip FE-I4 is being developed for use in upgraded luminosity environments, in the framework of the Insertable B-Layer (IBL) project and the outer pixel layers of Super-LHC. FE-I4 is designed in a 130 nm CMOS technology and is based on an array of 80 x 336 pixels, each 50 x x250 {mu}m2 and consisting of analog and digital sections. The analog pixel section is designed for low power consumption. The digital architecture is based on a 4 pixel unit called region, which allows for a power-efficient, low recording inefficiency design, and provides a handle to the problem of timewalk. The chip periphery contains a digital control block, a command decoder, powering blocks, a data reformatting unit, an 8b10b coder and a clock multiplier unit, which handles data transmission up to 160 Mb/s for the IBL. Increased power consumption in the inner layers of ATLAS translates into more material for cooling and power routing, which degrades the tracking and the b-tagging quality. As a consequence the FE-I4 collaboration places severe constraints on the power consumption of all blocks. First full scale FE-I4 submission will occur beginning 2010.

  19. Recent Results of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Weigell, Philipp

    2013-01-01

    To cope with the higher occupancy and radiation damage at the HL-LHC also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project (PPS) is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) mum, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m^2. To reach this goal the pixel productions are being transferred to 6 inch production lines. Additionally, investigated are more cost-efficient and industrialised interconnection techniques as well as the n-in-p technology, which, being a single-sided pr...

  20. FE-I4, the New ATLAS Pixel Chip for Upgraded LHC Luminosities

    CERN Document Server

    "Barbero, M; The ATLAS collaboration

    2009-01-01

    The new ATLAS pixel chip FE-I4 is being developed for use in upgraded luminosity environments, in the framework of the Insertable B-Layer (IBL) project but also for the outer pixel layers of Super-LHC. FE-I4 is designed in a 130 nm technology and is based on an array of 80 by 336 pixels, each 50×250 μm2 and consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. The digital architecture is based on a 4 pixel unit called region, which allows for a power-efficient, low recording inefficiency design, and provides an elegant solution to the problem of timewalk. The chip periphery contains a control block, powering blocks, a data reformatting unit, an asynchronous storage FIFO, an 8b10b coder and a clock multiplier unit, which handles data transmission up to 160 Mb/s for the IBL.

  1. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  2. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  3. Tests of the gated mode for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Prinker, Eduard [Max-Planck-Institute for Physics, Munich (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer intrinsic amplification and very high signal to noise ratio. They form an integral building block for the vertex detector system of the Belle II experiment, which will start data taking in the year 2017 at the SuperKEKB Collider in Japan. A special Test board (Hybrid4) is used, which contains a small version of the DEPFET sensor with a read-out (DCD) and a steering chip (Switcher) attached, both controlled by a field-programmable gate array (FPGA) as the central interface to the computer. In order to keep the luminosity of the collider constant over time, the particle bunch currents have to be topped off by injecting additional bunches at a rate of 50 Hz. The particles in the daughter bunches produce a high rate of background (noisy bunches) for a short period of time, saturating the occupancy of the sensor. Operating the DEPFET sensor in a Gated Mode allows preserving the signals from collisions of normal bunches while protecting the pixels from background signals of the passing noisy bunches. An overview of the Gated Mode and first results is presented.

  4. A DEPFET pixel system for the ILC vertex detector

    CERN Document Server

    Trimpl, M; Kohrs, R; Krüger, H; Lodomez, P; Reuen, L; Sandow, C; Toerne, E; Velthuis, J J; Wermes, N; Andricek, L; Moser, H G; Richter, R H; Lutz, Gerhard; Giesen, F; Fischer, P; Peric, I

    2006-01-01

    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 pixel matrix and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6keV to 60keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.

  5. Diamond Pixel Detectors and 3D Diamond Devices

    Science.gov (United States)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  6. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    Science.gov (United States)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  7. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  8. Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    CERN Document Server

    Backhaus, Malte

    2012-01-01

    The ATLAS Insertable B-Layer (IBL) collaboration plans to insert a fourth pixel layer inside the present Pixel Detector to recover from eventual failures in the current pixel system, especially the b-layer. Additionally the IBL will ensure excellent tracking, vertexing and b-tagging performance during the LHC phase I and add robustness in tracking with high luminosity pile-up. The expected peak luminosity for IBL is 2 to 3centerdot1034 cm-2s-1 and IBL is designed for an integrated luminosity of 700 fb-1. This corresponds to an expected fluence of 5centerdot1015 1 MeV neqcm-2 and a total ionizing dose of 250 MRad. In order to cope with these requirements, two new module concepts are under investigation, both based on a new front end IC, called FE-I4. This IC was designed as readout chip for future ATLAS Pixel Detectors and its first application will be the IBL. The planar pixel sensor (PPS) based module concept benefits from its well understood design, which is kept as similar as possible to the design of the ...

  9. Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    CERN Document Server

    Backhaus, M

    2012-01-01

    The ATLAS Insertable B-Layer (IBL) collaboration plans to insert a fourth pixel layer inside the present Pixel Detector to recover from eventual failures in the current pixel system, especially the b-layer. Additionally the IBL will ensure excellent tracking, vertexing and b-tagging performance during the LHC phase I and add robustness in tracking with high luminosity pile-up. The expected peak luminosity for IBL is 2 to 3•10^34 cm^−2 s^ −1 and IBL is designed for an integrated luminosity of 700 fb^−1 . This corresponds to an expected fluence of 5 • 10^15 1 MeV n_eqcm^−2 and a total ionizing dose of 250 MRad. In order to cope with these requirements, two new module concepts are under investigation, both based on a new front end IC, called FE-I4. This IC was designed as readout chip for future ATLAS Pixel Detectors and its first application will be the IBL. The planar pixel sensor (PPS) based module concept benefits from its well understood design, which is kept as similar as possible to the design...

  10. Development of an X-ray imaging system with SOI pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ryutaro, E-mail: ryunishi@post.kek.jp [School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK-IPNS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-09-21

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented. - Highlights: • The X-ray imaging system employing the SOI pixel sensor is currently under development. • The DAQ of the first prototype has the bottleneck in the total throughput. • The new DAQ release solve the bottleneck by parallel processing and FIFO buffer. • The new DAQ release was tested using 33.3 keV and 9.5 keV mono X-rays.

