WorldWideScience

Sample records for pitcher-plant mosquito wyeomyia

  1. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    Directory of Open Access Journals (Sweden)

    Clayton Merz

    Full Text Available Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  2. Notes on Wyeomyia Mosquitoes of Suriname, with a Description of Wyeomyia surinamensis sp.n.

    NARCIS (Netherlands)

    Bruijning, C.F.A.

    1959-01-01

    Most of the material recorded in this paper was collected by the author during his stay in Suriname from 1949 to 1955. By courtesy of Mrs. J. BONNE-WEPSTER, the author was enabled to study the Wyeomyia specimens which were collected by BONNE and BONNE-WEPSTER in Suriname and are at present in the

  3. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  5. A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants

    OpenAIRE

    Gaume, Laurence; Forterre, Yoel

    2007-01-01

    International audience; Background : The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key...

  6. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2007-11-21

    The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  7. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  8. Natural Variation and Genetics of Photoperiodism in Wyeomyia smithii.

    Science.gov (United States)

    Bradshaw, William E; Holzapfel, Christina M

    2017-01-01

    Seasonal change in the temperate and polar regions of Earth determines how the world looks around us and, in fact, how we live our day-to-day lives. For biological organisms, seasonal change typically involves complex physiological and metabolic reorganization, the majority of which is regulated by photoperiodism. Photoperiodism is the ability of animals and plants to use day length or night length, resulting in life-historical transformations, including seasonal development, migration, reproduction, and dormancy. Seasonal timing determines not only survival and reproductive success but also the structure and organization of complex communities and, ultimately, the biomes of Earth. Herein, a small mosquito, Wyeomyia smithii, that lives only in the water-filled leaves of a carnivorous plant over a wide geographic range, is used to explore the genetic and evolutionary basis of photoperiodism. Photoperiodism in W. smithii is considered in the context of its historical biogeography in nature to examine the startling finding that recent rapid climate change can drive genetic change in plants and animals at break-neck speed, and to challenge the ponderous 80+ year search for connections between daily and seasonal time-keeping mechanisms. Finally, a model is proposed that reconciles the seemingly disparate 24-h daily clock driven by the invariant rotation of Earth about its axis with the evolutionarily flexible seasonal timer orchestrated by variable seasonality driven by the rotation of Earth about the Sun. © 2017 Elsevier Inc. All rights reserved.

  9. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  10. With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

    Directory of Open Access Journals (Sweden)

    Ulrike Bauer

    Full Text Available Carnivorous pitcher plants capture prey with modified leaves (pitchers, using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry, insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.

  11. Bromeliad-associated mosquitoes from Atlantic forest in Santa Catarina Island, southern Brazil (Diptera, Culicidae, with new records for the State of Santa Catarina Mosquitos associados a bromélias em Mata Atlântica na Ilha de Santa Catarina, sul do Brasil (Diptera, Culicidae, com novos registros para o Estado de Santa Catarina

    Directory of Open Access Journals (Sweden)

    Gerson Azulim Müller

    Full Text Available Bromeliad-associated mosquitoes (Diptera: Culicidae in Atlantic Forest in Florianópolis, Santa Catarina, southern Brazil, were studied, examining plants of Vriesea philippocoburgi Wawra and Aechmea lindenii (E. Morren Baker var. lindenii at secondary Atlantic rain forest, and A. lindenii and Vriesea friburgensis Mez var. paludosa (L. B. Smith at "restinga" per month, during 12 months. No immature forms of mosquitoes were collected from A. lindenii in the secondary forest. Collections obtained 368 immature mosquitoes, none of them from A. lindenii from rain forest. Culex (Microculex spp. constituted 79.8% of the total, Wyeomyia (Phoniomyia spp. 17.93%, and Anopheles (Kerteszia cruzii (Dyar & Knab, 1908 only 1.36%. The study shows the great predominance of species of medical importance not yet proved, and the small number of immature stages of anopheline mosquitoes. The rainfall, but not the mean temperatures, significantly influenced the quantity of mosquitoes from V. philippocoburgi. Significant differences between the quantities of immature forms of all the bromeliad species were found, and the shape of the plants could be important to the abundance of mosquitoes. All six species of Cx. (Microculex found are recorded for the first time in the State of Santa Catarina, and all six species of Wyeomyia (Phoniomyia are recorded for the first time in bromeliads in this state.Mosquitos (Diptera: Culicidae associados a bromélias em Mata Atlântica na Ilha de Santa Catarina, no Estado de Santa Catarina, foram estudados. Foram examinadas mensalmente plantas de Vriesea philippocoburgi Wawra e Aechmea lindenii (E. Morren Baker var. lindenii de floresta atlântica pluvial ombrófila e A. lindenii e Vriesea friburgensis Mez var. paludosa (L. B. Smith de restinga, durante 12 meses. As coletas resultaram em 368 formas imaturas de mosquitos, sendo que nenhuma foi coletada em A. lindenii de mata ombrófila. Culex (Microculex spp. constituíram 79,8% do total

  12. Restoration of pitcher plant bogs in eastern Texas, USA

    Science.gov (United States)

    Ronald Mize; Robert E. Evans; Barbara R. MacRoberts; Michael H. MacRoberts; D. Craig Rudolph

    2005-01-01

    Pitcher plant bogs, also referred to as hillside seepages bogs or hillside bogs, are extremely restricted on the West Gulf Coastal Plain. the number and extent of extant bogs is in the low hundreds, comprising no more than a few thousand hectares of habitat. These bogs support a large number of plant species of significant conservation concern. threats to existing bogs...

  13. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes.

    Science.gov (United States)

    Lee, Linda; Zhang, Ye; Ozar, Brittany; Sensen, Christoph W; Schriemer, David C

    2016-09-02

    Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.

  14. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.).

    Science.gov (United States)

    Whitman, Richard L; Byers, Stacey E; Shively, Dawn A; Ferguson, Donna M; Byappanahalli, Muruleedhara

    2005-12-01

    Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.

  15. Germination and field survival of white-topped pitcher plant seeds

    Science.gov (United States)

    Kristina Connor; Hilliard Gibbs

    2012-01-01

    A study was initiated to determine longevity of white-topped pitcher plant (Sarracenia leucophylla, Raf.) seeds in the field and in cold storage. Thirty seed pods were harvested in August 2009 from plants located in Alabama 38 miles from the Gulf Coast. Of the 10,000+ seeds extracted from the pods, some were buried outside in screen-wire bags and...

  16. Microsporidia parásitos de larvas de mosquito de la Costa Pacífica del Chocó

    Directory of Open Access Journals (Sweden)

    Zuluaga Juan S.

    1993-12-01

    Full Text Available Two genera of Microsporidia were found infecting mosquito larvae in three localities on the Pacific coast of Choco. Vavraia sp. (Microsporida: Pleistophoridae was found in larvae of Wyeomyia circumcincta, W. simmsi and Anopheles albimanus collected from plants of the Bromeliacea family in Arusí y Joví. Amblyospora sp. (Microsporida: Amblyosporidae was found parasitizingAedes angustivittatuslarvae COllectedfrom a terrestrial breeding pond in the locality of Nuqur. Morphology of the spores of the two parasites under light microscopy is described, as well as preliminary data on host range when exposed to laboratory rearad Aedes aegypti, Culex quinquefasciatus and Anopheles albimanus. Their rola in mosquito control is discussed.Se reportan dos géneros de microsporidia que parasitan larvas de mosquitos en criaderos naturales de tres localidades en la costa Pacffica Chocoana. Vavraia sp. (Microsporida: Pleistophoridae parásita larvas de Wyeomyia circumcincta, de Wyeomya simmsi y de Anopheles neivai, recolectadas en las rosetas de especies de la familia Bromeliaceae en las localidades de Arusí y Joví. Amblyospora sp. (Microsporida: Amblyosporidae parásita larvas deAedes angustivittatusde criaderos terrestres semipermanentes en la localidad de Nuquí. Se describe la morfología de estos dos microsporidia al microscopio óptico. Estudios preliminares de infección en larvas de Aedes aegypti, Culex quinquefasciatus yAnopheles albimanus, criadas en laboratorio, indican que Vavraia sp. infecta las tres especies, con preferencia a Culex quinquefasciatus. Las larvas expuestas a esporas de Amblyospora sp. no presentaron infección. Se discute el posible papel de estos dos géneros en el control de las poblaciones de mosquitos.

  17. A unique resource mutualism between the giant Bornean pitcher plant, Nepenthes rajah, and members of a small mammal community.

    Directory of Open Access Journals (Sweden)

    Melinda Greenwood

    Full Text Available The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids.Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community.We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant.

  18. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants.

    Science.gov (United States)

    Bazile, Vincent; Le Moguédec, Gilles; Marshall, David J; Gaume, Laurence

    2015-03-01

    Nepenthes pitcher plants have evolved modified leaves with slippery surfaces and enzymatic fluids that trap and digest prey, faeces and/or plant detritus. Although the fluid's contribution to insect capture is recognized, the physico-chemical properties involved remain underexplored and may vary among species, influencing their diet type. This study investigates the contributions of acidity and viscoelasticity in the fluid's capture efficiency of two ant and two fly species in four Nepenthes species with different nutrition strategies. Four Nepenthes species were studied, namely N. rafflesiana, N. gracilis, N. hemsleyana and N. ampullaria. Fluid was collected from pitchers of varying ages from plants growing in the field and immediately transferred to glass vials, and individual ants (tribe Campotini, Fomicinae) and flies (Calliphora vomitoria and Drosophila melanogaster) were dropped in and observed for 5 min. Water-filled vials were used as controls. Survival and lifetime data were analysed using models applied to right-censored observations. Additional laboratory experiments were carried out in which C. vomitoria flies were immersed in pH-controlled aqueous solutions and observed for 5 min. Pitcher fluid differed among Nepenthes species as regards insect retention capacity and time-to-kill, with differences observed between prey types. Only the fluids of the reputedly insectivorous species were very acidic and/or viscoelastic and retained significantly more insects than the water controls. Viscoelastic fluids were fatal to flies and were able to trap the broadest diversity of insects. Younger viscoelastic fluids showed a better retention ability than older fluids, although with less rapid killing ability, suggesting that a chemical action follows a mechanical one. Insect retention increased exponentially with fluid viscoelasticity, and this happened more abruptly and at a lower threshold for flies compared with ants. Flies were more often retained if they

  19. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  20. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    Science.gov (United States)

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  1. Plant extracts as potential mosquito larvicides.

    Science.gov (United States)

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-05-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

  2. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities.

    Science.gov (United States)

    Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas

    2011-02-01

    Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.

  3. Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai'i to avian malaria, Plasmodium relictum

    Science.gov (United States)

    Lapointe, D.A.; Goff, M.L.; Atkinson, C.T.

    2005-01-01

    To identify potential vectors of avian malaria in Hawaiian native forests, the innate susceptibility of Aedes albopictus, Wyeomyia mitchellii, and Culex quinquefasciatus from 3 geographical sites along an altitudinal gradient was evaluated using local isolates of Plasmodium relictum. Mosquitoes were dissected 5-8 and 9-13 days postinfective blood meal and microscopically examined for oocysts and salivary-gland sporozoites. Sporogony was completed in all 3 species, but prevalence between species varied significantly. Oocysts were detected in 1-2% and sporozoites in 1-7% of Aedes albopictus that fed on infected ducklings. Wyeomyia mitchellii was slightly more susceptible, with 7-19% and 7% infected with oocysts and sporozoites, respectively. In both species, the median oocyst number was 5 or below. This is only the second Wyeomyia species reported to support development of a malarial parasite. Conversely, Culex quinquefasciatus from all 3 sites proved very susceptible. Prevalence of oocysts and sporozoites consistently exceeded 70%, regardless of gametocytemia or origin of the P. relictum isolate. In trials for which a maximum 200 oocysts were recorded, the median number of oocysts ranged from 144 to 200. It was concluded that Culex quinquefasciatus is the primary vector of avian malaria in Hawai'i. ?? American Society of Parasitologists 2005.

  4. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

    Directory of Open Access Journals (Sweden)

    Elena V. Gorb

    2011-06-01

    Full Text Available The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1 intact pitchers, (2 chemically de-waxed pitchers, and (3 their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome or downward (towards the pitcher bottom direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  5. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar.

    Science.gov (United States)

    Bauer, Ulrike; Bohn, Holger F; Federle, Walter

    2008-02-07

    The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.

  6. Toxicity of a plant based mosquito repellent/killer

    Science.gov (United States)

    Singh, Prakash Raj; Mohanty, Manoj Kumar

    2012-01-01

    The mission to make humans less attractive to mosquitoes has fuelled decades of scientific research on mosquito behaviour and control. The search for the perfect topical insect repellent/killer continues. This analysis was conducted to review and explore the scientific information on toxicity produced by the ingredients/contents of a herbal product. In this process of systemic review the following methodology was applied. By doing a MEDLINE search with key words of selected plants, plant based insect repellents/killers pertinent articles published in journals and authentic books were reviewed. The World Wide Web and the Extension Toxicity Network database (IPCS-ITOX) were also searched for toxicology data and other pertinent information. Repellents do not all share a single mode of action and surprisingly little is known about how repellents act on their target insects. Moreover, different mosquito species may react differently to the same repellent. After analysis of available data and information on the ingredient, of the product in relation to medicinal uses, acute and chronic toxicity of the selected medicinal plants, it can be concluded that the ingredients included in the herbal product can be used as active agents against mosquitoes. If the product which contains the powder of the above said plants is applied with care and safety, it is suitable fo use as a mosquito repellent/killer. PMID:23554562

  7. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2014-08-01

    Full Text Available Background To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. Methods Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. Results Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. Conclusion The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  8. Phylogeographic concordance factors quantify phylogeographic congruence among co-distributed species in the Sarracenia alata pitcher plant system.

    Science.gov (United States)

    Satler, Jordan D; Carstens, Bryan C

    2016-05-01

    Comparative phylogeographic investigations have identified congruent phylogeographic breaks in co-distributed species in nearly every region of the world. The qualitative assessments of phylogeographic patterns traditionally used to identify such breaks, however, are limited because they rely on identifying monophyletic groups across species and do not account for coalescent stochasticity. Only long-standing phylogeographic breaks are likely to be obvious; many species could have had a concerted response to more recent landscape events, yet possess subtle signs of phylogeographic congruence because ancestral polymorphism has not completely sorted. Here, we introduce Phylogeographic Concordance Factors (PCFs), a novel method for quantifying phylogeographic congruence across species. We apply this method to the Sarracenia alata pitcher plant system, a carnivorous plant with a diverse array of commensal organisms. We explore whether a group of ecologically associated arthropods have co-diversified with the host pitcher plant, and identify if there is a positive correlation between ecological interaction and PCFs. Results demonstrate that multiple arthropods share congruent phylogeographic breaks with S. alata, and provide evidence that the level of ecological association can be used to predict the degree of similarity in the phylogeographic pattern. This study outlines an approach for quantifying phylogeographic congruence, a central concept in biogeographic research. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers

    Directory of Open Access Journals (Sweden)

    Muhammad Aqil Fitri Rosli

    2017-10-01

    Full Text Available Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.

  10. MR imaging of the elbow in baseball pitchers

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Torriani, Martin [Massachusetts General Hospital, Division of Musculoskeletal Radiology, Boston, MA (United States); Labis, John [Methodist Hospital, Houston, TX (United States)

    2008-02-15

    Baseball pitcher throwing biomechanics are important to understanding the pathophysiology and magnetic resonance (MR) imaging appearances of injuries in baseball pitchers. Baseball pitchers experience repetitive excessive valgus forces at the elbow. Typical injuries are secondary to medial joint distraction, lateral joint compression, and rotatory forces at the olecranon. MR imaging is useful for evaluation of the elbow in baseball pitchers. (orig.)

  11. Protection Ability Comparison of Several Mosquito Repellent Lotion Incorporated with Essential Oils of Mosquito Repellent Plants

    Directory of Open Access Journals (Sweden)

    Pramono Putro Utomo

    2014-12-01

    Full Text Available Most mosquito repellent lotions available on the market today contain the active ingredient diethyltoluamide (DEET which is very harmful to the skin. Natural mosquito repellent research using various essential oils (geranium oil, lemon oil, citronella oil and lavender oil as the active ingredient and the addition of aloe vera gel as a moisturizer has been done on a laboratory scale. The purpose of this study was to compare the protection ability of the mosquito repellent plants in Indonesia. The results showed that geranium oil, lemongrass oil, lavender oil and lemon oil could act as mosquito repellent. Best lotion formula all containing 15% essential oils have the effectiveness above 50% until the sixth hour were geranium oil, citronella oil and lavender oil while lemon oil only giving effectiveness above 50% until the second hour.

  12. Spectrum of shoulder injuries in the baseball pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Sheah, Kenneth; Torriani, Martin [Massachusetts General Hospital, Boston, Massachusetts (United States); Labis, John [Methodist Hospital, Houston, Texas (United States)

    2008-06-15

    This review describes a range of shoulder injuries experienced by baseball pitchers. It is estimated that more than 57% of pitchers suffer some form of shoulder injury during a playing season. Knowledge of the overhead throwing cycle is crucial for our understanding of these shoulder injuries. Baseball pitchers are prone to rotator cuff tears from tensile overload and impingement. Glenoid labrum degeneration or tears are also common, due to overuse syndrome (micro-instability), internal impingement and microtrauma. An understanding of the lesions involved in overhead throwing is crucial in baseball pitchers, as long-term disability can result from these injuries, sometimes with severe financial consequences to the player. (orig.)

  13. Spectrum of shoulder injuries in the baseball pitcher

    International Nuclear Information System (INIS)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Sheah, Kenneth; Torriani, Martin; Labis, John

    2008-01-01

    This review describes a range of shoulder injuries experienced by baseball pitchers. It is estimated that more than 57% of pitchers suffer some form of shoulder injury during a playing season. Knowledge of the overhead throwing cycle is crucial for our understanding of these shoulder injuries. Baseball pitchers are prone to rotator cuff tears from tensile overload and impingement. Glenoid labrum degeneration or tears are also common, due to overuse syndrome (micro-instability), internal impingement and microtrauma. An understanding of the lesions involved in overhead throwing is crucial in baseball pitchers, as long-term disability can result from these injuries, sometimes with severe financial consequences to the player. (orig.)

  14. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Directory of Open Access Journals (Sweden)

    Dagne Duguma

    Full Text Available Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis, the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus, and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae, was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  15. Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania

    Directory of Open Access Journals (Sweden)

    Tenu Filemoni

    2008-08-01

    Full Text Available Abstract Background The use of plant repellents against nuisance biting insects is common and its potential for malaria vector control requires evaluation in areas with different level of malaria endemicity. The essential oils of Ocimum suave and Ocimum kilimandscharicum were evaluated against malaria vectors in north-eastern Tanzania. Methodology An ethnobotanical study was conducted at Moshi in Kilimanjaro region north-eastern Tanzania, through interviews, to investigate the range of species of plants used as insect repellents. Also, bioassays were used to evaluate the protective potential of selected plants extracts against mosquitoes. Results The plant species mostly used as repellent at night are: fresh or smoke of the leaves of O. suave and O. kilimandscharicum (Lamiaceae, Azadirachta indica (Meliaceae, Eucalyptus globules (Myrtaceae and Lantana camara (Verbenaceae. The most popular repellents were O. kilimandscharicum (OK and O. suave (OS used by 67% out of 120 households interviewed. Bioassay of essential oils of the two Ocimum plants was compared with citronella and DEET to study the repellence and feeding inhibition of untreated and treated arms of volunteers. Using filter papers impregnated with Ocimum extracts, knockdown effects and mortality was investigated on malaria mosquito Anopheles arabiensis and Anopheles gambiae, including a nuisance mosquito, Culex quinquefasciatus. High biting protection (83% to 91% and feeding inhibition (71.2% to 92.5% was observed against three species of mosquitoes. Likewise the extracts of Ocimum plants induced KD90 of longer time in mosquitoes than citronella, a standard botanical repellent. Mortality induced by standard dosage of 30 mg/m2 on filter papers, scored after 24 hours was 47.3% for OK and 57% for OS, compared with 67.7% for citronella. Conclusion The use of whole plants and their products as insect repellents is common among village communities of north-eastern Tanzania and the results

  16. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

    2014-12-01

    Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)₅₀ = 26.712 μg/mL; LD₉₀ = 49.061 μg/mL), A. aegypti (LD₅₀ = 29.626 μg/mL; LD₉₀ = 54.269 μg/mL), and C. quinquefasciatus (LD₅₀ = 32.077 μg/mL; LD₉₀ = 58.426 μg/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of

  17. Kinematic and kinetic differences between left-and right-handed professional baseball pitchers.

    Science.gov (United States)

    Diffendaffer, Alek Z; Fleisig, Glenn S; Ivey, Brett; Aune, Kyle T

    2018-03-21

    While 10% of the general population is left-handed, 27% of professional baseball pitchers are left-handed. Biomechanical differences between left- and right-handed college pitchers have been previously reported, but these differences have yet to be examined at the professional level. Therefore, the purpose of this study was to compare pitching biomechanics between left- and right-handed professional pitchers. It was hypothesised that there would be significant kinematic and kinetic differences between these two groups. Pitching biomechanics were collected on 96 left-handed pitchers and a group of 96 right-handed pitchers matched for age, height, mass and ball velocity. Student t-tests were used to identify kinematic and kinetic differences (p different between the groups. Landing position of the stride foot, trunk separation at foot contact, maximum shoulder external rotation and trunk forward tilt at ball release were all significantly greater in right-handed pitchers. The magnitude of the statistical differences found were small and not consistent with differences in the two previous, smaller studies. Thus, the differences found may be of minimal practical significance and mechanics can be taught the same to all pitchers, regardless of throwing hand.

  18. Mosquitoes of the Caatinga: 1. Adults stage survey and the emerge of seven news species endemic of a dry tropical forest in Brazil.

    Science.gov (United States)

    Marteis, Letícia Silva; Natal, Delsio; Sallum, Maria Anice Mureb; Medeiros-Sousa, Antônio Ralph; Oliveira, Tatiane Marques Porangaba; La Corte, Roseli

    2017-02-01

    The Caatinga is the least known Brazilian biome in terms of the diversity of Culicidae. No systematic study of the diversity or ecology of the mosquitoes of this biome is available, despite the importance of vector diseases in Brazil. The present study addressed the mosquito biodiversity in the Caatinga biome by sampling adult populations. Specimens were sampled monthly from March 2013 to September 2014 in a Caatinga conservation unit located in the Brazilian semiarid zone. Mosquito collections were carried out in Shannon traps from late afternoon to early evening, and manual aspiration was used to capture diurnal species as well. A total of 4,692 mosquitoes were collected. The most dominant and constant species were all undescribed species belonging to the genera Wyeomyia and Runchomyia, which together represented 80% of the specimens. The most abundant species of epidemiological importance was Haemagogus (Con.) leucocelaenus. The abundance of mosquitoes was positively associated with the relative humidity and temperature recorded during the month preceding the collection date. In the Caatinga, the diversity of adult mosquitoes was associated with the availability (quantity and diversity) of natural larval habitats found in the different phytophysiognomies of the biome, which vary according to temperature and humidity. The number of species unknown to science reflects the levels of endemism that exist in the study area, and reinforces the need to further taxonomic investigation in the biome. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595, lower survival rates (0.72 vs. 0.93, and prolonged gonotrophic cycles (3.33 vs. 2.36 days. The estimated number of females older than the extrinsic incubation period of malaria (10 days in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73% than in the sugar-poor site (48%. In contrast, plant tissue feeding (poor quality sugar source in the sugar-rich habitat was much less (0.3% than in the sugar-poor site (30%. More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens.

  20. Contribution of pitcher fragrance and fluid viscosity to high prey ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    [Di Giusto B, Grosbois V, Fargeas E, Marshall D J and Gaume L 2008 Contribution of pitcher fragrance and fluid ... but does not permit distinction between the attractive and .... sweet scent between pitchers of the lower and upper forms.

  1. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases?

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-04-01

    Full Text Available Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance. Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap, rapid and eco-friendly method to control mosquito vector populations, with special reference to young instars. Furthermore, plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors. In this Editorial, parasitologists, entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.

  2. SHOULDER RANGE OF MOTION, PITCH COUNT, AND INJURIES AMONG INTERSCHOLASTIC FEMALE SOFTBALL PITCHERS: A DESCRIPTIVE STUDY

    Science.gov (United States)

    Michener, Lori A.; Ellenbecker, Todd S.; Rauh, Mitchell J.

    2012-01-01

    Background/Purpose: Injury rates for softball players are similar to baseball players yet information regarding risk factors, pitching, and physical characteristics for high school windmill softball pitchers is limited. This information is needed to guide prevention, training, and rehabilitation efforts. The purpose of this study was to report descriptive data regarding the physical characteristics and pitching volume experienced by high school softball pitchers during one academic season. A secondary aim was to track and describe upper extremity injuries suffered by high school softball pitchers throughout the course of the 2009 season. Methods: Twelve uninjured female softball pitchers (13‐18y) from 5 Greenville, South Carolina high schools participated. Prior to the 2009 season, the pitchers' shoulder internal, external, total arc of rotation and horizontal adduction PROM was measured. During the 10‐week season, aggregate pitch counts (pitch volume) and occurrence of upper extremity injury were tracked for each pitcher. Results: Mean preseason internal, external, and total arc of rotation PROM was observed to be similar between the pitchers' dominant and non‐dominant shoulders. The PROM measures of horizontal abduction (HA) appear to demonstrate a side‐to‐side difference with less HA on the dominant arm of the pitchers who were examined. Subjects threw in an average of 10.1 games (±4.9) during the season. Six pitchers threw in 60% or more of the team's games and 3 of 12 pitchers pitched less than 25% of games. Pitchers averaged 61.8 pitches per game (±31.5) and 745.8 (±506.4) per season. Pitch count data did not appear to be different between injured and non‐injured pitchers. Conclusions: Knowledge of pitch volume can be used to prepare windmill softball pitchers for the seasonal stresses, guide establishment of goals when recovering from injury, or assist in training for an upcoming season. Further research is needed to examine larger samples of

  3. Residual Efficacy of Field-Applied Permethrin, d-Phenothrin, and Resmethrin on Plant Foliage Against Adult Mosquitoes

    Science.gov (United States)

    2008-01-01

    the American Mosquito Control Association, 24(4):543–549, 2008 Copyright E 2008 by The American Mosquito Control Association, Inc. 543 Report...southern red cedar (Juniperus silicicola J. Silba), beauty berry (Callicarpa americana L.), and bay trees ( Persea spp.). Insecticides Permethrin...plant foliage to adult 544 JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 24, NO. 4 Cx. quinquefasciatus. A single leaf was exposed to 10–15

  4. Visual abilities distinguish pitchers from hitters in professional baseball.

    Science.gov (United States)

    Klemish, David; Ramger, Benjamin; Vittetoe, Kelly; Reiter, Jerome P; Tokdar, Surya T; Appelbaum, Lawrence Gregory

    2018-01-01

    This study aimed to evaluate the possibility that differences in sensorimotor abilities exist between hitters and pitchers in a large cohort of baseball players of varying levels of experience. Secondary data analysis was performed on 9 sensorimotor tasks comprising the Nike Sensory Station assessment battery. Bayesian hierarchical regression modelling was applied to test for differences between pitchers and hitters in data from 566 baseball players (112 high school, 85 college, 369 professional) collected at 20 testing centres. Explanatory variables including height, handedness, eye dominance, concussion history, and player position were modelled along with age curves using basis regression splines. Regression analyses revealed better performance for hitters relative to pitchers at the professional level in the visual clarity and depth perception tasks, but these differences did not exist at the high school or college levels. No significant differences were observed in the other 7 measures of sensorimotor capabilities included in the test battery, and no systematic biases were found between the testing centres. These findings, indicating that professional-level hitters have better visual acuity and depth perception than professional-level pitchers, affirm the notion that highly experienced athletes have differing perceptual skills. Findings are discussed in relation to deliberate practice theory.

  5. The impact of industrial anthropization on mosquito (Diptera, Culicidae) communities in mangrove areas of Guanabara Bay (Rio de Janeiro, Brazil).

    Science.gov (United States)

    de Souza, A S; Couri, M S; Florindo, L

    2012-02-01

    The effects of industrial anthropization on species composition and community diversity of Culicidae (Diptera) were studied in a mangrove area impacted by industrial activities as compared to a preserved area, both around Guanabara Bay in the state of Rio de Janeiro, Brazil. Diversity, equitability, and species richness in Culicidae community differed between the studied areas. Indicator species analysis and correspondence analysis were carried out and indicated that the Sabethini, especially Wyeomyia (Phoniomyia) theobaldi Lane, Wyeomyia (Phoniomyia) fuscipes (Edwards), and a non-identified species of Wyeomyia sp. were associated to the preserved area, whereas Aedes taeniorhynchus Wiedemann and Aedes scapularis (Rondani) to the impacted area.

  6. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers.

    Science.gov (United States)

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Porterfield, Ronald; Simpson, Charles D; Harker, Paul; Paparesta, Nick; Andrews, James R

    2011-02-01

    Glenohumeral internal rotation deficit (GIRD) indicates a 20° or greater loss of internal rotation of the throwing shoulder compared with the nondominant shoulder. To determine whether GIRD and a deficit in total rotational motion (external rotation + internal rotation) compared with the nonthrowing shoulder correlate with shoulder injuries in professional baseball pitchers. Case series; Level of evidence, 4. Over 3 competitive seasons (2005 to 2007), passive range of motion measurements were evaluated on the dominant and nondominant shoulders for 170 pitcher-seasons. This included 122 professional pitchers during the 3 seasons of data collection, in which some pitchers were measured during multiple seasons. Ranges of motion were measured with a bubble goniometer during the preseason, by the same examiner each year. External and internal rotation of the glenohumeral joint was assessed with the participant supine and the arm abducted 90° in the plane of the scapula, with the scapula stabilized anteriorly at the coracoid process. The reproducibility of the test methods had an intraclass correlation coefficient of .81. Days in which the player was unable to participate because of injury or surgery were recorded during the season by the medical staff of the team and defined as an injury. Pitchers with GIRD (n = 40) were nearly twice as likely to be injured as those without but without statistical significance (P = .17). Pitchers with total rotational motion deficit greater than 5° had a higher rate of injury. Minor league pitchers were more likely than major league pitchers to be injured. However, when players were injured, major league pitchers missed a significantly greater number of games than minor league pitchers. Compared with pitchers without GIRD, pitchers with GIRD appear to be at a higher risk for injury and shoulder surgery.

  7. Species composition and fauna distribution of mosquitoes (Diptera: Culicidae and its importance for vector-borne diseases in a rural area of Central Western - Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Alexandre Leal-Santos

    2017-08-01

    Full Text Available Abstract. This study describes ecological data obtained in a rural area in the State of Mato Grosso, including the insects belonging to the family Culicidae, especially those framed as potential vectors of tropical diseases. In 2015, we collected adult mosquitoes in fragments of forest in a rural area located in Mato Grosso Central West of Brazil. We captured 18,256 mosquitoes of the sub-families Culicinae and Anophelinae and have identified 34 species belonging to 12 genera: Aedes (1 species, Anopheles (8 species, Coquillettidia (1 species, Haemagogus (1 species, Culex (5 species, Psorophora  (5 species, Ochlerotatus (4 species, Deinocerites (1 species,  Mansonia (4 species, Sabethes (2 species, Limatus (1 species, Wyeomyia (1 species. The family Culicidae presented high richness and abundance, established by diversity indexes (Margalef α =3.26; Shannon H' = 2.09; Simpson D = 0.19 with dominance of the species Anopheles (Nyssorhyncus darlingi Root (89.8%. This species has considerable epidemiological value, considered the main vector of malaria in Mato Grosso. Many species of mosquitoes are vectors of pathogens that cause disease in humans and domestic animals, transmitting pathogens including viruses (arboviruses, filaria worms (helminths and protozoa. Composição de espécies e distribuição da fauna de mosquitos (Diptera: Culicidae e sua importância para doenças transmitidas por vetores em uma área rural do centro-ocidental - Mato Grosso, Brasil Resumo. Este estudo descreve dados ecológicos de uma área rural do Estado de Mato Grosso e dos insetos da família Culicidae especialmente aqueles enquadrados como vetores potenciais de doenças tropicais. Em 2015, coletamos mosquitos adultos em fragmentos de floresta em localidades de áreas rurais no Mato Grosso região Centro Oeste do Brasil. Foram capturados 18.256 exemplares alados de mosquitos das subfamílias Culicinae e Anophelinae e identificadas 34 espécies pertencentes a 12 g

  8. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    Science.gov (United States)

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  9. Are commercially available essential oils from Australian native plants repellent to mosquitoes?

    Science.gov (United States)

    Maguranyi, Suzann K; Webb, Cameron E; Mansfield, Sarah; Russell, Richard C

    2009-09-01

    While the use of topical insect repellents, particularly those containing synthetic active ingredients such as deet (N,N-diethyl-3-methylbenzamide), are a mainstay in personal protection strategies emphasized in public health messages, there is a growing demand in the community for alternative repellents, particularly those of botanical origin and thus deemed to be "natural." This study evaluated the repellency of essential oils from 11 Australian native plants in 5% v/v formulations against Aedes aegypti, Culex quinquefasciatus, and Culex annulirostris under laboratory conditions. A blend of the top 3 performing oils was then compared with deet and a commercially available botanical insect repellent. All essential oils provided at least some protection against the 3 mosquito species, with the longest protection time (110 min) afforded by Prostanthera melissifolia against Cx. quinquefasciatus. Mean protection times against Ae. aegypti were substantially lower than those for the Culex spp. tested. Deet provided significantly longer protection against Ae. aegypti than both the 5% v/v blend of Leptospermum petersonii, Prostanthera melissifolia, and Melaleuca alternifolia (the 3 most effective oils) and the commercial botanical repellent. The results of this study indicate that these essential oils from Australian native plants offer limited protection against biting mosquitoes and that a blend of essential oils holds may offer commercial potential as a short-period repellent or under conditions of low mosquito abundance. However, it is important that public health messages continue to emphasize the greater effectiveness of deet-based repellents in areas with risks of mosquito-borne disease.

  10. Ecologia de mosquitos em áreas do Parque Nacional da Serra da Bocaina: II -- Freqüência mensal e fatores climáticos Ecology of mosquitoes in areas of the National Park of "Serra da Bocaina", Brazil: II ¾ Monthly frequency and climatic factors

    Directory of Open Access Journals (Sweden)

    Anthony Érico Guimarães

    2001-08-01

    Full Text Available OBJETIVO: Estabelecer a influência exercida pelos fatores climáticos na freqüência mensal da fauna de mosquitos em áreas do Parque Nacional da Serra da Bocaina, Vale do Paraíba, SP. MÉTODOS: Foram realizadas capturas mensais por meio de isca humana, em três diferentes períodos do dia, durante 24 meses consecutivos (janeiro de 1991 a dezembro de 1992. RESULTADOS: Foram capturados 11.808 espécimes adultos pertencentes a 28 espécies. Anopheles cruzii, Runchomyia reversa e Ru. frontosa foram as espécies mais presentes em todos os meses do ano; An. cruzii ocorreu preferencialmente de outubro a fevereiro; Ru. reversa e Ru. frontosa, em setembro; An. lutzi, Chagasia fajardoi, Coquillettidia chrysonotum, Aedes serratus, Trichoprosopon simile, Wyeomyia theobaldi, Ru. humboldti e Ru. theobaldi, pertencentes ao segundo grupo de espécies mais abundantes, ocorreram preferencialmente nos meses mais quentes, úmidos e chuvosos. A temperatura e as precipitações pluviométricas influenciaram positivamente na incidência da maioria das espécies. CONCLUSÕES: A cobertura vegetal de Mata Atlântica bem preservada, as precipitações pluviométricas e a temperatura foram determinantes para a incidência da fauna de mosquitos no parque. Os meses mais chuvosos, úmidos e quentes contribuíram para o aumento da diversidade e da densidade. O período de setembro a março foi o mais favorável. Cerca de 70% das espécies chegaram a desaparecer no período de abril a agosto, os meses mais frios e secos do ano.OBJECTIVE: To establish the influence of climatic factors on the monthly frequency of mosquito fauna in areas of the National Park of Serra da Bocaina, Brazil. METHODS: Human bait collections were conducted once a month, in diurnal and nocturnal hours, throughout 24 months, from January 1991 to December 1992. RESULTS: A total of 11,808 adult mosquitoes belonging to 28 different species were collected. Anopheles cruzii, Runchomyia reversa, and Ru

  11. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  12. Repellent plants provide affordable natural screening to prevent mosquito house entry in tropical rural settings--results from a pilot efficacy study.

    Directory of Open Access Journals (Sweden)

    Frank C Mng'ong'o

    Full Text Available Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28-0.68, p<0.0001; 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09-0.32, p<0.0001, and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38-0.67, p<0.0001 in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person. L

  13. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers

    Science.gov (United States)

    Biesmeijer, Jacobus C.; Giurfa, Martin; Koedam, Dirk; Potts, Simon G.; Joel, Daniel M.; Dafni, Amots

    2005-09-01

    Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects’ orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

  14. Ecology of mosquitoes (Diptera: Culicidae in areas of Serra do Mar State Park, State of São Paulo, Brazil. II - Habitat distribution

    Directory of Open Access Journals (Sweden)

    Anthony Érico Guimarães

    2000-01-01

    Full Text Available The mosquito (Diptera: Culicidae ecology was studied in areas of Serra do Mar State Park, State of São Paulo, Brazil. Systematized biweekly human bait collections were made three times a day, for periods of 2 or 3 h each, in sylvatic and rural areas for 24 consecutive months (January 1991 to December 1992. A total of 24,943 adult mosquitoes belonging to 57 species were collected during 622 collective periods. Aedes scapularis, Coquillettidia chrysonotum, Cq. venezuelensis, Wyeomyia dyari, Wy. longirostris, Wy. theobaldi and Wy. palmata were more frequently collected at swampy and at flooded areas. Anopheles mediopunctatus, Culex nigripalpus, Ae. serratus, Ae. fulvus, Psorophora ferox, Ps. albipes and the Sabethini in general, were captured almost exclusively in forested areas. An. cruzii, An. oswaldoi and An. fluminensis were captured more frequently in a residence area. However, Cx. quinquefasciatus was the only one truly eusynanthropic. An. cruzii and Ae. scapularis were captured feeding on blood inside and around the residence, indicating that both species, malaria and arbovirus vectors respectively, may be involved in the transmission of these such diseases in rural areas.

  15. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.

    Science.gov (United States)

    Gillij, Y G; Gleiser, R M; Zygadlo, J A

    2008-05-01

    Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.

  16. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  17. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  18. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    Science.gov (United States)

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Evaluation of immature mosquitocidal properties of Xanthium strumarium Linn. plant extracts against Culex mosquitoes (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Kasim Roba

    2015-11-01

    Full Text Available Objective: To evaluate immature mosquitocidal properties of Xanthium strumarium plant extracts against Culex mosquitoes at Entomology Laboratory, Maraki Campus, University of Gondar. Methods: The immature mosquitocidal activity of plant extracts was tested by following World Health Organization recommended protocol. Acetone, methanol and water extracts were prepared at 50, 100, 150, 200 and 250 mg/L concentrations and tested against third and fourth instar larvae and pupae of Culex mosquitoes. The mortality rate of immature mosquitoes was recorded after 24, 48 and 72 h exposure period continuously. Results: Third instar larvae after 24 h exposure period, maximum mortality of 77.80% was recorded at 250 mg/L concentration of acetone extract. After 48 h and 72 h exposure period, maximum mortality of 88.90% was recorded in acetone extract in all the tested concentration. The maximum mortality of fourth instar larvae was 88.90% in acetone extract at 200 and 250 mg/L concentrations. Pupal mortality was also greater in acetone extract. The percentage of mortality in all the stage of mosquitoes was higher in acetone extract followed by methanol and water extract. Conclusions: The percentage of mortality is associated with concentration of the extracts tested and exposure period. This laboratory study confirmed immature mosquitocidal activity of Xanthium strumarium leaf extracts against Culex mosquitoes. The aqueous leaf extract can be used by applying on small man-made breeding places to prevent adult emergence.

  20. Upper Extremity Functional Status of Female Youth Softball Pitchers Using the Kerlan-Jobe Orthopaedic Clinic Questionnaire.

    Science.gov (United States)

    Holtz, Kaila A; O'Connor, Russell J

    2018-01-01

    Softball is a popular sport with a high incidence of upper extremity injuries. The Kerlan-Jobe Orthopaedic Clinic (KJOC) questionnaire is a validated performance and functional assessment tool used in overhead athletes. Upper extremity pain patterns and baseline KJOC scores have not been reported for active female youth softball pitchers. The purpose of this study was to establish the prevalence of upper extremity pain and its effect in female youth softball pitchers over a competitive season. We hypothesized that participants who missed time due to injury in the past year would have lower KJOC scores. Cross-sectional study; Level of evidence, 3. Fifty-three female softball pitchers aged 12 to 18 years were recruited from softball clinics in Vancouver, British Columbia, Canada. All participants self-identified as a pitcher on a competitive travel team. Participants were administered the KJOC questionnaire before and during the playing season. Missed time due to injury in the past year, current pain patterns, and KJOC scores were primary outcomes. The mean (±SD) preseason KJOC score was 87.2 ± 10.6. In the preseason, 22.6% of pitchers reported playing with arm trouble, and 32.1% missed time due to injury in the past year. The mean KJOC score for pitchers reporting a previous injury (n = 17) was significantly lower compared with those without an injury (n = 36) (79.5 ± 13.8 vs 90.9 ± 6.2, respectively; P = .02). The posterior shoulder was the most commonly reported pain location. For the cohort completing the questionnaire both before and during the playing season (n = 35), mean KJOC scores did not change significantly over the playing season ( P = .64). Lower preseason KJOC scores were significantly related to the in-season injury risk ( P = .016). Pitchers with a preseason score of less than 90 had a 3.5 (95% CI, 1.1-11.2) times greater risk of reporting an in-season injury. Female youth softball pitchers have a high baseline functional status. However, 1 in 3

  1. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    Directory of Open Access Journals (Sweden)

    Franziska Buch

    Full Text Available Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep. Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  2. Effects of seed cryopreservation, stratification and scarification on germination for five rare species of pitcher plants.

    Science.gov (United States)

    Khanna, Sruti; Jenkins, Heather; Bucalo, Kylie; Determann, Ron O; Cruse-Sanders, Jennifer M; Pullman, Gerald S

    2014-01-01

    Habitat loss and over collection have caused North American pitcher plants to become rare, including U.S. federally endangered Sarracenia alabamensis and S. oreophila, and S. leucophylla, S. psittacina and S. purpurea spp. venosa, endangered in several states. To develop reliable seed cryopreservation protocols for endangered Sarracenia species enabling similar germination percentages before and after storage in liquid nitrogen (LN) either in vivo or using in vitro tools. Seed germination pre- and post-cryopreservation were compared following seed drying with germination in soil, aseptic environment with wet filter paper or enriched medium, and using scarification or stratification for dormancy removal. After cryostorage, germination in vitro (1/6- or 1/3-strength MS medium) increased compared to germination on peat moss. Germination pre- and post-cryopreservation was similar for S. alabamensis and S. oreophila when seeds were stratified and grown in vitro. S. leucophylla and S. psittacina also showed high germination after cryopreservation when germinated on medium following stratification. Rapid liquid nitrogen exposure and rewarming induced seed coat cracking that damaged seeds, likely allowing internal damage during acid scarification and microbial entry during germination in non-sterile environments.

  3. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea leaves.

    Directory of Open Access Journals (Sweden)

    Taylor K Paisie

    Full Text Available The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  4. Species Composition and Ecological Aspects of Immature Mosquitoes (Diptera: Culicidae in Bromeliads in Urban Parks in the City of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Walter Ceretti-Junior

    2015-10-01

    Full Text Available Background: Bromeliads can be epiphytic, terrestrial or saxicolous and use strategies to allow water to be re­tained in their leaf axils, where various arthropods can be found. These include mosquitoes, whose larvae are the most abundant and commonly found organisms in the leaf axils. The objective of this study was to look for im­mature forms of mosquitoes (the larval and pupal stages in bromeliads in municipal parks in São Paulo and to discuss the ecological and epidemiological importance of these insects.Methods: From October 2010 to July 2013, immature mosquitoes were collected from bromeliads in 65 munici­pal parks in the city of São Paulo, Brazil, using suction samplers. The immature forms were maintained until adult forms emerged, and these were then identified morphologically.Results: Two thousand forty-two immature-stage specimens belonging to the genera Aedes, Culex, Trichoprosopon, Toxorhynchites, Limatus and Wyeomyia were found in bromeliads in 15 of the 65 parks visited. Aedes albopictus was the most abundant species (660 specimens collected, followed by Culex quinquefasciatus (548 specimens and Cx. (Microculex imitator (444. The taxa with the most widespread distribution were Ae. aegypti and Toxorhynchites spp, followed by Ae. albopictus and Cx. quinquefasciatus.Conclusion: Bromeliads in urban parks are refuges for populations of native species of Culicidae and breeding sites for exotic species that are generally of epidemiological interest. Hence, administrators and surveillance and mosquito-control agencies must constantly monitor these microenvironments as the presence of these species endangers the health of park users and employees as well as people living near the parks. 

  5. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes

    OpenAIRE

    Pavlovič, Andrej

    2012-01-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the ...

  6. Larvicidal properties of two asclepiadaceous plant species against the mosquito Anopheles arabiensis Patton (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Amal Elsayed Edriss

    2013-01-01

    Full Text Available Certain mosquito species are important vectors of fatal human diseases, among which Anopheles arabiensis is known to be associated with malaria transmission in different tropical and subtropical areas. Since chemical control of mosquitoes was linked with numerous drawbacks, like resistance development, the search for effective environmentally sound alternatives is urgently needed. Therefore, it was aimed by this study to evaluate some extracts prepared from two asclepiadaceous plants, viz., Solenostemma argel “Hargel” (seeds and leaves and Calotropis procera “Usher” (leaves and flowers, as natural larvicides against An. arabiensis. The main parameters included bioassays of treatments for knockdown and residual effects, besides phytochemical analysis of the tested extracts. The results revealed variable groups of secondary metabolites in the two plants, with S. argel seemed to be the richest one. Hence, S. argel extracts caused higher larval mortalities than those of C. procera. This could be ascribed to some potent secondary metabolites in the former plant, which needs further studies. Almost all the high concentrations of S. argel extracts exerted the highest knockdown effect (90% mortality after 24 h, which were comparable with those obtained by two standard insecticides. The highest doses of petroleum ether and water extracts of this plant also manifested significantly higher residual effects than the other extracts after three days following treatments, but were surpassed by the chemical insecticides thereafter. However, S. argel seed petroleum ether extract at 0.5% was the most effective of all botanicals up to three weeks of exposure. This extract needs to be evaluated under field conditions for proper exploitation as mosquito larvicide.

  7. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    Science.gov (United States)

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  8. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    Science.gov (United States)

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  9. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro - Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    Directory of Open Access Journals (Sweden)

    Márcio Goulart Mocellin

    2009-12-01

    Full Text Available Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07% and five of Ae. albopictus(0.18% were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  10. Trends in Revision Elbow Ulnar Collateral Ligament Reconstruction in Professional Baseball Pitchers.

    Science.gov (United States)

    Wilson, Alexander T; Pidgeon, Tyler S; Morrell, Nathan T; DaSilva, Manuel F

    2015-11-01

    To determine the frequency of revision elbow ulnar collateral ligament (UCL) reconstruction in professional baseball pitchers. Data were collected on 271 professional baseball pitchers who underwent primary UCL reconstruction. Each player was evaluated retrospectively for occurrence of revision UCL reconstructive surgery to treat failed primary reconstruction. Data on players who underwent revision UCL reconstruction were compiled to determine total surgical revision incidence and revision rate by year. The incidence of early revision was analyzed for trends. Average career length after primary UCL reconstruction was calculated and compared with that of players who underwent revision surgery. Logistic regression analysis was performed to assess risk factors for revision including handedness, pitching role, and age at the time of primary reconstruction. Between 1974 and 2014, the annual incidence of primary UCL reconstructions among professional pitchers increased, while the proportion of cases being revised per year decreased. Of the 271 pitchers included in the study, 40 (15%) required at least 1 revision procedure during their playing career. Three cases required a second UCL revision reconstruction. The average time from primary surgery to revision was 5.2 ± 3.2 years (range, 1-13 years). The average length of career following primary reconstruction for all players was 4.9 ± 4.3 years (range, 0-22 years). The average length of career following revision UCL reconstruction was 2.5 ± 2.4 years (range, 0-8 years). No risk factors for needing revision UCL reconstruction were identified. The incidence of primary UCL reconstructions among professional pitchers is increasing; however, the rate of primary reconstructions requiring revision is decreasing. Explanations for the decreased revision rate may include improved surgical technique and improved rehabilitation protocols. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by

  11. Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae).

    Science.gov (United States)

    Traboulsi, Abdallah F; El-Haj, Samih; Tueni, Marie; Taoubi, Khalil; Nader, Natalie Abi; Mrad, Abir

    2005-06-01

    The insecticidal activities of essential oil extracts from leaves, flowers and roots of aromatic plants against fourth-instar larvae of the mosquito Culex pipiens molestus Forskal were determined. Extracts of Foeniculum vulgare Mill were the most toxic, followed by those of Ferula hermonis Boiss, Citrus sinensis Osbeck, Pinus pinea L, Laurus nobilis L and Eucalyptus spp with LC50 values of 24.5, 44.0, 60.0, 75.0, 117.0 and 120.0 mg litre(-1), respectively. Combination tests between the LC50 and the maximum sub-lethal concentration (MSLC) were determined. Over 20 major components were identified in extracts from each plant species tested. Five essential oils and nine pure components were studied for their repellency against mosquito bites. Terpineol and 1,8-cineole were the most effective against Culex pipiens molestus bites offering complete protection for 1.6 and 2 h, respectively.

  12. Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation.

    Science.gov (United States)

    Stodden, David F; Fleisig, Glenn S; McLean, Scott P; Andrews, James R

    2005-02-01

    To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.

  13. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  14. Synanthropy of mosquitoes and sand flies near the Aimorés hydroelectric power plant, Brazil.

    Science.gov (United States)

    Barata, R A; Ursine, R L; Nunes, F P; Morais, D H; Araújo, H S

    2012-12-01

    The environmental changes resulting from the construction of hydroelectric dams may affect the fauna of insect vectors and consequently the epidemiology of the diseases they transmit. This work examined the mosquito and sand fly fauna in the area of the Aimorés hydroelectric power plant, analyzing the seasonal distribution and the degree of species synanthropy in different ecotopes. Between November, 2008 and September, 2009, entomological captures were performed with the help of HP light traps in the rural, urban, and forest areas of Aimorés, Ituêta, Resplendor, and Baixo Guandu counties. The fauna proved to be quite diversified. Twenty-two species of mosquitoes and 11 species of sand flies were found. Culex quinquefasciatus was predominant among mosquitoes (76.7%), while Lutzomyia intermedia prevailed among sand flies (34.5%). Some of the captured species have medical interest. Supported by the high degree of synanthropy, those species reinforce the need for epidemiological surveillance. © 2012 The Society for Vector Ecology.

  15. Forest culicinae mosquitoes in the environs of samuel hydroeletric plant, state of Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    SLB Luz

    1996-08-01

    Full Text Available Data on frequency and seasonal distribution of culicinae were recorded in the forest near a recently constructed hydroelectric plant - Samuel, in the State of Rondônia, Brazilian Amazon. Collections were performed almost daily from August 1990 to July 1991, between 6 and 9 p.m., using human bait. A total of 3,769 mosquitoes was collected, representing 21 species, including seven new records for the State of Rondônia. The most frequently collected species were Aedes fulvus (25% and Ae. pennai (12.3%. The highest density for the majority of mosquito species coincided with the rainy season.

  16. Longitudinal evaluation of Ocimum and other plants effects on the feeding behavioral response of mosquitoes (Diptera: Culicidae in the field in Tanzania

    Directory of Open Access Journals (Sweden)

    Tenu Filemoni

    2008-10-01

    Full Text Available Abstract Background The use of repellent materials from plants against nuisance insects is common with great potential to compliment existing malaria control programmes and this requires evaluation in the field. Ocimum plant species, Ocimum suave (Willd and O. kilimandscharicum (Guerke materials and their essential oils extracted by steam distillation were evaluated in the field and experimental huts for repellence, exophily and feeding inhibition effects against three mosquito species, Anopheles arabiensis (Patton, An. gambiae ss (Giles and Culex quinquefasciatus (Say. The protective effect of essential oils from Ocimum plants were compared with N, N-diethly-3- methylbenzamide (DEET, a standard synthetic repellent. Also, the protective effect of fumigation by burning of repellent plants; Ocimum suave, Ocimum kilimandscharicum, Azadirachta indica, Eucalyptus globules and Lantana camara were tested in experimental huts and selected local houses. Results In the field, protection by Ocimum plants from mosquito bites was high and there was small variation among different mosquito species. Protection efficiency was 93.4%, 91.98% and 89.75% for An. arabiensis while for Cx. quinquefaciatus it was 91.30%, 88.65% and 90.50% for DEET, Ocimum suave and O. kilimandscharicum respectively. In the experimental hut, deterrence induced by burning of Ocimum and other plants ranged from 73.1.0% to 81.9% for An. arabiensis and 56.5% to 67.8% for Cx. quinquefaciatus, while feeding inhibition was 61.1% to 100% for An. arabiensis and 50% to 100% for Cx. quinquefaciatus. Evaluations under field conditions confirmed high protective efficacy, enhanced feeding inhibition and house entry inhibition (Deterrence. Conclusion This study shows the potential of Ocimum suave and Ocimum kilimandscharicum crude extracts and whole plants of Ocimum suave, Ocimum kilimandscharicum, Azadirachta indica, Eucalyptus globules and Lantana camara for use in protecting against human biting

  17. Identification of the mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas

    Science.gov (United States)

    An investigation of the Indian folk remedy plant, Jatropha curcas, was performed to specifically identify the constituents responsible for the mosquito biting deterrent activity of the oil as a whole. Jatropha curcas seed oil is burned in oil lamps in India and part of Africa to repel biting insect...

  18. A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball

    Science.gov (United States)

    McDowell, M; Ciocco, M

    2005-01-01

    Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092

  19. Fate of labelled allitin in bean plant and mosquito

    International Nuclear Information System (INIS)

    Banerji, A.; Chintalwar, G.J.; Ramakrishnan, V.

    1980-01-01

    Allitin, the insecticidal principle of garlic (Allium sativum L) is a mixture of diallyl di- and tri-sulfides. 35 S-labelled allitin has been synthesised using different methods and used for the evaluation of its persistence in water. Results of these experiments showed that allitin has low persistence; more than 80% of the initial radioactivity was lost in 24 hr. when an aqueous emulsion of labelled allitin was exposed under the laboratory conditions. Fate of labelled allitin was studied in larvae and pupae of mosquitoes, Culex pipiens quinquefasciatus Say. Assimilation of allitin was found to be faster in larva compared to pupa. Intake of allitin by bean plant was also studied. Implications of the results obtained in the above experiments will be discussed. (author)

  20. Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology.

    Science.gov (United States)

    Kolter, Roberto

    2010-03-01

    This article reviews the latest findings on how extracellular signaling controls cell fate determination during the process of biofilm formation by Bacillus subtilis in the artificial setting of the laboratory. To complement molecular genetic approaches, surface-associated communities in settings as diverse as the pitcher plant Sarracenia purpurea and the human lung were investigated. The study of the pitcher plant revealed that the presence or absence of a mosquito larva in the pitcher plant controlled bacterial diversity in the ecosystem inside the pitcher plant. Through the analysis of the respiratory tract microbiota of humans suffering from cystic fibrosis (CF) a correlation between lung function and bacterial community diversity was found. Those that had lungs in good condition had also more diverse communities, whereas patients harboring Pseudomonas aeruginosa-the predominant CF pathogen-in their lungs had less diverse communities. Further studies focused on interspecies and intraspecies relationships at the molecular level in search for signaling molecules that would promote biofilm formation. Two molecules were found that induced biofilm formation in B. subtilis: nystatin-released by other species-and surfactin-released by B. subtilis itself. This is a role not previously known for two molecules that were known for other activities-nystatin as an antifungal and surfactin as a surfactant. In addition, surfactin was found to also trigger cannibalism under starvation. This could be a strategy to maintain the population because the cells destroyed serve as nutrients for the rest. The path that led the author to the study of microbial biofilms is also described.

  1. Lower thoracic rib stress fractures in baseball pitchers.

    Science.gov (United States)

    Gerrie, Brayden J; Harris, Joshua D; Lintner, David M; McCulloch, Patrick C

    2016-01-01

    Stress fractures of the first rib on the dominant throwing side are well-described in baseball pitchers; however, lower thoracic rib fractures are not commonly recognized. While common in other sports such as rowing, there is scant literature on these injuries in baseball. Intercostal muscle strains are commonly diagnosed in baseball pitchers and have a nearly identical presentation but also a highly variable healing time. The diagnosis of a rib stress fracture can predict a more protracted recovery. This case series presents two collegiate baseball pitchers on one team during the same season who were originally diagnosed with intercostal muscle strains, which following magnetic resonance imaging (MRI) were found to have actually sustained lower thoracic rib stress fractures. The first sustained a stress fracture of the posterior aspect of the right 8th rib on the dominant arm side, while the second presented with a left-sided 10th rib stress fracture on the nondominant arm side. In both cases, MRI was used to visualize the fractures as plain radiographs are insensitive and commonly negative early in patient presentation. Patients were treated with activity modification, and symptomatic management for 4-6 weeks with a graduated return to throwing and competition by 8-10 weeks. The repetitive high stresses incurred by pitching may cause either dominant or nondominant rib stress fractures and this should be included in the differential diagnosis of thoracic injuries in throwers. It is especially important that athletic trainers and team physicians consider this diagnosis, as rib fractures may have a protracted course and delayed return to play. Additionally, using the appropriate imaging techniques to establish an accurate diagnosis can help inform return-to-play decisions, which have important practical applications in baseball, such as roster management and eligibility.

  2. Spatiotemporal variation of mosquito diversity (Diptera: Culicidae) at places with different land-use types within a neotropical montane cloud forest matrix.

    Science.gov (United States)

    Abella-Medrano, Carlos Antonio; Ibáñez-Bernal, Sergio; MacGregor-Fors, Ian; Santiago-Alarcon, Diego

    2015-09-24

    Land-use change has led to a dramatic decrease in total forest cover, contributing to biodiversity loss and changes of ecosystems' functions. Insect communities of medical importance can be favored by anthropogenic alterations, increasing the risk of novel zoonotic diseases. The response of mosquito (Diptera: Culicidae) abundance and richness to five land-use types (shade coffee plantation, cattle field, urban forest, peri-urban forest, well-preserved montane cloud forest) and three seasons ("dry", "rainy" and "cold") embedded in a neotropical montane cloud forest landscape was evaluated. Standardized collections were performed using 8 CDC miniature black-light traps, baited with CO2 throughout the year. Generalized additive mixed models were used to describe the seasonal and spatial trends of both species richness and abundance. Rank abundance curves and ANCOVAs were used to detect changes in the spatial and temporal structure of the mosquito assemblage. Two cluster analyses were conducted, using 1-βsim and the Morisita-Horn index to evaluate species composition shifts based on incidences and abundances. A total of 2536 adult mosquitoes were collected, belonging to 9 genera and 10 species; the dominant species in the study were: Aedes quadrivittatus, Wyeomyia adelpha, Wy. arthrostigma, and Culex restuans. Highest richness was recorded in the dry season, whereas higher abundance was detected during the rainy season. The urban forest had the highest species richness (n = 7) when compared to all other sites. Species composition cluster analyses show that there is a high degree of similarity in species numbers across sites and seasons throughout the year. However, when considering the abundance of such species, the well-preserved montane cloud forest showed significantly higher abundance. Moreover, the urban forest is only 30 % similar to other sites in terms of species abundances, indicating a possible isolating role of the urban environment. Mosquito

  3. Return to competition, re-injury, and impact on performance of preseason shoulder injuries in Major League Baseball pitchers.

    Science.gov (United States)

    Makhni, Eric C; Lee, Randall W; Nwosu, Ekene O; Steinhaus, Michael E; Ahmad, Christopher S

    2015-07-01

    Major league baseball (MLB) pitchers are vulnerable to overuse injury of the upper extremity, especially in the shoulder. Injuries sustained in the preseason may have negative impact on performance following return. The goal of this study was to document the frequency of preseason shoulder injury in these athletes, as well as risk for re-injury and impact on performance following return from injury. A comprehensive search of MLB injury information from 2001 to 2010 of public databases yielded a cohort of MLB pitchers who sustained preseason shoulder injuries. These databases were utilized to obtain information regarding return to MLB competition, re-injury, and performance following return from injury. All performance metrics were compared to those of an age-matched control cohort. A total of 74 pitchers were identified who sustained a preseason shoulder injury. Only 39 (53%) returned that same season to pitch in the MLB competition. Of those that returned, nearly 50% of players were re-designated on the Disabled List during the return season. There was a decline in performance in earned run average and batting average against in the year of return. Compared to age-matched control pitchers, those with preseason shoulder injury had lower performance metrics across a number of outcomes. Preseason shoulder injury in MLB pitchers has the potential to result in high re-injury rates and decreased subsequent performance.

  4. Medial supracondylar stress fracture in an adolescent pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, CA (United States); University of California, San Diego Medical Center, San Diego, CA (United States); Fronek, Jan [Scripps Healthcare, La Jolla, CA (United States)

    2014-01-15

    We report the occurrence of a medial supracondylar stress fracture in an adolescent pitcher. To our knowledge, this fracture has not been described in the literature, and awareness of this entity allows initiation of therapy and precludes further unnecessary work-up. The radiographic, computed tomography, and magnetic resonance imaging appearances are reviewed and the mechanism of injury is discussed. (orig.)

  5. Nanoparticles for mosquito control: Challenges and constraints

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2017-10-01

    Full Text Available Mosquito control programs are facing important and timely challenges, including the recent outbreaks of novel arbovirus, the development of resistance in several Culicidae species, and the rapid spreading of highly invasive mosquitoes worldwide. Current control tools mainly rely on the employment of (i synthetic or microbial pesticides, (ii insecticide-treated bed nets, (iii adult repellents, (iv biological control agents against mosquito young instars (mainly fishes, amphibians and copepods (v Sterile Insect Technique (SIT, (vi “boosted SIT”, (vii symbiont-based methods and (viii transgenic mosquitoes. Currently, none of these single strategies is fully successful. Novel eco-friendly strategies to manage mosquito vectors are urgently needed. The plant-mediated fabrication of nanoparticles is advantageous over chemical and physical methods, since it is cheap, single-step, and does not require high pressure, energy, temperature, or the use of highly toxic chemicals. In the latest years, a growing number of plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of metal nanoparticles effective against mosquitoes at very low doses (i.e. 1–30 ppm. In this review, we focused on the promising potential of green-fabricated nanoparticles as toxic agents against mosquito young instars, and as adult oviposition deterrents. Furthermore, we analyzed current evidences about non-target effects of these nanocomposites used for mosquito control, pointing out their moderate acute toxicity for non-target aquatic organisms, absence of genotoxicity at the doses tested against mosquitoes, and the possibility to boost the predation rates of biological control agents against mosquitoes treating the aquatic environment with ultra-low doses (e.g. 1–3 ppm of green-synthesized nanoparticles, which reduce the motility of mosquito larvae. Challenges for future research should shed light on (i the precise mechanism(s of action of

  6. Larvicidal, ovicidal, and oviposition-deterrent activities of four plant extracts against three mosquito species.

    Science.gov (United States)

    Prathibha, K P; Raghavendra, B S; Vijayan, V A

    2014-05-01

    In mosquito control programs, insecticides of botanical origin have the potential to eliminate eggs, larvae, and adults. So, the larvicidal, ovicidal, and oviposition-deterrent activities of petroleum ether and ethyl acetate extracts of the leaves of Eugenia jambolana, Solidago canadensis, Euodia ridleyi, and Spilanthes mauritiana were assayed against the three vector mosquito species, namely Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The larval bioassay was conducted following the World Health Organization method. The maximum larval mortality was found with ethyl acetate extract of S. mauritiana against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus with LC50 values of 11.51, 28.1, 14.10 ppm, respectively. The mean percent hatchability of the ovicidal activity was observed at 48-h post-treatment. The percent hatchability was found to be inversely proportional to the concentration of the extract and directly proportional to the number of eggs. The flower head extract of S. mauritiana gave 100% mortality followed by E. ridleyi, S. canadensis, and E. jambolana against the eggs of the three mosquito vectors. For oviposition-deterrent effect, out of the five concentrations tested (20, 40, 60, 80, and 100 ppm), the concentration of 100 ppm showed a significant egg laying-deterrent capacity. The oviposition activity index value of E. jambolana, E. ridleyi, S. canadensis, and S. mauritiana against A. aegypti, A. stephensi, C. quinquefasciatus at 100 ppm were -0.71, -0.71, -0.90, -0.93, -0.85, -0.91, -1, -1, -0.71, -0.85, -1, and -1, respectively. These results suggest that the leaf/flower extracts of certain local plants have the potential to be developed as possible eco-friendly means for the control of mosquitoes.

  7. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors.

    Science.gov (United States)

    Bagavan, A; Rahuman, A Abdul

    2011-01-01

    To evaluate the mosquito larvicidal activity of plant extracts. The hexane, chloroform, ethyl acetate, acetone, and methanol leaf, flower and seed extracts of Abrus precatorius (A. precatorius), Croton bonplandianum (C. bonplandianum), Cynodon dactylon (C. dactylon), Musa paradisiaca (M. paradisiaca) and Syzygium aromaticum (S. aromaticum) were tested against fourth instar larvae of Anopheles vagus (An. vagus), Armigeres subalbatus (Ar. subalbatus) and Culex vishnui (Cx. vishnui). The highest larval mortality was found in seed ethyl acetate extracts of A. precatorius and leaf extracts of C. bonplandianum, flower chloroform and methanol extracts of M. paradisiaca, and flower bud hexane extract of S. aromaticum against An. vagus with LC(50) values of 19.31, 39.96, 35.18, 79.90 and 85.90 μg/mL; leaf ethyl acetate and methanol extracts of C. dactylon, flower methanol extract of M. paradisiaca, flower bud methanol extract of S. aromaticum against Ar. subalbatus with LC(50) values of 21.67, 32.62, 48.90 and 78.28 μg/mL, and seed methanol of A. precatorius, flower methanol extract of M. paradisiaca, flower bud hexane extract of S. aromaticum against Cx. vishnui with LC(50) values of 136.84, 103.36 and 149.56 μg/mL, respectively. These results suggest that the effective plant crude extracts have the potential to be used as an ideal ecofriendly approach for the control of disease vectors. This study provides the first report on the larvicidal activity of crude solvent extracts of different mosquitoes. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Deficits in glenohumeral passive range of motion increase risk of elbow injury in professional baseball pitchers: a prospective study.

    Science.gov (United States)

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Aune, Kyle T; Porterfield, Ron A; Harker, Paul; Evans, Timothy J; Andrews, James R

    2014-09-01

    Injuries to the elbow joint in baseball pitchers appear common. There appears to be a correlation between shoulder range of motion and elbow injuries. To prospectively determine whether decreased ROM of the throwing shoulder is correlated with the onset of elbow injuries in professional baseball pitchers. Cohort study; Level of evidence, 2. For 8 consecutive years (2005-2012), passive range of motion of both the throwing and nonthrowing shoulders of all major and minor league pitchers within a single professional baseball organization were measured by using a bubble goniometer during spring training. In total, 505 examinations were conducted on 296 pitchers. Glenohumeral external rotation and internal rotation were assessed in the supine position with the arm at 90° of abduction and in the plane of the scapula. The scapula was stabilized per methods previously established. Total rotation was defined as the sum of external rotation and internal rotation. Passive shoulder flexion was assessed with the subject supine and the scapula stabilized per methods previously established. Elbow injuries and days missed because of elbow injuries were assessed and recorded by the medical staff of the team. Throwing and nonthrowing shoulder measurements were compared by using Student t tests; 1-tailed Fisher exact tests were performed to identify significant associations between shoulder motion and elbow injury. Nominal logistic regression was performed to determine the odds of elbow injury. Significant differences were noted during side-to-side comparisons within subjects. There were 49 elbow injuries and 8 surgeries in 38 players, accounting for a total of 2551 days missed. Neither glenohumeral internal rotation deficit nor external rotation insufficiency was correlated with elbow injuries. Pitchers with deficits of >5° in total rotation in their throwing shoulders had a 2.6 times greater risk for injury. Pitchers with deficit of ≥5° in flexion of the throwing shoulder had

  9. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Punita Sharma

    2015-12-01

    Full Text Available In prokaryotes, horizontal gene transfer (HGT has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.

  10. An inferential and descriptive statistical examination of the relationship between cumulative work metrics and injury in Major League Baseball pitchers.

    Science.gov (United States)

    Karakolis, Thomas; Bhan, Shivam; Crotin, Ryan L

    2013-08-01

    In Major League Baseball (MLB), games pitched, total innings pitched, total pitches thrown, innings pitched per game, and pitches thrown per game are used to measure cumulative work. Often, pitchers are allocated limits, based on pitches thrown per game and total innings pitched in a season, in an attempt to prevent future injuries. To date, the efficacy in predicting injuries from these cumulative work metrics remains in question. It was hypothesized that the cumulative work metrics would be a significant predictor for future injury in MLB pitchers. Correlations between cumulative work for pitchers during 2002-07 and injury days in the following seasons were examined using regression analyses to test this hypothesis. Each metric was then "binned" into smaller cohorts to examine trends in the associated risk of injury for each cohort. During the study time period, 27% of pitchers were injured after a season in which they pitched. Although some interesting trends were noticed during the binning process, based on the regression analyses, it was found that no cumulative work metric was a significant predictor for future injury. It was concluded that management of a pitcher's playing schedule based on these cumulative work metrics alone could not be an effective means of preventing injury. These findings indicate that an integrated approach to injury prevention is required. This approach will likely involve advanced cumulative work metrics and biomechanical assessment.

  11. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    Science.gov (United States)

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (Poil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  12. Knee Angle and Stride Length in Association with Ball Speed in Youth Baseball Pitchers

    Directory of Open Access Journals (Sweden)

    Bart van Trigt

    2018-05-01

    Full Text Available The purpose of this study was to determine whether stride length and knee angle of the leading leg at foot contact, at the instant of maximal external rotation of the shoulder, and at ball release are associated with ball speed in elite youth baseball pitchers. In this study, fifty-two elite youth baseball pitchers (mean age 15.2 SD (standard deviation 1.7 years pitched ten fastballs. Data were collected with three high-speed video cameras at a frequency of 240 Hz. Stride length and knee angle of the leading leg were calculated at foot contact, maximal external rotation, and ball release. The associations between these kinematic variables and ball speed were separately determined using generalized estimating equations. Stride length as percentage of body height and knee angle at foot contact were not significantly associated with ball speed. However, knee angles at maximal external rotation and ball release were significantly associated with ball speed. Ball speed increased by 0.45 m/s (1 mph with an increase in knee extension of 18 degrees at maximal external rotation and 19.5 degrees at ball release. In conclusion, more knee extension of the leading leg at maximal external rotation and ball release is associated with higher ball speeds in elite youth baseball pitchers.

  13. Mosquito Control

    Science.gov (United States)

    ... Labs and Research Centers Contact Us Share Mosquito Control About Mosquitoes General Information Life Cycle Information from ... Repellent that is Right for You DEET Mosquito Control Methods Success in mosquito control: an integrated approach ...

  14. Unusual stress fracture in an adolescent baseball pitcher affecting the trochlear groove of the olecranon

    International Nuclear Information System (INIS)

    Blake, Joseph J.; Block, John J.; Kan, J.H.; Hannah, Gene A.

    2008-01-01

    Stress fractures of the proximal ulna are known to occur in throwing athletes. Most cases extend to involve the olecranon, and cases limited to the trochlear groove are rare. In this report we present a 17-year-old elite baseball pitcher with a stress fracture of the trochlear groove of the proximal ulna. Diagnosis was made by demonstration of characteristic signal changes on MRI of the elbow. The fracture occurred at the cortical notch, also known as the pseudodefect of the trochlear groove. This case suggests that the cortical notch serves as an area of weakness predisposing pitchers to development of a stress fracture. (orig.)

  15. Kinematic and Kinetic Profiles of Trunk and Lower Limbs during Baseball Pitching in Collegiate Pitchers

    Directory of Open Access Journals (Sweden)

    Masahiro Kageyama, Takashi Sugiyama, Yohei Takai, Hiroaki Kanehisa, Akira Maeda

    2014-12-01

    Full Text Available The purpose of this study was to clarify differences in the kinematic and kinetic profiles of the trunk and lower extremities during baseball pitching in collegiate baseball pitchers, in relation to differences in the pitched ball velocity. The subjects were 30 collegiate baseball pitchers aged 18 to 22 yrs, who were assigned to high- (HG, 37.4 ± 0.8 m·s-1 and low-pitched-ball-velocity groups (LG, 33.3 ± 0.8 m·s-1. Three-dimensional motion analysis with a comprehensive lower-extremity model was used to evaluate kinematic and kinetic parameters during baseball pitching. The ground-reaction forces (GRF of the pivot and stride legs during pitching were determined using two multicomponent force plates. The joint torques of hip, knee, and ankle were calculated using inverse-dynamics computation of a musculoskeletal human model. To eliminate any effect of variation in body size, kinetic and GRF data were normalized by dividing them by body mass. The maxima and minima of GRF (Fy, Fz, and resultant forces on the pivot and stride leg were significantly greater in the HG than in the LG (p < 0.05. Furthermore, Fy, Fz, and resultant forces on the stride leg at maximum shoulder external rotation and ball release were significantly greater in the HG than in the LG (p < 0.05. The hip abduction, hip internal rotation and knee extension torques of the pivot leg and the hip adduction torque of the stride leg when it contacted the ground were significantly greater in the HG than in the LG (p < 0.05. These results indicate that, compared with low-ball-velocity pitchers, high-ball-velocity pitchers can generate greater momentum of the lower limbs during baseball pitching.

  16. Culicidae (Diptera, Culicomorpha from the western Brazilian Amazon: Juami-Japurá Ecological Station

    Directory of Open Access Journals (Sweden)

    Rosa Sá Gomes Hutchings

    2010-01-01

    Full Text Available With 312 trap-hours of sampling effort, 1554 specimens of Culicidae (Diptera were collected, using CDC and Malaise traps, in nine different locations along the Juami River, within the Juami-Japurá Ecological Station, Amazonas State, Brazil. A list of mosquito species with 54 taxa is presented, which includes three new distributional records for the state of Amazonas. The species found belong to the genera Anopheles, Aedeomyia, Aedes, Psorophora, Culex, Coquillettidia, Sabethes, Wyeomyia and Uranotaenia.

  17. Mosquito (Diptera: Culicidae) Habitat Surveillance by Android Mobile Devices in Guangzhou, China.

    Science.gov (United States)

    Wu, Tai-Ping; Tian, Jun-Hua; Xue, Rui-De; Fang, Yi-Liang; Zheng, Ai-Hua

    2016-12-17

    In 2014, Guangzhou City, South China, suffered from its worst outbreak of dengue fever in decades. Larval mosquito habitat surveillance was carried out by using android mobile devices in four study sites in May 2015. The habitats with larval mosquitoes were recorded as photo waypoints in OruxMaps or in videos. The total number of potential mosquito habitats was 342, of which 166 (49%) were found to have mosquito larvae or pupae. Small containers were the most abundant potential habitats, accounting for 26% of the total number. More mosquito larvae and pupae, were found in small containers than in other objects holding water, for example, potted or hydroponic plants ( p Android mobile devices are a convenient and useful tool for surveillance of mosquito habitats, and the enhancement of source reduction may benefit the prevention and control of dengue vector mosquitoes.

  18. Stress sonography of the ulnar collateral ligament of the elbow in professional baseball pitchers: a 10-year study.

    Science.gov (United States)

    Ciccotti, Michael G; Atanda, Alfred; Nazarian, Levon N; Dodson, Christopher C; Holmes, Laurens; Cohen, Steven B

    2014-03-01

    An injury to the ulnar collateral ligament (UCL) of the elbow is potentially career threatening for elite baseball pitchers. Stress ultrasound (US) of the elbow allows for evaluation of both the UCL and the ulnohumeral joint space at rest and with stress. Stress US can identify morphological and functional UCL changes and may predict the risk of a UCL injury in elite pitchers. Cross-sectional study; Level of evidence, 3. A total of 368 asymptomatic professional baseball pitchers underwent preseason stress US of their dominant and nondominant elbows over a 10-year period (2002-2012). Stress US examinations were performed in 30° of flexion at rest and with 150 N of valgus stress by a single musculoskeletal radiologist. Ligament thickness, ulnohumeral joint space width, and ligament abnormalities (hypoechoic foci and calcifications) were documented. There were 736 stress US studies. The mean UCL thickness in the dominant elbow (6.15 mm) was significantly greater than that in the nondominant elbow (4.82 mm) (P .05) increases in baseline ligament thickness, ulnohumeral joint space gapping with stress, and incidence of hypoechoic foci and calcifications. More than 1 stress US examination was performed in 131 players, with a mean increase of 0.78 mm in joint space gapping with subsequent evaluations. Stress US indicates that the UCL in the dominant elbow of elite pitchers is thicker, is more likely to have hypoechoic foci and/or calcifications, and has increased laxity with valgus stress over time.

  19. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  20. Application of radiotracers in an exotic field of botany. How to feed carnivorous plants

    International Nuclear Information System (INIS)

    Steinhauser, G.; Musilek, A.; Sterba, J.H.; Bichler, M.; Adlassnig, W.; Peroutka, M.; Lichtscheidl, I.K.