  11. Performance of the Aleph Upgraded Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Creanza, D.; De Palma, M.; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O`Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.-G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell`Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P. [Bari Univ. (Italy). Dipt. di Fisica]|[INFN, Bari (Italy)]|[European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland)]|[Dipartimento di Fisica, Universita di Firenze, INFN Sezione di Firenze, 50125 Firenze (Italy)]|[Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)]|[Department of Physics, Imperial College, London SW7 2BZ (United Kingdom)]|[Department of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)]|[Centre de Physique des Particules, Faculte des Sciences de Luminy, IN2P3-CNRS, 13288 Marseille (France)]|[Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, 80805 Muenchen (Germany)]|[Dipartimento di Fisica dell`Universita e INFN Sezione di Pisa, 56010 Pisa (Italy)]|[Particle Physics Dept., Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)]|[Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    1997-03-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 {mu}m in the r-{phi} view and 21 {mu}m in the r-z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final impact parameter resolution. A better resolution has been achieved in the next run, when an initial period at the Z peak has been foreseen to calibrate and align the whole detector. (orig.).

  12. GEM400: A front-end chip based on capacitor-switch array for pixel-based GEM detector

    Science.gov (United States)

    Li, H. S.; Jiang, X. S.; Liu, G.; Wang, N.; Sheng, H. Y.; Zhuang, B. A.; Zhao, J. W.

    2012-03-01

    The upgrade of Beijing Synchrotron Radiation Facility (BSRF) needs two-dimensional position-sensitive detection equipment to improve the experimental performance. Gas Electron Multiplier (GEM) detector, in particular, pixel-based GEM detector has good application prospects in the domain of synchrotron radiation. The read-out of larger scale pixel-based GEM detector is difficult for the high density of the pixels (PAD for collecting electrons). In order to reduce the number of cables, this paper presents a read-out scheme for pixel-based GEM detector, which is based on System-in-Package technology and ASIC technology. We proposed a circuit structure based on capacitor switch array circuit, and design a chip GEM400, which is a 400 channels ASIC. The proposed circuit can achieve good stability and low power dissipation. The chip is implemented in a 0.35μm CMOS process. The basic functional circuitry in ths chip includes analog switch, analog buffer, voltage amplifier, bandgap and control logic block, and the layout of this chip takes 5mm × 5mm area. The simulation results show that the chip can allow the maximum amount of input charge 70pC on the condition of 100pF external integrator capacitor. Besides, the chip has good channel uniformity (INL is better than 0.1%) and lower power dissipation.

  13. LHCB : The upgraded LHCb RICH detector: status and perspectives

    CERN Multimedia

    Cardinale, Roberta

    2015-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and search for New Physics using the enormous flux of beauty and charmed hadrons produced at the Large Hadron Collider (LHC). The two RICH detectors installed in LHCb have performed successfully during the 2010-2012 data taking period. The data from these detectors were essential to most of the physics results published by LHCb. In order to extend its potential for discovery and study of new phenomena it is planned to upgrade the LHCb experiment in 2018 with a 40MHz readout and a much more flexible software-based triggering system. This would increase the readout rate and occupancies for the RICH detectors. The RICH detector will require new photon detectors and modifications of the optics of the upstream RICH detector. Tests of the complete opto-electronic chain have been performed during testbeam sessions in autumn 2014. The status and perspectives of the RICH upgrade project will be presented.

  14. Test-beam activities and results for the ATLAS ITk pixel detector

    CERN Document Server

    Bisanz, Tobias; The ATLAS collaboration

    2017-01-01

    The Phase-II upgrade of the LHC will result in an increase of the instantaneous luminosity up to about $5\\times10^{34}~\\text{cm}^{-2}\\text{s}^{-1}$. To cope with the resulting challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300~hits/FE/s as well as a fluence of $2\\times10^{16}~\\text{n}_\\text{eq}\\text{cm}^{-2}$. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about $10~\\text{m}^2$. These range from thin planar silicon, over 3D silicon, to active CMOS sensors.\\par After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in...

  15. Readout architecture for the Pixel-Strip module of the CMS Outer Tracker Phase-2 upgrade

    CERN Document Server

    Caratelli, Alessandro; Jan Kaplon; Kloukinas, Konstantinos; Simone Scarfi

    2016-01-01

    The Outer Tracker upgrade of the Compact Muon Solenoid (CMS) experiment at CERN introduces new challenges for the front-end readout electronics. In particular, the capability of identifying particles with high transverse momentum using modules with double sensor layers requires high speed real time interconnects between readout ASICs. The Pixel-Strip module combines a pixelated silicon layer with a silicon-strip layer. Consequently, it needs two different readout ASICs, namely the Short Strip ASIC (SSA) for the strip sensor and the Macro Pixel ASIC (MPA) for the pixelated sensor. The architecture proposed in this paper allows for a total data flow between readout ASICs of $\\sim$100\\,Gbps and reduces the output data flow from 1.3\\,Tbps to 30\\,Gbps per module while limiting the total power density to below 100\\,mW/cm$^2$. In addition a system-level simulation framework of all the front-end readout ASICs is developed in order to verify the data processing algorithm and the hardware implementation allowing mult...

  16. Running experience with the DELPHI pixel detector reflections on design characteristics and system features

    CERN Document Server

    Heuser, J M

    1999-01-01

    The DELPHI experiment at LEP is the first collider experiment with hybrid pixel detectors contributing to its track reconstruction. The pixel detector has been installed in 1996 with the final DELPHI silicon tracker, an assembly of microstrip, ministrip and pixel detectors optimized for the operation at LEP2. It was completed for the physics period in 1997. The pixel detector comprises 1.2 million detector cells of 330*330 mu m/sup 2/. 152 detector modules are arranged in 4 inclined cone-shaped layers which cover polar angles from 10 degrees to 25 degrees . Experience on the system's features has been gained during three years of operation. The article intends to provide information on positive and critical aspects which might be useful for designers of pixel detector systems in forthcoming experiments. (4 refs).

  17. The upgrade of the ALICE Inner Tracking System - Status of the R&D; on monolithic silicon pixel sensors

    CERN Document Server

    Van Hoorne, Jacobus Willem

    2014-01-01

    s a major part of its upgrade plans, the ALICE experiment schedules the installation of a novel Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2018/19. It will replace the present silicon tracker with seven layers of Monolithic Active Pixel Sensors (MAPS) and significantly improve the detector performance in terms of tracking and rate capabilities. The choice of technology has been guided by the tight requirements on the material budget of 0 : 3 % X = X 0 /layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Within the ongoing R&D; phase, several sensor chip prototypes have been developed and produced on different epitaxial layer thicknesses and resistivities. These chips are being characterized for their performance before and after irradiation using source tests, test beam and measu...

  18. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    CERN Document Server

    Beimforde, M; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P; 10.1088/1748-0221/5/12/C12025

    2010-01-01

    The presented R&D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 μm and 150 μm has been produced using a thinning technique developed at the Max-Planck-Institut für Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 1016neqcm−2 have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the ...

  19. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  20. Silicon vertex detector upgrade in the ALPHA experiment

    Science.gov (United States)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Burrows, C.; Butler, E.; Capra, A.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Stracka, S.; Sampson, J. A.; Sarid, E.; Seddon, D.; Silveira, D. M.; So, C.; Thompson, R. I.; Tharp, T.; Thornhill, J.; Tooley, M. P.; van der Werf, D. P.; Wells, D.

    2013-12-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  1. Silicon vertex detector upgrade in the ALPHA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, WA4 4AD Warrington (United Kingdom); Burrows, C. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Fujiwara, M.C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); and others

    2013-12-21

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  2. Micropattern gas detectors The CMS MSGC project and gaseous pixel detector applications

    CERN Document Server

    Bellazzini, R; Gariano, G; Latronico, L; Lumb, N; Moggi, A; Reale, S; Spandre, G; Massai, M M; Spezziga, M A; Toropin, A N; Costa, E; Soffitta, P; Pacella, D

    2001-01-01

    We report recent results from the development and testing of two types of micropattern gas detectors-micro-strip gas chambers and GEM- based devices with two types of pixel read-out. Thirty-two micro- strip gas chambers were tested in a high intensity hadron beam as a milestone for CERN's Compact Muon Solenoid (CMS) experiment. The detectors were operated with voltage settings corresponding to 98% hit detection efficiency at CMS for a total high intensity exposure period of 493 h. All of the requirements expected by the milestone- gain stability, number of lost strips, spark rate, etc.-were met, with wide margins. In a separate investigation, we have coupled PCB pixel read-out planes to GEM foils. In one case, 2 mm*2 mm pixels were fanned out to individual discriminators and scalers to provide very fast (2 MHz/pixel) read-out; this system has been used as an imaging device to provide diagnostic information in fusion experiments. The second type of device used smaller pixels (200 mu m squares) and a Flash-ADC ...

  3. Performance of the ALEPH upgraded silicon vertex detector

    CERN Document Server

    Creanza, D; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O'Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell'Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P.

    1997-01-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 μm in the τ - φ view and 21 μm in the τ - z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final im...

  4. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  5. A generic readout environment for prototype pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Turqueti, Marcos, E-mail: turqueti@fnal.go [Fermi National Accelerator Laboratory, Kirk and Wilson Road, 60510-500 (United States); Rivera, Ryan; Prosser, Alan; Kwan, Simon [Fermi National Accelerator Laboratory, Kirk and Wilson Road, 60510-500 (United States)

    2010-11-01

    Pixel detectors for experimental particle physics research have been implemented with a variety of readout formats and potentially generate massive amounts of data. Examples include the PSI46 device for the Compact Muon Solenoid (CMS) experiment which implements an analog readout, the Fermilab FPIX2.1 device with a digital readout, and the Fermilab Vertically Integrated Pixel device. The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the various needs of these devices to support laboratory test bench as well as test beam applications. The system is called CAPTAN (Compact And Programmable daTa Acquisition Node) and is characterized by its flexibility, versatility and scalability by virtue of several key architectural features. These include a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and a core group of boards that provide specific processing and readout capabilities for the system. System software based on distributed computing techniques supports an expandable network of CAPTANs. In this paper, we describe the system architecture and give an overview of its capabilities.

  6. Pixel Detector Trial Assembly Test in the SR1 building

    CERN Document Server

    D. Giugni

    2004-01-01

    During the last two months the Pixel group [LBL, Milan and Wuppertal] made a successful integration test on the mechanics of the barrel. The scope of the test was to qualify the integration procedures and the various assembling tools. The test took place in the clean room of the SR1 building at CERN, where the detector has been assembled around a dummy beam pipe made of Stainless Steel. The process is rather complex: the shells come in two parts and they have to be clamped together to get the full shell. This operation is carried out by a dedicated tool which is shown to the right in the picture below. The layer 1 shell is clamped around a "service" pipe that will be used for moving the full layer to the integration tool [ITT] which is visible on the left. View of the tools devoted to the Pixel barrel integration in the SR1 building Also visible in the picture is the global frame that is actually held by the tool. It will engage the layers sliding onto the rails. The first two layers are sequentially...

  7. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    Science.gov (United States)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  8. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  9. Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade

    CERN Document Server

    Dervan, Paul

    2014-01-01

    Different pitch layouts are considered for the pixel detector being designed for the ATLAS up- graded tracking system which will be operating at the High Luminosity LHC. The tracking per- formance in the Endcap pixel regions could benefit from pixel layouts which differ from the ge- ometries used in the barrel region. Also, the performance in different barrel layers and eta regions could be optimised using different pixel sizes. This presentation will report on the development and tests of pitch layouts which could be readout by the FE-I4 ASICs. The pixel geometries in- clude 50 250 m m 2 , 25 500 m m 2 , 100 125 m m 2 , 125 167 m m 2 , 50 2000 m m 2 and 25 2000 m m 2 . The sensors with geometries 50 250 m m 2 , 25 500 m m 2 and 100 125 m m 2 were irradiated and tested at the DESY testbeam. These and other testbeam results as well as results from characterisation of these sensors in the laboratory will be presented

  10. Development of n-in-p pixel modules for the ATLAS Upgrade at HL-LHC

    CERN Document Server

    Macchiolo, Anna; Savic, Natascha; Terzo, Stefano

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $\\mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14\\times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $\\mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region...