    2007-01-01

    In this paper, methods for the application of radiotracers in the Cobra Lily (Darlingtonia californica), a carnivorous pitcher plant, are described. The uptake of radiotracers such as 42 K and 54 Mn into the pitcher trap in aqueous solution could be proven, whereas uptake of 59 Fe ions could not be observed. No-carrier-added 54 Mn was taken up by the plants, regardless of extremely low concentrations. In contrast to earlier experiments using 14 C and 15 N-based tracers, the methodology presented allows quick, simple and reliable quantification of the nutrient uptake. The results of our experiments lead to a deeper biological understanding concerning the trace element household of this carnivorous plant and the absorption of micro- and macronutrients from trapped prey. (author)

  1. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    CSIR Research Space (South Africa)

    Maharaj, R

    2012-09-01

    Full Text Available through effects of hor- mone regulation with subsequent disruption of instar development of Anopheles stephensi, Culex quinquefas- ciatus and Aedes aegypti [34]. Tiwari et al. [35] found that the essential oil obtained from seeds of Zanthoxy- lum.... Geerts S, Van Blerk K, Triest L: Effect of Ambrosia maritima on Anopheles stephensi and Aedes aegypti. J Ethnopharmacol 1994, 42:7?11. 20. Evans DA, Raj RK: Extracts of Indian plants as mosquito larvicides. Indian J Med Res 1988, 88:38?41. 21...

  2. Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.

    Science.gov (United States)

    Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E

    2017-03-01

    Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.

  3. Effects of combination of leaf resources on competition in container mosquito larvae.

    Science.gov (United States)

    Reiskind, M H; Zarrabi, A A; Lounibos, L P

    2012-08-01

    Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.

  4. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  5. Controlling Mosquitoes Outside

    Centers for Disease Control (CDC) Podcasts

    Mosquitoes can carry viruses, like West Nile, Zika, dengue, and chikungunya. In this podcast, Mr. Hubbard will teach you and his neighbor, Laura, ways to help reduce the number of mosquitoes outside your home. Tips include eliminating areas of standing water where mosquitoes lay eggs and using larvicides to kill young mosquitoes.

  6. Decreased Shoulder External Rotation and Flexion Are Greater Predictors of Injury Than Internal Rotation Deficits: Analysis of 132 Pitcher-Seasons in Professional Baseball.

    Science.gov (United States)

    Camp, Christopher L; Zajac, John M; Pearson, David B; Sinatro, Alec M; Spiker, Andrea M; Werner, Brian C; Altchek, David W; Coleman, Struan H; Dines, Joshua S

    2017-09-01

    The primary aims of this work were to (1) describe normal range of motion (ROM) profiles for elite pitchers, (2) describe the characteristics of shoulder and elbow injuries in professional pitchers over a 6-year period in one Major League Baseball organization, and (3) identify ROM measures that were independently associated with a future shoulder or elbow injury. Over 6 seasons (2010-2015), a preseason assessment was performed on all pitchers invited to Major League Baseball Spring Training for a single organization. ROM measures included shoulder flexion, horizontal adduction, external rotation (ER), internal rotation, as well as elbow flexion and extension, were measured for both the dominant and nondominant arm, and total range of motion and deficits were calculated. All noncontact shoulder and elbow injuries were identified. Using multivariate binomial logistic regression analysis to control for age, height, weight, and all other ROM measures, the factors associated with an increased risk of subsequent shoulder or elbow injury were identified. A total of 53 shoulder (n = 25) and elbow (n = 28) injuries occurred during 132 pitcher seasons (n = 81 pitchers). The most significant categorical risk factor associated with increased elbow injury rates was the presence of a shoulder flexion deficit >5° (odds ratio [OR] 2.83; P = .042). For continuous variables, the risk of elbow injury increased by 7% for each degree of increased shoulder ER deficit (OR 1.07; P = .030) and 9% for each degree of decreased shoulder flexion (OR 1.09; P = .017). None of the measures significantly correlated with shoulder injuries. Preseason shoulder ER and flexion deficits are independent risk factors for the development of elbow injuries during the upcoming season. Although prior work has supported the importance of reducing glenohumeral internal rotation deficits in pitchers, this study demonstrates that deficits in shoulder ER and flexion are more significant predictors of

  7. Species richness and trophic diversity increase decomposition in a co-evolved food web.

    Directory of Open Access Journals (Sweden)

    Benjamin Baiser

    Full Text Available Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.

  8. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis.

    Science.gov (United States)

    Kadek, Alan; Tretyachenko, Vyacheslav; Mrazek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr

    2014-03-01

    Carnivorous plants of the genus Nepenthes produce their own aspartic proteases, nepenthesins, to digest prey trapped in their pitchers. Nepenthesins differ significantly in sequence from other aspartic proteases in the animal or even plant kingdoms. This difference, which also brings more cysteine residues into the structure of these proteases, can be a cause of uniquely high temperature and pH stabilities of nepenthesins. Their detailed structure characterization, however, has not previously been possible due to low amounts of protease present in the pitcher fluid and also due to limited accessibility of Nepenthes plants. In the present study we describe a convenient way for obtaining high amounts of nepenthesin-1 from Nepenthes gracilis using heterologous production in Escherichia coli. The protein can be easily refolded in vitro and its characteristics are very close to those described for a natural enzyme isolated from the pitcher fluid. Similarly to the natural enzyme, recombinant nepenthesin-1 is sensitive to denaturing and reducing agents. It also has maximal activity around pH 2.5, shows unusual stability at high pH and its activity is not irreversibly inhibited even after prolonged incubation in the basic pH range. On the other hand, temperature stability of the recombinant enzyme is lower in comparison with the natural enzyme, which can be attributed to missing N-glycosylation in the recombinant protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.

    Science.gov (United States)

    Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F

    2017-12-01

    Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.

  10. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases

    OpenAIRE

    Walter J. Tabachnick

    2016-01-01

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state?s mosquito control capabilities. Research with Florida?s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida?s east coast. This strategy, called Rotational Impoundment Management (RIM...

  11. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Mosquitoes of the rice agroecosystem of Malaysia: species composition and their abundance in relation to rice farming

    International Nuclear Information System (INIS)

    Abu Hassan Ahmad; Che Salmah Md Rawi

    2002-01-01

    Mosquito abundance in relation to rice farming was studied in the Muda and the Kerian Irrigation Schemes. Mosquito larvae were collected using dippers for several growing seasons. Adult mosquitoes were collected by using human bait and cow bait and net trap at nights. Culex, Mansonia and Anopheles were the three genera of mosquito found in the rice agroecosystem. Four species of Mansonia were found biting on human bait. Culex mosquitoes were caught biting on human and cow baits. Culex tritaeniorhynchus, C pseudovishnui, C vishnui, C gelidus and C bitaeniorhynchus were the most common Culex mosquitoes found. Anoheles sinensis and A. peditaeniatus were the most dominant panopheline mosquitoes. High abundance of larvae and adult mosquitoes were observed during ploughing, planting, and tillering stages of rice farming. (Author)

  13. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    Directory of Open Access Journals (Sweden)

    Rodrigo Dutra Nunes

    2016-10-01

    Full Text Available Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols.Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK. AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus.The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  14. Pond dyes are Culex mosquito oviposition attractants

    Directory of Open Access Journals (Sweden)

    Natali Ortiz Perea

    2017-05-01

    Full Text Available Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more

  15. Controlling Mosquitoes Outside

    Centers for Disease Control (CDC) Podcasts

    2016-08-09

    Mosquitoes can carry viruses, like West Nile, Zika, dengue, and chikungunya. In this podcast, Mr. Hubbard will teach you and his neighbor, Laura, ways to help reduce the number of mosquitoes outside your home. Tips include eliminating areas of standing water where mosquitoes lay eggs and using larvicides to kill young mosquitoes.  Created: 8/9/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/9/2016.

  16. Mosquito ovicidal properties of Ageratina adenophora (Family: Asteraceae) against filariasis vector, Culex quinquefasciatus (Diptera: Culicidae)

    Science.gov (United States)

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternativ...

  17. Laboratory observations on the larvicidal efficacy of three plant species against mosquito vectors of malaria, dengue/dengue hemorrhagic fever (DF/DHF) and lymphatic filariasis in the semi-arid desert.

    Science.gov (United States)

    Bansal, S K; Singh, Karam V; Sharma, Sapna; Sherwani, M R K

    2012-05-01

    Comparative larvicidal efficacy of aqueous and organic solvent extracts from seeds, leaves and flowers of three desert plants viz. Calotropis procera (Aiton), Tephrosia purpurea (L.) Pers. and Prosopis juliflora (Sw.) DC. was evaluated against Anopheles stephensi (Liston), Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). For this purpose larvae of all the three mosquito species were reared in the laboratory and studies carried out on late 3rd or early 4th instars using standard WHO technique. Based on concentration mortality data 24 and 48 hr LC50and LC90 values along with their 95% fiducial limits, regression equation, chi-square (chi2)/ heterogeneity of the response were determined by log probit regression analysis. Experiments were carried out with different solvent extracts of seeds of C. procera which revealed that methanol (24 hr LC50: 127.2, 194.8, 361.0) and acetone (229.9, 368.1,193.0 mg l(-1)) extracts were more effective with the three mosquito species, respectively. Petroleum ether extract was effective only on An. stephensi while aqueous extracts were not effective at all with any of the mosquito species (mortality juliflora were 74.9, 63.2 and 47.0 and 96.2,128.1 and 118.8 mg l(-1) for the above three mosquito species, respectively. Experiments carried out up to 500 mg l-(1) with leaves (T. purpurea) and seeds (P. juliflora) extracts show only up to 10-30% mortality indicating that active larvicidal principle may be present only in the seeds of Tephrosia and leaves of Prosopis. In general, anophelines were found more susceptible than the culicines to the plant derived derivatives. More studies are being carried outon some other desert plants found in this arid region. The study would be of great importance while formulating vector control strategy based on alternative plant based insecticides in this semi-arid region.

  18. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  19. Research Contributing to Improvements in Controlling Florida's Mosquitoes and Mosquito-borne Diseases.

    Science.gov (United States)

    Tabachnick, Walter J

    2016-09-28

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state's mosquito control capabilities. Research with Florida's mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida's east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.

  20. Does mosquito control have an effect on mosquito-borne disease? The case of Ross River virus disease and mosquito management in Queensland, Australia.

    Science.gov (United States)

    Tomerini, Deanna M; Dale, Pat E; Sipe, Neil

    2011-03-01

    We examined the relationship between types of mosquito control programs and the mosquito-borne Ross River virus (RRV) disease in Queensland, Australia. Mosquito control information was collected through a survey of the responsible agencies (local governments), and RRV disease notification data were provided by the Queensland state health authority. The study developed a typology of mosquito control programs, based on the approaches used. Based on the analysis of data on RRV disease rates between mosquito control types within 4 climatic regions, each region had different combinations of mosquito control strategies in their programs; there were also general similarities in the relationship between program types and RRV rates between the regions. The long-term RRV disease rates were lower in areas where the mosquito control program included pre-emptive (rather than reactive) surveillance based on an extensive (rather than incomplete) knowledge of mosquito habitats, and where treatment of both saltwater and freshwater habitats (compared to only saltwater habitats, in coastal areas) occurred. The data indicate that mosquito control is an effective public health intervention to reduce mosquito-borne disease; hence, climate change adaptation strategies should ensure that adequate resources are available for effective vector control so as to manage the risk of mosquito-borne diseases.

  1. Nest Mosquito Trap quantifies contact rates between nesting birds and mosquitoes.

    Science.gov (United States)

    Caillouët, Kevin A; Riggan, Anna E; Rider, Mark; Bulluck, Lesley P

    2012-06-01

    Accurate estimates of host-vector contact rates are required for precise determination of arbovirus transmission intensity. We designed and tested a novel mosquito collection device, the Nest Mosquito Trap (NMT), to collect mosquitoes as they attempt to feed on unrestrained nesting birds in artificial nest boxes. In the laboratory, the NMT collected nearly one-third of the mosquitoes introduced to the nest boxes. We then used these laboratory data to estimate our capture efficiency of field-collected bird-seeking mosquitoes collected over 66 trap nights. We estimated that 7.5 mosquitoes per trap night attempted to feed on nesting birds in artificial nest boxes. Presence of the NMT did not have a negative effect on avian nest success when compared to occupied nest boxes that were not sampled with the trap. Future studies using the NMT may elucidate the role of nestlings in arbovirus transmission and further refine estimates of nesting bird and vector contact rates. © 2012 The Society for Vector Ecology.

  2. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers.

    Science.gov (United States)

    Ellenbecker, Todd S; Ellenbecker, Gail A; Roetert, E Paul; Silva, Rogerio Teixeira; Keuter, Greg; Sperling, Fabio

    2007-08-01

    Repetitive loading to the hip joint in athletes has been reported as a factor in the development of degenerative joint disease and intra-articular injury. Little information is available on the bilateral symmetry of hip rotational measures in unilaterally dominant upper extremity athletes. Side-to-side differences in hip joint range of motion may be present because of asymmetrical loading in the lower extremities of elite tennis players and professional baseball pitchers. Cohort (cross-sectional) study (prevalence); Level of evidence, 1. Descriptive measures of hip internal and external rotation active range of motion were taken in the prone position of 64 male and 83 female elite tennis players and 101 male professional baseball pitchers using digital photos and computerized angle calculation software. Bilateral differences in active range of motion between the dominant and nondominant hip were compared using paired t tests and Bonferroni correction for hip internal, external, and total rotation range of motion. A Pearson correlation test was used to test the relationship between years of competition and hip rotation active range of motion. No significant bilateral difference (P > .005) was measured for mean hip internal or external rotation for the elite tennis players or the professional baseball pitchers. An analysis of the number of subjects in each group with a bilateral difference in hip rotation greater than 10 degrees identified 17% of the professional baseball pitchers with internal rotation differences and 42% with external rotation differences. Differences in the elite male tennis players occurred in only 15% of the players for internal rotation and 9% in external rotation. Female subjects had differences in 8% and 12% of the players for internal and external rotation, respectively. Statistical differences were found between the mean total arc of hip range of internal and external rotation in the elite tennis players with the dominant side being greater

  3. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar of the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Stone Chris M

    2012-01-01

    Full Text Available Abstract Background The purpose of this study was to determine whether the sugar-or-blood meal choice of Anopheles gambiae females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female An. gambiae is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources. Methods Females and males Senna didymobotrya plants. Simultaneously they had access to a human blood host, either for 8 h or for only 30 min at dusk and dawn (the remainder of the night being excluded by an untreated bed net. In a third situation, the blood host was not present. All mosquitoes were collected in the morning. Their wing lengths, an indicator of pre-meal energetic state, were measured, and their meal choice was determined by the presence of midgut blood and of fructose. Results Female sugar feeding after emergence was facultative. When a blood host was accessible for 8 h per night, 92% contained blood, and only 3.7% contained sugar. Even with the use of a bed net, 78% managed to obtain a blood meal during the 30 min of accessibility at dusk or dawn, but 14% of females were now fructose-positive. In the absence of a blood host, and when either one or six plants were available, a total of 21.7% and 23.6% of females and 30.8% and 43.5% of males contained fructose, respectively. Feeding on both sugar and blood was more likely with bed net use and with greater plant abundance. Further, mosquitoes that fed on both resources were more often small and had taken a sugar meal earlier than the blood meal. The abundance of sugar hosts also affected the probability of sugar feeding by males and the amount of fructose obtained by both males and females. Conclusion Even in an abundance of potential sugar sources, female An. gambiae appear to prefer a nearby human source of blood

  4. Identification of insecticidal principals from cucumber seed oil against the yellow fever mosquito, Aedes aegypti

    Science.gov (United States)

    The yellow fever mosquito, Aedes aegypti, is one of the most medically important mosquito species due to its ability to spread viruses of yellow fever, dengue fever and Zika in humans. In this study, the insecticidal activity of seventeen plant essential oils were evaluated to toxicity by topical a...

  5. Mosquito Bites

    Science.gov (United States)

    ... virus to humans. Other mosquito-borne infections include yellow fever, malaria and some types of brain infection (encephalitis). ... certain diseases, such as West Nile virus, malaria, yellow fever and dengue fever. The mosquito obtains a virus ...

  6. Mosquito (Diptera: Culicidae Habitat Surveillance by Android Mobile Devices in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Tai-Ping Wu

    2016-12-01

    Full Text Available In 2014, Guangzhou City, South China, suffered from its worst outbreak of dengue fever in decades. Larval mosquito habitat surveillance was carried out by using android mobile devices in four study sites in May 2015. The habitats with larval mosquitoes were recorded as photo waypoints in OruxMaps or in videos. The total number of potential mosquito habitats was 342, of which 166 (49% were found to have mosquito larvae or pupae. Small containers were the most abundant potential habitats, accounting for 26% of the total number. More mosquito larvae and pupae, were found in small containers than in other objects holding water, for example, potted or hydroponic plants (p < 0.05. Mosquito larvae were collected from all plastic road barriers, used tires, and underground water. Aedes albopictus larvae were found from small and large containers, stumps, among others. The overall route index (RI was 11.3, which was 14.2 times higher than the grade C criteria of the National Patriotic Health Campaign Committee (NPHCC, China. The higher RIs were found from the bird and flower markets, schools, and underground parking lots. The results indicated that Android mobile devices are a convenient and useful tool for surveillance of mosquito habitats, and the enhancement of source reduction may benefit the prevention and control of dengue vector mosquitoes.

  7. Prevention of Dengue fever through plant based mosquito repellent Clausena dentata (Willd.) M. Roem (Family: Rutaceae) essential oil against Aedes aegypti l. (Diptera: Culicidae) mosquito.

    Science.gov (United States)

    Rajkumar, S; Jebanesan, A

    2010-03-01

    Plant based repellent against mosquito borne diseases are used recently because synthetic repellents cause side effects like breathing problem, eye irritation, head ache, cough, etc. The use of natural products for dengue control would protect the environment, reduce dependence on expensive synthetic repellents and also generate local employment. Essential oil was isolated by steam distillation which was used against the bites of Aedes aegypti and duration of protection period was assessed. Skin-irritant potential test was also conducted on 25 healthy volunteers by using four-point scale. The increase in the concentrations of essential oil increased the mean protection time against the bites of Aedes aegypti. The lowest mean protection time was 180.0 min for 2.5% and highest time of 255.0 min for 10%. The mean score of zero for skin-irritant potential test for all the concentrations indicated that the essential oil did not cause irritation to human skin. Results indicated that the use of plant based repellent for the control of dengue fever would replace the currently used synthetic repellents which causes many side effects.

  8. Countering a bioterrorist introduction of pathogen-infected mosquitoes through mosquito control.

    Science.gov (United States)

    Tabachnick, Walter J; Harvey, William R; Becnel, James J; Clark, Gary G; Connelly, C Roxanne; Day, Jonathan F; Linser, Paul J; Linthicum, Kenneth J

    2011-06-01

    The release of infected mosquitoes or other arthropods by bioterrorists, i.e., arboterrorism, to cause disease and terror is a threat to the USA. A workshop to assess mosquito control response capabilities to mount rapid and effective responses to eliminate an arboterrorism attack provided recommendations to improve capabilities in the USA. It is essential that mosquito control professionals receive training in possible responses, and it is recommended that a Council for Emergency Mosquito Control be established in each state to coordinate training, state resources, and actions for use throughout the state.

  9. 3D mosquito screens to create window double screen traps for mosquito control.

    Science.gov (United States)

    Khattab, Ayman; Jylhä, Kaisa; Hakala, Tomi; Aalto, Mikko; Malima, Robert; Kisinza, William; Honkala, Markku; Nousiainen, Pertti; Meri, Seppo

    2017-08-29

    Mosquitoes are vectors for many diseases such as malaria. Insecticide-treated bed nets and indoor residual spraying of insecticides are the principal malaria vector control tools used to prevent malaria in the tropics. Other interventions aim at reducing man-vector contact. For example, house screening provides additive or synergistic effects to other implemented measures. We used commercial screen materials made of polyester, polyethylene or polypropylene to design novel mosquito screens that provide remarkable additional benefits to those commonly used in house screening. The novel design is based on a double screen setup made of a screen with 3D geometric structures parallel to a commercial mosquito screen creating a trap between the two screens. Owing to the design of the 3D screen, mosquitoes can penetrate the 3D screen from one side but cannot return through the other side, making it a unidirectional mosquito screen. Therefore, the mosquitoes are trapped inside the double screen system. The permissiveness of both sides of the 3D screens for mosquitoes to pass through was tested in a wind tunnel using the insectary strain of Anopheles stephensi. Among twenty-five tested 3D screen designs, three designs from the cone, prism, or cylinder design groups were the most efficient in acting as unidirectional mosquito screens. The three cone-, prism-, and cylinder-based screens allowed, on average, 92, 75 and 64% of Anopheles stephensi mosquitoes released into the wind tunnel to penetrate the permissive side and 0, 0 and 6% of mosquitoes to escape through the non-permissive side, respectively. A cone-based 3D screen fulfilled the study objective. It allowed capturing 92% of mosquitoes within the double screen setup inside the wind tunnel and blocked 100% from escaping. Thus, the cone-based screen effectively acted as a unidirectional mosquito screen. This 3D screen-based trap design could therefore be used in house screening as a means of avoiding infective bites and

  10. Ulnar neuropathy and medial elbow pain in women's fastpitch softball pitchers: a report of 6 cases.

    Science.gov (United States)

    Smith, Adam M; Butler, Thomas H; Dolan, Michael S

    2017-12-01

    Elite-level women's fastpitch softball players place substantial biomechanical strains on the elbow that can result in medial elbow pain and ulnar neuropathic symptoms. There is scant literature reporting the expected outcomes of the treatment of these injuries. This study examined the results of treatment in a series of these patients. We identified 6 female softball pitchers (4 high school and 2 collegiate) with medial elbow pain and ulnar neuropathic symptoms. Trials of conservative care failed in all 6, and they underwent surgical treatment with subcutaneous ulnar nerve transposition. These patients were subsequently monitored postoperatively to determine outcome. All 6 female pitchers had early resolution of elbow pain and neuropathic symptoms after surgical treatment. Long-term follow-up demonstrated that 1 patient quit playing softball because of other injuries but no longer reported elbow pain or paresthesias. One player was able to return to pitching at the high school level but had recurrent forearm pain and neuritis 1 year later while playing a different sport and subsequently stopped playing competitive sports. Four patients continued to play at the collegiate level without further symptoms. Medial elbow pain in women's softball pitchers caused by ulnar neuropathy can be treated effectively with subcutaneous ulnar nerve transposition if nonsurgical options fail. Further study is necessary to examine the role of overuse, proper training techniques, and whether pitching limits may be necessary to avoid these injuries. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-Borne Diseases

    Science.gov (United States)

    Tabachnick, Walter J.

    2016-01-01

    Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM), has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being. PMID:27690112

  12. Research Contributing to Improvements in Controlling Florida’s Mosquitoes and Mosquito-borne Diseases

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2016-09-01

    Full Text Available Research on mosquitoes and mosquito-borne diseases has contributed to improvements in providing effective, efficient, and environmentally proper mosquito control. Florida has benefitted from several research accomplishments that have increased the state’s mosquito control capabilities. Research with Florida’s mosquitoes has resulted in the development of ecologically sound management of mosquito impoundments on Florida’s east coast. This strategy, called Rotational Impoundment Management (RIM, has improved the ability to target the delivery of pesticides and has helped to reduce non-target effects and environmental damage. Research has led to the development of an arbovirus surveillance system which includes sentinel chicken surveillance, real time use of environmental contributing factors like meteorology and hydrology to target mosquito control, as well as public health efforts to mitigate disease outbreaks to areas with risk of disease. These research driven improvements have provided substantial benefits to all of Florida. More research is needed to meet the future challenges to reduce emerging pathogens like Zika virus and the consequences of environmental changes like global climate change that are likely to influence the effects of mosquito-borne pathogens on human health and well-being.

  13. The Relationship of Throwing Arm Mechanics and Elbow Varus Torque: Within-Subject Variation for Professional Baseball Pitchers Across 82,000 Throws.

    Science.gov (United States)

    Camp, Christopher L; Tubbs, Travis G; Fleisig, Glenn S; Dines, Joshua S; Dines, David M; Altchek, David W; Dowling, Brittany

    2017-11-01

    Likely due to the high level of strain exerted across the elbow during the throwing motion, elbow injuries are on the rise in baseball. To identify at-risk athletes and guide postinjury return-to-throw programs, a better understanding of the variables that influence elbow varus torque is desired. To describe the within-subject relationship between elbow varus torque and arm slot and arm rotation in professional baseball pitchers. Descriptive laboratory study. A total of 81 professional pitchers performed 82,000 throws while wearing a motusBASEBALL sensor and sleeve. These throws represented a combination of throw types, such as warm-up/catch, structured long-toss, bullpen throwing from a mound, and live game activity. Variables recorded for each throw included arm slot (angle of the forearm relative to the ground at ball release), arm speed (maximal rotational velocity of the forearm), arm rotation (maximal external rotation of the throwing arm relative to the ground), and elbow varus torque. Linear mixed-effects models and likelihood ratio tests were used to estimate the relationship between elbow varus torque and arm slot, arm speed, and arm rotation within individual pitchers. All 3 metrics-arm slot (χ 2 = 428, P relationship with elbow varus torque. Within individual athletes, a 1-N.m increase in elbow varus torque was associated with a 13° decrease in arm slot, a 116 deg/s increase in arm speed, and an 8° increase in arm rotation. Elbow varus torque increased significantly as pitchers increased their arm rotation during the arm cocking phase, increased the rotational velocity of their arm during the arm acceleration phase of throwing, and decreased arm slot at ball release. Thus, shoulder flexibility, arm speed, and elbow varus torque (and likely injury risk) are interrelated and should be considered collectively when treating pitchers. It is well established that elbow varus torque is related to ulnar collateral ligament injuries in overhead throwers. This

  14. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: a habitat manipulation experiment.

    Science.gov (United States)

    Muller, Gunter C; Junnila, Amy; Traore, Mohamad M; Traore, Sekou F; Doumbia, Seydou; Sissoko, Fatoumata; Dembele, Seydou M; Schlein, Yosef; Arheart, Kristopher L; Revay, Edita E; Kravchenko, Vasiliy D; Witt, Arne; Beier, John C

    2017-07-05

    A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.

  15. Artificial Diets for Mosquitoes

    Directory of Open Access Journals (Sweden)

    Kristina K. Gonzales

    2016-12-01

    Full Text Available Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT, release of insects carrying a dominant lethal (RIDL, population replacement strategies (PR, and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.

  16. Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies.

    Science.gov (United States)

    Mehlhorn, Heinz; Schmahl, Günter; Schmidt, Jürgen

    2005-03-01

    About 70 plant extracts were tested for their ability to repel the attacks of blood-sucking arthropods. It was found that a CO2 extract of the seeds of the Mediterranean plant Vitex agnus castus (monk's pepper) can be used as a spray to keep away especially Ixodes ricinus and Rhipicephalus sanguineus ticks from animals and humans for at least 6 h. In addition mosquitoes, biting flies and fleas are also repelled for about 6 h.

  17. [Twenty-year surveillance of insects relevant to public health during the construction of hydroelectric facilities in Antioquia, Colombia].

    Science.gov (United States)

    Zuluaga, Walter Alonso; López, Yolanda Lucía; Osorio, Lisardo; Salazar, Luis Fernando; González, Marta Claudia; Ríos, Claudia María; Wolff, Marta Isabel; Escobar, José Pablo

    2012-09-01

    Entomological studies conducted in large hydroelectric infrastructure projects are a tool for the prevention and control of vector-borne diseases. These diseases emerge as a consequence of changes made to the terrain that often increase the natural and artificial mosquito larval habitats. Many of these insects are of public health importance and population increases result in an increased risk of disease transmission. The culicine (mosquito) and phlebotomine (sand fly) populations were characterized in the area of the Porce II and Porce III hydroelectric projects of Antioquia between 1990 to 2009. Periodical entomological samplings were made in the area of impact, in the workers camps, and construction sites. Adult specimens were captured with nets, Shannon light traps, CDC light traps, and protected human bait. Mosquito larvae of the following species were identified: Culex coronator, Culex nigripalpus, Culex corniger, Culex quinquefasciatus and Limatus durhami. The most frequently identifiers of larval habitats were low tanks, waste cans, tires, and aquatic plants. Aedes aegypti specimens were captured in only two rural locations from two municipalities within the area of influence. Specimens from the following mosquito genera were captured in forest areas: Aedes, Mansonia, Culex, Psorophora, Wyeomyia, Phonyomyia, Uranotaenia, Haemagogus and Sabethes. The most important mosquito found was Haemogogus janthinomis, an efficient yellow fever vector in Colombia. The area has been endemic for leishmaniasis and in the current study, 20 species of Lutzomyia sand flies, potential vectors, were identified. Among malaria vectors, the most important species found in the area were Anopheles nuneztovari and Anopheles pseudopunctipennis. A wide variety of vectors were discovered in the area of the Porce II and Porce III hydroelectric projects, and many of these were relevant for public health. Further monitoring will be necessary to minimize disease transmission risks among the

  18. Resistance Level of Mosquito Species (Diptera: Culicidae from Shandong Province, China

    Directory of Open Access Journals (Sweden)

    Hong-Mei Liu

    2015-01-01

    Full Text Available This study describes the aquatic habitats, species composition, and the insecticide resistance level of the mosquito Culex pipiens pallens in Shandong Province, China. A cross-sectional survey of mosquito larval habitats was conducted from May to November 2014 to determine the species composition and larval abundance. Larvae were collected using the standard dipping technique, and a total of four habitat types were sampled. The fourth instar larvae of Cx. pipiens pallens collected in each habitat type were tested for resistance to five insecticides according to a WHO bioassay. A total of 7,281 mosquito larvae were collected, of which 399 (5.48% were categorized as Anopheles mosquito larvae ( An. sinensis , 6636 (91.14% as culicine larvae ( Cx. pipiens pallens, Cx. tritaeniorhynchus, Cx. halifaxii, and Cx. bitaeniorhynchus , 213 (2.93% as Armigeres larvae, and 33 (0.45% as Aedes larvae ( Aedes albopictus . In addition, a total of 1,149 mosquito pupae were collected. Culex larvae were distributed in all habitats investigated. Tukeys HSD analysis showed that roadside drainages were the most productive habitat type for Culex larvae. Armigeres species were found only in drains, Aedes only in water tanks, and Anopheles in water that was comparatively clear and rich in emergent plants. Bioassay showed that the maximum resistance level of Cx. pipiens pallens was to deltamethrin, while it was lowest to plifenate. The productivity of various mosquitoes in different habitat types is very heterogeneous. It is particularly important to modify human activity and the environment to achieve effective mosquito vector control. For effective larval control, the type of habitat should be considered, and the most productive habitat type should be given priority in mosquito abatement programs.

  19. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    Directory of Open Access Journals (Sweden)

    Chenyan Shi

    Full Text Available Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  20. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    Science.gov (United States)

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  1. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  2. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis.

    Science.gov (United States)

    Kenney, Adam; Cusick, Austin; Payne, Jessica; Gaughenbaugh, Anna; Renshaw, Andrea; Wright, Jenna; Seeber, Roger; Barnes, Rebecca; Florjanczyk, Aleksandr; Horzempa, Joseph

    2017-01-01

    Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.

  3. Controle los mosquitos que están en el exterior (Controlling Mosquitoes Outside)

    Centers for Disease Control (CDC) Podcasts

    Los mosquitos pueden transmitir virus como el del zika. En este podcast, el Sr. Francisco le enseñará a usted y a su vecina Adriana diferentes maneras para ayudar a reducir la cantidad de mosquitos fuera de su casa. Los consejos incluyen eliminar áreas de agua estancada donde los mosquitos ponen sus huevos, usar larvicidas para matar mosquitos jóvenes, y reparar grietas y cubrir las ventilaciones de los pozos sépticos. También aprenderá cómo se usan los aviones que ayudan a rociar insecticida para los mosquitos.

  4. Wolbachia-a foe for mosquitoes

    Directory of Open Access Journals (Sweden)

    Nadipinayakanahalli Munikrishnappa Guruprasad

    2014-02-01

    Full Text Available Mosquitoes act as vectors for a wide range of viral and parasitic infectious diseases such as malaria, dengue, Chickungunya, lymphatic filariasis, Japanese encephalitis and West Nile virus in humans as well as in animals. Although a wide range of insecticides are used to control mosquitoes, it has only resulted in development of resistance to such insecticides. The evolution of insecticide resistance and lack of vaccines for many mosquito-borne diseases have made these arthropods highly harmful vectors. Recently, a novel approach to control mosquitoes by transinfection of life shortening maternally transmitted endo-symbiont Wolbachia wMelPop strain from fruitfly Drosophila into mosquito population has been developed by researchers. The wMelPop strain up-regulated the immune gene expression in mosquitoes thereby reducing the dengue and Chickungunya viral replication in Aedes aegypti, and also it significantly reduced the Plasmodium level in Anopheles gambiae. Here, we discuss the strategy of using Wolbachia in control of vector-borne diseases of mosquitoes.

  5. Mosquito Traps: An Innovative, Environmentally Friendly Technique to Control Mosquitoes

    Directory of Open Access Journals (Sweden)

    Brigitte Poulin

    2017-03-01

    Full Text Available We tested the use of mosquito traps as an alternative to spraying insecticide in Camargue (France following the significant impacts observed on the non-target fauna through Bti persistence and trophic perturbations. In a village of 600 inhabitants, 16 Techno Bam traps emitting CO2 and using octenol lures were set from April to November 2016. Trap performance was estimated at 70% overall based on mosquitoes landing on human bait in areas with and without traps. The reduction of Ochlerotatus caspius and Oc. detritus, the two species targeted by Bti spraying, was, respectively, 74% and 98%. Traps were less efficient against Anopheles hyrcanus (46%, which was more attracted by lactic acid than octenol lures based on previous tests. Nearly 300,000 mosquitoes from nine species were captured, with large variations among traps, emphasizing that trap performance is also influenced by surrounding factors. Environmental impact, based on the proportion of non-target insects captured, was mostly limited to small chironomids attracted by street lights. The breeding success of a house martin colony was not significantly affected by trap use, in contrast to Bti spraying. Our experiment confirms that the deployment of mosquito traps can offer a cost-effective alternative to Bti spraying for protecting local populations from mosquito nuisance in sensitive natural areas.

  6. MosqTent: An individual portable protective double-chamber mosquito trap for anthropophilic mosquitoes.

    Directory of Open Access Journals (Sweden)

    José Bento Pereira Lima

    2017-03-01

    Full Text Available Here, we describe the development of the MosqTent, an innovative double-chamber mosquito trap in which a human being attracts mosquitoes while is protected from being bitten within the inner chamber of the trap, while mosquitoes are lured to enter an outer chamber where they are trapped. The MosqTent previously collected an average of 3,000 anophelines/man-hour compared to 240 anophelines/man-hour for the human landing catch (HLC, thereby providing high numbers of human host-seeking mosquitoes while protecting the collector from mosquito bites. The MosqTent performed well by collecting a high number of specimens of Anopheles marajoara, a local vector and anthropophilic mosquito species present in high density, but not so well in collecting An. darlingi, an anthropophilic mosquito species considered the main vector in Brazil but is present in low-density conditions in the area. The HLC showed a higher efficiency in collecting An. darlingi in these low-density conditions. The MosqTent is light (<1 kg, portable (comes as a bag with two handles, flexible (can be used with other attractants, adaptable (can be deployed in a variety of environmental settings and weather conditions, and it can be used in the intra-, peri-, and in the extradomicile. Also, the MosqTent collected similar portions of parous females and anthropophilic mosquito species and collects specimens suitable for downstream analysis. Further developments may include testing for other fabric colors, different mesh sizes and dimensions for other hematophagous insects and conditions, additional chemical mosquito attractants, and even the replacement of the human attractant in favor of other attractants. MosqTent modifications that would allow the trap to be applied as a vector control tool with killing action could also be explored.

  7. Prospective multifactorial analysis of preseason risk factors for shoulder and elbow injuries in high school baseball pitchers.

    Science.gov (United States)

    Shitara, Hitoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Shimoyama, Daisuke; Ichinose, Tsuyoshi; Tajika, Tsuyoshi; Osawa, Toshihisa; Iizuka, Haku; Takagishi, Kenji

    2017-10-01

    To prospectively identify preseason physical factors for shoulder and elbow injuries during the season in high school baseball pitchers. The study included 105 high school baseball pitchers [median age 16 (15-17) years]. The range of motion of the shoulder (90° abducted external and internal rotation) and elbow (extension/flexion), shoulder muscle strength (abduction and prone internal and external rotation), shoulder and elbow laxity, horizontal flexion, and scapular dyskinesis were assessed. After the season, the participants completed questionnaires regarding shoulder and/or elbow injuries, with injury defined as an inability to play for ≥1 week due to elbow/shoulder problems. The results of two groups (injured and noninjured) were compared using t tests and Chi-square analyses. Stepwise forward logistic regression models were developed to identify risk factors. Twenty-one injuries were observed. In univariate analysis, 90° abducted internal rotation and total arc of the dominant shoulder and the ratio of prone external rotation in the dominant to nondominant sides in the injured group were significantly less than those in the noninjured group (P = 0.02, 0.04, and 0.01, respectively). In logistic regression analysis, 90° abducted internal rotation in the dominant shoulder and prone external rotation ratio were significantly associated with injuries (P = 0.02 and 0.03, respectively). A low prone external rotation ratio and decreased 90° abducted internal rotation in the dominant shoulder in the preseason were significant risk factors for shoulder and elbow injuries in high school baseball pitchers. The results may contribute to reduce the incidence of these injuries. II.

  8. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Adam Kenney

    Full Text Available Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent in 30% sucrose (a nectar surrogate over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.

  9. Chikungunya Virus Infection of Aedes Mosquitoes.

    Science.gov (United States)

    Wong, Hui Vern; Chan, Yoke Fun; Sam, I-Ching; Sulaiman, Wan Yusof Wan; Vythilingam, Indra

    2016-01-01

    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.

  10. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Cómo controlar los mosquitos en interiores (Controlling Mosquitoes Indoors)

    Centers for Disease Control (CDC) Podcasts

    Los mosquitos pueden portar virus como el del Nilo Occidental o del Zika. En este podcast, Don Francisco le muestra a sus vecinos formas en las que pueden reducir el número de mosquitos dentro de su casa.

  12. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense

    NARCIS (Netherlands)

    Halbach, R.; Junglen, S.; Rij, R.P. van

    2017-01-01

    Recent virus discovery programs have identified an extensive reservoir of viruses in arthropods. It is thought that arthropod viruses, including mosquito-specific viruses, are ancestral to vertebrate-pathogenic arboviruses. Mosquito-specific viruses are restricted in vertebrate cells at multiple

  13. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    Science.gov (United States)

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.

  14. Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin

    Directory of Open Access Journals (Sweden)

    Valentine C. Mbatchou

    2017-11-01

    Full Text Available Abstract Background The edible and medicinal leguminous plant Cassia tora L. (Fabaceae is known to possess insecticidal properties against a wide range of plant-feeding insects. However, the bioactivity of extracts of this plant and their constituents against vectors of medical importance has been largely unexplored. We investigated the mosquito larvicidal activity of the seed extract and its major anthraquinones against larvae of the African malaria vector Anopheles gambiae (s.s.. Methods Third-fourth instar larval mortality was observed after 24, 48, 72 and 96 h of exposure to varying doses of the extracts, and two anthraquinones isolates identified using liquid chromatography- quadrupole time of flight mass spectrometry (LC-QtoF-MS. The mosquito larval mortality was evaluated relative to the natural insecticide azadirachtin. Results Fractionation of the crude extract decreased mosquito larvicidal activity, however, larvicidal activity increased with increasing dose of the treatment and exposure time. The known anthraquinones aurantio-obtusin and obtusin were identified as key larvicidal compounds. Aurantio-obtusin and obtusin, exhibited similar toxicity to larvae of A. gambiae (s.s. with LD50 values of 10 and 10.2 ppm, respectively. However, the two anthraquinones were four- and ~ six-fold less potent than that of the crude seed extract and azadirachtin, which had comparable LD50 values of 2.5 and 1.7 ppm, respectively. Conclusion Both aurantio-obtusin and obtusin showed mosquito larvicidal activity which were comparable to their respective fractions although they were less potent relative to the crude extract and azadirachtin. Further studies need to be conducted on C. tora for its exploitation as a potential eco-friendly tool in mosquito larval source reduction.