  11. Using the pixel detector for fast triggering in CMS

    CERN Document Server

    De Mattai, M

    2006-01-01

    The Standard Model of fundamental interactions (SM) has been extensively tested in many particle experiments during the last 25 years and it has proven to be extremely successful up to the energy scale typical of the weak force. Nevertheless, there is still no experimental evidence of the Higgs boson, one of the key components of the SM, responsible for the breaking of the electroweak symmetry and for the masses of the fermions and of the weak bosons. The Large Hadron Collider (LHC) is scheduled to provide the first proton on proton collision in 2008 at the center of mass energy of 14 Tev, an energy one order of magnitude higher than the regime explored so far. The CMS experiment is an omni-purpose experiment that will operate at the LHC, it will give insight into Standard Model physics and search for physics beyond the Standard Model. In this work we consider the usage of pixel detector information in the reconstruction of hadronic jets in events collected by the CMS detector under high luminosity running co...

  12. Upgraded VIRGO detector(s) and stochastic gravitational waves backgrounds

    CERN Document Server

    Babusci, D

    1999-01-01

    The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds of cosmological origin is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. The maximization of the overlap reduction function is discussed. We focus our attention on a class of models whose expected sensitivity is more promising, namely the case of string cosmological gravitons. We perform our calculations both for the case of minimal string cosmological scenario and in the case of a non-minimal scenario where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we study possible improvements of the...

  13. Effects of bulk and surface conductivity on the performance of CdZnTe pixel detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.;

    2002-01-01

    between the pixel contacts. When the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump...

  14. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Aglieri Rinella, Gianluca

    2016-01-01

    The ALPIDE chip is a CMOS Monolithic Active Pixel Sensor being developed for the Upgrade of the ITS of the ALICE experiment at the CERN Large Hadron Collider. The ALPIDE chip is implemented with a 180 nm CMOS Imaging Process and fabricated on substrates with a high-resistivity epitaxial layer. It measures 15 mm×30 mm and contains a matrix of 512×1024 pixels with in-pixel amplification, shaping, discrimination and multi-event buffering. The readout of the sensitive matrix is hit driven. There is no signaling activity over the matrix if there are no hits to read out and power consumption is proportional to the occupancy. The sensor meets the experimental requirements of detection efficiency above 99%, fake-hit probability below 10−5 and a spatial resolution of 5 μm. The capability to read out Pb–Pb interactions at 100 kHz is provided. The power density of the ALPIDE chip is projected to be less than 35 mW/cm2 for the application in the Inner Barrel Layers and below 20 mW/cm2 for the Outer Barrel Layers, ...

  15. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System

    Science.gov (United States)

    Aglieri Rinella, Gianluca

    2017-02-01

    The ALPIDE chip is a CMOS Monolithic Active Pixel Sensor being developed for the Upgrade of the ITS of the ALICE experiment at the CERN Large Hadron Collider. The ALPIDE chip is implemented with a 180 nm CMOS Imaging Process and fabricated on substrates with a high-resistivity epitaxial layer. It measures 15 mm×30 mm and contains a matrix of 512×1024 pixels with in-pixel amplification, shaping, discrimination and multi-event buffering. The readout of the sensitive matrix is hit driven. There is no signaling activity over the matrix if there are no hits to read out and power consumption is proportional to the occupancy. The sensor meets the experimental requirements of detection efficiency above 99%, fake-hit probability below 10-5 and a spatial resolution of 5 μm. The capability to read out Pb-Pb interactions at 100 kHz is provided. The power density of the ALPIDE chip is projected to be less than 35 mW/cm2 for the application in the Inner Barrel Layers and below 20 mW/cm2 for the Outer Barrel Layers, where the occupancy is lower. This contribution describes the architecture and the main features of the final ALPIDE chip, planned for submission at the beginning of 2016. Early results from the experimental qualification of full scale prototype predecessors are also reported.

  16. Micromegas detectors for the upgrade of the ATLAS muon spectrometer

    Science.gov (United States)

    Zibell, A.

    2014-08-01

    The upcoming luminosity upgrades of the LHC accelerator up to an ultimate value of 5 × 1034 cm-2s-1 require a replacement of the innermost forward muon tracking stations (Small Wheels) of the ATLAS detector in 2018 and 2019. These New Small Wheels (NSW) will contain resistive strip micromegas and small-strip Thin Gap Chamber detectors. The resistive strip micromegas detector concept is presented, together with the μTPC (micro Time Projection Chamber) track reconstruction technique for a single plane track angle measurement. The mechanical layout of the NSW micromegas chambers is discussed as well, as the features of the specially designed front-end electronics. A pre-series micromegas chamber will be installed within ATLAS already in 2014. It will be integrated into the ATLAS data acquisition system with help of a custom micromegas Read Out Driver (ROD), based on the Scalable Readout System (SRS).

  17. Micromegas Detectors for the Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Zibell, A; The ATLAS collaboration

    2014-01-01

    The upcoming luminosity upgrades of the LHC accelerator up to an ultimate value of $5 \\times 10^{34}\\, \\text{cm}^{-2}\\text{s}^{-1}$ require a replacement of the innermost forward muon tracking stations (Small Wheels) of the ATLAS detector in 2018 and 2019. These New Small Wheels (NSW) will contain resistive strip micromegas and small-strip Thin Gap Chamber detectors. The resistive strip micromegas detector concept is presented, together with the $\\muup$TPC track reconstruction technique for a single plane track angle measurement. The mechanical layout of the NSW micromegas chambers is discussed as well, as the features of the specially designed frontend electronics. A pre-series micromegas chamber will be installed within ATLAS already in 2014. It will be integrated into the ATLAS data acquisition system with help of a custom micromegas Read Out Driver (ROD), based on the Scalable Readout System (SRS).

  18. Beam test results of the BTeV silicon pixel detector

    CERN Document Server

    Appel, J A

    2001-01-01

    We report the results of the BTeV silicon pixel detector tests carried out in the MTest beam at Fermilab in 1999-2000. The pixel detector spatial resolution has been studied as a function of track inclination, sensor bias, and readout threshold.

  19. Research and Development in Micromegas Detector for the ATLAS Upgrade

    CERN Document Server

    Iakovidis, Georgios

    My candidacy as a Ph.D student begun officially on September 2010. It was at the time that the MAMMA collaboration performed R&D on micromegas detectors transforming them spark resistant. This was done by adding a foil of resistive strips on top of the readout strips. Joining the collaboration I started to be active in the test beam periods dedicating time to understand the detector behaviour. In parallel I developed simulation procedures to understand further the detector and finally describe the physical processes taking place when a charged particle traverses the detector. Moreover, the unexplored at that time μTPC method was studied. In late 2011 the micromegas technology was a candidate for the ATLAS New Small Wheel (NSW) upgrade to which I dedicated most of my time in order satisfy the requirements and prove that the detector will work in the ATLAS environment including the magnetic field conditions. Most of the work at that time was dedicated to understand the spatial resolution of the detector an...

  20. Display of cosmic ray event going through the pixel detector taken on October 18th 2008

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Shown are the XY view (of SCT and pixels and of pixels alone) and an RZ view. The track has a hit in each of the layers in both the upper and the lower hemisphere. In the bottom of L0 there are even two hits due to a module overlap. Apart from the signal hits there is only one other hit in the pixel detector demonstrating the very low noise level in the detector.

  1. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernieri, Caterina [Fermilab; Bolla, Gino [Fermilab; Rivera, Ryan [Fermilab; Uplegger, Lorenzo [Fermilab; Zoi, Irene [Fermilab

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  2. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    Science.gov (United States)

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2017-02-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2×1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  3. Boundary scan test of Belle II pixel detector electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leitl, Philipp [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the Vertex Detector at the Belle II experiment, DEPFET sensors will be used. These sensors need Application-Specific Integrated Circuits (ASICs) for control, readout and data processing. Because of high demands for a low material budget in the sensitive area, there is only little space left for these ASICs. Using state-of-the-art technologies like Ball Grid Array (BGA) chips, which are flip-chip mounted, the requirement of 14 ASICs on each of the 40 half ladders can be fulfilled. However, this highly integrated on-sensor ASIC solution results in a lack of physical access to the electrical connections, which is a problem for traditional testing methods. To overcome these limitations, the JTAG standard IEEE 1149.1 is used to check if the circuit is in working condition. This method provides electrical access to the boundary scan cells implemented in the ASICs. Therefore it is possible to perform connectivity tests and verify if the production of the circuit was successful.

  4. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  5. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  6. FELIX: the detector readout upgrade of the ATLAS experiment

    CERN Document Server

    Ryu, Soo; The ATLAS collaboration

    2015-01-01

    After the Phase-I upgrade and onward, the Front-End Link eXchange(FELIX) system will be the interface between the readout system and the detector front-end electronics and trigger electronics at the ATLAS experiment. FELIX will function as a gateway to a commodity switched network which will use standard technologies (Ethernet or Infiniband) to communicate with data collecting and processing components. In this talk the system architecture of FELIX will be described and the testing results of the FELIX demonstrator will be presented

  7. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  8. Photoelectric X-ray Polarimetry with Gas Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, Ronaldo; Brez, Alessandro [INFN Pisa Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Costa, Enrico [INAF/IASF Rome Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Minuti, Massimo [INFN Pisa Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Muleri, Fabio [INAF/IASF Rome Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Pinchera, Michele [INFN Pisa Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Rubini, Alda; Soffitta, Paolo [INAF/IASF Rome Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Spandre, Gloria, E-mail: Gloria.Spandre@pi.infn.it [INFN Pisa Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-21

    The Gas Pixel Detector, recently developed and continuously improved by Pisa-INFN in collaboration with IASF-Roma (INAF), can visualize the tracks produced within a low Z gas by photoelectrons of few keV. By reconstructing the impact point and the original direction of the photoelectrons, the GPD can measure the polarization plane of X-Ray photons, while preserving the information on the absorption point, the energy and the time of arrival of individual photons. Applied to X-ray Astrophysics, in the focus of grazing incidence telescopes, it can perform angular and energy resolved polarimetry with a large improvement of sensitivity, when compared with the conventional techniques of Bragg diffraction at 45° and Compton scattering around 90°. This configuration has been the basis of POLARIX and HXMT, two pathfinder missions, and was included in the baseline design of IXO, the very large X-ray telescope under study by NASA, ESA and JAXA. We have recently improved the design of this low energy polarimeter (2–10 keV) by modifying the geometry of the absorption cell to minimize any systematic effect that could leave a residual polarization signal for non-polarized source. We will report on the testing of this new concept.

  9. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  10. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.

    2016-02-01

    The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R&D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.

  11. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    Science.gov (United States)

    Allport, P. P.; Ball, K.; Casse, G.; Chmill, V.; Forshaw, D.; Hadfield, K.; Pritchard, A.; Pool, P.; Tsurin, I.

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their products meet all the stringent technical requirements. A semiconductor company with very widespread experience of producing science grade CCDs (including deep depletion devices) has adapted their CCD process to fabricate for the first time several wafers of pixel and micro-strip radiation hard sensors, suitable for future high energy physics experiments. The results of the pre-irradiation characterization of devices fabricated with different processing parameters and the measurements of charge collection properties after different hadron irradiation doses up to those anticipated for the (larger area) outer pixel layers at the high-luminosity LHC (HL-LHC) are presented and compared with results from more established particle physics suppliers.

  12. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  13. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  14. Performance studies of pixel hybrid photon detectors for the LHCb RICH counters

    CERN Document Server

    Aglieri-Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2006-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  15. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  16. CMS pixel upgrade for the phase I: Module production and qualification

    Science.gov (United States)

    Miñano Moya, M.

    2016-09-01

    The present CMS pixel detector has been designed to be fully efficient up to an LHC luminosity of 1034cm-2s-1. However, the luminosity will increase by a factor of two in the coming years. Therefore it is planned to build and install a new detector in the extended year-end technical stop in 2016-17. Barrel pixel modules are in production since spring/summer 2015 in five different centers. Module production requires bump bonding, wire bonding and gluing processes to finally assemble a full module. To have a uniform performance of all modules standard qualification procedures have been developed. All modules will be subjected to 10 thermal cycles between +17 °C and -25 °C and then electrically tested. In addition, module performance will be verified under high rate X-rays, and internal calibrate signals used for electrical tests will be calibrated in units of electrons using well defined X-ray fluorescence lines from different target materials. The qualification criteria, based on which modules are selected to be used in the final system, will be explained in detail.

  17. UPGRADES

    CERN Multimedia

    D. Contardo and J. Spalding

    2013-01-01

    There is very good progress in the execution of the LS1 projects and in launching construction of the Phase 1 upgrades. We focus here on two main achievements since the last CMS Week. The approval of the third Phase 1 TDR The preparation of the L1 Trigger Upgrade Technical Design Report has been a major effort of the collaboration at the beginning of this year, especially to develop supporting Trigger menu and physics performance studies. These studies have demonstrated the efficiency of the upgraded system to ensure low lepton and jet trigger thresholds, leading to a significant increase of the acceptance for the Higgs measurements, in the associated production mode and in the ττ decays, as well as for the stop searches involving multiple jets in the final state. The TDR was submitted to the LHCC in May and approved at the June committee meeting. It is now a public document, completing the series of the three TDRs describing the Phase 1 upgrades, with the new Pixel system and the HCAL rea...