  15. [Study on essential oils of medicinal plants in insect repellent].

    Science.gov (United States)

    Zhao, Hong-Zheng; Luo, Jiao-Yang; Liu, Qiu-Tao; Lv, Ze-Liang; Yang, Shi-Hai; Yang, Mei-Hua

    2016-01-01

    Mosquitoes are seriously harmful to human health for transmitting some mortal diseases. Among the methods of mosquito control, synthetical insecticides are the most popular. However, as a result of longterm use of these insecticides, high resistant mosquitos and heavy environmental pollution appear. Thus, eco-friendly prevention measures are taken into the agenda. Essential oils extracted from medicinal plants have repellent and smoked killing effects on mosquitoes. With abundant medical plants resources and low toxicity, they have the potential of being developed as a new type of mosquito and insect repellent agent. The recent application advances of essential oils of medicinal plants in insect repellent and its application limitations are overviewed. This review will provide references for the future development and in-depth study of essential oils. Copyright© by the Chinese Pharmaceutical Association.

  16. North American Wetlands and Mosquito Control

    Science.gov (United States)

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  17. Controle los mosquitos que están en el exterior (Controlling Mosquitoes Outside)

    Centers for Disease Control (CDC) Podcasts

    2016-07-11

    Los mosquitos pueden transmitir virus como el del zika. En este podcast, el Sr. Francisco le enseñará a usted y a su vecina Adriana diferentes maneras para ayudar a reducir la cantidad de mosquitos fuera de su casa. Los consejos incluyen eliminar áreas de agua estancada donde los mosquitos ponen sus huevos, usar larvicidas para matar mosquitos jóvenes, y reparar grietas y cubrir las ventilaciones de los pozos sépticos. También aprenderá cómo se usan los aviones que ayudan a rociar insecticida para los mosquitos.  Created: 7/11/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/11/2016.

  18. Repelling mosquitoes with essential oils

    Science.gov (United States)

    Riley, L.

    2017-12-01

    Mosquitoes carry diseases than can lead to serious illness and death. According to the World Health Organization, mosquitoes infect over 300 million people a year with Malaria and Dengue Fever, two life threatening diseases vectored by mosquitoes. Although insecticides are the most effective way to control mosquitoes, they are not always environmentally friendly. Therefore, alternative tactics should be considered. In this study, we looked at the repellency of various essential oils on female Aedes aegypti through a series of laboratory assays.

  19. Compliance With Injury Prevention Measures in Youth Pitchers: Survey of Coaches in Little League of Puerto Rico.

    Science.gov (United States)

    Pamias-Velázquez, Kristian J; Figueroa-Negrón, Mariam M; Tirado-Crespo, Janiliz; Mulero-Portela, Ana L

    2016-05-01

    Because of the problem of elbow and shoulder injuries in baseball pitchers between 9 and 14 years of age, the USA Baseball Medical & Safety Advisory Committee and the Department of Recreation and Sports in Puerto Rico developed injury prevention guidelines for pitchers. The purpose of this study was to determine the compliance of pitching coaches of 9- to 14-year-old Little League teams in Puerto Rico with the Administrative Order 2006-01 and the USA Baseball guidelines. (1) The coaches will have a satisfactory level of compliance with the Administrative Order as well as with the USA Baseball guidelines and (2) both the level of education of the coach as well as the years of experience will correlate with the level of compliance. Descriptive cross-sectional study. Level 5. A self-administered questionnaire was developed based on the Administrative Order and on the USA Baseball guidelines. A descriptive univariate analysis was conducted to determine the mean coach compliance with both guidelines. Pearson correlation coefficients were used to describe the correlation between the level of education and the years of experience of the coaches with the level of compliance. Thirty-five coaches (response rate, 78%) participated in the study. On average, the coaches complied with 70% of the Administrative Order and with 73% of the USA Baseball guidelines. No significant correlations were found. The coaches who participated in the study did not reflect a satisfactory level of compliance with the USA Baseball guidelines or with the Administrative Order. These findings emphasize the need for reinforcing compliance with the injury prevention guidelines and the need to provide resources and training to coaches to effectively prevent elbow and shoulder injuries in pitchers. © 2016 The Author(s).

  20. Toxicological data of some antibiotics and pesticides to fish, mosquitoes, cyanobacterial mats and to plants

    Directory of Open Access Journals (Sweden)

    Yasser El-Nahhal

    2016-03-01

    Full Text Available This article provides toxicological data of antibiotics to fish and mosquito (El-Nahhal and El-dahdaouh, 2015 (doi: 10.5132/eec.2015.01.03 [1], to cyanobacteria (El-Nahhal and Alshanti, 2015(dx.doi.org/10.4172/2161-0525.1000274 [2] and pesticides to plants (El-Nahhal and Hamdona, 2015 (doi.10.1186/s40064-015-1148-7 [3]. The data provided herein described the experimental procedure and calculation of the appropriate toxicity parameters, lethal concentrations (LC50 required to kill 50% of tested animal, percentage growth inhibition, relative toxicity (RT and Mixture toxicity index. Moreover, the data enable the readers to perform future experiments and open future discussion with other authors elsewhere and generate future research guidelines which benefit the young scientific community around the globe in the field of mixture toxicity. Keywords: Toxicity-data, Toxicity parameters, Mixture toxicity index, Relative toxicity, LC50

  1. Lack of insecticidal effect of mosquito coils containing either metofluthrin or esbiothrin on Anopheles gambiae sensu lato mosquitoes.

    Science.gov (United States)

    Lukwa, Nzira; Chiwade, Tonderai

    2008-12-01

    Use of mosquito coils for personal protection against malaria and mosquito nuisance is advocated under mosquito and malaria control programmes. We performed field studies of mosquito coils containing either metofluthrin or esbiothrin in experimental huts situated in Kamhororo village, Gokwe district, Zimbabwe. All tests were performed on 3-5 day old reared female Anopheles gambiae sensu lato mosquitoes. The burning times were 9hr 20min for mosquito coils containing metofluthrin and 8 hr for those containing esbiothrin and the results were significantly different (p = metofluthrin was 90% and that for esbiothrin was 73.3% and the results were significantly different (p = 0.00). Mosquito coils containing metofluthrin had a mean repellence of 92.7% as compared to 85.4% for esbiothrin and the results were not significantly different (p=0.27). The protection time as required by EPA (1999) was 6 hr for mosquito coils containing metofluthrin and 5 hr for those containing esbiothrin. The mean insecticidal effect of mosquito coils containing metofluthrin was 84% as compared to 83% for those containing esbiothrin and the results were not significantly different (p = 0.56). Both mosquito formulations could not be classified as having insecticidal effect since none of them met the 95% mortality rate criteria.

  2. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

    Science.gov (United States)

    Foley, Desmond H; Wilkerson, Richard C; Birney, Ian; Harrison, Stanley; Christensen, Jamie; Rueda, Leopoldo M

    2010-02-18

    Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

  3. Heritability of attractiveness to mosquitoes.

    Directory of Open Access Journals (Sweden)

    G Mandela Fernández-Grandon

    Full Text Available Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124 for relative attraction and 0.67 (0.354 for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development.

  4. Controlling Mosquitoes Indoors

    Centers for Disease Control (CDC) Podcasts

    2016-08-23

    Mosquitoes can carry viruses, like West Nile and Zika. In this podcast, Mr. Hubbard teaches his neighbors, the Smith family, ways to help reduce the number of mosquitoes inside their home.  Created: 8/23/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/23/2016.

  5. Online Spatial Database of US Army Public Health Command Region-West Mosquito Surveillance Records: 1947-2009

    Science.gov (United States)

    2011-09-01

    National Park system. Britch et al2 explored relationships between the Normalized Difference Vegetation Index* and 2003- 2005 APHCR-W mosquito...outside all polygons and points that did not match relations for the country and state names. Data were imported into ARCVIEW GIS 3.3...data points, especially for rare species. Compared with the arthropod , vertebrate, and plant species analyzed in Heyer et at,’ 5 the mosquito curves

  6. Mosquito inspired medical needles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Hesselberg, Thomas; Drakidis, Alexandros Dimitrios

    2017-01-01

    The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different...... strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview...... of the advanced set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural mechanisms are presented. This includes skin stretching, insertion...

  7. Ocular Manifestations of Mosquito-Transmitted Diseases.

    Science.gov (United States)

    Karesh, James W; Mazzoli, Robert A; Heintz, Shannon K

    2018-03-01

    Of the 3,548 known mosquito species, about 100 transmit human diseases. Mosquitoes are distributed globally throughout tropical and temperate regions where standing water sources are available for egg laying and the maturation of larva. Female mosquitoes require blood meals for egg production. This is the main pathway for disease transmission. Mosquitoes carry several pathogenic organisms responsible for significant ocular pathology and vision loss including West Nile, Rift Valley, chikungunya, dengue viruses, various encephalitis viruses, malarial parasites, Francisella tularensis, microfilarial parasites, including Dirofilaria, Wuchereria, and Brugia spp., and human botfly larvae. Health care providers may not be familiar with many of these mosquito-transmitted diseases or their associated ocular findings delaying diagnosis, treatment, and recovery of visual function. This article aims to provide an overview of the ocular manifestations associated with mosquito-transmitted diseases.

  8. Approaches to passive mosquito surveillance in the EU

    NARCIS (Netherlands)

    Kampen, H.; Medlock, J.M.; Vaux, A.G.C.; Koenraadt, C.J.M.; Vliet, van A.J.H.; Bartumeus, F.; Oltra, A.; Sousa, C.A.; Chouin, S.; Werner, D.

    2015-01-01

    The recent emergence in Europe of invasive mosquitoes and mosquito-borne disease associated with both invasive and native mosquito species has prompted intensified mosquito vector research in most European countries. Central to the efforts are mosquito monitoring and surveillance activities in order

  9. Cómo controlar los mosquitos en interiores (Controlling Mosquitoes Indoors)

    Centers for Disease Control (CDC) Podcasts

    2016-08-23

    Los mosquitos pueden portar virus como el del Nilo Occidental o del Zika. En este podcast, Don Francisco le muestra a sus vecinos formas en las que pueden reducir el número de mosquitos dentro de su casa.  Created: 8/23/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/23/2016.

  10. Aquatic insect predators and mosquito control.

    Science.gov (United States)

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  11. Correlation among Y Balance Test-Lower Quarter Composite Scores, Hip Musculoskeletal Characteristics, and Pitching Kinematics in NCAA Division I Baseball Pitchers.

    Science.gov (United States)

    Culiver, Adam; Garrison, J Craig; Creed, Kalyssa M; Conway, John E; Goto, Shiho; Werner, Sherry

    2018-01-24

    Numerous studies have reported kinematic data on baseball pitchers using 3D motion analysis, but no studies to date have correlated this data with clinical outcome measures. To examine the relationship among Y Balance Test-Lower Quarter (YBT-LQ) composite scores, musculoskeletal characteristics of the hip and pitching kinematics in NCAA Division I baseball pitchers. Cross-sectional. 3D motion analysis laboratory. 19 healthy male collegiate baseball pitchers. Internal and external hip passive range of motion (PROM); hip abduction strength; YBT-LQ composite scores; kinematic variables of the pitching motion. Stride length demonstrated a moderate positive correlation with dominant limb YBT-LQ composite score (r=0.524, p=0.018) and non-dominant limb YBT-LQ composite score (r=0.550, p=0.012), and a weak positive correlation with normalized time to maximal humerus velocity (r=0.458, p=0.043). Stride length had a moderate negative correlation with normalized time to maximal thorax velocity (r= -0.522, p=0.018) and dominant hip TRM (r= -0.660, p=0.002), and had a strong negative correlation with normalized time from SFC to maximal knee flexion (r= -0.722, pcorrelation with hip abduction strength difference (r= -0.459, p=0.042) and normalized time to maximal thorax velocity (r= -0.468, p=0.037), as well as a moderate negative correlation with dominant hip TRM (r= -0.160, p=0.004). Non-dominant limb YBT-LQ composite score demonstrated a weak negative correlation with normalized time to maximal thorax velocity (r= -0.450, p=0.046) and had a moderate negative correlation with dominant hip TRM (r= -0.668, p=0.001). Hip abduction strength difference demonstrated a weak positive correlation with dominant hip TRM (r=0.482, p=0.032). Dominant hip TRM had a moderate positive correlation with normalized time to maximal thorax velocity (r=0.484, p=0.031). There were no other significant relationships between the remaining variables. YBT-LQ is a clinical measure which can be used to

  12. Improper trunk rotation sequence is associated with increased maximal shoulder external rotation angle and shoulder joint force in high school baseball pitchers.

    Science.gov (United States)

    Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B

    2014-09-01

    In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).

  13. Upper Extremity Functional Status of Female Youth Softball Pitchers Using the Kerlan-Jobe Orthopaedic Clinic Questionnaire

    OpenAIRE

    Holtz, Kaila A.; O’Connor, Russell J.

    2018-01-01

    Background: Softball is a popular sport with a high incidence of upper extremity injuries. The Kerlan-Jobe Orthopaedic Clinic (KJOC) questionnaire is a validated performance and functional assessment tool used in overhead athletes. Upper extremity pain patterns and baseline KJOC scores have not been reported for active female youth softball pitchers. Purpose/Hypothesis: The purpose of this study was to establish the prevalence of upper extremity pain and its effect in female youth softball pi...

  14. Avian Plasmodium in Eastern Austrian mosquitoes.

    Science.gov (United States)

    Schoener, Ellen; Uebleis, Sarah Susanne; Butter, Julia; Nawratil, Michaela; Cuk, Claudia; Flechl, Eva; Kothmayer, Michael; Obwaller, Adelheid G; Zechmeister, Thomas; Rubel, Franz; Lebl, Karin; Zittra, Carina; Fuehrer, Hans-Peter

    2017-09-29

    Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results

  15. Rickettsia Species in African Anopheles Mosquitoes

    Science.gov (United States)

    Socolovschi, Cristina; Pages, Frédéric; Ndiath, Mamadou O.; Ratmanov, Pavel; Raoult, Didier

    2012-01-01

    Background There is higher rate of R. felis infection among febrile patients than in healthy people in Sub-Saharan Africa, predominantly in the rainy season. Mosquitoes possess a high vectorial capacity and, because of their abundance and aggressiveness, likely play a role in rickettsial epidemiology. Methodology/Principal Findings Quantitative and traditional PCR assays specific for Rickettsia genes detected rickettsial DNA in 13 of 848 (1.5%) Anopheles mosquitoes collected from Côte d’Ivoire, Gabon, and Senegal. R. felis was detected in one An. gambiae molecular form S mosquito collected from Kahin, Côte d’Ivoire (1/77, 1.3%). Additionally, a new Rickettsia genotype was detected in five An. gambiae molecular form S mosquitoes collected from Côte d’Ivoire (5/77, 6.5%) and one mosquito from Libreville, Gabon (1/88, 1.1%), as well as six An. melas (6/67, 9%) mosquitoes collected from Port Gentil, Gabon. A sequence analysis of the gltA, ompB, ompA and sca4 genes indicated that this new Rickettsia sp. is closely related to R. felis. No rickettsial DNA was detected from An. funestus, An. arabiensis, or An. gambiae molecular form M mosquitoes. Additionally, a BLAST analysis of the gltA sequence from the new Rickettsia sp. resulted in a 99.71% sequence similarity to a species (JQ674485) previously detected in a blood sample of a Senegalese patient with a fever from the Bandafassi village, Kedougou region. Conclusion R. felis was detected for the first time in An. gambiae molecular form S, which represents the major African malaria vector. The discovery of R. felis, as well as a new Rickettsia species, in mosquitoes raises new issues with respect to African rickettsial epidemiology that need to be investigated, such as bacterial isolation, the degree of the vectorial capacity of mosquitoes, the animal reservoirs, and human pathogenicity. PMID:23118963

  16. Tips to Prevent Mosquito Bites

    Science.gov (United States)

    ... discourage mosquitoes, ticks and other biting insects from landing on you. Here are tips for other preventive ... CDC Mosquito Control Methods - NPIC Exit Top of Page Contact Us to ask a question, provide feedback, ...

  17. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Science.gov (United States)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  18. Toxicity of compounds isolated from white snakeroot (Ageratina altissima) to adult and larval yellow fever mosquitoes (Aedes aegypti)

    Science.gov (United States)

    Because of increasing insecticide resistance, new pesticides are needed. Flowering plants have been the source of useful pesticides in the past. We studied 15 chemicals isolated from a poisonous pasture plant for activity against the yellow fever mosquito. We found that dehydrotremetone was effectiv...

  19. Preliminary screening of plant essential oils against larvae of Culex ...

    African Journals Online (AJOL)

    Preliminary screenings of 22 plant essential oils were tested for mortality of the mosquito larvae Culex quinquefasciatus under laboratory conditions. Percent (%) mortality of the mosquito larvae were obtained for each essential oil. At different exposure periods, viz. 1, 3, 6, 12 and 24 h among the 22 plant oils tested, eight ...

  20. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens

    NARCIS (Netherlands)

    Guerra, C.A.; Reiner Jr, R.C.; Perkins, T.A.; Lindsay, S.W.; Midega, J.T.; Brady, O.J.; Barker, C.M.; Reisen, W.K.; Harrington, L.C.; Takken, W.; Kitron, U.; Lloyd, A.L.; Hay, S.I.; Scott, T.W.; Smith, D.L.

    2014-01-01

    Background Pathogen transmission by mosquitos is known to be highly sensitive to mosquito bionomic parameters. Mosquito mark-release-recapture (MMRR) experiments are a standard method for estimating such parameters including dispersal, population size and density, survival, blood feeding frequency

  1. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea.

    Science.gov (United States)

    Tran, Phuong M; Dahl, John L

    2016-11-01

    Several fast- to intermediate-growing, acid-fast, scotochromogenic bacteria were isolated from Sarracenia purpurea pitcher waters in Minnesota sphagnum peat bogs. Two strains (DL734T and DL739T) were among these isolates. On the basis of 16S rRNA gene sequences, the phylogenetic positions of both strains is in the genus Mycobacterium with no obvious relation to any characterized type strains of mycobacteria. Phenotypic characterization revealed that neither strain was similar to the type strains of known species of the genus Mycobacterium in the collective properties of growth, pigmentation or fatty acid composition. Strain DL734T grew at temperatures between 28 and 32 °C, was positive for 3-day arylsulfatase production, and was negative for Tween 80 hydrolysis, urease and nitrate reduction. Strain DL739T grew at temperatures between 28 and 37 °C, and was positive for Tween 80 hydrolysis, urea, nitrate reduction and 3-day arylsulfatase production. Both strains were catalase-negative while only DL739T grew with 5 % NaCl. Fatty acid methyl ester profiles were unique for each strain. DL739T showed an ability to survive at 8 °C with little to no cellular replication and is thus considered to be psychrotolerant. Therefore, strains DL734T and DL739T represent two novel species of the genus Mycobacterium with the proposed names Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., respectively. The type strains are DL734T (=JCM 30395T=NCCB 100519T) and DL739T (=JCM 30396T=NCCB 100520T), respectively.

  2. Mosquito Control: Do Your Part

    Centers for Disease Control (CDC) Podcasts

    Everyone can do their part to help control mosquitoes that can carry viruses like West Nile, Zika, dengue and chikungunya. In each episode of this podcast, you will learn ways to help reduce the number of mosquitoes in and around your home.

  3. Exotic mosquito threats require strategic surveillance and response planning.

    Science.gov (United States)

    Webb, Cameron E; Doggett, Stephen L

    2016-12-14

    Mosquito-borne diseases caused by endemic pathogens such as Ross River, Barmah Forest and Murray Valley encephalitis viruses are an annual concern in New South Wales (NSW), Australia. More than a dozen mosquito species have been implicated in the transmission of these pathogens, with each mosquito occupying a specialised ecological niche that influences their habitat associations, host feeding preferences and the environmental drivers of their abundance. The NSW Arbovirus Surveillance and Mosquito Monitoring Program provides an early warning system for potential outbreaks of mosquito-borne disease by tracking annual activity of these mosquitoes and their associated pathogens. Although the program will effectively track changes in local mosquito populations that may increase with a changing climate, urbanisation and wetland rehabilitation, it will be less effective with current surveillance methodologies at detecting or monitoring changes in exotic mosquito threats, where different surveillance strategies need to be used. Exotic container-inhabiting mosquitoes such as Aedes aegypti and Ae. albopictus pose a threat to NSW because they are nuisance-biting pests and vectors of pathogens such as dengue, chikungunya and Zika viruses. International movement of humans and their belongings have spread these mosquitoes to many regions of the world. In recent years, these two mosquitoes have been detected by the Australian Government Department of Agriculture and Water Resources at local airports and seaports. To target the detection of these exotic mosquitoes, new trapping technologies and networks of surveillance locations are required. Additionally, incursions of these mosquitoes into urban areas of the state will require strategic responses to minimise substantial public health and economic burdens to local communities.

  4. GLOBE Goes GO with Mosquitoes

    Science.gov (United States)

    Boger, R. A.; Low, R.

    2016-12-01

    The GLOBE Mosquito Larvae protocol and a new citizen science initiative, GLOBE Observers (GO), were both launched in Summer 2016. While the GLOBE Mosquito Larvae Protocol and associated educational materials target K-16 student inquiry and research, the GO protocol version is simplified to enable citizen scientists of all ages from all walks of life to participate. GO allows citizen scientists to collect and submit environmental data through an easy-to-use smart phone app available for both Apple and Android mobile devices. GO mosquito asks for photos of larvae mosquito genus or species, location, and type of water source (e.g., container or pond) where the larvae were found. To initiate the new mosquito GLOBE/GO opportunities, workshops have been held in Barbuda, Thailand, West Indies, US Gulf Coast, New York City, and at the GLOBE Annual Meeting in Colorado. Through these venues, the protocols have been refined and a field campaign has been initiated so that GO and GLOBE citizen scientists (K-16 students and all others) can contribute data. Quality assurance measures are taken through the online training required to participate and the validation of identification by other citizen sciences and mosquito experts. Furthermore, initial research is underway to develop optical recognition software starting with the species that carry the Zika virus (Aedes aegypti and A. albopictus). With this launch, we plan to move forward by providing opportunities throughout the world to engage people in meaningful environmental and public health data collection and to promote citizen scientists to become agents of change in their communities.

  5. Flavivirus-Mosquito Interactions

    Directory of Open Access Journals (Sweden)

    Yan-Jang S. Huang

    2014-11-01

    Full Text Available The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.

  6. Mosquito bite anaphylaxis: immunotherapy with whole body extracts.

    Science.gov (United States)

    McCormack, D R; Salata, K F; Hershey, J N; Carpenter, G B; Engler, R J

    1995-01-01

    Adverse reactions to mosquito bites have been recognized for some time. These usually consist of large local swellings and redness, generalized urticaria, angioedema and less easily definable responses such as nausea, dizziness, headaches, and lethargy. We report two patients who experienced systemic anaphylaxis from mosquito bites. Both were skin tested and given immunotherapy using whole body mosquito extracts. Skin testing using whole body mosquito extracts was positive to Aedes aegypti at 1/1,000 weight/volume (wt/vol) in one patient and to Aedes aegypti at 1/100,000 wt/vol, and Culex pipiens at 1/10,000 wt/vol in the other. Skin testing of ten volunteers without a history of adverse reactions to mosquito bites was negative. Immunotherapy using these extracts resulted in resolution of adverse reactions to mosquito bites in one patient and a decrease in reactions in the other. Immunotherapy with whole body mosquito extracts is a viable treatment option that can play a role in patients with mosquito bite-induced anaphylaxis. It may also result in severe side effects and one must determine the benefit versus risks for each individual patient.

  7. Looking Backward, Looking Forward: The Long, Torturous Struggle with Mosquitoes

    Directory of Open Access Journals (Sweden)

    Gordon M. Patterson

    2016-10-01

    Full Text Available The American anti-mosquito movement grew out of the discovery of the role of mosquitoes in transferring pathogens and public concern about pest and nuisance mosquitoes in the late 1800s. In the 20th century, organized mosquito control in the United States passed through three eras: mechanical, chemical, and integrated mosquito control. Mosquito control in the 21st century faces the challenge of emerging pathogens, invasive mosquito species, and balancing concerns about the environment with effective control strategies.

  8. Novel acetylcholinesterase target site for malaria mosquito control.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2006-12-01

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  9. Visualization of house-entry behaviour of malaria mosquitoes.

    Science.gov (United States)

    Spitzen, Jeroen; Koelewijn, Teun; Mukabana, W Richard; Takken, Willem

    2016-04-25

    Malaria mosquitoes often blood feed indoors on human hosts. The mosquitoes predominantly enter houses via open eaves. Host-seeking is odour-driven, and finding a host depends on the quality of the odour plume and whether the route towards the host is free of obstructions. Little is known about in-flight behaviour of mosquitoes during house entry. This semi-field study visualizes mosquito house entry in three dimensions (3D) and offers new insights for optimizing vector control interventions. The approach and house entry of Anopheles gambiae sensu stricto was studied in a semi-field set-up using video-recorded flight tracks and 3D analysis. Behavioural parameters of host-seeking female mosquitoes were visualized with respect to their position relative to the eave as well as whether a mosquito would enter or not. Host odour was standardized using an attractive synthetic blend in addition to CO2. The study was conducted in western Kenya at the Thomas Odhiambo Campus of the International Centre of Insect Physiology and Ecology, Mbita. The majority of host-seeking An. gambiae approached a house with a flight altitude at eave level, arriving within a horizontal arc of 180°. Fifty-five per cent of mosquitoes approaching a house did not enter or made multiple attempts before passing through the eave. During approach, mosquitoes greatly reduced their speed and the flight paths became more convoluted. As a result, mosquitoes that passed through the eave spent more than 80 % of the observed time within 30 cm of the eave. Mosquitoes that exited the eave departed at eave level and followed the edge of the roof (12.5 %) or quickly re-entered after exiting (9.6 %). The study shows that host-seeking mosquitoes, when entering a house, approach the eave in a wide angle to the house at eave level. Less than 25 % of approaching mosquitoes entered the house without interruption, whereas 12.5 % of mosquitoes that had entered left the house again within the time of observation

  10. Mosquitoes of Middle America.

    Science.gov (United States)

    1976-09-30

    data on bionomics and disease relations. 0. P. Forattini’s treatment of the Culicidae in “ Entomologia Medica” (Sao Paulo , Faculdade de Higiene e Saude...Canal Zone and U.S.A. Casal. Osvaldo H., Depart amento de Entomologia Sanitaria , Instituto de Microbio logi a, Buenos Aires, Argen tina.— Mosquitoes...976 17 Garcia , M iguel, Departamento de Entomologia Sanitaria , Instituto de Microbiologia , Buenos Aires, Argentina . — Mosquitoes from Argentina

  11. Pharmaceuticals and personal care products alter the holobiome and development of a medically important mosquito

    International Nuclear Information System (INIS)

    Pennington, Marcus J.; Rivas, Nicholas G.; Prager, Sean M.; Walton, William E.; Trumble, John T.

    2015-01-01

    The increasing demand for fresh water has forced many countries to use reclaimed wastewater for agricultural purposes. This water contains pharmaceuticals and personal care products (PPCPs) that remain biologically active following passage through wastewater treatment plants. Run-off from farms and contaminated water from treatment facilities exposes aquatic ecosystems to PPCPs. This study examined the effects of PPCPs on a lower trophic organism. Culex quinquefasciatus larvae were reared in water contaminated with environmentally relevant concentrations of common PPCPs. Acetaminophen alone and a mixture of contaminants were found to increase developmental time of larvae. Susceptibility to Bti increased in larvae exposed to antibiotics, acetaminophen, or a mixture of PPCPs. Antibiotics, hormones, and the mixture altered the mosquito bacterial microbiome. Overall, the results indicate that at environmentally relevant concentrations, PPCPs in reclaimed water can have biologically important effects on an ecologically and medically important lower trophic level insect. - Highlights: • Effects of Pharmaceuticals and Personal Care Products on mosquitoes were examined. • Three PPCP treatments increase susceptibility to a common larvicide (Bti). • Acetaminophen and the mixture of PPCPs caused an increase in developmental time. • The holobiome of mosquitoes treated with PPCPs were sequenced. • Three PPCP regimes changed the holobiome of the mosquitoes. - Pharmaceuticals and personal care products, common to reclaimed wastewater, alter the development of mosquitoes. They also alter the whole-body bacterial microbiome

  12. Mosquito adulticidal properties of Delonix elata (Family: Fabaceae against dengue vector, Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Mohan Rajeswary

    2014-05-01

    Full Text Available Objective: To determine the adulticidal activity of hexane, benzene, chloroform, ethyl acetate and methanol leaf and seed extracts of Delonix elata (D. elata against Aedes aegypti (Ae. aegypti. Methods: The bioassay was conducted in an experimental kit consisting of two cylindrical plastic tubes both measuring 125 mm×44 mm following the WHO method; mortality of the mosquitoes was recorded after 24 h. Results: The adulticidal activity of plant leaf and seed extracts showed moderate toxic effect on the adult mosquitoes after 24 h of exposure period. However, the highest adulticidal activity was observed in the leaf methanol extract of D. elata against Ae. aegypti with the LC50 and LC90 values 162.87 and 309.32 mg/L, respectively. Conclusions: From this result, it can be concluded the crude extract of D. elata was an excellent potential for controlling Ae. aegypti mosquitoes.

  13. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Mohamed Yacoob Syed Ali

    2013-06-01

    Full Text Available Objective: To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods: Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa, Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg. Each experiment was conducted with triplicate with concurrent a control group. Results: Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC 50 value (0.055 6依0.010 3 µg/mL, (0.067 5依0.136 0 µg/mL and (0.066 1 依0.007 6 µg/mL, respectively. Conclusions: The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  14. Mosquito Bites

    Science.gov (United States)

    ... weeks. Some female mosquitoes can hibernate in the winter, and they can live for months. What health ... gutters, buckets, pool covers, pet water dishes, discarded tires, or birdbaths. If you plan to travel, get ...

  15. Abilities of the pitchers of female Softball in the community Los Arados Maisí from Municipality

    Directory of Open Access Journals (Sweden)

    Roylis Noa-Chávez

    2011-06-01

    Full Text Available This study addresses a subject of great interest from the major deficiencies in female softball pitchers in the community “Los Arados” from Maisí municipality. In this sense, the researcher offers in detail a group of elements on an activity that is very young in the territory and where its practitioners are started for the first time. From the review and updating of these physical activities the specialists criteria method was applied, which confirmed the feasibility of the proposal to insert it into the female softball lesson plans.

  16. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.

    Science.gov (United States)

    Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Ponsankar, Athirstam; Thanigaivel, Annamalai; Edwin, Edward-Sam; Selin-Rani, Selvaraj; Chellappandian, Muthiah; Pradeepa, Venkatraman; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2017-05-01

    Resistance to treatments with Temephos or plant derived oil, Pb-CVO, between a field collected Wild Strain (WS) and a susceptible Laboratory Strain (LS) of Ae. aegypti were measured. The Temephos (0.1mg/L) showed the greatest percentage of mosquito mortality compared to Pb-CVO (1.5mg/L) in LS Ae. aegypti. However, WS Ae. aegypti was not significantly affected by Temephos (0.1mg/L) treatment compare to the Pb-CVO (1.5mg/L). However, both strains (LS and WS) when treated with Pb-CVO (1.5mg/L) displayed steady larval mortality rate across all instars. The LC 50 of Temephos was 0.027mg in LS, but increased in WS to 0.081mg/L. The LC 50 of Pb-CVO treatment was observed at concentrations of 0.72 and 0.64mg/L for LS and WS strains respectively. The enzyme level of α- and β-carboxylesterase was reduced significantly in both mosquito strains treated with Pb-CVO. Whereas, there was a prominent deviation in the enzyme ratio observed between LS and WS treated with Temephos. The GST and CYP450 levels were upregulated in the LS, but decreased in WS, after treatment with Temephos. However, treatment with Pb-CVO caused both enzyme levels to increase significantly in both the strains. Visual observations of the midgut revealed cytotoxicity from sub-lethal concentrations of Temephos (0.04mg/L) and Pb-CVO (1.0mg/L) in both strains of Ae. aegypti compared to the control. The damage caused by Temephos was slightly less in WS compared to LS mosquito strains. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. UV light and urban pollution: Bad cocktail for mosquitoes?

    International Nuclear Information System (INIS)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud’homme, Sophie M.; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

    2014-01-01

    Highlights: •Mosquito tolerance to temephos is induced by PAHs and UV exposure. •Toxicity of fluoranthene for mosquito Malpighian tubules cells is induced by UV. •Fluoranthene crystallizes in mosquito Malpighian tubules upon UV exposure. •Mixture of two PAHs is less toxic for mosquitoes than each PAHs separately. •Combination of abiotic parameters (PAHs and UV) affect mosquito physiology. -- Abstract: Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species–ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis–Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on

  18. UV light and urban pollution: Bad cocktail for mosquitoes?

    Energy Technology Data Exchange (ETDEWEB)

    Tetreau, Guillaume, E-mail: guillaume.tetreau@gmail.com [Laboratoire d’Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09 (France); Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States); Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud’homme, Sophie M.; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane [Laboratoire d’Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09 (France)

    2014-01-15

    Highlights: •Mosquito tolerance to temephos is induced by PAHs and UV exposure. •Toxicity of fluoranthene for mosquito Malpighian tubules cells is induced by UV. •Fluoranthene crystallizes in mosquito Malpighian tubules upon UV exposure. •Mixture of two PAHs is less toxic for mosquitoes than each PAHs separately. •Combination of abiotic parameters (PAHs and UV) affect mosquito physiology. -- Abstract: Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species–ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis–Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on

  19. rAed a 4: A New 67-kDa Aedes aegypti Mosquito Salivary Allergen for the Diagnosis of Mosquito Allergy.

    Science.gov (United States)

    Peng, Zhikang; Caihe, Li; Beckett, Andrew N; Guan, Qingdong; James, Anthony A; Simons, F Estelle R

    2016-01-01

    Accurate diagnosis of mosquito allergy has been hampered by the laborious task of obtaining mosquito salivary allergens. We have previously studied 3 recombinant (r) Aedes aegypti mosquito salivary allergens: rAed a 1, rAed a 2 and rAed a 3. Here, we report the expression, purification, identification and evaluation of rAed a 4, a 67-kDa α-glucosidase. rAed a 4 was expressed using a baculovirus/insect cell system, purified by a combination of anion- and cation-exchange chromatography, and identified by immunoblotting. A. aegypti saliva extract was prepared in our laboratory. An indirect enzyme-linked immunosorbent assay (ELISA) was developed to measure rAed a 4-specific immunoglobulin E (IgE) and IgG antibodies in sera from 13 individuals with a positive mosquito-bite test from a laboratory-reared mosquito. Sera from 18 individuals with a negative bite test served as controls. Purified rAed a 4 bound to the IgE in mosquito-allergic sera, as detected by ELISA and immunoblotting. The binding of rAed a 4 to IgE could be inhibited in a dose-dependent manner by the addition of an A. aegypti extract. Mosquito-allergic individuals had significantly higher mean levels of rAed a 4-specific IgE and IgG than controls. Using the mean of the controls ± 2 SD as a cut-off level, 46% of the 13 allergic individuals had a positive IgE, while none of the controls was positive (p < 0.001). Aed a 4 is a major allergen in mosquito saliva. Its recombinant form has the hydrolase function and can be used for the diagnosis of mosquito allergy. © 2016 S. Karger AG, Basel.

  20. Nectar Meals of a Mosquito-Specialist Spider

    Directory of Open Access Journals (Sweden)

    Josiah O. Kuja

    2012-01-01

    Full Text Available Evarcha culicivora, an East African jumping spider, is known for feeding indirectly on vertebrate blood by actively choosing blood-carrying mosquitoes as prey. Using cold-anthrone tests to detect fructose, we demonstrate that E. culicivora also feeds on nectar. Field-collected individuals, found on the plant Lantana camara, tested positive for plant sugar (fructose. In the laboratory, E. culicivora tested positive for fructose after being kept with L. camara or one of another ten plant species (Aloe vera, Clerodendron magnifica, Hamelia patens, Lantana montevideo, Leonotis nepetaefolia, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, Striga asiatica, and Verbena trivernia. Our findings demonstrate that E. culicivora acquires fructose from its natural diet and can ingest fructose directly from plant nectaries. However, experiments in the laboratory also show that E. culicivora can obtain fructose indirectly by feeding on prey that have fed on fructose, implying a need to consider this possibility when field-collected spiders test positive for fructose. In laboratory tests, 53.5% of 1,215 small juveniles, but only 3.4% of 622 adult E. culicivora, left with plants for 24 hours, were positive for fructose. These findings, along with the field data, suggest that fructose is especially important for early-instar juveniles of E. culicivora.

  1. Distribution of mosquitoes and mosquito-borne arboviruses in Yunnan Province near the China-Myanmar-Laos border.

    Science.gov (United States)

    Wang, Jinglin; Zhang, Hailin; Sun, Xiaohong; Fu, Shihong; Wang, Huanqin; Feng, Yun; Wang, Huanyu; Tang, Qing; Liang, Guo-Dong

    2011-05-01

    Economic development and increased tourism in the southern region of Yunnan Province in China, adjacent to several countries in Southeast Asia, has increased the likelihood of import and export of vectors and vector-borne diseases. We report the results of surveillance of mosquitoes and mosquito-borne arboviruses along the border of China-Myanmar-Laos in 2005 and 2006, and information associating several arboviruses with infections and possibly disease in local human populations. Seventeen mosquito species representing four genera were obtained, and 14 strains of mosquito-borne viruses representing six viruses in five genera were isolated from Culex tritaeniorhynchus. In addition, IgM against Japanese encephalitis virus, Sindbis virus, Yunnan orbivirus and novel Banna virus was detected in acute-phase serum samples obtained from hospitalized patients with fever and encephalitis near the areas where the viruses were isolated. This investigation suggests that Japanese encephalitis virus, Sindbis virus, and lesser-known arboviruses circulate and may be infecting humans in the China-Myanmar-Laos border region.

  2. Indoor application of attractive toxic sugar bait (ATSB in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Directory of Open Access Journals (Sweden)

    Zachary P Stewart

    Full Text Available BACKGROUND: Attractive toxic sugar bait (ATSB sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05. Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor

  3. MosquitoNet: investigating the use of UAV and artificial neural networks for integrated mosquito management

    Science.gov (United States)

    Case, E.; Ren, Y.; Shragai, T.; Erickson, D.