  18. Modeling Inter-Pixel Crosstalk in Teledyne Imaging Sensors H4RG Detectors

    CERN Document Server

    Dudik, R P; Dorland, B N; Veillette, D; Waczynski, A; Lane, B; Loose, M; Kan, E; Waterman, J; Pravdo, S

    2012-01-01

    CMOS-hybrid arrays have recently surfaced as competitive optical detectors for use in ground- and space-based astronomy. One source of error in these detectors that does not appear in more traditional CCD arrays is the inter-pixel capacitance component of crosstalk. In this paper we use a single pixel reset method to model inter-pixel capacitance (IPC). We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG arrays. Finally, we compare our model results to Fe55 data obtained using an astrometric camera built to test the H4RG-B0 generation detectors.

  19. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  20. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Manolopoulos, S.; Bates, R.; Campbell, M.; Snoeys, W.; Heijne, E.; Pernigotti, E.; Raine, C.; Smith, K. E-mail: k.smith@physics.gla.ac.uk; Watt, J.; O' Shea, V.; Ludwig, J.; Schwarz, C

    1999-09-11

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the {omega}3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  1. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  2. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  3. SUSY discovery potential of the ATLAS detector at an upgraded LHC

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The so-called high-luminosity upgrade of the LHC will impose new technological challenges to the ATLAS detector, requiring the partial upgrade of the detector. Scenarios of SUSY sparticle production, among others, have been used as benchmark to drive the design of the component upgrades, and to evaluate the sensitivity of the upgraded accelerator and detector. This talk will give an overview of the expected sensitivity that the ATLAS experiment will have to SUSY sparticle production with 3000 fb$^{-1}$ pf proton-proton collisions collected at a centre of mass energy of 14 TeV.

  4. Diamond Detectors for the TOTEM Timing Upgrade arXiv

    CERN Document Server

    Antchev, G.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Rodríguez, F. Lucas; Lucsányi, D.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novák, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of...

  5. Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS

    CERN Document Server

    Kruth, A; Arutinov, D; Barbero, M; Gronewald, M; Hemperek, T; Karagounis, M; Krueger, H; Wermes, N; Fougeron, D; Menouni, M; Beccherle, R; Dube, S; Ellege, D; Garcia-Sciveres, M; Gnani, D; Mekkaoui, A; Gromov, V; Kluit, R; Schipper, J

    2009-01-01

    FE-I4 is the 130 nm ATLAS pixel IC currently under development for upgraded Large Hadron Collider (LHC) luminosities. FE-I4 is based on a low-power analog pixel array and digital architecture concepts tuned to higher hit rates [1]. An integrated Phase Locked Loop (PLL) has been developed that locally generates a clock signal for the 160 Mbit/s output data stream from the 40 MHz bunch crossing reference clock. This block is designed for low power, low area consumption and recovers quickly from loss of lock related to single-event transients in the high radiation environment of the ATLAS pixel detector. After a general introduction to the new FE-I4 pixel front-end chip, this work focuses on the FE-I4 output blocks and on a first PLL prototype test chip submitted in early 2009. The PLL is nominally operated from a 1.2V supply and consumes 3.84mW of DC power. Under nominal operating conditions, the control voltage settles to within 2% of its nominal value in less than 700 ns. The nominal operating frequency for t...

  6. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  7. Performance study of new pixel hybrid photon detector prototypes for the LHCb RICH counters

    CERN Document Server

    Moritz, M; Allebone, L; Campbell, M; Gys, Thierry; Newby, C; Pickford, A; Piedigrossi, D; Wyllie, K

    2004-01-01

    A pixel Hybrid Photon Detector was developed according to the specific requirements of the LHCb ring imaging Cerenkov counters. This detector comprises a silicon pixel detector bump-bonded to a binary readout chip to achieve a 25 ns fast readout and a high signal-to-noise ratio. The detector performance was characterized by varying the pixel threshold, the tube high voltage, the silicon bias voltage and by the determination of the photoelectron detection efficiency. Furthermore accelerated aging and high pixel occupancy tests were performed to verify the long term stability. The results were obtained using Cerenkov light and a fast pulsed light emitting diode. All measurements results are within the expectations and fulfill the design goals. (8 refs).

  8. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  9. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    Science.gov (United States)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  10. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Science.gov (United States)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  11. The CMS HGCAL detector for HL-LHC upgrade

    CERN Document Server

    Martelli, Arabella

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  12. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  13. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  14. Development and performance of Triple-GEM detectors for the Upgrade of the Muon System of the CMS experiment

    CERN Document Server

    AUTHOR|(CDS)2088078

    2015-01-01

    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R and D performed on chambers design features and will discuss the performance of the upgraded detector.

  15. Updates on Projections of Physics Reach with the Upgraded CMS Detector for High Luminosity LHC

    CERN Document Server

    CMS Collaboration

    2016-01-01

    This document contains updates on projections of physics reach with the upgraded CMS detector for HL-LHC. Selected measurements in Higgs Physics, Top Physics, Heavy Flavor physics, Searches for Dark Matter and new Heavy particles highlighting the performance of the planned upgrades of the CMS detector. The projections take into account the effects of high pileup conditions and detector performance, based on the CMS Phase II Technical Proposal (CMS-TDR-15-002). Some of the studies are performed using the Delphes fast simulation of the upgraded CMS detector.

  16. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    Science.gov (United States)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  17. Direct charge sharing observation in single-photon-counting pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, G. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain)]. E-mail: Giulio.Pellegrini@cnm.es; Maiorino, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Blanchot, G. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Chmeissani, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Garcia, J. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Lozano, M. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain); Martinez, R. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain); Puigdengoles, C. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Ullan, M. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain)

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 {mu}m pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  18. Direct charge sharing observation in single-photon-counting pixel detector

    Science.gov (United States)

    Pellegrini, G.; Maiorino, M.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 μm pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  19. Operational performance and status of the ATLAS pixel detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  20. Status and future of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Rozanov, A; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  1. Operational Performance and Status of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 x 10^33 cm-2 s-1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silicon leakage ...

  2. Operational Performance and Status of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2014-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individu- ally read out via chips bump-bonded to 1744 n+-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including moni- toring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 · 1033 cm−2s−1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silico...

  3. Pixel front-end with synchronous discriminator and fast charge measurement for the upgrades of HL-LHC experiments

    Science.gov (United States)

    Monteil, E.; Demaria, N.; Pacher, L.; Rivetti, A.; Da Rocha Rolo, M.; Rotondo, F.; Leng, C.

    2016-03-01

    The upgrade of the silicon pixel sensors for the HL-LHC experiments requires the development of new readout integrated circuits due to unprecedented radiation levels, very high hit rates and increased pixel granularity. The design of a very compact, low power, low threshold analog very front-end in CMOS 65 nm technology is described. It contains a synchronous comparator which uses an offset compensation technique based on storing the offset in output. The latch can be turned into a local oscillator using an asynchronous logic feedback loop to implement a fast time-over-threshold counting. This design has been submitted and the measurement results are presented.

  4. Search for the Rare Baryonic $B^+$ to proton anti-Lambda Decay with the LHCb Detector and Alignment of Pixel Detectors

    CERN Document Server

    Hombach, Christoph; Lafferty, George

    This thesis presents the search for the Rare Baryonic $B^{+}\\rightarrow p\\overline{\\Lambda}$ decay and the alignment of Pixel Detectors, such as the TimePix telescope and the VELO upgrade. Several software-based methods to find the spatial alignment of tracking detectors are introduced. A software package in which these methods are included is developed in this thesis. The methods are compared and the alignment of the TimePix3 telescope software is successfully performed. The performance of the spatial alignment of the telescope is discussed. The alignment procedure for the upgraded VELO detector is developed and studied on simulation data. The search for rare baryonic decay mode $B^{+}\\rightarrow p\\overline{\\Lambda}$ is carried out using data taken by LHCb during its Run I in 2011 and 2012. The first evidence for this decay is reported with an, statistical only, significance of 4.14 $\\sigma$. The branching fraction is measured to be $\\mathcal B (B^+ \\to p \\bar {\\Lambda}) = \\left(2.41^{+0.76}_{-0.86}\\left(...

  5. LHCb : A Scintillating Fibre Trackind Detector for the LHCb Upgrade

    CERN Multimedia

    Lindner, Rolf

    2014-01-01

    LHCb is preparing the upgrade which is scheduled to be installed in 2018/19. The Scintillating Fibre (SciFi) Tracker will be designed to replace the current tracking system downstream of the magnet, required to run at an increased luminosity of 1 - 2 10$^{33}$ cm$^{-2}$s$^{-1}$ and to collect a total of 50fb$^{-1}$ of data. The readout of the detector will be at 40MHz, applying a full software based trigger for every single bunch crossing. The SciFi Tracker consists of 12 planes covering a total surface of 350 m2. Modules are based on 2.5 m long multilayer ribbons made of 250 um diameter scintillating fibres as the active medium and signal transport. Silicon photomultiplier (SiPM) arrays with 128 channels at a width of 250 um are used for the readout. The signals from the SiPMS are digitized on an ASIC chip before reconstructing the track hit position within an FPGA on the front-end board. Several challenges facing this detector and the significant progress over the last year will be presented regarding the p...

  6. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  7. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  8. ASICs in nanometer and 3D technologies for readout of hybrid pixel detectors

    Science.gov (United States)

    Maj, Piotr; Grybos, Pawel; Kmon, Piotr; Szczygiel, Robert

    2013-07-01

    Hybrid pixel detectors working in a single photon counting mode are very attractive solutions for material science and medical X-ray imaging applications. Readout electronics of these detectors has to match the geometry of pixel detectors with an area of readout channel of 100 μm × 100 μm (or even less) and very small power consumption (a few tens of μW). New solutions of readout ASICs are going into directions of better spatial resolutions, higher data throughput and more advanced functionality. We report on the design and measurement results of two pixel prototype ASICs in nanometer technology and 3D technology which offer fast signal processing, low noise performance and advanced functionality per single readout pixel cell.

  9. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  10. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  11. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    Energy Technology Data Exchange (ETDEWEB)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  12. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  13. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  14. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  15. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  16. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  17. Design of analog-to-digital converters for energy sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2001-01-01

    An important feature of hybrid semiconductor pixel detectors is the fact that detector and readout electronics are manufactured separately, allowing the use of industrial state-of-the-art CMOS processes to manufacture the readout electronics. As the feature size of these processes decreases, faster

  18. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  19. Chronopixels: particle detector R&D for the ATLAS phase 2 upgrade

    Science.gov (United States)

    Weber, Christian; Baker, Keith; Barker, Thomas; Baltay, Charles; Sinev, Nikolai; Brau, Jim; Strom, David; Atlas Collaboration

    2017-01-01

    The pixel detector comprises the innermost part of the ATLAS detector. Its proximity to the interaction point together with its micrometer resolution allow for impact parameter determination and vertex fitting. This proximity however exposes it also to the highest radiation fluences and particle densities. The latter poses a challenge in inferring particle tracks from hit pixels, while the former leads to progressive radiation damage of the pixel detector itself. These problems will worsen after the LHC's third long shutdown in 2025 when it will operate in high luminosity mode at about five times the current instantaneous luminosity. These conditions will require the pixel detector to be replaced by one staffed with pixel modules capable of enduring the harsher radiation environment, and with finer granularity to cope with the increased pileup. Several efforts in the community are on their way to produce such a pixel module. We are presenting here the current status of our R&D on such a pixel module: The Chronopixel for ATLAS phase 2, a fully monolithic active pixel sensor in CMOS technology. Sensing and readout electronics are included in each pixel here. As such it does not require expensive and labor intensive bump-bonding to a separate readout chip, reducing cost and material in the pixel detector. We gratefully acknowledge support by the Department of Energy, Office of High Energy Physics.

  20. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Y Calderón; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  1. The pixel hybrid photon detectors for the LHCb-RICH project

    CERN Document Server

    Gys, Thierry

    2001-01-01

    This paper describes a hybrid photon detector with integrated silicon pixel readout to be used in the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The paper starts with the general specification of the baseline option. Followed by a summary of the main results achieved so far during the R&D phase. It concludes with a description of the remaining work towards the final photon detector. (17 refs).