    2017-12-01

    Integrated mosquito control is expensive and resource intensive, and changing climatic factors are predicted to expand the habitable range of disease-carrying mosquitoes into new regions in the United States. Of particular concern in the northeastern United States are aedes albopictus, an aggressive, invasive species of mosquito that can transmit both native and exotic disease. Ae. albopictus prefer to live near human populations and breed in artificial containers with as little as two millimeters of standing water, exponentially increasing the difficulty of source control in suburban and urban areas. However, low-cost unmanned aerial vehicles (UAVs) can be used to photograph large regions at centimeter-resolution, and can image containers of interest in suburban neighborhoods. While proofs-of-concepts have been shown using UAVs to identify naturally occurring bodies of water, they have not been used to identify mosquito habitat in more populated areas. One of the primary challenges is that post-processing high-resolution aerial imagery is still time intensive, often labelled by hand or with programs built for satellite imagery. Artificial neural networks have been highly successful at image recognition tasks; in the past five years, convolutional neural networks (CNN) have surpassed or aided trained humans in identification of skin cancer, agricultural crops, and poverty levels from satellite imagery. MosquitoNet, a dual classifier built from the Single Shot Multibox Detector and VGG16 architectures, was trained on UAV­­­­­ aerial imagery taken during a larval study in Westchester County in southern New York State in July and August 2017. MosquitoNet was designed to assess the habitat risk of suburban properties by automating the identification and counting of containers like tires, toys, garbage bins, flower pots, etc. The SSD-based architecture marked small containers and other habitat indicators while the VGG16-based architecture classified the type of

  4. Mosquito repellent properties of Delonix elata (L. gamble (Family: Fabaceae against filariasis vector, Culex quinquefasciatus Say. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Marimuthu Govindarajan

    2014-02-01

    Full Text Available Objective: To determine the repellent activity of hexane, ethyl acetate, benzene, chloroform and methanol extract of Delonix elata (D. elata leaf and seed against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: Evaluation was carried out in a net cage (45 cm伊30 cm伊25 cm containing 100 blood starved female mosquitoes of Cx. quinquefasciatus. Repellent activity was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of D. elata were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the strength of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 provided over 150 min and 120 min protection, respectively. Conclusions: Crude extracts of D. elata exhibit the potential for controlling Cx. quinquefasciatus, the mosquito vector of filariasis.

  5. Adult vector control, mosquito ecology and malaria transmission.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  6. Transgenic Mosquitoes - Fact or Fiction?

    Science.gov (United States)

    Wilke, André B B; Beier, John C; Benelli, Giovanni

    2018-06-01

    Technologies for controlling mosquito vectors based on genetic manipulation and the release of genetically modified mosquitoes (GMMs) are gaining ground. However, concrete epidemiological evidence of their effectiveness, sustainability, and impact on the environment and nontarget species is lacking; no reliable ecological evidence on the potential interactions among GMMs, target populations, and other mosquito species populations exists; and no GMM technology has yet been approved by the WHO Vector Control Advisory Group. Our opinion is that, although GMMs may be considered a promising control tool, more studies are needed to assess their true effectiveness, risks, and benefits. Overall, several lines of evidence must be provided before GMM-based control strategies can be used under the integrated vector management framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Blood-feeding ecology of mosquitoes in zoos.

    Science.gov (United States)

    Tuten, H C; Bridges, W C; Paul, K S; Adler, P H

    2012-12-01

    To determine if the unique host assemblages in zoos influence blood-feeding by mosquitoes (Diptera: Culicidae), a sampling programme was conducted in Greenville and Riverbanks Zoos, South Carolina, U.S.A., from April 2009 to October 2010. A total of 4355 female mosquitoes of 14 species were collected, of which 106 individuals of nine species were blood-fed. The most common taxa were Aedes albopictus (Skuse), Aedes triseriatus (Say), Anopheles punctipennis (Say), Culex erraticus (Dyar & Knab), Culex pipiens complex (L.) and Culex restuans (Theobald). Molecular analyses (cytochrome b) of bloodmeals revealed that mosquitoes fed on captive animals, humans and wildlife, and took mixed bloodmeals. Host species included one amphibian, 16 birds, 10 mammals (including humans) and two reptiles. Minimum dispersal distances after feeding on captive hosts ranged from 15.5 m to 327.0 m. Mosquito-host associations generally conformed to previous accounts, indicating that mosquito behaviour inside zoos reflects that outside zoos. However, novel variation in host use, including new, exotic host records, warrants further investigation. Zoos, thus, can be used as experiment environments in which to study mosquito behaviour, and the findings extrapolated to non-zoo areas, while providing medical and veterinary benefits to zoo animals, employees and patrons. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.

  8. Olfactory memory in the mosquito Culex quinquefasciatus.

    Science.gov (United States)

    McCall, P J; Eaton, G

    2001-06-01

    The cosmotropical urban mosquito Culex quinquefasciatus Say (Diptera: Culicidae) uses chemical cues to locate suitable water pools for oviposition. Although gravid females are innately attracted to or repelled by certain compounds, this study found that an individual mosquito's preferences for these odours could be altered greatly by prior experience. Mosquitoes reared in water containing skatole, at a level normally repellent to ovipositing females, preferred to oviposit in water containing that compound rather than in water with an otherwise attractive odour compound (P-cresol). This behaviour occurred regardless of whether mosquitoes were tested individually or in groups of up to 50 per cage. The F1 progeny of conditioned mosquitoes did not exhibit the parental preference, but were as susceptible to conditioning as their parents. Moreover, rearing mosquitoes in infusions of hay or animal (guinea-pig) faeces produced a similar although less dramatic change, such that the innate propensity for hay infusion could be cancelled by rearing in guinea-pig faeces infusion. The results demonstrated a change in odour preference by Cx. quinquefasciatus following exposure to the odour during development or pupal eclosion, suggesting that some form of larval conditioning or early adult imprinting occurred. Precisely when that conditioning occurred remains to be determined.

  9. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  10. Quantifying the Water Footprint of Manufactured Products: A Case Study of Pitcher Water Filters

    Directory of Open Access Journals (Sweden)

    Ashley Barker

    2012-01-01

    Full Text Available Fresh water is a finite resource that is critically needed bysociety for a variety of purposes. The demand for freshwater will grow as the world population and global livingstandard increase, and fresh water shortages will becomemore commonplace. This will put significant stress onsociety. It has been argued that fresh water may becomethe next oil, and efforts have to be made to better manageits fresh water consumption by agricultural and domesticusers. Industry also uses large amounts. Surprisingly, onlyrecently is serious attention being directed toward waterrelatedissues. This effort to quantify the water footprint ofa manufactured product represents one of the first initiativesto characterize the role of water in a discrete good.This study employed a life cycle assessment methodologyto determine the water footprint of a pitcher water filter.This particular product was selected because many waterintensivematerials and processes are needed to produceits major components: for example, agricultural processesused to produce activated carbon and petrochemicalprocesses used to produce the polypropylene casing. Inaddition, a large amount of water is consumed during theproduct’s use phase. Water data was obtained from theEcoinvent 2.1 database and categorized as either beingassociated with blue or green water.The blue water footprint (surface water consumption forthe pitcher water filter was 76 gallons per filter: 10 gallonsconsumed for materials extraction, 15 gallons for themanufacturing stage, and 50 gallons during the use phase.The green water footprint (precipitation was associatedwith the cultivation of the coconut tree; activated carbonis obtained from the coconut shells. The green waterfootprint was calculated to be 164 gallons per filter.The overall water footprint was 240 gallons per filter;the filter footprint is heavily dominated by green water(68% rather than blue water (32%. Future studies mayinvestigate how the production and

  11. Growth and Development of Three-Dimensional Plant Form.

    Science.gov (United States)

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microorganism-mediated behaviour of malaria mosquitoes

    NARCIS (Netherlands)

    Busula, Annette O.

    2017-01-01

    Host-seeking is an important component of mosquito vectorial capacity on which the success of the other behavioural determinants depends. Blood-seeking mosquitoes are mainly guided by chemical cues released by their blood hosts. This thesis describes results of a study that determined the effect

  13. Effect of ebastine on mosquito bites.

    Science.gov (United States)

    Reunala, T; Brummer-Korvenkontio, H; Petman, L; Palosuo, T; Sarna, S

    1997-07-01

    Mosquito bites usually cause wealing and delayed bite papules. Cetirizine decreases wealing, bite papules and pruritus but the effect of other antihistamines on mosquito bites is unknown. We studied the effect of ebastine in 30 mosquito bite-sensitive adult subjects. Ebastine 10 mg or 20 mg and placebo were given for 4 days in a cross-over fashion. Aedes aegypti bites were given on forearms. The size of the bite lesions and pruritus (visual analogue score) were measured at 15 min, 2, 6, and 24 h after the bites. Twenty-five subjects were evaluable in the study. At 15 min ebastine decreased significantly the size of the bite lesion (p = 0.0017) and pruritus (ptime points were compiled the size of the bite lesion and pruritus score decreased significantly. Sedation occurred during ebastine treatment in 6 (21%) and during placebo treatment in 2 (7%) subjects. The present results show that prophylactically given ebastine is effective against immediate mosquito bite symptoms.

  14. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    Science.gov (United States)

    1980-01-01

    1973). Sabin (1948) showed that attenuated dpngiie, passed through mosquitoes, did not revert to pathogenicity frnr man. -7- Thus even if the vaccine ...AD-A138 518 PATHOGENESIS OF DENGUE VACCINE YIRUSES IN MOSQUITOES 1/ (U) YALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 9i JAN 80 DRND7...34 ’ UNCLASSIFIED 0{) AD 0Pathogenesis of dengue vaccine viruses in mosquitoes -First Annual Report Barry I. Beaty, Ph.D. Thomas H. G

  15. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    Directory of Open Access Journals (Sweden)

    Brittany L. Dodson

    2017-03-01

    Full Text Available Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  16. Nesting Bird “Host Funnel” Increases Mosquito-Bird Contact Rate

    OpenAIRE

    CAILLOUËT, KEVIN A.; RIGGAN, ANNA E.; BULLUCK, LESLEY P.; CARLSON, JOHN C.; SABO, ROY T.

    2013-01-01

    Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from < 1 mosquito per trap night to 36.2 in the final 2 wk of the nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a “host f...

  17. Hip and upper extremity kinematics in youth baseball pitchers.

    Science.gov (United States)

    Holt, Taylor; Oliver, Gretchen D

    2016-01-01

    The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, P = 0.002) and at ball release (r = 0.536, P = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.

  18. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    Science.gov (United States)

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  19. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence

    Science.gov (United States)

    Bialosuknia, Sean M.; Zink, Steven D.; Brecher, Matthew; Ehrbar, Dylan J.; Morrissette, Madeline N.; Kramer, Laura D.

    2017-01-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1–7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas. PMID:28430564

  20. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence.

    Science.gov (United States)

    Ciota, Alexander T; Bialosuknia, Sean M; Zink, Steven D; Brecher, Matthew; Ehrbar, Dylan J; Morrissette, Madeline N; Kramer, Laura D

    2017-07-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log 10 PFU/mL; minimum infective dose was 4.2 log 10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.

  1. Eilat virus displays a narrow mosquito vector range.

    Science.gov (United States)

    Nasar, Farooq; Haddow, Andrew D; Tesh, Robert B; Weaver, Scott C

    2014-12-17

    Most alphaviruses are arthropod-borne and utilize mosquitoes as vectors for transmission to susceptible vertebrate hosts. This ability to infect both mosquitoes and vertebrates is essential for maintenance of most alphaviruses in nature. A recently characterized alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani s.I. is unable to replicate in vertebrate cell lines. The EILV host range restriction occurs at both attachment/entry as well as genomic RNA replication levels. Here we investigated the mosquito vector range of EILV in species encompassing three genera that are responsible for maintenance of other alphaviruses in nature. Susceptibility studies were performed in four mosquito species: Aedes albopictus, A. aegypti, Anopheles gambiae, and Culex quinquefasciatus via intrathoracic and oral routes utilizing EILV and EILV expressing red fluorescent protein (-eRFP) clones. EILV-eRFP was injected at 10(7) PFU/mL to visualize replication in various mosquito organs at 7 days post-infection. Mosquitoes were also injected with EILV at 10(4)-10(1) PFU/mosquito and virus replication was measured via plaque assays at day 7 post-infection. Lastly, mosquitoes were provided bloodmeals containing EILV-eRFP at doses of 10(9), 10(7), 10(5) PFU/mL, and infection and dissemination rates were determined at 14 days post-infection. All four species were susceptible via the intrathoracic route; however, replication was 10-100 fold less than typical for most alphaviruses, and infection was limited to midgut-associated muscle tissue and salivary glands. A. albopictus was refractory to oral infection, while A. gambiae and C. quinquefasciatus were susceptible only at 10(9) PFU/mL dose. In contrast, A. aegypti was susceptible at both 10(9) and 10(7) PFU/mL doses, with body infection rates of 78% and 63%, and dissemination rates of 26% and 8%, respectively. The exclusion of vertebrates in its maintenance cycle may have facilitated the adaptation of EILV to a single

  2. Mosquito population regulation and larval source management in heterogeneous environments.

    Directory of Open Access Journals (Sweden)

    David L Smith

    Full Text Available An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM. We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats' carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%. Unsurprisingly, targeting (i.e. treating a subset of the most productive pools gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides.

  3. Emerging mosquito species in Germany-a synopsis after 6 years of mosquito monitoring (2011-2016).

    Science.gov (United States)

    Kampen, Helge; Schuhbauer, Astrid; Walther, Doreen

    2017-12-01

    Globalisation and climate change are the main drivers of invasion of non-endemic regions by mosquitoes. Mass transportation of people, animals and goods facilitate accidental long-distance displacement while climate warming supports active spread and establishment of thermophilic species. In the framework of a mosquito-monitoring programme, eight non-indigenous culicid species have been registered in Germany since 2011, with four of them being more or less efficient vectors of disease agents and another four now considered established. The eight newly emerged species include Aedes albopictus, Ae. japonicus, Ae. aegypti, Ae. koreicus, Ae. berlandi, Ae. pulcritarsis, Anopheles petragnani and Culiseta longiareolata. We here review recent findings and at the same time present new findings of specimens of non-native mosquito species in Germany.

  4. Role of plants and plant based products towards the control of insect pests and vectors: A novel review

    Directory of Open Access Journals (Sweden)

    Elumalai Kuppusamy

    2016-10-01

    Full Text Available Insect pests bear harmful effects causing great loss to the agricultural crops, stored agricultural products and vector mosquitoes can cause diseases to human. Plants possess an array of vast repository of phytochemicals and have been used to cure many diseases and to control the infestation of insect pests from time immemorial. Plants are easily biodegradable and ecologically safe for treating on the stored or on the field crops against pests to prevent from further damage or loss of stored products or preventing human from mosquito bites, thus preventing the spreading of dreadful diseases such as chikungunya and malaria. Hence, this review can give a clear insecticidal, pesticidal and mosquitocidal property of several plants against the insect pests and vectors.

  5. Modulation of Host Learning in Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Vinauger, Clément; Lahondère, Chloé; Wolff, Gabriella H; Locke, Lauren T; Liaw, Jessica E; Parrish, Jay Z; Akbari, Omar S; Dickinson, Michael H; Riffell, Jeffrey A

    2018-02-05

    How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Towards the genetic manipulation of mosquito disease vectors

    International Nuclear Information System (INIS)

    Crampton, J.M.; Lycett, G.J.; Warren, A.

    1998-01-01

    Our research is aimed at developing the technologies necessary to undertake the genetic manipulation of insect vector genomes. In the longer term, we wish to explore the potential that this technology may have for developing novel strategies for the control of vector-borne diseases. The focus of our current research has been to: i) identify and characterise endogenous transposable elements in the genomes of mosquito vectors -research has focussed on identifying both Class I and Class 11 elements and determining their structure and distribution within mosquito genomes; ii) develop and use transfection systems for mosquito cells in culture as a test bed for transformation vectors and promoters - transfection techniques, vector constructs and different promoters driving reporter genes have been utilised to optimise the transformation of both Aedes aegypti and Anopheles gambiae cells in culture; iii) identify putative promoter sequences which are induced in the female mosquito midgut when it takes a blood meal - the Anopheles gambiae trypsin gene locus has been cloned and sequenced and the intergenic regions assessed for their ability to induce reporter gene expression in mosquito gut cells. The progress we have made in each of these areas will be described and discussed in the context of our longer term aim which is to introduce genes coding for antiparasitic agents into mosquito genomes in such a way that they are expressed in the mosquito midgut and disrupt transmission of the malaria parasite. (author)

  7. Towards the genetic manipulation of mosquito disease vectors

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, J M; Lycett, G J; Warren, A [Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Liverpool (United Kingdom)

    1998-01-01

    Our research is aimed at developing the technologies necessary to undertake the genetic manipulation of insect vector genomes. In the longer term, we wish to explore the potential that this technology may have for developing novel strategies for the control of vector-borne diseases. The focus of our current research has been to: i) identify and characterise endogenous transposable elements in the genomes of mosquito vectors -research has focussed on identifying both Class I and Class 11 elements and determining their structure and distribution within mosquito genomes; ii) develop and use transfection systems for mosquito cells in culture as a test bed for transformation vectors and promoters - transfection techniques, vector constructs and different promoters driving reporter genes have been utilised to optimise the transformation of both Aedes aegypti and Anopheles gambiae cells in culture; iii) identify putative promoter sequences which are induced in the female mosquito midgut when it takes a blood meal - the Anopheles gambiae trypsin gene locus has been cloned and sequenced and the intergenic regions assessed for their ability to induce reporter gene expression in mosquito gut cells. The progress we have made in each of these areas will be described and discussed in the context of our longer term aim which is to introduce genes coding for antiparasitic agents into mosquito genomes in such a way that they are expressed in the mosquito midgut and disrupt transmission of the malaria parasite. (author). 41 refs, 2 figs.

  8. A low-cost mesocosm for the study of behaviour and reproductive potential in Afrotropical mosquito (Diptera: Culicidae) vectors of malaria.

    Science.gov (United States)

    Jackson, B T; Stone, C M; Ebrahimi, B; Briët, O J T; Foster, W A

    2015-03-01

    A large-scale mesocosm was constructed and tested for its effectiveness for use in experiments on behaviour, reproduction and adult survivorship in the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m(3) ) allowed for semi-natural experiments that increased demand on a mosquito's energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed the easy collection of dead bodies so that daily mortality could be assessed accurately using a method that accounts for the loss of a proportion of bodies. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single cohort demonstrated successful mating, blood feeding, oviposition and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes in which space and seasonal cold are constraining factors. © 2014 The Royal Entomological Society.

  9. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria ...

    African Journals Online (AJOL)

    Introduction: Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods: in order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes ...

  10. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes

    Directory of Open Access Journals (Sweden)

    Silvina Goenaga

    2015-11-01

    Full Text Available Nhumirim virus (NHUV is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV. This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUVandWNV, or solely withWNVas a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi, while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease.

  11. “Looking over the Backyard Fence”: Householders and Mosquito Control

    Directory of Open Access Journals (Sweden)

    Samir Mainali

    2017-03-01

    Full Text Available (1 Background: Vector-borne diseases are a significant public health problem in Western Australia. Mosquitoes are responsible for the transmission of a number of pathogens and may pose a serious nuisance problem. Prevention efforts in the State are multi-faceted and include physical, chemical, and cultural control methods for restricting mosquito breeding. This is less complex where breeding areas are located within public open spaces. In Australia’s developed urban areas, breeding sites are, however, frequently located within private residential landholdings, where the scope of public health officials to act is constrained by law and practicality. Consequently, mosquito prevention in these locations is predominantly the responsibility of the residents. This research addressed a gap, both in understanding the degree to which “backyard” mosquito breeding has the potential to contribute to local mosquito problems, and in assessing what residents “think and do” about mosquito control within their home environment. (2 Methods: The study was conducted in the Town of Bassendean, a metropolitan Local Government Area of Perth, Western Australia, in close proximity to two natural, productive mosquito breeding sites, namely Ashfield Flats and Bindaring Park. A total of 150 householders were randomly surveyed during the summer of 2015–2016, to gauge residents’ knowledge, attitudes, and practices (KAP (knowledge, attitudes, and practices Survey in regards to mosquitoes, their breeding and ecology, and avoidance or minimization strategies. The survey comprised nine questions covering residents’ knowledge (3 questions, attitudes (3 questions, and practices (3 questions, as well as additional questions regarding the basic demographics of the resident. Larvae were collected from backyard containers and reared to adults for species identification. A series of Encephalitis Vector Surveillance carbon dioxide (EVS CO2 traps were also deployed, to

  12. Integrating the Public in Mosquito Management: Active Education by Community Peers Can Lead to Significant Reduction in Peridomestic Container Mosquito Habitats

    Science.gov (United States)

    Healy, Kristen; Hamilton, George; Crepeau, Taryn; Healy, Sean; Unlu, Isik; Farajollahi, Ary; Fonseca, Dina M.

    2014-01-01

    Mosquito species that utilize peridomestic containers for immature development are commonly aggressive human biters, and because they often reach high abundance, create significant nuisance. One of these species, the Asian tiger mosquito Aedes albopictus, is an important vector of emerging infectious diseases, such as dengue, chikungunya, and Zika fevers. Integrated mosquito management (IMM) of Ae. albopictus is particularly difficult because it requires access to private yards in urban and suburban residences. It has become apparent that in the event of a public health concern due to this species, homeowners will have to be active participants in the control process by reducing mosquito habitats in their properties, an activity known as source reduction. However, limited attempts at quantifying the effect of source reduction by homeowners have had mixed results. Of note, many mosquito control programs in the US have some form of education outreach, however the primary approach is often passive focusing on the distribution of education materials as flyers. In 2010, we evaluated the use of active community peer education in a source reduction program, using AmeriCorps volunteers. The volunteers were mobilized over a 4-week period, in two areas with approximately 1,000 residences each in urban Mercer and suburban Monmouth counties in New Jersey, USA. The volunteers were first provided training on peridomestic mosquitoes and on basic approaches to reducing the number of container habitats for mosquito larvae in backyards. Within the two treatment areas the volunteers successfully engaged 758 separate homes. Repeated measures analysis of variance showed a significant reduction in container habitats in the sites where the volunteers actively engaged the community compared to untreated control areas in both counties. Our results suggest that active education using community peer educators can be an effective means of source reduction, and a critical tool in the arsenal

  13. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance.

    Science.gov (United States)

    Mukundarajan, Haripriya; Hol, Felix Jan Hein; Castillo, Erica Araceli; Newby, Cooper; Prakash, Manu

    2017-10-31

    The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas.

  14. The Sabethines of Northern Andean Coffee-Growing Regions of Colombia.

    Science.gov (United States)

    Suaza-Vasco, Juan; López-Rubio, Andrés; Galeano, Juan; Uribe, Sandra; Vélez, Iván; Porter, Charles

    2015-06-01

    Sampling for sabethine mosquitoes occurred intermittently from September 2007 to April 2013 in 17 municipalities, located in 5 departments (divisions) in the northern Andean coffee-growing regions of Colombia. Of the 9 genera within the Sabethini tribe known to occur in the Neotropical region, 6 were encountered including 15 species: Jonhbelkinia ulopus, Limatus durhamii, Sabethes ignotus, Sa. luxodens, Sa. undosus, Shannoniana fluviatilis, Trichoprosopon compressum, Tr. digitatum, Tr. evansae, Tr. pallidiventer s.l., Tr. pallidiventer s.s., Wyeomyia arthrostigma, Wy. oblita, Wy. ulocoma, and Wy. undulata. The species Sa. luxodens and Wy. undulata constitute new records for Colombia. These records broaden the knowledge of this important group that includes some important species related to the arbovirus transmission. Records are from the northern Colombian Andes, a region noted for coffee cultivation and ecotourism.

  15. Hey! A Mosquito Bit Me! (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Español Hey! A Mosquito Bit Me! KidsHealth / For Kids / Hey! A Mosquito Bit Me! Print en español ¡ ...

  16. Avian phenotypic traits related to feeding preferences in two Culex mosquitoes

    Science.gov (United States)

    Yan, Jiayue; Gangoso, Laura; Martínez-de la Puente, Josué; Soriguer, Ramón; Figuerola, Jordi

    2017-10-01

    Host choice by mosquitoes affects the transmission dynamics of vector-borne infectious diseases. Although asymmetries in mosquito attraction to vertebrate species have been reported, the relative importance of host characteristics in mosquito blood-feeding behavior is still poorly studied. Here, we investigate the relationship between avian phenotypic traits—in particular, morphometry, plumage coloration, and nesting and roosting behavior—and the blood-feeding patterns in two common Culex mosquito species on a North American avian community. Forage ratios of the mosquito species were unrelated to the phylogenetic relationships among bird species. Culex pipiens fed preferably on birds with lighter-colored plumage and longer tarsi; furthermore, solitary roosting avian species were both bitten by Cx. pipiens and Cx. restuans more often than expected. These associations may be explained by greater mosquito attraction towards larger birds with a greater color contrast against the background. Although communally roosting birds may release more cues and attract more mosquitoes, individuals may in fact receive fewer bites due to the encounter-dilution effect. Mosquito feeding behavior is a highly complex phenomenon, and our results may improve understanding of the non-random interaction between birds and mosquitoes in natural communities.

  17. UV light and urban pollution: bad cocktail for mosquitoes?

    Science.gov (United States)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

    2014-01-01

    Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species-ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis-Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on mosquitoes, including tolerance to three insecticides (imidacloprid, propoxur and temephos), cell damage and response to oxidative stress. Taken together, our results suggest that UV and pollution, individually or in combination, are abiotic parameters that can affect the physiology and insecticide tolerance of mosquitoes; but the complexity of their direct effect and of their interaction will require further

  18. Relative Abundance of Adult Mosquitoes in University of Abuja Main ...

    African Journals Online (AJOL)

    Relative Abundance of Adult Mosquitoes in University of Abuja Main ... relative abundance of adult mosquitoes in four selected sites in University of Abuja ... These results indicated that vectors of mosquito-borne diseases are breeding in the ...

  19. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    Science.gov (United States)

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  20. Non-genetic determinants of mosquito competence for malaria parasites.

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    Full Text Available Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.

  1. Nesting bird "host funnel" increases mosquito-bird contact rate.

    Science.gov (United States)

    Caillouët, Kevin A; Riggan, Anna E; Bulluck, Lesley P; Carlson, John C; Sabo, Roy T

    2013-03-01

    Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a "host funnel," concentrating host-seeking mosquitoes to the few remaining nestlings. The relative abundance of mosquitoes collected by the NMT suggests that significantly more Aedes albopictus (Skuse) and Culex pipiens (L.) /restuans (Theobald) sought nesting bird bloodmeals than were predicted by their relative abundances in CO2-baited Centers for Disease Control and Prevention light and gravid traps. Culex salinarius (Coquillett) and Culex erraticus Dyar and Knab were collected in NMTs in proportion to their relative abundances in the generic traps. Temporal host funnels and nesting bird host specificity may enhance arbovirus amplification and explain observed West Nile virus and St. Louis encephalitis virus amplification periods.

  2. Review: artificial container-breeding mosquitoes and cemeteries: a perfect match.

    Science.gov (United States)

    Vezzani, Darío

    2007-02-01

    Artificial container-breeding mosquitoes, such as Aedes aegypti, Ae. albopictus, and Culex pipiens, are well-recognized vectors of diseases throughout the world. Cemeteries are considered major sources of mosquitoes and the results of more than 30 studies concerning mosquitoes in cemeteries have been published over the last decade. The characteristics of these environments in regard to the availability of resources for mosquito development were discussed. Also, studies about early detection of Aedes vectors, ecological issues, and mosquito control performed in cemeteries were reviewed. Among 31 mosquito species found breeding in cemeteries from 16 countries, the invasive Ae. aegypti and Ae. albopictus were the most frequent ones. Species of the genus Ochlerotatus, Culex, Toxorhynchites, Culiseta, Armigeres, Lutzia, Uranotaenia, and Tripteroides were also reported. Overall, cemeteries are highly suitable habitats for artificial container-breeding mosquitoes due to the great availability of the different resources that they need (i.e. sugar substances, blood, shelter and water-filled containers). In addition, these places are mostly ideal settings to perform studies in urbanized areas because of high mosquito abundance, heterogeneity of macro- and microhabitats, and an easier access in comparison with private premises. However, the feasibility of a cemetery as a study area must be evaluated in each case considering the objectives of the study and cemetery characteristics.

  3. Distribution of Aedes mosquitoes in the Kilimanjaro Region of northern Tanzania.

    Science.gov (United States)

    Hertz, Julian T; Lyaruu, Lucille J; Ooi, Eng Eong; Mosha, Franklin W; Crump, John A

    2016-05-01

    Little is known about the presence and distribution of Aedes mosquitoes in northern Tanzania despite the occurence of viruses transmitted by these mosquitoes such as Chikungunya virus (CHIKV) and Dengue virus (DENV) in the region. Adult and larval mosquitoes were collected from rural and urban settings across a wide range of altitudes in the Kilimanjaro Region using the Mosquito Magnet CO2 Trap for collection of adults and old tires for breeding of larvae. Polymerase chain reaction assays were performed on captured adult mosquitoes to detect the presence of CHIKV and DENV. A total of 2609 Aedes aegypti adult mosquitoes were collected; no other Aedes species larvae were found. Mosquito yields were significantly higher in urban settings than rural settings (26.5 vs. 1.9 mosquitoes per day, p = 0.037). A total of 6570 Ae. aegypti larvae were collected from old tires; no other Aedes species larvae were found. Of the 2609 adult mosquitoes collected, none tested positive for CHIKV or DENV. As far as we are aware, this paper reports for the first time the presence of Ae. aegypti in the Kilimanjaro Region of northern Tanzania. Although CHIKV and DENV were not isolated from any of the collected mosquitoes in this study, the apparent absence of other Aedes species in the area suggests that Ae. aegypti is the primary local vector of these infections.

  4. Mosquito production from four constructed treatment wetlands in peninsular Florida.

    Science.gov (United States)

    Rey, Jorge R; O'Meara, George F; O'Connell, Sheila M; Cutwa-Francis, Michele M

    2006-06-01

    Several techniques were used to sample adult and immature mosquitoes in 4 constructed treatment wetlands in Florida. Adults of 19 species (7 genera) of mosquitoes were collected, and immatures of the most abundant species and of 60% of all species also were collected. Few significant differences between sites and stations in the numbers of mosquitoes collected were discovered. Culex nigripalpus Theobald was the most abundant mosquito found in adult (carbon dioxide-baited suction traps) and ovitrap collections, whereas Mansonia spp. and Uranotaenia spp. were most common in pump-dip-grab samples. The roles of rooted and floating vegetation and of water quality in determining mosquito production from these areas are discussed.

  5. Cacipacore virus as an emergent mosquito-borne Flavivirus

    Directory of Open Access Journals (Sweden)

    Mario Luis Garcia de Figueiredo

    Full Text Available Abstract INTRODUCTION: Cacipacore virus (CPCV, a possible bird-associated flavivirus, has yet to be detected in mosquitoes. Our purpose is examining CPCV in mosquitoes from the Amazon region of Brazil. METHODS: Approximately 3,253 Culicidae (grouped into 264 pools were collected from the Amazon region during 2002-2006 and analyzed using a Flavivirus genus-specific reverse transcription- polymerase chain reaction followed by nested polymerase chain reaction assay and by nucleotide sequencing of amplicons. RESULTS: Nucleotide sequences from five mosquito samples showed high similarity to the those of CPCV originally isolated in the Amazon region. CONCLUSIONS: This is the first report of CPCV-infected mosquitoes which has implications on the arbovirus maintenance in nature and transmission to man.

  6. A low-cost mesocosm for the study of behaviour and reproductive potential of Afrotropical mosquito (Diptera: Culicidae) vectors of malaria

    Science.gov (United States)

    Jackson, Bryan T.; Stone, Christopher M.; Ebrahimi, Babak; Briët, Olivier J.T.; Foster, Woodbridge A.

    2014-01-01

    A large-scale mesocosm was constructed and tested for its effectiveness for experiments on behaviour, reproduction, and adult survivorship of the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m3) allowed for semi-natural experiments that increased demand on a mosquito’s energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed easy collection of dead bodies so that daily mortality could be assessed accurately, using a method that accounts for a proportion of bodies being lost. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov Chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single-cohort demonstrated successful mating, blood feeding, oviposition, and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes where space and seasonal cold are constraining factors. PMID:25294339

  7. Avoid Mosquito Bites

    Science.gov (United States)

    ... visiting CDC Travelers’ Health website . Pack a travel health kit . Remember to pack insect repellent and use it as directed to prevent mosquito bites. See a healthcare provider familiar with travel medicine, ideally 4 to 6 weeks ...

  8. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  9. Evaluating the effects of mosquito control adulticides on honey bees

    Science.gov (United States)

    While mosquito control adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission, the impacts of these control measures on pollinators has been of recent interest. The purpose of our study was to evaluate mosquito and honey bee mortality using ...

  10. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut

    DEFF Research Database (Denmark)

    Ghosh, Anil K; Coppens, Isabelle; Gårdsvoll, Henrik

    2011-01-01

    Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody...

  11. Aparelho de sucção tipo aspirador para captura de mosquitos A "vacuum-cleaner" type of suction apparatus for the collection of mosquitoes

    Directory of Open Access Journals (Sweden)

    Délsio Natal

    1984-10-01

    Full Text Available É feita a descrição de aparelho portátil de sucção tipo aspirador, para captura de mosquitos Culicidae. São sugeridas adaptações para coletas em diferentes situações. São feitos comentários sobre sua aplicação em pesquisa de mosquitos.A portable suction apparatus, which functions like a vacuum cleaner used for the collection of Culicidae mosquitoes is described. Adaptations for collecting in differents situations are suggested and some comments about its application in mosquitoes surveys are made.

  12. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  13. Use of Nicotiana tabacum L extract for anti-Aedes Aegypti mosquito paint

    Science.gov (United States)

    Sandralintang, Trisiana Chrysanthi; Fauzantoro, Ahmad; Hermansyah, Heri; Jufri, Mahdi; Gozan, Misri

    2018-02-01

    This study intended to formulate mosquito repellent paints based tobacco leaf extracts-free pyrethroid substance which is safe for users. The active substance which was added to the paint as a mosquito repellent was an extract of tobacco leaves. The result of Anti-mosquito paint formulation produced was according to the Indonesia National Standard (SNI). The results of anti-Aedes Aegypti mosquito paint effectiveness test showed that 5% concentration of tobacco extract could kill half of the mosquito population (LC50) for 2 hours, the concentration of tobacco extract between 3-5% killed half the mosquito population (LC50) during 4 hours, while 1-3% and 0-1% concentration of tobacco extract killed half the mosquito population (LC50) for 6 and 24 hours, respectively.

  14. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae

    Directory of Open Access Journals (Sweden)

    Banerjee Siddhartha S

    2008-10-01

    Full Text Available Abstract Background Problems associated with resistant mosquitoes and the effects on non-target species by chemicals, evoke a reason to find alternative methods to control mosquitoes, like the use of natural predators. In this regard, aquatic coleopterans have been explored less compared to other insect predators. In the present study, an evaluation of the role of the larvae of Acilius sulcatus Linnaeus 1758 (Coleoptera: Dytiscidae as predator of mosquito immatures was made in the laboratory. Its efficacy under field condition was also determined to emphasize its potential as bio-control agent of mosquitoes. Methods In the laboratory, the predation potential of the larvae of A. sulcatus was assessed using the larvae of Culex quinquefasciatus Say 1823 (Diptera: Culicidae as prey at varying predator and prey densities and available space. Under field conditions, the effectiveness of the larvae of A. sulcatus was evaluated through augmentative release in ten cemented tanks hosting immatures of different mosquito species at varying density. The dip density changes in the mosquito immatures were used as indicator for the effectiveness of A. sulcatus larvae. Results A single larva of A. sulcatus consumed on an average 34 IV instar larvae of Cx. quinquefasciatus in a 24 h period. It was observed that feeding rate of A. sulcatus did not differ between the light-on (6 a.m. – 6 p.m., and dark (6 p.m. – 6 a.m. phases, but decreased with the volume of water i.e., space availability. The prey consumption of the larvae of A. sulcatus differed significantly (P A. sulcatus larvae, while with the withdrawal, a significant increase (p A. sulcatus in regulating mosquito immatures. In the control tanks, mean larval density did not differ (p > 0.05 throughout the study period. Conclusion the larvae of the dytiscid beetle A. sulcatus proved to be an efficient predator of mosquito immatures and may be useful in biocontrol of medically important mosquitoes.

  15. [Mosquito complex (Diptera, Culicidae) in a West Nile fever focus in the Volgograd Region. II. Host-feeding patterns of mosquitoes in different habitats].

    Science.gov (United States)

    Platonova, O V; Fedorova, M V; Lopatina, Iu V; Bezzhonova, O V; Bulgakova, T V; Platonov, A E

    2007-01-01

    Host preference of the mosquitoes collected in the urban and rural habitats of Volgograd and its suburbs was studied by the precipitation reaction test. Human and avian blood was detected in Cx. pipiens, Cx. modestus, Ae. vexans, Ae. behningi, Ae. caspius, Ae. sticticus, and females of the Anopheles maculipennis. The proportion of the mosquitoes fed on birds was similar in the urban and rural biotopes whereas that of the mosquitoes feeding on humans was significantly higher in Volgograd than in its environs. The increase in the number of human blood-fed mosquitoes in the city resulted mainly from the females collected in its multi-storied buildings.

  16. EPA-Registered Repellents for Mosquitoes Transmitting Emerging Viral Disease.

    Science.gov (United States)

    Patel, Radha V; Shaeer, Kristy M; Patel, Pooja; Garmaza, Aleksey; Wiangkham, Kornwalee; Franks, Rachel B; Pane, Olivia; Carris, Nicholas W

    2016-12-01

    In many parts of the United States, mosquitoes were previously nuisance pests. However, they now represent a potential threat in the spread of viral diseases. The Aedes aegypti, Aedes albopictus, and Culex species mosquitoes are endemic to the United States and together may transmit a variety of viral diseases of growing concern, including West Nile virus, chikungunya, dengue fever, and Zika virus. The Centers for Disease Control and Prevention and the Environmental Protection Agency (EPA) recommend N,N-diethyl-meta-toluamide (DEET) as a first-line mosquito repellent, but for patients refusing to use DEET or other conventional repellents, guidance is limited to any EPA-registered product. Therefore, we conducted a systematic review of the literature to identify which EPA-registered personal mosquito repellent provides the best protection from A. aegypti, A. albopictus, and Culex spp. mosquitoes. We abstracted data from 62 published reports of EPA-registered mosquito repellents. The conventional repellent picaridin has the strongest data to support its use as a second-line agent, while IR3535 and oil of lemon eucalyptus are reasonably effective natural products. Citronella, catnip, and 2-undecanone offer limited protection or have limited data. These results can be used by pharmacists and other health care professionals to advise patients on the selection of an EPA-registered mosquito repellent. Regardless of the repellent chosen, it is vital for patients to follow all instructions/precautions in the product labeling to ensure safe and effective use. © 2016 Pharmacotherapy Publications, Inc.

  17. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  18. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Science.gov (United States)

    Hotti, Hannu; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Rischer, Heiko

    2017-01-01

    Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  19. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Directory of Open Access Journals (Sweden)

    Hannu Hotti

    Full Text Available Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  20. Mosquitoes rely on their gut microbiota for development

    Science.gov (United States)

    Coon, Kerri L.; Vogel, Kevin J.; Brown, Mark R.; Strand, Michael R.

    2014-01-01

    Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired primarily from the aquatic habitat in which larvae developed. Our results suggested the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with Ge. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development. PMID:24766707

  1. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi

    Directory of Open Access Journals (Sweden)

    Spence Philip J

    2012-12-01

    Full Text Available Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.

  2. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  3. Factors influencing stakeholders attitudes toward genetically modified aedes mosquito.

    Science.gov (United States)

    Amin, Latifah; Hashim, Hasrizul

    2015-06-01

    Dengue fever is a debilitating and infectious disease that could be life-threatening. It is caused by the dengue virus which affects millions of people in the tropical area. Currently, there is no cure for the disease as there is no vaccine available. Thus, prevention of the vector population using conventional methods is by far the main strategy but has been found ineffective. A genetically modified (GM) mosquito is among the favoured alternatives to curb dengue fever in Malaysia. Past studies have shown that development and diffusion of gene technology products depends heavily upon public acceptance. The purpose of this study is to identify the relevant factors influencing stakeholders' attitudes toward the GM Aedes mosquito and to analyse the relationships between all the factors using the structural equation model. A survey was carried out on 509 respondents from various stakeholder groups in the Klang Valley region of Malaysia. Results of the survey have confirmed that public perception towards complex issues such as gene technology should be seen as a multi-faceted process. The perceived benefit-perceived risk balance is very important in determining the most predominant predictor of attitudes toward a GM mosquito. In this study the stakeholders perceived the benefit of the GM mosquito as outweighing its risk, translating perceived benefit as the most important direct predictor of attitudes toward the GM mosquito. Trust in key players has a direct influence on attitudes toward the GM mosquito while moral concern exhibited an indirect influence through perceived benefits. Other factors such as attitudes toward technology and nature were also indirect predictors of attitudes toward the GM mosquito while religiosity and engagement did not exhibited any significant roles. The research findings serve as a useful database to understand public acceptance and the social construct of public attitudes towards the GM mosquito to combat dengue.

  4. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  5. Biological Control of Mosquito Vectors: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-10-01

    Full Text Available Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.

  6. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae).

    Science.gov (United States)

    Godoy, Raquel S M; Fernandes, Kenner M; Martins, Gustavo F

    2015-10-30

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes.

  7. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    Science.gov (United States)

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  8. Mosquito larvicidal and ovicidal properties of Pithecellobium dulce (Roxb. Benth. (Fabaceae against Culex quinquefasciatus Say (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Govindarajan Marimuthu

    2014-04-01

    Full Text Available Objective: To assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant, Pithecellobium dulce (P. dulce against filariasis vector mosquito, Culex quinquefasciatus (Cx. quinquefasciatus. Methods: Twenty five early third instar larvae of Cx. quinquefasciatus were exposed to various concentrations and were assayed in the laboratory by using the protocol of WHO (2005. The larval mortality was observed after 24 h of treatment. The ovicidal activity was determined against Cx. quinquefasciatus mosquito eggs to various concentrations ranging from 100-750 mg/L under the laboratory conditions. Results: The methanol extract of the leaves and seed of P. dulce was the most effective against the larvae with LC 50 and LC90 values 164.12 mg/L, 214.29 mg/L, 289.34 mg/L and 410.18 mg/L being observed after 24 h of exposure. The efficacy of methanol was followed by that of the ethyl acetate, chloroform, benzene and hexane extracts. The mean percent hatchability of the egg rafts were observed after 48 h of treatment. About 100% mortality was observed at 500 mg/L for leaf and 750 mg/L for seed methanol extracts of P. dulce. Conclusions: From the results, it can be concluded that the larvicidal and ovicidal effect of P. dulce against Cx. quinquefasciatus make this plant product promising as an alternative to synthetic insecticide in mosquito control programs.

  9. Crowdsourcing for large-scale mosquito (Diptera: Culicidae) sampling

    Science.gov (United States)

    Sampling a cosmopolitan mosquito (Diptera: Culicidae) species throughout its range is logistically challenging and extremely resource intensive. Mosquito control programmes and regional networks operate at the local level and often conduct sampling activities across much of North America. A method f...

  10. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  11. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    International Nuclear Information System (INIS)

    Erickson, R A; Presley, S M; Cox, S B; Hayhoe, K; Allen, L J S; Long, K R

    2012-01-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems. (letter)

  12. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    Science.gov (United States)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  13. Ecological effects on arbovirus-mosquito cycles of transmission.

    Science.gov (United States)

    Tabachnick, Walter J

    2016-12-01

    Mosquitoes transmit many viruses to a variety of hosts. Cycles of mosquito borne arbovirus transmission are the result of complex interactions between the mosquito, the arbovirus and the host that are influenced by genetic variations in a variety of traits in each that are all influenced by many environmental factors. R 0 , the basic reproduction number or mean number of individuals infected from a single infected individual, is a measure of mosquito borne arbovirus transmission. Understanding the causes for the distribution of R 0 in any transmission cycle is a daunting challenge due to the lack of information on the genetic and environmental variances that influence R 0 . Information about the major factors influencing R 0 for specific transmission cycles is essential to develop efficient and effective strategies to reduce transmission in different cycles and locations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    Science.gov (United States)

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  15. Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae.

    Science.gov (United States)

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida

    2014-01-01

    Pakistan is blessed with plants of Asteraceae family with known medicinal background used for centuries by Hakims (traditional physicians). Keeping in mind the background of their anti-larval potential, a total of 21 endophytic actinomycetes were isolated from four Asteraceae plants and screened against the first and fourth instar stages of Culex quinquefasciatus Say mosquito larvae. Of the 21 isolates, 6 of them gave strong larvicidal activity (80-100% mortality) in the screening results and 4 isolates gave a potent larvicidal activity (100% mortality) at the fourth instar stage. These isolates belonged to different species within the actinomycetes group, namely Streptomyces albovinaceus and Streptomyces badius. This communication reports the larvicidal potential of endophytic actinomycetes residing within the native Asteraceae plants in Pakistan. The study suggests further exploration through large-scale productions leading to the identification of the larvicidal compounds.

  16. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    Directory of Open Access Journals (Sweden)

    William Oki Wong

    2015-05-01

    Full Text Available Archaeamphora longicervia H.Q.Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1 an innermost larval chamber with a distinctive outer wall; (2 an intermediate zone of nutritive tissue; and (3 an outermost zone of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the formerly reported gymnosperm Liaoningocladus boii G.Sun et al. from the Yixian Formation.

  17. Effect of seed kernel aqueous extract from Annona squamosa against three mosquito vectors and its impact on non-target aquatic organisms

    Directory of Open Access Journals (Sweden)

    Ravichandran Ramanibai

    2016-09-01

    Full Text Available Objective: To evaluate the toxicity of Annona squamosa (A. squamosa aqueous (physiological saline seed soluble extract and its control of mosquito population. Methods: Ovicidal, larvicidal and pupicidal activity of A. squamosa crude soluble seed kernel extract was determined according to World Health Organization. The mortality of each mosquito stage was recorded after 24 h exposured to plant material. Toxicity assay was used to assess the non-target organisms with different concentrations according to Organisation for Economic Co-operation and Development. Results: The aqueous solubilized extracts of A. squamosa elicit the toxicity against all stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus, and the LC50 values against stages of egg, 1st-4th larvae were (1.45 and 1.26–2.5 mg/mL, (1.12 and 1.19–2.81 mg/ mL and (1.80 and 2.12–3.41 mg/mL respectively. The pupicidal activity also brought forth amended activity against all three mosquitoes species, and the LC50 values were consider to be 3.19, 2.42 and 4.47 mg/mL. Ultimately there was no mortality observed from non-target organism of Chironomus costatus. Conclusions: Based on the findings of the study, it suggests that the use of A. squamosa plant extract can act as an alternate insecticidal agents for controlling target mosquitoes without affecting the non-target aquatic insect. Further investigation to identify the active compounds and their mechanisms of action is recommended.

  18. Light manipulation of mosquito behaviour: acute and sustained photic suppression of biting activity in the Anopheles gambiae malaria mosquito.

    Science.gov (United States)

    Sheppard, Aaron D; Rund, Samuel S C; George, Gary F; Clark, Erin; Acri, Dominic J; Duffield, Giles E

    2017-06-16

    Host-seeking behaviours in anopheline mosquitoes are time-of-day specific, with a greater propensity for nocturnal biting. We investigated how a short exposure to light presented during the night or late day can inhibit biting activity and modulate flight activity behaviour. Anopheles gambiae (s.s.), maintained on a 12:12 LD cycle, were exposed transiently to white light for 10-min at the onset of night and the proportion taking a blood meal in a human biting assay was recorded every 2 h over an 8-h duration. The pulse significantly reduced biting propensity in mosquitoes 2 h following administration, in some trials for 4 h, and with no differences detected after 6 h. Conversely, biting levels were significantly elevated when mosquitoes were exposed to a dark treatment during the late day, suggesting that light suppresses biting behaviour even during the late daytime. These data reveal a potent effect of a discrete light pulse on biting behaviour that is both immediate and sustained. We expanded this approach to develop a method to reduce biting propensity throughout the night by exposing mosquitoes to a series of 6- or 10-min pulses presented every 2 h. We reveal both an immediate suppressive effect of light during the exposure period and 2 h after the pulse. This response was found to be effective during most times of the night: however, differential responses that were time-of-day specific suggest an underlying circadian property of the mosquito physiology that results in an altered treatment efficacy. Finally, we examined the immediate and sustained effects of light on mosquito flight activity behaviour following exposure to a 30-min pulse, and observed activity suppression during early night, and elevated activity during the late night. As mosquitoes and malaria parasites are becoming increasingly resistant to insecticide and drug treatment respectively, there is a necessity for the development of innovative control strategies beyond insecticide

  19. Periodic dynamic systems for infected hosts and mosquitoes Sistemas dinâmicos periódicos para hospedeiros e mosquitos infectados

    Directory of Open Access Journals (Sweden)

    W. M. Oliva

    1996-06-01

    Full Text Available A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix one can state that either the infection peters out naturally (lambda 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.Desenvolveu-se um modelo matemático para analisar a dinâmica das populações de indivíduos e mosquitos infectados quando as populações de mosquitos são periódicas no tempo. Pela determinação de um parâmetro lambda (o raio espectral de uma matriz de monodromia pode-se estabelecer que a infecção termina naturalmente (lambda 1 que a infecção torna-se endêmica. O modelo generaliza, para o caso de coeficientes periódicos, modelos anteriores para malária; como também é uma variação de modelo para a gonorréia. A principal motivação para a consideração do modelo proposto foram os recentes estudos sobre mosquitos numa estação experimental de arroz irrigado, na região Sudeste do Brasil.

  20. Malpighian Tubules as Novel Targets for Mosquito Control

    Directory of Open Access Journals (Sweden)

    Peter M. Piermarini

    2017-01-01

    Full Text Available The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure. To date, we have targeted inward rectifier potassium (Kir channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K+ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K+ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH3, reactive oxygen species. The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.

  1. Advances in insect physiology. Progress in mosquito research

    Science.gov (United States)

    This book review briefly summarizes the most interesting topics/chapters from the book: "Advances in Insect Physiology: Progress in mosquito Research". The book is an excellent overview of the recent advances in mosquito biology. This volume encompasses 13 chapters from 32 contributing authors who ...

  2. Insecticide susceptibility status of human biting mosquitoes in ...

    African Journals Online (AJOL)

    Background: There has been a rapid emergence in insecticide resistance among mosquito population to commonly used public health insecticides. This situation presents a challenge to chemicals that are currently used to control mosquitoes in sub-Saharan African. Furthermore, there is limited information on insecticide ...

  3. Differential utilization of blood meal amino acids in mosquitoes

    OpenAIRE

    Miesfeld, Roger

    2009-01-01

    Guoli Zhou, Roger MiesfeldDepartment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USAAbstract: Amino acids in the mosquito blood meal have two forms, protein-bound and plasma-free amino acids. To determine if the metabolic fate and flux of these two forms of blood meal amino acids are distinct, we fed mosquitoes eight [14C]-labeled amino acids, seven of which are essential for mosquitoes (leucine, valine, isoleucine, phenylalanine, lysine, arginine, histidine), and one th...

  4. Clinical categories of exaggerated skin reactions to mosquito bites and their pathophysiology.

    Science.gov (United States)

    Tatsuno, Kazuki; Fujiyama, Toshiharu; Matsuoka, Hiroyuki; Shimauchi, Takatoshi; Ito, Taisuke; Tokura, Yoshiki

    2016-06-01

    Mosquito bites are skin irritating reactions, which usually resolve spontaneously without intensive medical care. However, in certain situations, mosquito bites may form a more vicious reaction, sometimes accompanying fever and systemic symptoms. In such cases, the presence of rare hematological disorders, abnormalities in eosinophils and/or association with Epstein-Barr virus (EBV) may underlie. Importantly, hypersensitivity to mosquito bites (HMB), which is characterized by necrotic skin reactions to mosquito bites with various systemic symptoms, is often observed in association with EBV infection and natural killer (NK) cell lymphoproliferative disorder. Exaggerated skin reaction to mosquito bites is also seen in Wells' syndrome. While strong Th2-skewing immune dysregulation is apparent in the patients, they also show robust CD4(+) T cell proliferation in response to mosquito salivary gland extracts, indicating close association between Wells' syndrome and mosquito bites. Similar skin reaction to mosquito bites is also noticed in certain types of B cell neoplasm, although the role of B cells in this peculiar reaction to mosquito bites is yet to be elucidated. In this review, we will discuss the current knowledge of exaggerated reaction toward mosquito bites seen in conjunction with these unique hematological disorders, and examine the scientific studies and observations reported in previous literatures to organize our current understanding of the pathogenesis of this distinct disorder. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Malaria mosquitoes attracted by fatal fungus.

    Directory of Open Access Journals (Sweden)

    Justin George

    Full Text Available Insect-killing fungi such as Beauveria bassiana are being evaluated as possible active ingredients for use in novel biopesticides against mosquito vectors that transmit malaria. Fungal pathogens infect through contact and so applications of spores to surfaces such as walls, nets, or other resting sites provide possible routes to infect mosquitoes in and around domestic dwellings. However, some insects can detect and actively avoid fungal spores to reduce infection risk. If true for mosquitoes, such behavior could render the biopesticide approach ineffective. Here we find that the spores of B. bassiana are highly attractive to females of Anopheles stephensi, a major anopheline mosquito vector of human malaria in Asia. We further find that An. stephensi females are preferentially attracted to dead and dying caterpillars infected with B. bassiana, landing on them and subsequently becoming infected with the fungus. Females are also preferentially attracted to cloth sprayed with oil-formulated B. bassiana spores, with 95% of the attracted females becoming infected after a one-minute visit on the cloth. This is the first report of an insect being attracted to a lethal fungal pathogen. The exact mechanisms involved in this behavior remain unclear. Nonetheless, our results indicate that biopesticidal formulations comprising B. bassiana spores will be conducive to attraction and on-source visitation by malaria vectors.

  6. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-06-01

    Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 μg/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 μg/mL; LC90, 121.07 μg/mL) followed by A. aegypti (LC50, 72.72 μg/mL; LC90, 126.86 μg/mL) and C. quinquefasciatus (LC50, 78.74 μg/mL; LC90, 134.39 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 μg/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 μg/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the

  7. Creams formulated with Ocimum gratissimum L. and Lantana camara L. crude extracts and fractions as mosquito repellents against Aedes aegypti L. (Diptera: Culicidae).

    Science.gov (United States)

    Keziah, Ezeike Amarachi; Nukenine, Elias Nchiwan; Danga, Simon Pierre Yinyang; Younoussa, Lame; Esimone, Charles Okechukwu

    2015-01-01

    Mosquitoes are the most deadly vectors of parasites that cause diseases such as malaria, yellow fever, and filariasis. In view of the recent increased interest in developing plant origin insecticides as an alternative to chemical insecticides, the objective of this study was to determine the repellent activity of creams formulated with methanol crude extract (MCE), hexane fraction (HF), and ethyl acetate fractions (EAFs) of Ocimum gratissimum and Lantana camara leaves in single and combined actions against female Aedes aegypti. Evaluation was carried out in the net cages (30 by 30 by 30 cm) containing 60 blood-starved female mosquitoes each and were assayed in the laboratory condition following World Health Organization 2009 protocol. All formulations (single and mixture) were applied at 2, 4, 6, and 8 mg/cm(2) in the exposed area of human hands. Only acetone + white soft paraffin served as negative control and odomos (12% DEET) as positive control. All the formulations presented good protection against mosquito bites without any allergic reaction by the human volunteers. The repellent activity was dependent on the strength of the extracts and fractions. Among the tested formulations, the maximum protection time was observed in MCE (120 min) and EAF (150 min) of O. gratissimum; MCE:MCE (150 min) and HF:HF (120 min) mixtures of both plants. In addition, MCE:MCE and HF:HF mixtures from both plants showed possible synergistic effect. From the results, the combination of O. gratissimum and L. camara to formulate natural mosquito repellent using small amount of extracts can be encouraging to be an alternative to conventional DEET. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Quantifying impact of mosquitoes on quality of life

    Science.gov (United States)

    New Jersey, like many eastern states, has a persistent problem of the Asian tiger mosquito. This and other mosquitoes reduce residents’ quality of life from discomfort and possible risk of disease. To guide a comprehensive area-wide pest management project to control Aedes albopictus in two counties...

  9. Biological Control Strategies for Mosquito Vectors of Arboviruses

    Directory of Open Access Journals (Sweden)

    Yan-Jang S. Huang

    2017-02-01

    Full Text Available Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  10. Area-based historical modeling of the effects of the river bank regulation on the potential abundance of eleven mosquito species in the River Danube between Hungary and Slovakia

    Directory of Open Access Journals (Sweden)

    Attila Trájer

    2015-11-01

    Full Text Available The construction of reservoirs and hydropower plants was accelerated in the past century due to the increasing aridity in many parts of the world. The effect of water regulations on the abundance of mosquito vectors is controversial. In this paper, the habitat preference of mosquitoes was investigated based on a 30-years long collection of the mosquito data in Hungary and military maps and satellite images. Three time phases of the analyzed section in the Danube River were analyzed in order to characterize the impact of human influence on mosquito habitats: the semi-natural phase, the post channelization phase and the post hydropower dam state. Geographical data referring to the years 1790, 1820, 1830, 1870, 1946 and 1955 were based on military maps, whereas the years 2004 and 2013 were analyzed by satellite imagery. The Amoros-like eupotamon A - plesiopotamon line represents an increasing gradient of habitat-suitability for mosquitoes. The habitat-preference of different mosquitoes to the Amoros-classified water habitats was based on a monographic collection data. This dataset contains the collecting and trapping results from the 1960s to the early 2000s in Hungary. We found that human-induced changes had prolonged impact on mosquito-suitable habitats, although the effect can be different for diverse mosquito species. The increase of the evenness of the mosquito fauna was seen since the mid-20th century, after the primary river regulation. The increasing areal extension of relatively warm and nutrient-rich water habitats had positive effects on the more rare members of the mosquito fauna, such as the potential malaria vector mosquito Anopheles algeriensis according to the model results. Summarizing, we found a strong, positive link between anthropogenic interventions and the mosquito diversity in water ecosystems.

  11. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers-An Observational Study.

    Science.gov (United States)

    Zaremski, Jason L; Zeppieri, Giorgio; Jones, Deborah L; Tripp, Brady L; Bruner, Michelle; Vincent, Heather K; Horodyski, MaryBeth

    2018-04-01

    Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Cross-sectional study; Level of evidence, 3. Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury.

  12. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  13. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.

    Science.gov (United States)

    Ohba, S Y; Matsuo, T; Takagi, M

    2013-03-01

    Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.

  14. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Directory of Open Access Journals (Sweden)

    Nazaire Aïzoun

    2014-04-01

    Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its physiological status. Therefore, it is useful to respect the World Health Organization criteria in the assessment of insecticide susceptibility tests in malaria vectors. Otherwise, susceptibility testing is conducted using unfed female mosquitoes aged 3-5 days old. Tests should also be carried out at (25±2 °C and (80±10% relative humidity.

  15. Wolbachia enhances West Nile virus (WNV infection in the mosquito Culex tarsalis.

    Directory of Open Access Journals (Sweden)

    Brittany L Dodson

    2014-07-01

    Full Text Available Novel strategies are required to control mosquitoes and the pathogens they transmit. One attractive approach involves maternally inherited endosymbiotic Wolbachia bacteria. After artificial infection with Wolbachia, many mosquitoes become refractory to infection and transmission of diverse pathogens. We evaluated the effects of Wolbachia (wAlbB strain on infection, dissemination and transmission of West Nile virus (WNV in the naturally uninfected mosquito Culex tarsalis, which is an important WNV vector in North America. After inoculation into adult female mosquitoes, Wolbachia reached high titers and disseminated widely to numerous tissues including the head, thoracic flight muscles, fat body and ovarian follicles. Contrary to other systems, Wolbachia did not inhibit WNV in this mosquito. Rather, WNV infection rate was significantly higher in Wolbachia-infected mosquitoes compared to controls. Quantitative PCR of selected innate immune genes indicated that REL1 (the activator of the antiviral Toll immune pathway was down regulated in Wolbachia-infected relative to control mosquitoes. This is the first observation of Wolbachia-induced enhancement of a human pathogen in mosquitoes, suggesting that caution should be applied before releasing Wolbachia-infected insects as part of a vector-borne disease control program.

  16. Relative abundance of mosquito species in Katsina Metropolis ...

    African Journals Online (AJOL)

    A study was conducted on the relative abundance of mosquito species, around selected areas of Katsina metropolis, Katsina State, Nigeria during the months of January, February, April and June 2010. Mosquitoes were collected from five sampling sites: Kofar Durbi, Kofar Kaura, Kofar Marusa, GRA and Layout. These were ...

  17. The immune strategies of mosquito Aedes aegypti against microbial infection.

    Science.gov (United States)

    Wang, Yan-Hong; Chang, Meng-Meng; Wang, Xue-Li; Zheng, Ai-Hua; Zou, Zhen

    2018-06-01

    Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2011-02-01

    Full Text Available Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness.Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections.These results could have an

  19. The temporal spectrum of adult mosquito population fluctuations: conceptual and modeling implications.

    Directory of Open Access Journals (Sweden)

    Yun Jian

    Full Text Available An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the

  20. Larvicidal Activity of Cassia occidentalis (Linn. against the Larvae of Bancroftian Filariasis Vector Mosquito Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2014-01-01

    Full Text Available Background & Objectives. The plan of this work was to study the larvicidal activity of Cassia occidentalis (Linn. against the larvae of Culex quinquefasciatus. These larvae are the most significant vectors. They transmit the parasites and pathogens which cause a deadly disease like filariasis, dengue, yellow fever, malaria, Japanese encephalitis, chikungunya, and so forth, which are considered harmful towards the population in tropic and subtropical regions. Methods. The preliminary laboratory trail was undertaken to determine the efficacy of petroleum ether and N-butanol extract of dried whole plant of Cassia occidentalis (Linn. belonging to the family Caesalpiniaceae at various concentrations against the late third instar larvae of Culex quinquefasciatus by following the WHO guidelines. Results. The results suggest that 100% mortality effect of petroleum ether and N-butanol extract of Cassia occidentalis (Linn. was observed at 200 and 300 ppm (parts per million. The results obviously showed use of plants in insect control as an alternative method for minimizing the noxious effect of some pesticide compounds on the environment. Thus the extract of Cassia occidentalis (Linn. is claimed as more selective and biodegradable agent. Conclusion. This study justified that plant Cassia occidentalis (Linn. has a realistic mortality result for larvae of filarial vector. This is safe to individual and communities against mosquitoes. It is a natural weapon for mosquito control.

  1. Larvicidal Activity of Cassia occidentalis (Linn.) against the Larvae of Bancroftian Filariasis Vector Mosquito Culex quinquefasciatus.

    Science.gov (United States)

    Kumar, Deepak; Chawla, Rakesh; Dhamodaram, P; Balakrishnan, N

    2014-01-01

    Background & Objectives. The plan of this work was to study the larvicidal activity of Cassia occidentalis (Linn.) against the larvae of Culex quinquefasciatus. These larvae are the most significant vectors. They transmit the parasites and pathogens which cause a deadly disease like filariasis, dengue, yellow fever, malaria, Japanese encephalitis, chikungunya, and so forth, which are considered harmful towards the population in tropic and subtropical regions. Methods. The preliminary laboratory trail was undertaken to determine the efficacy of petroleum ether and N-butanol extract of dried whole plant of Cassia occidentalis (Linn.) belonging to the family Caesalpiniaceae at various concentrations against the late third instar larvae of Culex quinquefasciatus by following the WHO guidelines. Results. The results suggest that 100% mortality effect of petroleum ether and N-butanol extract of Cassia occidentalis (Linn.) was observed at 200 and 300 ppm (parts per million). The results obviously showed use of plants in insect control as an alternative method for minimizing the noxious effect of some pesticide compounds on the environment. Thus the extract of Cassia occidentalis (Linn.) is claimed as more selective and biodegradable agent. Conclusion. This study justified that plant Cassia occidentalis (Linn.) has a realistic mortality result for larvae of filarial vector. This is safe to individual and communities against mosquitoes. It is a natural weapon for mosquito control.

  2. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings.

    Science.gov (United States)

    Pando-Robles, Victoria; Batista, Cesar V

    2017-06-01

    Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.

  3. Biodiversity and ecosystem risks arising from using guppies to control mosquitoes

    Science.gov (United States)

    Rana W. El-Sabaawi; Therese C. Frauendorf; Piata S. Marques; Richard A. Mackenzie; Luisa R. Manna; Rosana Mazzoni; Dawn A. T. Phillip; Misha L. Warbanski; Eugenia Zandon

    2016-01-01

    Deploying mosquito predators such as the guppy (Poecilia reticulata) into bodies of water where mosquitoes breed is a common strategy for limiting the spread of disease-carrying mosquitoes. Here, we draw on studies from epidemiology, conservation, ecology and evolution to show that the evidence for the effectiveness of guppies in controlling...

  4. Free boundary models for mosquito range movement driven by climate warming.

    Science.gov (United States)

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  5. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes

    Directory of Open Access Journals (Sweden)

    Martin Beatrice

    2006-03-01

    Full Text Available Abstract Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.

  6. West Nile Virus in Mosquitoes of Iranian Wetlands.

    Science.gov (United States)

    Bagheri, Masoomeh; Terenius, Olle; Oshaghi, Mohammad Ali; Motazakker, Morteza; Asgari, Sassan; Dabiri, Farrokh; Vatandoost, Hassan; Mohammadi Bavani, Mulood; Chavshin, Ali Reza

    2015-12-01

    The West Nile virus (WNV) transmission cycle includes a wide range of migratory wetland birds as reservoirs, mosquitoes as biological vectors, and equines and humans as dead-end hosts. Despite the presence of potential vector species, there is no information about the existence of WNV in mosquito vectors in Iran. The Iranian West Azerbaijan Province is located in the northwestern part of Iran and has borders with Turkey, Iraq, Armenia, and the Republic of Azerbaijan. The current study was conducted to identify the wetland mosquitoes of the West Azerbaijan Province and their infection with WNV. In this study, 2143 specimens were collected, comprising 1541 adults and 602 larvae. Six species belonging to four genera were collected and identified: Anopheles maculipennis sensu lato (s.l.), Culex (Cx.) hortensis, Cx. pipiens s.l., Cx. theileri, Culiseta longiareolata, and Aedes (Ae.) (Ochlerotatus) caspius. In total, 45 pools of mosquitoes were examined. Two of the adult pools collected from the same location showed the presence of WNV in Ae. (Och.) caspius, from Sangar, Makoo County, as confirmed by PCR and sequencing. Due to the discovery of WNV in the mosquito population of the region, and the presence of wetlands and significant populations of migratory birds, the health sector should carefully monitor the factors involved in the cycle of this disease.

  7. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    Science.gov (United States)

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  8. Zika virus emergence in mosquitoes in southeastern Senegal, 2011.

    Directory of Open Access Journals (Sweden)

    Diawo Diallo

    Full Text Available Zika virus (ZIKV; genus Flavivirus, family Flaviviridae is maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Spillover into humans has been documented in both regions and the virus is currently responsible for a large outbreak in French Polynesia. ZIKV amplifications are frequent in southeastern Senegal but little is known about their seasonal and spatial dynamics. The aim of this paper is to describe the spatio-temporal patterns of the 2011 ZIKV amplification in southeastern Senegal.Mosquitoes were collected monthly from April to December 2011 except during July. Each evening from 18:00 to 21:00 hrs landing collections were performed by teams of 3 persons working simultaneously in forest (canopy and ground, savannah, agriculture, village (indoor and outdoor and barren land cover sites. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. ZIKV was detected in 31 of the 1,700 mosquito pools (11,247 mosquitoes tested: Ae. furcifer (5, Ae. luteocephalus (5, Ae. africanus (5, Ae. vittatus (3, Ae. taylori, Ae. dalzieli, Ae. hirsutus and Ae. metallicus (2 each and Ae. aegypti, Ae. unilinaetus, Ma. uniformis, Cx. perfuscus and An. coustani (1 pool each collected in June (3, September (10, October (11, November (6 and December (1. ZIKV was detected from mosquitoes collected in all land cover classes except indoor locations within villages. The virus was detected in only one of the ten villages investigated.This ZIKV amplification was widespread in the Kédougou area, involved several mosquito species as probable vectors, and encompassed all investigated land cover classes except indoor locations within villages. Aedes furcifer males and Aedes vittatus were found infected within a village, thus these species are probably involved in the transmission of Zika virus to humans in this environment.

  9. Analysis of a malaria model with mosquito-dependent transmission ...

    Indian Academy of Sciences (India)

    model for the spread of malaria in human and mosquito population. ... tures, high humidity and water bodies allow mosquito and parasites to reproduce. The ... understand the main parameters in the transmission of the disease and to develop ...

  10. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes

    Directory of Open Access Journals (Sweden)

    Constentin Dieme

    2017-12-01

    Full Text Available Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i larval microbial exposures; (ii protist co-infections; (iii virus co-infections; and (iv pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.

  11. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.

    Directory of Open Access Journals (Sweden)

    Rianka P M Vloet

    2017-12-01

    Full Text Available Rift Valley fever virus (RVFV is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx. pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied.Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells.We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both

  12. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  13. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies.

    Science.gov (United States)

    Pugh, Jonathan

    2016-09-01

    Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in 'gene-drive' technology have raised the prospect of eradicating certain species of mosquito via genetic modification. This technology has attracted a great deal of media attention, and the idea of using gene-drive technology to eradicate mosquitoes has been met with criticism in the public domain. In this paper, I shall dispel two moral objections that have been raised in the public domain against the use of gene-drive technologies to eradicate mosquitoes. The first objection invokes the concept of the 'sanctity of life' in order to claim that we should not drive an animal to extinction. In response, I follow Peter Singer in raising doubts about general appeals to the sanctity of life, and argue that neither individual mosquitoes nor mosquitoes species considered holistically are appropriately described as bearing a significant degree of moral status. The second objection claims that seeking to eradicate mosquitoes amounts to displaying unacceptable degrees of hubris. Although I argue that this objection also fails, I conclude by claiming that it raises the important point that we need to acquire more empirical data about, inter alia, the likely effects of mosquito eradication on the ecosystem, and the likelihood of gene-drive technology successfully eradicating the intended mosquito species, in order to adequately inform our moral analysis of gene-drive technologies in this context. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs

    Directory of Open Access Journals (Sweden)

    Todd G. Smith

    2012-04-01

    Full Text Available The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species.

  15. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  16. A review of mixed malaria species infections in anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Day Nicholas PJ

    2011-08-01

    Full Text Available Abstract Background In patients with malaria mixed species infections are common and under reported. In PCR studies conducted in Asia mixed infection rates often exceed 20%. In South-East Asia, approximately one third of patients treated for falciparum malaria experience a subsequent Plasmodium vivax infection with a time interval suggesting relapse. It is uncertain whether the two infections are acquired simultaneously or separately. To determine whether mixed species infections in humans are derived from mainly from simultaneous or separate mosquito inoculations the literature on malaria species infection in wild captured anopheline mosquitoes was reviewed. Methods The biomedical literature was searched for studies of malaria infection and species identification in trapped wild mosquitoes and artificially infected mosquitoes. The study location and year, collection methods, mosquito species, number of specimens, parasite stage examined (oocysts or sporozoites, and the methods of parasite detection and speciation were tabulated. The entomological results in South East Asia were compared with mixed infection rates documented in patients in clinical studies. Results In total 63 studies were identified. Individual anopheline mosquitoes were examined for different malaria species in 28 of these. There were 14 studies from Africa; four with species evaluations in individual captured mosquitoes (SEICM. One study, from Ghana, identified a single mixed infection. No mixed infections were identified in Central and South America (seven studies, two SEICM. 42 studies were conducted in Asia and Oceania (11 from Thailand; 27 SEICM. The proportion of anophelines infected with Plasmodium falciparum parasites only was 0.51% (95% CI: 0.44 to 0.57%, for P. vivax only was 0.26% (95% CI: 0.21 to 0.30%, and for mixed P. falciparum and P. vivax infections was 0.036% (95% CI: 0.016 to 0.056%. The proportion of mixed infections in mosquitoes was significantly higher

  17. EPA Registers the Wolbachia ZAP Strain in Live Male Asian Tiger Mosquitoes

    Science.gov (United States)

    EPA registered a new mosquito biopesticide – ZAP Males® - that can reduce local populations of the type of mosquito (Aedes albopictus, or Asian Tiger Mosquitoes) that can spread numerous diseases of significant human health concern, including the Zika viru

  18. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae)

    OpenAIRE

    Godoy, Raquel S. M.; Fernandes, Kenner M.; Martins, Gustavo F.

    2015-01-01

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructu...

  19. Periodic dynamic systems for infected hosts and mosquitoes

    Directory of Open Access Journals (Sweden)

    Oliva W. M.

    1996-01-01

    Full Text Available A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix one can state that either the infection peters out naturally (lambda 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.

  20. Periodic dynamic systems for infected hosts and mosquitoes

    Directory of Open Access Journals (Sweden)

    W. M. Oliva

    1996-06-01

    Full Text Available A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix one can state that either the infection peters out naturally (lambda 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.

  1. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    Science.gov (United States)

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  2. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2013-01-01

    Full Text Available Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses. Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature and environmental (nurture factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  3. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Science.gov (United States)

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission. PMID:23343982

  4. Mass mosquito trapping for malaria control in western Kenya

    NARCIS (Netherlands)

    Hiscox, Alexandra; Homan, Tobias; Mweresa, Collins K.; Maire, Nicolas; Pasquale, Di Aurelio; Masiga, Daniel; Oria, Prisca A.; Alaii, Jane; Leeuwis, Cees; Mukabana, Wolfgang R.; Takken, Willem; Smith, Thomas A.

    2016-01-01

    Background: Increasing levels of insecticide resistance as well as outdoor, residual transmission of malaria threaten the efficacy of existing vector control tools used against malaria mosquitoes. The development of odour-baited mosquito traps has led to the possibility of controlling malaria

  5. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes.

    Science.gov (United States)

    Suzuki, Yasutsugu; Frangeul, Lionel; Dickson, Laura B; Blanc, Hervé; Verdier, Yann; Vinh, Joelle; Lambrechts, Louis; Saleh, Maria-Carla

    2017-08-01

    Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and

  6. Polymer nanoparticles containing essential oils: new options for mosquito control.

    Science.gov (United States)

    Werdin González, Jorge Omar; Jesser, Emiliano Nicolás; Yeguerman, Cristhian Alan; Ferrero, Adriana Alicia; Fernández Band, Beatriz

    2017-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, two different essential oils (EO) (geranium, Geranium maculatum, and bergamot, Citrus bergamia) loaded polymeric nanoparticle (PN) were elaborated using polyethylene glycol (PEG) and chitosan (Qx) as the polymeric matrix/coating. In addition, the mosquito larvicidal acute and residual activity of the PN was evaluated on Culex pipiens pipiens. The physicochemical characterization of PN revealed that PEG-PN had sizes nanoparticles containing essential oil are a promising source of eco-friendly mosquito larvicidal products.

  7. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction.

    Directory of Open Access Journals (Sweden)

    Yuan Hou

    2015-07-01

    Full Text Available Hematophagous mosquitoes serve as vectors of multiple devastating human diseases, and many unique physiological features contribute to the incredible evolutionary success of these insects. These functions place high-energy demands on a reproducing female mosquito, and carbohydrate metabolism (CM must be synchronized with these needs. Functional analysis of metabolic gene profiling showed that major CM pathways, including glycolysis, glycogen and sugar metabolism, and citrate cycle, are dramatically repressed at post eclosion (PE stage in mosquito fat body followed by a sharply increase at post-blood meal (PBM stage, which were also verified by Real-time RT-PCR. Consistent to the change of transcript and protein level of CM genes, the level of glycogen, glucose and trehalose and other secondary metabolites are also periodically accumulated and degraded during the reproductive cycle respectively. Levels of triacylglycerols (TAG, which represent another important energy storage form in the mosquito fat body, followed a similar tendency. On the other hand, ATP, which is generated by catabolism of these secondary metabolites, showed an opposite trend. Additionally, we used RNA interference studies for the juvenile hormone and ecdysone receptors, Met and EcR, coupled with transcriptomics and metabolomics analyses to show that these hormone receptors function as major regulatory switches coordinating CM with the differing energy requirements of the female mosquito throughout its reproductive cycle. Our study demonstrates how, by metabolic reprogramming, a multicellular organism adapts to drastic and rapid functional changes.

  8. Play the Mosquito Game

    Science.gov (United States)

    ... and Work Teachers' Questionnaire Malaria Play the Mosquito Game Play the Parasite Game About the games Malaria is one of the world's most common ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...

  9. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection.

    Directory of Open Access Journals (Sweden)

    Ryuta Uraki

    2018-03-01

    Full Text Available Few animal models of Zika virus (ZIKV infection have incorporated arthropod-borne transmission. Here, we establish an Aedes aegypti mosquito model of ZIKV infection of mice, and demonstrate altered vector competency among three strains, (Orlando, ORL, Ho Chi Minh, HCM, and Patilas, PAT. All strains acquired ZIKV in their midguts after a blood meal from infected mice, but ZIKV transmission only occurred in mice fed upon by HCM, and to a lesser extent PAT, but not ORL, mosquitoes. This defect in transmission from ORL or PAT mosquitoes was overcome by intrathoracic injection of ZIKV into mosquito. Genetic analysis revealed significant diversity among these strains, suggesting a genetic basis for differences in ability for mosquito strains to transmit ZIKV. The intrathoracic injection mosquito-mouse transmission model is critical to understanding the influence of mosquitoes on ZIKV transmission, infectivity and pathogenesis in the vertebrate host, and represents a natural transmission route for testing vaccines and therapeutics.

  10. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  11. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    Science.gov (United States)

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  12. GLOBE Observer Mosquito Habitat Mapper: Geoscience and Public Health Connections

    Science.gov (United States)

    Low, R.; Boger, R. A.