  2. Operational experience with the CMS pixel detector in LHC Run II

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  3. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2014-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  4. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  5. DEPFET active pixel detectors for a future linear $e^+e^-$ collider

    CERN Document Server

    Alonso, O; Dieguez, A; Dingfelder, J; Hemperek, T; Kishishita, T; Kleinohl, T; Koch, M; Krueger, H; Lemarenko, M; Luetticke, F; Marinas, C; Schnell, M; Wermes, N; Campbell, A; Ferber, T; Kleinwort, C; Niebuhr, C; Soloviev, Y; Steder, M; Volkenborn, R; Yaschenko, S; Fischer, P; Kreidl, C; Peric, I; Knopf, J; Ritzert, M; Curras, E; Lopez-Virto, A; Moya, D; Vila, I; Boronat, M; Esperante, D; Fuster, J; Garcia Garcia, I; Lacasta, C; Oyanguren, A; Ruiz, P; Timon, G; Vos, M; Gessler, T; Kuehn, W; Lange, S; Muenchow, D; Spruck, B; Frey, A; Geisler, C; Schwenker, B; Wilk, F; Barvich, T; Heck, M; Heindl, S; Lutz, O; Mueller, Th; Pulvermacher, C; Simonis, H.J; Weiler, T; Krausser, T; Lipsky, O; Rummel, S; Schieck, J; Schlueter, T; Ackermann, K; Andricek, L; Chekelian, V; Chobanova, V; Dalseno, J; Kiesling, C; Koffmane, C; Gioi, L.Li; Moll, A; Moser, H.G; Mueller, F; Nedelkovska, E; Ninkovic, J; Petrovics, S; Prothmann, K; Richter, R; Ritter, A; Ritter, M; Simon, F; Vanhoefer, P; Wassatsch, A; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Scheirich, J

    2013-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  6. The VELO Upgrade

    CERN Document Server

    Jans, Eddy

    2015-01-01

    A significant upgrade of the LHCb detector is scheduled to be installed in 2018-2019. Afterwards all sub-detectors will be read out at the LHC bunch crossing frequency of 40 MHz and the trigger will be fully implemented in software. The silicon strip vertex detector will be replaced by a hybrid pixel detector. In these proceedings the following items are discussed: frontend ASIC, data rates, data transmission, cooling, radiation hard sensors, module design and simulated performance.

  7. Hard x-ray response of pixellated CdZnTe detectors

    Science.gov (United States)

    Abbene, L.; Del Sordo, S.; Caroli, E.; Gerardi, G.; Raso, G.; Caccia, S.; Bertuccio, G.

    2009-06-01

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10×10×1 and 10×10×2 mm3 single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 μm BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T =10 °C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  8. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

    Science.gov (United States)

    Schneider, A.; Veale, M. C.; Duarte, D. D.; Bell, S. J.; Wilson, M. D.; Lipp, J. D.; Seller, P.

    2015-02-01

    In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and γ-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (~ 20× 20 mm2) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74× 74 arrays of 200 μ m × 200 μ m pixels with 250 μ m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150\\r{ }C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique.

  9. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  10. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  11. Studies Of Radiation Effects On Pixel Sensors For The Cms Experiment And Design Of Radiation Hard Sensors For Future Upgrades Of Lhc Upgrade

    CERN Document Server

    Roy, A

    2005-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector that provides in its final configuration three space points per track close to the interaction point of the colliding beams. The readout chip is expected to survive a particle fluence of 6 × 1014 neq/cm2 and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. This requires the silicon to operate partially depleted after irradiation and therefore “n in n” concept has been chosen. In order to perform IV tests on wafers to certify the quality of sensors and to hold accidentally unconnected pixels close to ground potential a resistive path between the pixels has been implemented by openings in the p -stop implants surrounding every pixel cell. Prototypes of such sensors have been produced by two different companies and their properties have been extensively tested before and after ir...

  12. Data acquisition at the front-end of the Mu3e pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Perrevoort, Ann-Kathrin [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    The Mu3e experiment - searching for the lepton-flavour violating decay of the muon into three electrons at an unprecedented sensitivity of one in 10{sup 16} decays - is based on a pixel tracking detector. The sensors are High-Voltage Monolithic Active Pixel Sensors, a technology which allows for very fast and thin detectors, and thus is an ideal fit for Mu3e where the trajectories of low-momentum electrons at high rates are to be measured. The detector will consist of about 275 million pixels and will be operated at up to 10{sup 9} muon stops per second. Therefore, a fast and trigger-less data readout is required. The pixel sensors feature zero-suppressed data output via high-speed serial links. The data is then buffered and sorted by time on a FPGA on the front-end before being processed to the following readout stage. In this talk, the readout of the Mu3e pixel detector at the front-end is introduced. Furthermore, a first firmware implementation of this concept in a beam telescope consisting of the current pixel sensor prototype MuPix7 is presented.

  13. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  14. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00237659

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  15. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Science.gov (United States)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  16. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae C.; Kaye, William R.; He, Zhong [University of Michigan, Ann Arbor, MI (United States)

    2014-05-15

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 x 20 x 15 mm{sup 3} CZT crystal with an 11 x 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  17. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Cornell University, Ithaca, NY 14853 (United States); Cornell University, Ithaca, NY 14853 (United States)

    2016-01-28

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  18. UPGRADES

    CERN Multimedia

    D. Contardo and J. Spalding

    2013-01-01

    The three post-LS1 Phase 1 Upgrade projects (the L1-Trigger, Pixel Tracker, and HCAL) are all making excellent progress and are transitioning from the prototype to the execution phase. Meanwhile plans are developing for Phase 2, a major Upgrade programme targeting the third long shutdown, LS3. News on Phase 1 is included under the respective projects; we only provide a brief summary here. Phase 1 The plan for the L1 Trigger relies on the installation during the present shutdown of optical splitting for the Trigger input signals. This will allow the new Trigger system to be brought online and fully commissioned during beam operation in 2015, while CMS relies on the existing legacy Trigger for physics. Once fully commissioned the experiment can switch over to the new Trigger, which will provide greatly improved performance at high event pile-up, by 2016. System tests of the splitter system, and of the new architecture of the calorimeter trigger were very successful, and the work in LS1 is on-track. Prototype ...

  19. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    OpenAIRE

    Zain, R.M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pi...

  20. A new generation of small pixel pitch/SWaP cooled infrared detectors

    Science.gov (United States)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.