    2017-12-01

    The global health crisis posed by vector-borne diseases is so great in scope that it is clearly insurmountable without the active help of tens-or hundreds- of thousands of individuals, working to identify and eradicate risk in communities around the world. Mobile devices equipped with data collection capabilities and visualization opportunities are lowering the barrier for participation in data collection efforts. The GLOBE Observer Mosquito Habitat Mapper (MHM) provides citizen scientists with an easy to use mobile platform to identify and locate mosquito breeding sites in their community. The app also supports the identification of vector taxa in the larvae development phase via a built-in key, which provides important information for scientists and public health officials tracking the rate of range expansion of invasive vector species and associated health threats. GO Mosquito is actively working with other citizen scientist programs across the world to ensure interoperability of data through standardization of metadata fields specific to vector monitoring, and through the development of APIs that allow for data exchange and shared data display through a UN-sponsored proof of concept project, Global Mosquito Alert. Avenues of application for mosquito vector data-both directly, by public health entities, and by modelers who employ remotely sensed environmental data to project mosquito population dynamics and epidemic disease will be featured.

  13. Converting Mosquito Surveillance to Arbovirus Surveillance with Honey-Baited Nucleic Acid Preservation Cards.

    Science.gov (United States)

    Flies, Emily J; Toi, Cheryl; Weinstein, Philip; Doggett, Stephen L; Williams, Craig R

    2015-07-01

    Spatially and temporally accurate information about infectious mosquito distribution allows for pre-emptive public health interventions that can reduce the burden of mosquito-borne infections on human populations. However, the labile nature of arboviruses, the low prevalence of infection in mosquitoes, the expensive labor costs for mosquito identification and sorting, and the specialized equipment required for arbovirus testing can obstruct arbovirus surveillance efforts. The recently developed techniques of testing mosquito expectorate using honey-baited nucleic acid preservation cards or sugar bait stations allows a sensitive method of testing for infectious, rather than infected, mosquito vectors. Here we report the results from the first large-scale incorporation of honey-baited cards into an existing mosquito surveillance program. During 4 months of the peak virus season (January-April, 2014) for a total of 577 trap nights, we set CO2-baited encephalitis vector survey (EVS) light traps at 88 locations in South Australia. The collection container for the EVS trap was modified to allow for the placement of a honey-baited nucleic acid preservation card (FTA™ card) inside. After collection, mosquitoes were maintained in a humid environment and allowed access to the cards for 1 week. Cards were then analyzed for common endemic Australian arboviruses using a nested RT-PCR. Eighteen virus detections, including 11 Ross River virus, four Barmah Forest virus, and three Stratford virus (not previously reported from South Australia) were obtained. Our findings suggest that adding FTA cards to an existing mosquito surveillance program is a rapid and efficient way of detecting infectious mosquitoes with high spatial resolution.

  14. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  15. Hypersensitivity to mosquito bite manifested as Skeeter syndrome

    Directory of Open Access Journals (Sweden)

    Rafael Pérez-Vanzzini

    2015-02-01

    Full Text Available The reactions to mosquito bites are immunological reactions with involvement of IgE, IgG and T cells mediated hypersensitivity. These reactions are common and range from small local reactions, large local reactions to systemic allergic reactions. Skeeter syndrome is defined as a large local induced inflammatory reaction to mosquito bite and sometimes accompanied by systemic symptoms such as fever and vomiting. Diagnosis is based on clinical history and physical examination, supported by the identification of specific IgE by skin testing. Treatment includes prevention, antihistamines and steroids in some cases. Specific immunotherapy still requires further study. This paper reports two cases of patients with hypersensitivity reactions to mosquito bites, which were evaluated in our center presenting positive skin tests.

  16. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands.

    Directory of Open Access Journals (Sweden)

    David Roiz

    Full Text Available Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1 hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2 the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3 these relationships are species-specific; (4 hydroperiod is negatively related to mosquito presence and richness; (5 Culex abundance is positively related to hydroperiod; (6 NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus; and (7 inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito

  17. The association of foot arch posture and prior history of shoulder or elbow surgery in elite-level baseball pitchers.

    Science.gov (United States)

    Feigenbaum, Luis A; Roach, Kathryn E; Kaplan, Lee D; Lesniak, Bryson; Cunningham, Sean

    2013-11-01

    Case-control. The specific aim of this study was to examine the association between abnormal foot arch postures and a history of shoulder or elbow surgery in baseball pitchers. Pitching a baseball generates forces throughout the musculoskeletal structures of the upper and lower limbs. Structures such as the longitudinal arch of the foot are adaptable to stresses over time. Repeated pitching-related stresses may contribute to acquiring abnormal foot arch postures. Inversely, congenitally abnormal foot arch posture may lead to altered stresses of the upper limb during pitching. A convenience sample of 77 pitchers was recruited from a Division I university team and a professional baseball franchise. Subjects who had a history of shoulder or elbow surgery to the pitching arm were classified as cases. Subjects who met the criteria for classification of pes planus or pes cavus based on longitudinal arch angle were classified as having abnormal foot arch posture. Odds ratios were calculated to examine the association between abnormal foot arch posture and pitching-arm injury requiring surgery. Twenty-three subjects were classified as cases. The odds of being a case were 3.4 (95% confidence interval: 1.2, 9.6; P = .02) times greater for subjects with abnormal foot arch posture and 2.9 (95% confidence interval: 1.0, 8.1; P = .04) times greater for subjects with abnormal foot posture on the lunge leg. Abnormal foot arch posture and a surgical history in the pitching shoulder or elbow may be associated. Because the foot and its arches are adaptable and change over time, the pathomechanics of this association should be further explored.

  18. Transfer of toxin genes to alternate bacterial hosts for mosquito control

    Directory of Open Access Journals (Sweden)

    Sergio Orduz

    1995-02-01

    Full Text Available Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.

  19. Mosquito Bites are Bad!

    Centers for Disease Control (CDC) Podcasts

    2016-08-11

    In this podcast for kids, the Kidtastics talk about the dangers of mosquito bites and how to prevent getting them.  Created: 8/11/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/11/2016.

  20. Mosquito larvicidal and ovicidal properties of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Culex quinquefasciatus Say (Diptera: Culicidae)

    OpenAIRE

    Govindarajan Marimuthu; Rajeswary Mohan

    2014-01-01

    Objective: To assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant, Pithecellobium dulce (P. dulce) against filariasis vector mosquito, Culex quinquefasciatus (Cx. quinquefasciatus). Methods: Twenty five early third instar larvae of Cx. quinquefasciatus were exposed to various concentrations and were assayed in the laboratory by using the protocol of WHO (2005). The larval mor...

  1. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Ruchi Yadav

    2014-12-01

    Full Text Available Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory.Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20-400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50, while OAI (Oviposition activity index was calculated for oviposition altering activity of the plant extracts.Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466 at 100ppm.Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito.

  2. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus

    Science.gov (United States)

    Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan

    2014-01-01

    Background: Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Methods: Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20–400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Results: Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Conclusion: Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito. PMID:26114131

  3. Investigations on anopheline mosquitoes close to the nest sites of chimpanzees subject to malaria infection in Ugandan Highlands

    Directory of Open Access Journals (Sweden)

    Krief Sabrina

    2012-04-01

    Full Text Available Abstract Background Malaria parasites (Plasmodium sp., including new species, have recently been discovered as low grade mixed infections in three wild chimpanzees (Pan troglodytes schweinfurthii sampled randomly in Kibale National Park, Uganda. This suggested a high prevalence of malaria infection in this community. The clinical course of malaria in chimpanzees and the species of the vectors that transmit their parasites are not known. The fact that these apes display a specific behaviour in which they consume plant parts of low nutritional value but that contain compounds with anti-malarial properties suggests that the apes health might be affected by the parasite. The avoidance of the night-biting anopheline mosquitoes is another potential behavioural adaptation that would lead to a decrease in the number of infectious bites and consequently malaria. Methods Mosquitoes were collected over two years using suction-light traps and yeast-generated CO2 traps at the nesting and the feeding sites of two chimpanzee communities in Kibale National Park. The species of the female Anopheles caught were then determined and the presence of Plasmodium was sought in these insects by PCR amplification. Results The mosquito catches yielded a total of 309 female Anopheles specimens, the only known vectors of malaria parasites of mammalians. These specimens belonged to 10 species, of which Anopheles implexus, Anopheles vinckei and Anopheles demeilloni dominated. Sensitive DNA amplification techniques failed to detect any Plasmodium-positive Anopheles specimens. Humidity and trap height influenced the Anopheles capture success, and there was a negative correlation between nest numbers and mosquito abundance. The anopheline mosquitoes were also less diverse and numerous in sites where chimpanzees were nesting as compared to those where they were feeding. Conclusions These observations suggest that the sites where chimpanzees build their nests every night might be

  4. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1 are components of developmental signaling pathways, 2 regulate fundamental developmental processes, 3 are critical for the development of tissues of vector importance, 4 function in developmental processes known to have diverged within insects, and 5 encode microRNAs (miRNAs that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  5. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control

    Directory of Open Access Journals (Sweden)

    Famenini Shannon

    2010-05-01

    Full Text Available Abstract Background Genetically-modified (GM mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009. Methods The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes. Results Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was

  6. Mosquito population dynamics during the construction of Three Gorges Dam in Yangtze River, China.

    Science.gov (United States)

    Guo, Yuhong; Lai, ShengJie; Zhang, Jing; Liu, Qiyong; Zhang, Huaiqing; Ren, Zhoupeng; Mao, Deqiang; Luo, Chao; He, Yuanyuan; Wu, Haixia; Li, Guichang; Ren, Dongsheng; Liu, Xiaobo; Chang, Zhaorui

    2018-06-01

    Mosquitoes are responsible for spreading many diseases and their populations are susceptible to environmental changes. The ecosystems in the Three Gorges Region were probably altered because of changes to the environment during the construction of the Three Gorges Dam (TGD), the world's largest hydroelectric dam by generating capacity. We selected three sites at which to monitor the mosquitoes from 1997 to 2009. We captured adult mosquitoes with battery-powered aspirators fortnightly between May and September of each year in dwellings and sheds. We identified the mosquito species, and examined changes in the species density during the TGD construction. We monitored changes in the species and density of mosquitoes in this area for 13 years during the TGD construction and collected information that could be used to support the control and prevention of mosquito-borne infections. We found that the mosquito species composition around the residential areas remained the same, and the density changed gradually during the TGD construction. The changes in the populations tended to be consistent over the years, and the densities were highest in July, and were between 3 and 5 times greater in the sheds than in the dwellings. The mosquito species and populations remained stable during the construction of the TGD. The mosquito density may have increased as the reservoir filled, and may have decreased during the clean-up work. Clean-up work may be an effective way to control mosquitoes and prevent mosquito-borne diseases. Copyright © 2018. Published by Elsevier B.V.

  7. A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ted Baughman

    2017-12-01

    Full Text Available We investigated alternatives to whole blood for blood feeding of mosquitoes with a focus on improved stability and compatibility with mass rearing programs. In contrast to whole blood, an artificial blood diet of ATP-supplemented plasma was effective in maintaining mosquito populations and was compatible with storage for extended periods refrigerated, frozen, and as a lyophilized powder. The plasma ATP diet supported rearing of both Anopheles and Aedes mosquitoes. It was also effective in rearing Wolbachia-infected Aedes mosquitoes, suggesting compatibility with vector control efforts.

  8. Identification of person and quantification of human DNA recovered from mosquitoes (Culicidae).

    Science.gov (United States)

    Curic, Goran; Hercog, Rajna; Vrselja, Zvonimir; Wagner, Jasenka

    2014-01-01

    Mosquitoes (Culicidae) are widespread insects and can be important in forensic context as a source of human DNA. In order to establish the quantity of human DNA in mosquitoes' gut after different post-feeding interval and for how long after taking a bloodmeal the human donor could be identified, 174 blood-engorged mosquitoes (subfamily Anophelinae and Culicinae) were captured, kept alive and sacrificed at 8h intervals. Human DNA was amplified using forensic PCR kits (Identifiler, MiniFiler, and Quantifiler). A full DNA profiles were obtained from all Culicinae mosquitoes (74/74) up to 48 h and profiling was successful up to 88 h after a bloodmeal. Duration of post-feeding interval had a significant negative effect on the possibility of obtaining a full profile (pfeeding interval. Culicinae mosquitoes are a suitable source of human DNA for forensic STR kits more than three days after a bloodmeal. Human DNA recovered from mosquito can be used for matching purposes and could be useful in revealing spatial and temporal relation of events that took place at the crime scene. Therefore, mosquitoes at the crime scene, dead or alive, could be a valuable piece of forensic evidence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. An overview of mosquitoes and emerging arboviral infections in the Zagreb area, Croatia.

    Science.gov (United States)

    Klobucar, Ana; Benic, Nikola; Krajcar, Darko; Kosanovic-Licina, Mirjana Lana; Tesic, Vanja; Merdic, Enrih; Vrucina, Ivana; Savic, Vladimir; Barbic, Ljubo; Stevanovic, Vladimir; Pem-Novosel, Iva; Vilibic-Cavlek, Tatjana

    2016-12-30

    Mosquito control in the Zagreb area has been conducted for many years, whereas the fauna has only been investigated in the last 20 years. So far 30 mosquito species have been detected in the city area. Culex pipiens form molestus is the dominant mosquito species in indoor breeding sites. In forested areas and areas exposed to flooding, the active period is early spring and the dominant species are Ochlerotatus sticticus, Ochlerotatus cantans, Ochlerotatus geniculatus and Aedes vexans. The eudominant mosquito species found in the artificial breeding sites are Culex pipiens and the Asian tiger mosquito, Aedes albopictus. Invasive Ae. albopictus, present in the Zagreb area since 2004, has expanded to a larger area of the city during the last three years. The recent emergence of the human West Nile virus and Usutu virus neuroinvasive disease in Zagreb and its surroundings highlighted the role of mosquitoes as vectors of emerging arboviruses. The paper focuses on mosquito species and arboviral infections detected in humans and animals in the Zagreb area, Croatia.

  10. Mosquito larval habitats and public health implications in Abeokuta ...

    African Journals Online (AJOL)

    The larval habitats of mosquitoes were investigated in Abeokuta, Nigeria in order to determine the breeding sites of the existing mosquito fauna and its possible public health implications on the residents of the City. The habitats were sampled between August 2005 and July 2006 using plastic dippers and a pipette.

  11. Los mosquitos (Diptera: Culicidae y su importancia en Venezuela | The mosquitoes (Diptera: Culicidae And their importance in Venezuela

    Directory of Open Access Journals (Sweden)

    Irma Fátima Agrela Da Silva

    2018-01-01

    Full Text Available Mosquitoes are responsible for the transmission of various diseases that affect the health of the Venezuelan population. The increase in the incidence of malaria and the emergence of diseases such as chikungunya and Zika make it necessary to implement control measures to reduce the impact of these diseases in Venezuela. To do this, it is essential to know the aspects related to their morphology, bioecology and the characteristics that make possible the participation of mosquitoes in the transmission of these diseases. The purpose of this review is to describe these aspects.

  12. Analyzing mosquito (Diptera: culicidae diversity in Pakistan by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications.Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection. The genus Aedes (Stegomyia comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments.As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  13. Simple intervention to reduce mosquito breeding in waste stabilisation ponds

    DEFF Research Database (Denmark)

    Ensink, Jeroen H J; Mukhtar, Muhammad; van der Hoek, Wim

    2007-01-01

    Waste stabilisation ponds (WSP) are the preferred method for treatment of urban wastewater in low-income countries but, especially in arid regions, the pond systems can be important breeding sites for mosquitoes of medical importance. In a WSP system in Faisalabad, Pakistan, we assessed the impact...... of simple environmental interventions on mosquito occurrence and abundance. Reducing the amount of floating matter in the ponds, eliminating emergent vegetation and repairing cracks in the cement structure reduced the number of mosquito-positive samples in the intervention ponds to almost zero, whereas...... the control ponds had a significant number of positive samples. This suggests that a combination of simple low-cost interventions is a feasible environmental management strategy for vector control in WSP systems that are located in areas where medically important mosquitoes may breed in the shallow ponds....

  14. A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sandra J Laney

    2008-06-01

    Full Text Available Existing molecular assays for filarial parasite DNA in mosquitoes cannot distinguish between infected mosquitoes that contain any stage of the parasite and infective mosquitoes that harbor third stage larvae (L3 capable of establishing new infections in humans. We now report development of a molecular L3-detection assay for Brugia malayi in vectors based on RT-PCR detection of an L3-activated gene transcript.Candidate genes identified by bioinformatics analysis of EST datasets across the B. malayi life cycle were initially screened by PCR using cDNA libraries as templates. Stage-specificity was confirmed using RNA isolated from infected mosquitoes. Mosquitoes were collected daily for 14 days after feeding on microfilaremic cat blood. RT-PCR was performed with primer sets that were specific for individual candidate genes. Many promising candidates with strong expression in the L3 stage were excluded because of low-level transcription in less mature larvae. One transcript (TC8100, which encodes a particular form of collagen was only detected in mosquitoes that contained L3 larvae. This assay detects a single L3 in a pool of 25 mosquitoes.This L3-activated gene transcript, combined with a control transcript (tph-1, accession # U80971 that is constitutively expressed by all vector-stage filarial larvae, can be used to detect filarial infectivity in pools of mosquito vectors. This general approach (detection of stage-specific gene transcripts from eukaryotic pathogens may also be useful for detecting infective stages of other vector-borne parasites.

  15. Effect of Common Species of Florida Landscaping Plants on the Efficacy of Attractive Toxic Sugar Baits Against Aedes albopictus.

    Science.gov (United States)

    Seeger, Kelly E; Scott, Jodi M; Muller, Gunter C; Qualls, Whitney A; Xue, Rui-De

    2017-06-01

    Attractive toxic sugar bait (ATSB) was applied to 5 different types of commonly found plants in landscaping of northeastern Florida. The ATSB applications were assessed for possible plant effects and preference against Aedes albopictus in semifield evaluations. Positive and negative controls consisted of plants sprayed with attractive sugar bait (no toxicant) and plants with nothing applied. Bioassays were conducted on stems with leaf clippings and on full plants to assess any difference in mosquito mortality on the different plants. Plants utilized in these evaluations were Indian hawthorne, Yaupon holly, Japanese privet, Loropetalum ruby, and podocarpus. In both assays, no significant difference was observed in the effect of ATSBs on adult female mosquitoes based on the type of plant. ATSB could be applied to common landscape plants for adult Ae. albopictus control.

  16. Mosquito breeding sites and People’s knowledge of mosquitoes and mosquito borne diseases: A comparison of temporary housing and non-damaged village areas in Sri Lanka after the tsunami strike in 2004

    OpenAIRE

    Ohba, Shin-ya; Kashima, Saori; Matsubara, Hiromi; Higa, Yukiko; Piyaseeli, Udage Kankanamge D.; Yamamoto, Hideki; Nakasuji, Fusao

    2010-01-01

    Although it is very important in view of public health to understand the mosquito breeding sites and key reservoirs existing around residential areas, such information is lacking in temporary housing sites constructed after the serious tsunami strikes on 26 December 2004 in Sri Lanka. This study clarified the situation regarding mosquito breeding 14 months after the tsunami in Sri Lanka by surveying temporary housing and non-damaged village areas, and also by examining people‘s knowledge rela...

  17. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.

    Science.gov (United States)

    Göertz, G P; Fros, J J; Miesen, P; Vogels, C B F; van der Bent, M L; Geertsema, C; Koenraadt, C J M; van Rij, R P; van Oers, M M; Pijlman, G P

    2016-11-15

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease XRN1/Pacman on conserved RNA structures in the 3' untranslated region (UTR) of the viral genomic RNA. sfRNA production is conserved in insect-specific, mosquito-borne, and tick-borne flaviviruses and flaviviruses with no known vector, suggesting a pivotal role for sfRNA in the flavivirus life cycle. Here, we investigated the function of sfRNA during WNV infection of Culex pipiens mosquitoes and evaluated its role in determining vector competence. An sfRNA1-deficient WNV was generated that displayed growth kinetics similar to those of wild-type WNV in both RNA interference (RNAi)-competent and -compromised mosquito cell lines. Small-RNA deep sequencing of WNV-infected mosquitoes indicated an active small interfering RNA (siRNA)-based antiviral response for both the wild-type and sfRNA1-deficient viruses. Additionally, we provide the first evidence that sfRNA is an RNAi substrate in vivo Two reproducible small-RNA hot spots within the 3' UTR/sfRNA of the wild-type virus mapped to RNA stem-loops SL-III and 3' SL, which stick out of the three-dimensional (3D) sfRNA structure model. Importantly, we demonstrate that sfRNA-deficient WNV displays significantly decreased infection and transmission rates in vivo when administered via the blood meal. Finally, we show that transmission and infection rates are not affected by sfRNA after intrathoracic injection, thereby identifying sfRNA as a key driver to overcome the mosquito midgut infection barrier. This is the first report to describe a key biological function of sfRNA for flavivirus infection of the arthropod vector, providing an explanation for the strict conservation of sfRNA production. Understanding the flavivirus transmission

  18. A 12-week rehabilitation program improves body composition, pain sensation, and internal/external torques of baseball pitchers with shoulder impingement symptom.

    Science.gov (United States)

    Cha, Jun-Youl; Kim, Jae-Hak; Hong, Ju; Choi, Young-Tae; Kim, Min-Ho; Cho, Ji-Hyun; Ko, Il-Gyu; Jee, Yong-Seok

    2014-02-01

    The aim of this study was to investigate the effects of a 12-week rehabilitation program on body composition, shoulder pain, and isokinetic internal/external torques of pitchers with impingement syndrome. A total of 30 pitchers were divided into 2 groups: experimental group (EG, n = 16) and control group (CG, n= 14). The rehabilitation program consisted of physical therapy, warm-up, work-out, and cool-down. As results, body weight and fat mass of EG were decreased whereas muscle mass of EG was significantly increased after the experiment. The pain degrees in resting, normal daily activity, and strenuous activity on the numeric pain rating scale were significantly decreased in the EG. The internal and external peak torques (PTs) of uninvolved and involved sides of EG were increased in EG after 12 weeks. Such results provide a deficit ratio of both sides in EG close to normal values. The ratios of internal/external PTs in EG were also close to the reference values. The internal and external total works of both sides in EG were similar to the values of PT. The fatigue indices of internal and external rotators of both sides in EG were decreased. As a conclusion, a 12-week rehabilitation program reduced the shoulder pain, improved the body composition and enhanced the isokinetic shoulder internal/external rotators in EG with impingement symptoms. Also the study suggested that the rehabilitation program evened out the ratio between internal and external rotators and lowered the fatigue level after the experiment.

  19. [Mosquitos of peri and extradomiciliary environments in the southern region of Brazil].

    Science.gov (United States)

    Teodoro, U; Guilherme, A L; Lozovei, A L; La Salvia Filho, V; Sampaio, A A; Spinosa, R P; Ferreira, M E; Barbosa, O C; de Lima, E M

    1994-04-01

    Mosquitoes were collected on Sonho Real farm, Querência do Norte county, Paraná State, Brazil, using human bait and Falcão traps between June 1989 and May 1990. The fauna composition, monthly density, hours of major density, human attraction and presence of mosquitoes in domestic animal shelters were investigated. 5,923 mosquitoes of the genera Aedes, Aedomyia, Anopheles, Coquillettidea, Culex, Mansonia, Psorophora, Sabethes and Uranotaenia were collected. 33 species of mosquitoes were identified and among them Aedes scapularis, Anopheles albitarsis, Aedomyia squamipennis, Coquillettidea lynchi, Mansonia titillans e Coquillettidea venezuelensis were predominant. All these species were captured mainly on human bait, except Aedomyia squamipennis that was captured in domestic animal shelters. With regard to all the mosquitoes captured (5,923), their major period of activity was between 18 and 19 hours and April was the month of greatest density.

  20. Insecticide mixtures for mosquito net impregnation against malaria vectors

    Directory of Open Access Journals (Sweden)

    Corbel V.

    2002-09-01

    Full Text Available Insecticides belonging to the pyrethroid family are the only compounds currently available for the treatment of mosquito nets. Unfortunately, some malaria vector species have developed resistance to pyrethroids and the lack of alternative chemical categories is a great concern. One strategy for resistance management would be to treat mosquito nets with a mixture associating two insecticides having different modes of action. This study presents the results obtained with insecticide mixtures containing several proportions of bifenthrin (a pyrethroid insecticide and carbosulfan (a carbamate insecticide. The mixtures were sprayed on mosquito net samples and their efficacy were tested against a susceptible strain of Anopheles gambiae, the major malaria vector in Africa. A significant synergism was observed with a mixture containing 25 mg/m2 of bifenthrin (half the recommended dosage for treated nets and 6.25 mg/m2 of carbosulfan (about 2 % of the recommended dosage. The observed mortality was significantly more than expected in the absence of any interaction (80 % vs 41 % and the knock-down effect was maintained, providing an effective barrier against susceptible mosquitoes.

  1. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  2. A reappraisal of the role of mosquitoes in the transmission of myxomatosis in Britain.

    Science.gov (United States)

    Service, M W

    1971-03-01

    Field experiments were made in southern England to re-examine the possibility that mosquitoes in Britain might feed on wild rabbits and hence be vectors of myxomatosis. Mosquitoes of several species were attracted to rabbits enclosed in cylindrical traps and in a trap in which the animal was placed in a wire mesh cage. Substantial numbers of mosquitoes were also caught biting, or attempting to bite, tethered rabbits which were not in cages or traps. Evidence that mosquitoes fed on wild rabbits under natural conditions was obtained from results of precipitin tests made on blood-smears collected from mosquitoes caught resting amongst vegetation. On a few evenings mosquitoes were seen to be attracted to healthy wild rabbits and apparently attempting to feed on them. Batches of two mosquito species collected from the field were infected with myxoma virus.It was concluded that contrary to previous beliefs mosquitoes in Britain feed to a certain extent on wild rabbits, and therefore are potential vectors of myxomatosis. No attempts were made to assess their relative importance in the transmission of the disease, which in Britain is transmitted mainly by the rabbit flea.

  3. Perception and personal protective measures toward mosquito bites by communities in Jaffna District, northern Sri Lanka.

    Science.gov (United States)

    Surendran, S N; Kajatheepan, A

    2007-06-01

    Mosquito-borne diseases are of public health importance in war-torn northern Sri Lanka. The severity of mosquito bites and attitudes of the public toward mosquito problems were investigated using a structured questionnaire among communities in 3 administrative divisions in Jaffna District. One hundred fifty-four households were interviewed during this study. Sixty-four percent of the respondents reported that the mosquito problem was severe in their localities. Fifty-two percent stated that mosquito-biting activity was severe in the evening (1500 h-1900 h), 41% at night (after 1900 h), and 7% throughout the day. Severity of mosquito menace was found to have no association with type of house construction. Seventy-seven percent were able to name at least 1 disease transmitted by mosquitoes. Statistical analysis showed no association between education level and public awareness on mosquito-borne diseases. Nearly 88% were able to identify at least a breeding source of mosquitoes and most of them practice measures to eliminate suitable environments for mosquito breeding. Ninety-six percent used personal protective measures against mosquito bites during some seasons or throughout the year. Mosquito coils were the most commonly used personal protective method followed by bed nets. The monthly expenditure for personal protective measures varied from US$0.19 (LKR 20) to US$3.40 (LKR 350).

  4. An entomopathogenic fungus for control of adult African malaria mosquitoes

    NARCIS (Netherlands)

    Scholte, E.J.; Ng'habi, K.R.N.; Kihonda, J.; Takken, W.; Paaijmans, K.P.; Abdulla, S.; Killeen, G.F.; Knols, B.G.J.

    2005-01-01

    Biological control of malaria mosquitoes in Africa has rarely been used in vector control programs. Recent developments in this field show that certain fungi are virulent to adult Anopheles mosquitoes. Practical delivery of an entomopathogenic fungus that infected and killed adult Anopheles gambiae,

  5. Molecular characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the Demilitarized Zone of the Republic of Korea.

    Science.gov (United States)

    Maina, Alice N; Klein, Terry A; Kim, Heung-Chul; Chong, Sung-Tae; Yang, Yu; Mullins, Kristin; Jiang, Ju; St John, Heidi; Jarman, Richard G; Hang, Jun; Richards, Allen L

    2017-01-01

    Rickettsiae are associated with a diverse range of invertebrate hosts. Of these, mosquitoes could emerge as one of the most important vectors because of their ability to transmit significant numbers of pathogens and parasites throughout the world. Recent studies have implicated Anopheles gambiae as a potential vector of Rickettsia felis. Herein we report that a metagenome sequencing study identified rickettsial sequence reads in culicine mosquitoes from the Republic of Korea. The detected rickettsiae were characterized by a genus-specific quantitative real-time PCR assay and sequencing of rrs, gltA, 17kDa, ompB, and sca4 genes. Three novel rickettsial genotypes were detected (Rickettsia sp. A12.2646, Rickettsia sp. A12.2638 and Rickettsia sp. A12.3271), from Mansonia uniformis, Culex pipiens, and Aedes esoensis, respectively. The results underscore the need to determine the Rickettsia species diversity associated with mosquitoes, their evolution, distribution and pathogenic potential.

  6. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes.

    Science.gov (United States)

    Liu, Yang; Liu, Jianying; Du, Senyan; Shan, Chao; Nie, Kaixiao; Zhang, Rudian; Li, Xiao-Feng; Zhang, Renli; Wang, Tao; Qin, Cheng-Feng; Wang, Penghua; Shi, Pei-Yong; Cheng, Gong

    2017-05-25

    Zika virus (ZIKV) remained obscure until the recent explosive outbreaks in French Polynesia (2013-2014) and South America (2015-2016). Phylogenetic studies have shown that ZIKV has evolved into African and Asian lineages. The Asian lineage of ZIKV was responsible for the recent epidemics in the Americas. However, the underlying mechanisms through which ZIKV rapidly and explosively spread from Asia to the Americas are unclear. Non-structural protein 1 (NS1) facilitates flavivirus acquisition by mosquitoes from an infected mammalian host and subsequently enhances viral prevalence in mosquitoes. Here we show that NS1 antigenaemia determines ZIKV infectivity in its mosquito vector Aedes aegypti, which acquires ZIKV via a blood meal. Clinical isolates from the most recent outbreak in the Americas were much more infectious in mosquitoes than the FSS13025 strain, which was isolated in Cambodia in 2010. Further analyses showed that these epidemic strains have higher NS1 antigenaemia than the FSS13025 strain because of an alanine-to-valine amino acid substitution at residue 188 in NS1. ZIKV infectivity was enhanced by this amino acid substitution in the ZIKV FSS13025 strain in mosquitoes that acquired ZIKV from a viraemic C57BL/6 mouse deficient in type I and II interferon (IFN) receptors (AG6 mouse). Our results reveal that ZIKV evolved to acquire a spontaneous mutation in its NS1 protein, resulting in increased NS1 antigenaemia. Enhancement of NS1 antigenaemia in infected hosts promotes ZIKV infectivity and prevalence in mosquitoes, which could have facilitated transmission during recent ZIKV epidemics.

  7. Monitoring the age of mosquito populations using near-infrared spectroscopy

    Science.gov (United States)

    Mosquito control with bednets, residual sprays or fumigation remains the most effective tool for preventing vector-borne diseases such as malaria, dengue and Zika, though there are no widely used entomological methods for directly assessing its efficacy. Mosquito age is the most informative method f...

  8. Environmental statistical modelling of mosquito vectors at different geographical scales

    NARCIS (Netherlands)

    Cianci, D.

    2015-01-01

    Vector-borne diseases are infections transmitted by the bite of infected arthropod vectors, such as mosquitoes, ticks, fleas, midges and flies. Vector-borne diseases pose an increasingly wider threat to global public health, both in terms of people affected and their geographical spread. Mosquitoes

  9. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development.

    Directory of Open Access Journals (Sweden)

    Raylea Rowbottom

    Full Text Available Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level. To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission.

  10. Larval diet affects mosquito development and permissiveness to Plasmodium infection.

    Science.gov (United States)

    Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde

    2016-12-02

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.

  11. Mosquito fauna and arbovirus surveillance in a coastal Mississippi community after Hurricane Katrina.

    Science.gov (United States)

    Foppa, Ivo M; Evans, Christopher L; Wozniak, Arthur; Wills, William

    2007-06-01

    Hurricane Katrina caused massive destruction and flooding along the Gulf Coast in August 2005. We collected mosquitoes and tested them for arboviral infection in a severely hurricane-damaged community to determine species composition and to assess the risk of a mosquito-borne epidemic disease in that community about 6 wk after the landfall of Hurricane Katrina. Light-trap collections yielded 8,215 mosquitoes representing 19 species, while limited gravid-trap collections were not productive. The most abundant mosquito species was Culex nigripalpus, which constituted 73.6% of all specimens. No arboviruses were detected in any of the mosquitoes collected in this survey, which did not support the assertion that human risk for arboviral infection was increased in the coastal community 6 wk after the hurricane.

  12. Outbreaks of Tularemia in a Boreal Forest Region Depends on Mosquito Prevalence

    Science.gov (United States)

    Rydén, Patrik; Björk, Rafael; Schäfer, Martina L.; Lundström, Jan O.; Petersén, Bodil; Lindblom, Anders; Forsman, Mats; Sjöstedt, Anders

    2012-01-01

    Background. We aimed to evaluate the potential association of mosquito prevalence in a boreal forest area with transmission of the bacterial disease tularemia to humans, and model the annual variation of disease using local weather data. Methods. A prediction model for mosquito abundance was built using weather and mosquito catch data. Then a negative binomial regression model based on the predicted mosquito abundance and local weather data was built to predict annual numbers of humans contracting tularemia in Dalarna County, Sweden. Results. Three hundred seventy humans were diagnosed with tularemia between 1981 and 2007, 94% of them during 7 summer outbreaks. Disease transmission was concentrated along rivers in the area. The predicted mosquito abundance was correlated (0.41, P tularemia (temporal correlation, 0.76; P tularemia in a tularemia-endemic boreal forest area of Sweden and that environmental variables can be used as risk indicators. PMID:22124130

  13. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects.

    Science.gov (United States)

    Nkya, Theresia Estomih; Akhouayri, Idir; Kisinza, William; David, Jean-Philippe

    2013-04-01

    By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Mosquito larval productivity in rice-fields infested with Azolla in ...

    African Journals Online (AJOL)

    Abstract: Azolla (Salviniales: Azollaceae) is known to reduce oviposition and adult emergence of a number of mosquito species. Several species of Azolla are reportedly indigenous to Tanzania. However, the potential of Azolla as a biocontrol agent against malaria mosquitoes has not been evaluated in the country.

  15. Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax

    Science.gov (United States)

    Moreno, Marta; Tong, Carlos; Guzmán, Mitchel; Chuquiyauri, Raul; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Gamboa, Dionicia; Meister, Stephan; Winzeler, Elizabeth A.; Maguina, Paula; Conn, Jan E.; Vinetz, Joseph M.

    2014-01-01

    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi–Plasmodium interactions. PMID:24534811

  16. Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis.

    Science.gov (United States)

    Yamamoto, Daisuke S; Sumitani, Megumi; Hatakeyama, Masatsugu; Matsuoka, Hiroyuki

    2018-02-01

    Anopheline mosquitoes are major vectors of malaria parasites. When the gametocytes of the malaria parasite are transferred from a vertebrate to mosquitoes, they differentiate into gametes, and are fertilized in the midguts of mosquitoes. Xanthurenic acid (XA), a waste product of the ommochrome synthesis pathway, has been shown to induce exflagellation during microgametogenesis in vitro; however, it currently remains unclear whether endogenous XA affects the infectivity of anopheline mosquitoes to malaria parasites in vivo due to the lack of appropriate experimental systems such as a XA-deficient line. In the present study, we produced a XA-deficient line in Anopheles stephensi using transcription activator-like effector nuclease (TALEN)-mediated gene targeting (knockout) of the kynurenine 3-monooxygenase (kmo) gene, which encodes an enzyme that participates in the ommochrome synthesis pathway. The knockout of kmo resulted in the absence of XA, and oocyst formation was inhibited in the midguts of these XA-deficient mosquitoes, which, in turn, reduced sporozoite numbers in their salivary glands. These results suggest that endogenous XA stimulates exflagellation, and enhances the infectivity of anopheline mosquitoes to malaria parasites in vivo. The XA-deficient line of the anopheline mosquito provides a useful system for analyzing and understanding the associated factors of malaria gametogenesis in the mosquito midgut.

  17. Optical remote sensing for monitoring flying mosquitoes, gender identification and discussion on species identification

    Science.gov (United States)

    Genoud, Adrien P.; Basistyy, Roman; Williams, Gregory M.; Thomas, Benjamin P.

    2018-03-01

    Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled environment to mimic long-range lidars, mosquitoes are free flying at a distance of 4 m from the collecting optics. The wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.

  18. An anti-mosquito mixture for domestic use, combining a fertiliser and a chemical or biological larvicide.

    Science.gov (United States)

    Darriet, Frédéric

    2016-07-01

    Plant saucers are an important larval habitat for Aedes aegypti and Ae. albopictus in peridomestic situations. Because NPK fertilisers in plant containers tend to enhance the oviposition of these species, we investigated the effects of Bacillus thuringiensis var. israelensis, spinosad, pyriproxyfen and diflubenzuron larvicides in combination with fertiliser on the adult emergence and fecundity of the mosquitoes coming from plant saucers in controlled greenhouse experiments. NPK + larvicide (NPK-LAV) treatments were tested on Ae. aegypti. Each treatment was compared with water and with fertiliser alone on a total of five houseplants and their saucers. The fertilising treatment was renewed every 30-45 days. With less than 5% imaginal emergence, the NPK + spinosad 0.5% treatment remained effective for 30 days. Both NPK + pyriproxyfen 0.1% and NPK + diflubenzuron 0.25% were effective for 45 days. The average number of eggs laid in the three treatments was similar to the NPK treatment, indicating that spinosad, pyriproxyfen and diflubenzuron did not alter the attraction effect of the fertiliser on egg laying. NPK + pyriproxyfen and NPK + diflubenzuron also had ovicidal activity and an important impact on the fecundity of the Ae. aegypti female imagos and the fertility of their eggs. The addition of NPK fertiliser to insecticides can increase larval control of Aedes mosquitoes. This innovative measure for personal protection, which is harmless for both humans and animals, would be an additional support for the community-based actions led by the institutional services for vector control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Aloe plant extracts as alternative larvicides for mosquito control

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... Key words: Aloe, anopheles gambie, larvicidal activity. INTRODUCTION. Extracts from plants in the genus Aloe (Aloeaceae) have been widely used by pharmaceutical and cosmetic industries. Aloe species have long been known as medicinal plants (Cheney, 1970) and Aloe vera species is most widely ...

  20. Microhabitats de mosquitos (Diptera, Culicidae em internódios de taquara na Mata Atlântica, Paraná, Brasil Mosquitoes microhabitats (Diptera, Culicidae in bamboo internodes in Atlantic forest, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Leuch Lozovei

    Full Text Available During two consecutive years, from January 1985 to December 1986, a comparative study of mosquitoes preferences for breeding habitat was carried out in the Atlantic Forest of the Serra do Mar, Paraná State, Brazil. To achieve it, 1875 bamboo internodes aligned vertically in live green, bamboo plants Merostachys speciosa Munro and Merostachys sp. were used, in which metabolic water was exuded from the plant itself, and presenting different size/pattern holes at their lateral walls, bored by the local sylvan fauna. Another group of 1200 individual internode traps was used as comparative element, carved out with a transversal cut by a saw, filled with local stream water and held in branches at different heights in the vegetal strata nearby. At both microhabitat types, a total of 17 culicid species was registered. Culex (Microculex neglectus Lutz, 1904, Cx. (Carrollia soperi Antunes & Lane, 1937, Sabethes (Sabethes batesi Lane & Cerqueira, 1942 and Sa. (Sabethinus melanonymphe (Dyar, 1924colonized exclusively live plant internodes, while Culex (Microculex elongatus Rozeboom & Lane, 1950, Cx. (Carrollia iridescens (Lutz, 1905, Cx. (Carrollia kompi Valencia,1973and Trichoprosopon (Trichoprosopon soaresi Dyar & Knab, 1907 bred only in internode traps. The remaining nine species colonized both habitats indistinctly. Quantitatively, was detected the abundance of 60.1% at live green internodes, against 39.9% for internode traps. Concerning the different patterns of bored live internode holes, 40.3% of the total computed specimens were collected in square or rectangular holes, 31.9% in two hole internodes, one minute circular, the other wider, and the remaining 28.8% of specimens distributed in other pattern type internodes. The mosquitoes breeding at these microhabitats fall in the culicid entomofauna specialized at locating and detecting peculiar and propitious mesogen conditions for breeding purposes.

  1. Comparison of mosquito control programs in seven urban sites in Africa, the Middle East, and the Americas

    Science.gov (United States)

    Impoinvil, Daniel E.; Ahmad, Sajjad; Troyo, Adriana; Keating, Joseph; Githeko, Andrew K.; Mbogo, Charles M; Kibe, Lydiah; Githure, John I.; Gad, Adel M.; Hassan, Ali N.; Orshan, Laor; Warburg, Alon; Calderón-Arguedas, Olger; Sánchez-Loría, Victoria M.; Velit-Suarez, Rosanna; Chadee, Dave D.; Novak, Robert J.; Beier, John C.

    2007-01-01

    Mosquito control programs at seven urban sites in Kenya, Egypt, Israel, Costa Rica, and Trinidad are described and compared. Site-specific urban and disease characteristics, organizational diagrams, and strengths, weaknesses, obstacles and threats (SWOT) analysis tools are used to provide a descriptive assessment of each mosquito control program, and provide a comparison of the factors affecting mosquito abatement. The information for SWOT analysis is collected from surveys, focus group discussions, and personal communication. SWOT analysis identified various issues affecting the efficiency and sustainability of mosquito control operations. The main outcome of our work was the description and comparison of mosquito control operations within the context of each study site’s biological, social, political, management, and economic conditions. The issues identified in this study ranged from lack of inter-sector collaboration to operational issues of mosquito control efforts. A lack of sustainable funding for mosquito control was a common problem for most sites. Many unique problems were also identified, which included lack of mosquito surveillance, lack of law enforcement, and negative consequences of human behavior. Identifying common virtues and shortcomings of mosquito control operations is useful in identifying “best practices” for mosquito control operations, thus leading to better control of mosquito biting and mosquito-borne disease transmission. PMID:17316882

  2. Comparison of mosquito control programs in seven urban sites in Africa, the Middle East, and the Americas.

    Science.gov (United States)

    Impoinvil, Daniel E; Ahmad, Sajjad; Troyo, Adriana; Keating, Joseph; Githeko, Andrew K; Mbogo, Charles M; Kibe, Lydiah; Githure, John I; Gad, Adel M; Hassan, Ali N; Orshan, Laor; Warburg, Alon; Calderón-Arguedas, Olger; Sánchez-Loría, Victoria M; Velit-Suarez, Rosanna; Chadee, Dave D; Novak, Robert J; Beier, John C

    2007-10-01

    Mosquito control programs at seven urban sites in Kenya, Egypt, Israel, Costa Rica, and Trinidad are described and compared. Site-specific urban and disease characteristics, organizational diagrams, and strengths, weaknesses, obstacles and threats (SWOT) analysis tools are used to provide a descriptive assessment of each mosquito control program, and provide a comparison of the factors affecting mosquito abatement. The information for SWOT analysis is collected from surveys, focus-group discussions, and personal communication. SWOT analysis identified various issues affecting the efficiency and sustainability of mosquito control operations. The main outcome of our work was the description and comparison of mosquito control operations within the context of each study site's biological, social, political, management, and economic conditions. The issues identified in this study ranged from lack of inter-sector collaboration to operational issues of mosquito control efforts. A lack of sustainable funding for mosquito control was a common problem for most sites. Many unique problems were also identified, which included lack of mosquito surveillance, lack of law enforcement, and negative consequences of human behavior. Identifying common virtues and shortcomings of mosquito control operations is useful in identifying "best practices" for mosquito control operations, thus leading to better control of mosquito biting and mosquito-borne disease transmission.

  3. Newer Vaccines against Mosquito-borne Diseases.

    Science.gov (United States)

    Aggarwal, Anju; Garg, Neha

    2018-02-01

    Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.

  4. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific region

    Science.gov (United States)

    LaPointe, Dennis

    2007-01-01

    Mosquitoes and the pathogens they transmit are ubiquitous throughout most of the temperate and tropical regions of the world. The natural and pre-European distribution and diversity of mosquitoes and mosquito-borne diseases throughout much of the Pacific region, however, depicts a depauperate and relatively benign fauna reinforcing the dream of “paradise regained”. In the central and South Pacific few mosquito species were able to colonize the remotest islands and atolls. Native mosquitoes are limited to a few far-ranging species and island endemics are typically restricted to the genera of Aedes and Culex. Only lymphatic filariasis appears to have been present as an endemic mosquito-borne disease before European contact. In nearby Australia, however, some 242 species of mosquitoes are known to occur and more than 70 arboviruses have been identified (Mackenzie 1999). In this regard Australia is more similar to the rest of the tropic and subtropical world than the smaller islands of Oceania. In our ever-shrinking world of global commerce, military activity and travel, the nature of mosquito-borne disease in the Pacific was bound to change. This paper is a brief summary of introduced mosquitoes in the Pacific and their potential impacts on human and wildlife health.

  5. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea

    Directory of Open Access Journals (Sweden)

    Yong-Su Kwon

    2015-10-01

    Full Text Available Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA based on mosquito occurrence; and three prediction models, support vector machine (SVM, classification and regression tree (CART, and random forest (RF. We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences.

  6. Anthropogenic impacts on mosquito populations in North America over the past century

    Science.gov (United States)

    Rochlin, Ilia; Faraji, Ary; Ninivaggi, Dominick V.; Barker, Christopher M.; Kilpatrick, A. Marm

    2016-12-01

    The recent emergence and spread of vector-borne viruses including Zika, chikungunya and dengue has raised concerns that climate change may cause mosquito vectors of these diseases to expand into more temperate regions. However, the long-term impact of other anthropogenic factors on mosquito abundance and distributions is less studied. Here, we show that anthropogenic chemical use (DDT; dichlorodiphenyltrichloroethane) and increasing urbanization were the strongest drivers of changes in mosquito populations over the last eight decades in areas on both coasts of North America. Mosquito populations have increased as much as tenfold, and mosquito communities have become two- to fourfold richer over the last five decades. These increases are correlated with the decay in residual environmental DDT concentrations and growing human populations, but not with temperature. These results illustrate the far-reaching impacts of multiple anthropogenic disturbances on animal communities and suggest that interactions between land use and chemical use may have unforeseen consequences on ecosystems.

  7. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  8. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  9. Mosquito density, biting rate and cage size effects on repellent tests.

    Science.gov (United States)

    Barnard, D R; Posey, K H; Smith, D; Schreck, C E

    1998-01-01

    Mosquito biting rates and the mean duration of protection (in hours) from bites (MDPB) of Aedes aegypti and Anopheles quadrimaculatus, using the repellent 'deet' (N,N-diethyl-3-methylbenzamide) on a 50 cm2 area of healthy human skin, were observed in small (27 l), medium (approximately 65 l) and large (125 l) cages containing low, medium or high densities of mosquitoes: respectively, 640, 128 or 49 cm3 of cage volume per female. At the initial treatment rate of approximately 0.4 microliter/cm2 (1 ml of 25% deet in ethanol on 650 cm2 of skin), the MDPB for deet against Ae. aegypti ranged from 4.5 to 6.5 h and was significantly less (5.0 +/- 0.8 h) in large cages compared with medium (6.2 +/- 0.9 h) and small (6.2 +/- 0.8 h) cages, regardless of the density. Against An. quadrimaculatus the MDPB for deet 0.4 microliter/cm2 was 1.5-8.0 h, less in small (3.7 +/- 2.3 h) and large (2.2 +/- 1.1 h) cages at medium (3.7 +/- 2.3 h) and high (2.5 +/- 1.7 h) mosquito densities, and was longest in medium cages (6.2 +/- 2.6 h) at low mosquito densities (5.8 +/- 2.8 h). With equinoxial photoperiodicity (light on 06.00-18.00 hours) the biting rate was influenced by the time of observation (08.00, 12.00, 16.00 hours) for Ae. aegypti but not for An. quadrimaculatus. For both species, the biting rate was inversely proportional to mosquito density and the MDPB. The shortest MDPBs were obtained in large cages with high densities of mosquitoes and longest protection times occurred in medium sized cages with low mosquito densities.

  10. Spread of Zika virus:The key role of mosquito vector control

    Institute of Scientific and Technical Information of China (English)

    Giovanni Benelli

    2016-01-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of humans and ani-mals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean, represent the most recent four arrivals of important arboviruses in the western hemi-sphere, over the last 20 years, namely dengue, West Nile virus, and chikungunya. Since there are no specific treatments for Zika virus and the other arboviruses mentioned above, it should be highlighted that the eco-friendly and effective control of mosquito vectors is of pivotal importance. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in presence of ultra-low quantities of green-synthesized nano-particles, which magnify their predation efficiency. Furthermore, behaviour-based control tools relying on the employ of swarming behaviour manipulation (i.e. the“lure and kill”approach), pheromone traps, sound traps need further research attention. In particular, detailed basic information on the physical and chemical cues routing mosquito swarming and mating dynamics is urgently required.

  11. Spread of Zika virus:The key role of mosquito vector control

    Institute of Scientific and Technical Information of China (English)

    Giovanni Benelli

    2016-01-01

    Mosquitoes(Diptera: Culicidae) represent a key threat for millions of humans and animals worldwide, since they act as vectors for important parasites and pathogens,including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean,represent the most recent four arrivals of important arboviruses in the western hemisphere, over the last 20 years, namely dengue, West Nile virus, and chikungunya. Since there are no specific treatments for Zika virus and the other arboviruses mentioned above,it should be highlighted that the eco-friendly and effective control of mosquito vectors is of pivotal importance. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in presence of ultra-low quantities of green-synthesized nanoparticles, which magnify their predation efficiency. Furthermore, behaviour-based control tools relying on the employ of swarming behaviour manipulation(i.e. the "lure and kill"approach), pheromone traps, sound traps need further research attention. In particular,detailed basic information on the physical and chemical cues routing mosquito swarming and mating dynamics is urgently required.

  12. Quinine, mosquitoes and empire: reassembling malaria in British India, 1890-1910.

    Science.gov (United States)

    Roy, Rohan Deb

    2013-01-01

    The drug quinine figured as an object of enforced consumption in British India between the late 1890s and the 1910s, when the corresponding diagnostic category malaria itself was redefined as a mosquito-borne fever disease. This article details an overlapping milieu in which quinine, mosquitoes and malaria emerged as intrinsic components of shared and symbiotic histories. It combines insights from new imperial histories, constructivism in the histories of medicine and literature about non-humans in science studies to examine the ways in which histories of insects, drugs, disease and empire interacted and shaped one another. Firstly, it locates the production of historical intimacies between quinine, malaria and mosquitoes within the exigencies and apparatuses of imperial rule. In so doing, it explores the intersections between the worlds of colonial governance, medical knowledge, vernacular markets and pharmaceutical business. Secondly, it outlines ways to narrate characteristics and enabling properties of non-humans (such as quinines and mosquitoes) while retaining a constructivist critique of scientism and empire. Thirdly, it shows how empire itself was reshaped and reinforced while occasioning the proliferation of categories and entities like malaria, quinine and mosquitoes.

  13. Spread of Zika virus: The key role of mosquito vector control

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-06-01

    Full Text Available Mosquitoes (Diptera: Culicidae represent a key threat for millions of humans and animals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and a wide number of arboviruses. The recent outbreaks of Zika virus infections occurring in South America, Central America, and the Caribbean, represent the most recent four arrivals of important arboviruses in the western hemisphere, over the last 20 years, namely dengue, West Nile virus, and chikungunya. Since there are no specific treatments for Zika virus and the other arboviruses mentioned above, it should be highlighted that the eco-friendly and effective control of mosquito vectors is of pivotal importance. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in presence of ultra-low quantities of green-synthesized nanoparticles, which magnify their predation efficiency. Furthermore, behaviour-based control tools relying on the employ of swarming behaviour manipulation (i.e. the “lure and kill” approach, pheromone traps, sound traps need further research attention. In particular, detailed basic information on the physical and chemical cues routing mosquito swarming and mating dynamics is urgently required.

  14. Pesticides and public health: integrated methods of mosquito management.

    OpenAIRE

    Rose, R. I.

    2001-01-01

    Pesticides have a role in public health as part of sustainable integrated mosquito management. Other components of such management include surveillance, source reduction or prevention, biological control, repellents, traps, and pesticide-resistance management. We assess the future use of mosquito control pesticides in view of niche markets, incentives for new product development, Environmental Protection Agency registration, the Food Quality Protection Act, and improved pest management strate...

  15. Evaluation of commercial products for personal protection against mosquitoes.

    Science.gov (United States)

    Revay, Edita E; Junnila, Amy; Xue, Rui-De; Kline, Daniel L; Bernier, Ulrich R; Kravchenko, Vasiliy D; Qualls, Whitney A; Ghattas, Nina; Müller, Günter C

    2013-02-01

    Human landing catch studies were conducted in a semi-field setting to determine the efficacy of seven commercial products used for personal protection against mosquitoes. Experiments were conducted in two empty, insecticide free, mesh-enclosed greenhouses, in Israel, with either 1500 Aedes albopictus or 1500 Culex pipiens released on consecutive study nights. The products tested in this study were the OFF!(®) Clip-On™ Mosquito Repellent (Metofluthrin 31.2%) and the Terminix(®) ALLCLEAR(®) Sidekick Mosquito Repeller (Cinnamon oil 10.5%; Eugenol 13%; Geranium oil 21%; Peppermint 5.3%; Lemongrass oil 2.6%), which are personal diffusers; Super Band™ Wristband (22% Citronella oil) and the PIC(®) Citronella Plus Wristband (Geraniol 15%; Lemongrass oil 5%, Citronella oil 1%); the Sonic Insect Repeller Keychain; the Mosquito Guard Patch (Oil of Lemon Eucalyptus 80mg), an adhesive-backed sticker for use on textiles; and the Mosquito Patch (vitamin B1 300mg), a transdermal patch. It was determined that the sticker, transdermal patch, wristbands and sonic device did not provide significant protection to volunteers compared with the mosquito attack rate on control volunteers who were not wearing a repellent device. The personal diffusers: - OFF!(®) Clip-On™ and Terminix(®) ALLCLEAR(®) Sidekick - provided superior protection compared with all other devices in this study. These diffusers reduced biting on the arms of volunteers by 96.28% and 95.26% respectively, for Ae. albopictus, and by 94.94% and 92.15% respectively, for Cx. pipiens. In a second trial conducted to compare these devices directly, biting was reduced by the OFF!(®) Clip-On™ and the Terminix(®) ALLCLEAR(®) by 87.55% and 92.83%, respectively, for Ae. albopictus, and by 97.22% and 94.14%, respectively, for Cx. pipiens. There was no significant difference between the performances of the two diffusers for each species. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Metofluthrin: a potent new synthetic pyrethroid with high vapor activity against mosquitoes.

    Science.gov (United States)

    Ujihara, Kazuya; Mori, Tatsuya; Iwasaki, Tomonori; Sugano, Masayo; Shono, Yoshinori; Matsuo, Noritada

    2004-01-01

    (1R)-trans-Norchrysanthemic acid fluorobenzyl esters are synthesized and their structure-activity relationships are discussed. These esters show outstanding insecticidal activity against mosquitoes. In particular, the 2,3,5,6-tetrafluoro-4-methoxymethylbenzyl analog (metofluthrin) exhibits the highest potency, being approximately forty times as potent as d-allethrin in a mosquito coil formulation when tested against southern house mosquitoes (Culex quinquefasciatus). Metofluthrin also exhibits a significant vapor action at room temperature.

  17. Assessing the impacts of truck based ultra-low volume applications of mosquito adulticides on honey bees (Apis mellifera)

    Science.gov (United States)

    Mosquito control reduces populations of mosquitoes to minimize the risk of mosquito-borne diseases. As part of an integrated approach to mosquito control, application of adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission. However, impact...

  18. The effect of pesticide residue on caged mosquito bioassays.

    Science.gov (United States)

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication.

  19. Mosquito fauna of a tropical museum and zoological garden complex

    African Journals Online (AJOL)

    The mosquito fauna of Museum and Zoological Garden Complex (JZC), a major tourist attraction inJos Metropolis of Nigeria, was studied The choice of the complex was out of public health curiosity. A total of 627 mosquitoes comprising 4 genera, Aedes, Culex, Coquilletidia and Eretmapodites, and9 species were caught n ...

  20. Mosquitoes as vectors of human disease in South Africa | Jupp ...

    African Journals Online (AJOL)

    While malaria is the most important mosquito-borne disease in South Africa, there are also several mosquito-borne viruses that also cause human disease. The most significant are chikungunya, West Nile, Sindbis and Rift Valley fever viruses. In this review these are compared with malaria, mainly in regard to their ecology ...

  1. Mosquito Bite Prevention For Travelers

    Science.gov (United States)

    ... bites. Here’s how: Keep mosquitoes out of your hotel room or lodging Š Choose a hotel or lodging with air conditioning or screens on ... percentages of active ingredient provide longer protection Some brand name examples* (Insect repellents may be sold under ...

  2. Worthy of their name: how floods drive outbreaks of two major floodwater mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Berec, Ludĕk; Gelbic, Ivan; Sebesta, Oldrich

    2014-01-01

    An understanding of how climate variables drive seasonal dynamics of mosquito populations is critical to mitigating negative impacts of potential outbreaks, including both nuisance effects and risk of mosquito-borne infectious disease. Here, we identify climate variables most affecting seasonal dynamics of two major floodwater mosquitoes, Aedes vexans (Meigen, 1830) and Aedes sticticus (Meigen, 1838) (Diptera: Culicidae), along the lower courses of the Dyje River, at the border between the Czech Republic and Austria. Monthly trap counts of both floodwater mosquitoes varied both across sites and years. Despite this variability, both models used to fit the observed data at all sites (and especially that for Ae. sticticus) and site-specific models fitted the observed data quite well. The most important climate variables we identified-temperature and especially flooding-were driving seasonal dynamics of both Aedes species. We suggest that flooding determines seasonal peaks in the monthly mosquito trap counts while temperature modulates seasonality in these counts. Hence, floodwater mosquitoes indeed appear worthy of their name. Moreover, the climate variables we considered for modeling were able reasonably to predict mosquito trap counts in the month ahead. Our study can help in planning flood management; timely notification of people, given that these mosquitoes are a real nuisance in this region; public health policy management to mitigate risk from such mosquito-borne diseases as that caused in humans by the Tahyna virus; and anticipating negative consequences of climate change, which are expected only to worsen unless floods, or the mosquitoes themselves, are satisfactorily managed.

  3. Viral Interference and Persistence in Mosquito-Borne Flaviviruses

    Directory of Open Access Journals (Sweden)

    Juan Santiago Salas-Benito

    2015-01-01

    Full Text Available Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.

  4. Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae against immature stages of mosquitoes and non-target organisms

    Directory of Open Access Journals (Sweden)

    N Sivagnaname

    2004-02-01

    Full Text Available Methanolic extracts of the leaves of Atlantia monophylla (Rutaceae were evaluated for mosquitocidal activity against immature stages of three mosquito species, Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti in the laboratory.Larvae of Cx. quinquefasciatus and pupae of An. stephensi were found more susceptible, with LC50 values of 0.14 mg/l and 0.05 mg/l, respectively. Insect growth regulating activity of this extract was more pronounced against Ae. aegypti, with EI50 value 0.002 mg/l. The extract was found safe to aquatic mosquito predators Gambusia affinis, Poecilia reticulata, and Diplonychus indicus, with the respective LC50 values of 23.4, 21.3, and 5.7 mg/l. The results indicate that the mosquitocidal effects of the extract of this plant were comparable to neem extract and certain synthetic chemical larvicides like fenthion, methoprene, etc.

  5. Utilization of ultrasonic waves (Acheta domesticus) as a biocontrol of mosquito in Malang Agricultural Institute

    Science.gov (United States)

    Tito, Sama'Iradat

    2017-11-01

    Malang Agricultural Institute is a college located in the residential area Griyasanta Malang. The environment around the Institute of Agriculture Malang has moist soil conditions so that mosquito species insects easily reproduce. It is feared that this problem can potentially cause many diseases caused by mosquitoes such as dengue fever, malaria, chikungunya, elephant legs and much more. Nowadays there has been considerable research on ultrasound waves against mosquitoes. Many studies have been done to determine the effect of ultrasonic waves on mosquitoes. Crickets have frequencies between 0.2 kHz-50 kHz so it has the potential to control mosquito pests. Existing studies indicate that mosquito pests can be expelled with the frequency of 18-48 kHz. But this still cannot eliminate mosquito larvae that require a wave of 85 kHz. The effects of ultrasound waves on mosquitoes are (1) erection of the antenna which shows the stress on the nervous system to physical injury and fatigue so as to increase the percentage of fall and the death of mosquitoes. (2) ultrasonic waves can make the antenna function in the mosquito as the receiver of excitatory disturbed. The ultrasonic wave can be defined as a threat so that the mosquito will be expelled. Based on this, a simple study was conducted at the campus of the Institute of Agriculture of Malang by taking 10 different locations with randomly assigned respondents with a maximum of 5 people per location. The results show that the effectiveness of the use of crickets in the morning reached 60% and in the afternoon reached 80% starting on the first day since the installation of crickets. So the use of these crickets in the campus environment of the Institute of Agriculture Malang is quite effective.

  6. Tadpoles of three common anuran species from Thailand do not prey on mosquito larvae.

    Science.gov (United States)

    Weterings, Robbie

    2015-12-01

    Tadpoles are often considered to be predators of mosquito larvae and are therefore beneficial for the control of certain disease vectors. Nevertheless, only a few species have actually been recorded to prey on mosquito larvae. The mosquito larvae predation rates of tadpoles of three common Thai anuran species (Bufo melanostictus, Kaloula pulchra and Hylarana raniceps) were experimentally tested. Tadpoles in varying developmental stages were used to assess a size/age effect on the predation rate. In addition, different instars of Culex quinquefasciatus were used in order to assess a prey size effect on the predation rates. All three species failed to show any evidence of mosquito larvae predation. Neither small nor large tadpoles fed on mosquito larvae. Prey size also did not affect predation. Although tadpoles do not feed on mosquito larvae, there may be other direct or indirect inter-specific interactions that adversely impact the development of larvae in shared habitats with tadpoles. © 2015 The Society for Vector Ecology.

  7. An Annotated Bibliography of the Mosquitoes and Mosquito-Borne Diseases of Guam (Diptera: Culicidae)

    Science.gov (United States)

    1976-01-01

    of elephantiasis , with 83 Americans and 28 natives admitted during the year with dengue fever, No cases of malaria were known to have originated on...group, p. 109. Mosquito Systematics Vol. 8(4) 1976 -3e *South Pacific Conmission. 1951. Conference of experts on filariasis and elephantiasis . So

  8. A push-pull system to reduce house entry of malaria mosquitoes

    NARCIS (Netherlands)

    Menger, D.J.; Otieno, B.; Rijk, de M.; Mukabana, W.R.; Loon, van J.J.A.; Takken, W.

    2014-01-01

    Background. Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull

  9. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil.

    Science.gov (United States)

    Guedes, Duschinka Rd; Paiva, Marcelo Hs; Donato, Mariana Ma; Barbosa, Priscilla P; Krokovsky, Larissa; Rocha, Sura W Dos S; Saraiva, Karina LA; Crespo, Mônica M; Rezende, Tatiana Mt; Wallau, Gabriel L; Barbosa, Rosângela Mr; Oliveira, Cláudia Mf; Melo-Santos, Maria Av; Pena, Lindomar; Cordeiro, Marli T; Franca, Rafael F de O; Oliveira, André Ls de; Peixoto, Christina A; Leal, Walter S; Ayres, Constância Fj

    2017-08-09

    Zika virus (ZIKV) is a flavivirus that has recently been associated with an increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide; however, there is evidence that other mosquito species, including Culex quinquefasciatus, transmit the virus. To test the potential of Cx. quinquefasciatus to transmit ZIKV, we experimentally compared the vector competence of laboratory-reared Ae. aegypti and Cx. quinquefasciatus. Interestingly, we were able to detect the presence of ZIKV in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus. In addition, we collected ZIKV-infected Cx. quinquefasciatus from urban areas with high microcephaly incidence in Recife, Brazil. Corroborating our experimental data from artificially fed mosquitoes, ZIKV was isolated from field-caught Cx. quinquefasciatus, and its genome was partially sequenced. Collectively, these findings indicate that there may be a wider range of ZIKV vectors than anticipated.

  10. Detecting multiple DNA human profile from a mosquito blood meal.

    Science.gov (United States)

    Rabêlo, K C N; Albuquerque, C M R; Tavares, V B; Santos, S M; Souza, C A; Oliveira, T C; Moura, R R; Brandão, L A C; Crovella, S

    2016-08-26

    Criminal traces commonly found at crime scenes may present mixtures from two or more individuals. The scene of the crime is important for the collection of various types of traces in order to find the perpetrator of the crime. Thus, we propose that hematophagous mosquitoes found at crime scenes can be used to perform genetic testing of human blood and aid in suspect investigation. The aim of the study was to obtain a single Aedes aegypti mosquito profile from a human DNA mixture containing genetic materials of four individuals. We also determined the effect of blood acquisition time by setting time intervals of 24, 48, and 72 h after the blood meal. STR loci and amelogenin were analyzed, and the results showed that human DNA profiles could be obtained from hematophagous mosquitos at 24 h following the blood meal. It is possible that hematophagous mosquitoes can be used as biological remains at the scene of the crime, and can be used to detect human DNA profiles of up to four individuals.

  11. PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Pascal Miesen

    2016-12-01

    Full Text Available Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo- viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research.

  12. Mosquito distribution in a saltmarsh: determinants of eggs in a variable environment.

    Science.gov (United States)

    Rowbottom, Raylea; Carver, Scott; Barmuta, Leon A; Weinstein, Philip; Allen, Geoff R

    2017-06-01

    Two saltmarsh mosquitoes dominate the transmission of Ross River virus (RRV, Togoviridae: Alphavirus), one of Australia's most prominent mosquito-borne diseases. Ecologically, saltmarshes vary in their structure, including habitat types, hydrological regimes, and diversity of aquatic fauna, all of which drive mosquito oviposition behavior. Understanding the distribution of vector mosquitoes within saltmarshes can inform early warning systems, surveillance, and management of vector populations. The aim of this study was to identify the distribution of Ae. camptorhynchus, a known vector for RRV, across a saltmarsh and investigate the influence that other invertebrate assemblage might have on Ae. camptorhynchus egg dispersal. We demonstrate that vegetation is a strong indicator for Ae. camptorhynchus egg distribution, and this was not correlated with elevation or other invertebrates located at this saltmarsh. Also, habitats within this marsh are less frequently inundated, resulting in dryer conditions. We conclude that this information can be applied in vector surveillance and monitoring of temperate saltmarsh environments and also provides a baseline for future investigations into understanding mosquito vector habitat requirements. © 2017 The Society for Vector Ecology.

  13. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil.

    Directory of Open Access Journals (Sweden)

    Andressa Zelenski de Lara Pinto

    Full Text Available Viruses may represent the most diverse microorganisms on Earth. Novel viruses and variants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil. In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to viral RNA extraction, double-strand cDNA synthesis, random amplification and high-throughput sequencing, revealing the presence of seven insect-specific viruses, six of which represent new species of Rhabdoviridae (Lobeira virus, Chuviridae (Cumbaru and Croada viruses, Totiviridae (Murici virus and Partitiviridae (Araticum and Angico viruses. In addition, two mosquito pools presented Kaiowa virus sequences that had already been reported in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-type Culicinae. Insect-specific viruses may present a broader diversity than previously imagined and future studies may address their possible role in mosquito vector competence.

  14. Repellent Action Of Neem (Azadiracta India Seed Oil Against Aedes Aegypti Mosquitoes

    Directory of Open Access Journals (Sweden)

    Hati A K

    1995-01-01

    Full Text Available Neem (Azadiracta India seed oil in appropriate amount when smeared on the surface of the hand showed excellent repellent action against Aedes aegypti mosquitoes. When 1 ml of oil was spread on the hand, with an approximate area of 160 sq cm the percentage of alighting and blood fed mosquitoes in the experimental cages varied from 14 to 78 and 4 to 46 respectively. This percentage decreased to 6 to 18 and 0 to 16 respectively when the amount of oil applied was 1.5 ml. Only 0-4% of the mosquitoes alighted on the skin of which 2% only took the blood meal when 2 ml of the oil was used to cover the hand. In the control cages cent percent of the mosquitoes alighted and sucked blood. The repellent action was directly proportional to the hour of exposure to the oil. It was also observed that even after alighting on a oil- smeared skin a sizeable proportion of mosquitoes were not able to imbibe blood meal. Neem seed oil was non-toxic, non- irritating to skin.

  15. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    Science.gov (United States)

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P insect predators can effectively reduce mosquito density in the presence of multiple alternative prey. © 2013 The Royal Entomological Society.

  16. Drinking a hot blood meal elicits a protective heat shock response in mosquitoes.

    Science.gov (United States)

    Benoit, Joshua B; Lopez-Martinez, Giancarlo; Patrick, Kevin R; Phillips, Zachary P; Krause, Tyler B; Denlinger, David L

    2011-05-10

    The mosquito's body temperature increases dramatically when it takes a blood meal from a warm-blooded, vertebrate host. By using the yellow fever mosquito, Aedes aegypti, we demonstrate that this boost in temperature following a blood meal prompts the synthesis of heat shock protein 70 (Hsp70). This response, elicited by the temperature of the blood meal, is most robust in the mosquito's midgut. When RNA interference is used to suppress expression of hsp70, protein digestion of the blood meal is impaired, leading to production of fewer eggs. We propose that Hsp70 protects the mosquito midgut from the temperature stress incurred by drinking a hot blood meal. Similar increases in hsp70 were documented immediately after blood feeding in two other mosquitoes (Culex pipiens and Anopheles gambiae) and the bed bug, Cimex lectularius, suggesting that this is a common protective response in blood-feeding arthropods.

  17. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Lisa L Drake

    2010-12-01

    Full Text Available The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT. Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  18. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Drake, Lisa L; Boudko, Dmitri Y; Marinotti, Osvaldo; Carpenter, Victoria K; Dawe, Angus L; Hansen, Immo A

    2010-12-29

    The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  19. Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula

    Directory of Open Access Journals (Sweden)

    Paul T. Leisnham

    2011-07-01

    Full Text Available A study was conducted during the summer of 2009 (from July to September to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November ditches were plugged near their outlets in two (‘experimental’ marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557 of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4–5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt than unoccupied habitats (20.1 ppt, and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of

  20. Long-term pathogenic response to Plasmodium relictum infection in Culex pipiens mosquito.

    Science.gov (United States)

    Pigeault, Romain; Villa, Manon

    2018-01-01

    The transmission of Plasmodium within a vertebrate host population is strongly associated with the life history traits of its vector. Therefore the effect of malaria infection on mosquito fecundity and longevity has traditionally received a lot of attention. Several species of malaria parasites reduce mosquito fecundity, nevertheless almost all of the studies have focused only on the first gonotrophic cycle. Yet, during their lifetime, female mosquitoes go through several gonotrophic cycles, which raises the question of whether they are able to compensate the fecundity costs induced by the parasite. The impact of Plasmodium infection on female longevity is not so clear and has produced conflicting results. Here we measured the impact of Plasmodium relictum on its vector's longevity and fecundity during three consecutive gonotrophic cycles. In accordance with previous studies, we observed a negative impact of Plasmodium infection on mosquito (Culex pipiens) fecundity in the first gonotrophic cycle. Interestingly, despite having taken two subsequent uninfected blood meals, the negative impact of malaria parasite persisted. Nevertheless no impact of infection on mosquito longevity was observed. Our results are not in line with the hypothesis that the reduction of fecundity observed in infected mosquitoes is an adaptive strategy of Plasmodium to increase the longevity of its vector. We discuss the different underlying mechanisms that may explain our results.

  1. Seasonal abundance and potential of Japanese encephalitis virus infection in mosquitoes at the nesting colony of ardeid birds, Thailand.

    Science.gov (United States)

    Changbunjong, Tanasak; Weluwanarak, Thekhawet; Taowan, Namaoy; Suksai, Parut; Chamsai, Tatiyanuch; Sedwisai, Poonyapat

    2013-03-01

    To investigate the abundance and seasonal dynamics of mosquitoes, and to detect Japanese encephalitis virus (JEV) in these mosquitoes at the nesting colony of ardeid birds. Mosquitoes were collected bimonthly from July 2009 to May 2010 by Centers for Disease Control. Light traps and dry ice, as a source of CO2, were employed to attract mosquitoes. Mosquitoes were first identified, pooled into groups of upto 50 mosquitoes by species, and tested for JEV infection by viral isolation and reverse transcriptase polymerase chain reaction. A total of 20 370 mosquitoes comprising 14 species in five genera were collected. The five most abundant mosquito species collected were Culex tritaeniorhynchus (95.46%), Culex vishnui (2.68%), Culex gelidus (0.72%), Anopheles peditaeniatus (0.58%) and Culex quinquefasciatus (0.22%). Mosquito peak densities were observed in July. All of 416 mosquito pools were negative for JEV. This study provides new information about mosquito species and status of JEV infection in mosquitoes in Thailand. Further study should be done to continue a close survey for the presence of this virus in the ardeid birds.

  2. Mosquito-host interactions during and after an outbreak of equine viral encephalitis in Eastern Panama.

    Directory of Open Access Journals (Sweden)

    Wayra G Navia-Gine

    Full Text Available Mosquito blood meals provide information about the feeding habits and host preference of potential arthropod-borne disease vectors. Although mosquito-borne diseases are ubiquitous in the Neotropics, few studies in this region have assessed patterns of mosquito-host interactions, especially during actual disease outbreaks. Based on collections made during and after an outbreak of equine viral encephalitis, we identified the source of 338 blood meals from 10 species of mosquitoes from Aruza Abajo, a location in Darien province in eastern Panama. A PCR based method targeting three distinct mitochondrial targets and subsequent DNA sequencing was used in an effort to delineate vector-host relationships. At Aruza Abajo, large domesticated mammals dominated the assemblage of mosquito blood meals while wild bird and mammal species represented only a small portion of the blood meal pool. Most mosquito species fed on a variety of hosts; foraging index analysis indicates that eight of nine mosquito species utilize hosts at similar proportions while a stochastic model suggests dietary overlap among species was greater than would be expected by chance. The results from our null-model analysis of mosquito diet overlap are consistent with the hypothesis that in landscapes where large domestic animals dominate the local biomass, many mosquito species show little host specificity, and feed upon hosts in proportion to their biomass, which may have implications for the role of livestocking patterns in vector-borne disease ecology.

  3. Efficacy of Advanced Odomos repellent cream (N, N-diethyl-benzamide) against mosquito vectors.

    Science.gov (United States)

    Mittal, P K; Sreehari, U; Razdan, R K; Dash, A P; Ansari, M A

    2011-04-01

    Repellents are commonly used personal protection measures to avoid mosquito bites. In the present study, Advanced Odomos cream (12% N, N-diethyl-benzamide) was tested for its efficacy against mosquitoes in comparison to DEET (N,N-diethyl-3-methyl benzamide). Bioassays were conducted to assess the repellency of Advanced Odomos and DEET creams against Anopheles stephensi and Aedes aegypti. Their efficacy was tested on human volunteers applied with different concentrations of test creams ranging from 1 to 12 mg/cm 2 and by exposing them to mosquitoes at hourly intervals. Field evaluation was also carried out to test the duration of protection of the test creams against Anopheles and Aedes mosquitoes during whole night and day time collections, respectively on human volunteers. Mosquito collections were done using torch light and aspirator. Complete (100%) protection was achieved at 10 mg/cm 2 cream formulation of Advanced Odomos (1.2 mg a.i/cm 2 ) dose against An. stephensi and 12 mg/cm 2 (1.44 mg a.i./cm 2 ) against Ae. aegypti on human baits. There was no statistically significant differences in per cent protection against mosquito bites between Advanced Odomos and DEET cream (P>0.05) in respective doses. Complete protection up to 11 h was observed against Anopheles mosquitoes during whole night collections and up to 6 h against Ae. aegypti in day time collections. No adverse reactions such as itching, irritation, vomiting, nausea, etc. were reported by the volunteers. Advanced Odomos cream applied at 10 mg/cm 2 concentration provided 100% protection from Anopheles mosquitoes up to 11 h whereas about 6 h protection was recorded against Ae. aegypti. The laboratory and field trials indicate that for longer protection against Anopheles mosquitoes 10 mg/cm 2 will be appropriate and in case of Ae. aegypti more than 10 mg/cm 2 application is required for complete protection. In conclusion, the Advanced Odomos cream was comparable to the known repellent cream DEET for

  4. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    Science.gov (United States)

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including

  5. Technologies to Combat Aedes Mosquitoes: A Model Based on Smart City.

    Science.gov (United States)

    de Souza Silva, Geovanna Cristine; Peltonen, Laura-Maria; Pruinelli, Lisiane; Yoshikazu Shishido, Henrique; Jacklin Eler, Gabrielle

    2018-01-01

    Aedes aegypti and Aedes albopictus mosquitoes are responsible for the transmission of diseases such as dengue fever, yellow fever, chikungunya fever, zika virus fever, some of which can cause irreversible central nervous system problems and death. This study investigates what technologies are being used for combatting and monitoring the Aedes mosquitoes and to propose joining these technologies into a single and complete solution using the Smart Cities concept. A search for newscasts on Google and mobile apps in app stores were performed to identify technological solutions for combat to Aedes mosquitoes. Also, a model for joint technology was proposed. Results identified the following technologies: 170 software, two sensors, two drones, one electronic device, ten mosquito traps/lures, seven biological tools, six biotechnologies, and eight chemical formulations. Technological resources and adoption of preventive measures by the population could be a useful method for the mosquito control. Examples include a georeferenced model for identification and examination of larvae, application of chemical/biological products, real-time mapping, sending of educational materials via email or social media for the population, and alerts to health professionals in the zones of combat/risk. In combination, these technologies may indicate a better solution to the current problem.

  6. Repellency of Lantana camara (Verbenaceae) flowers against Aedes mosquitoes.

    Science.gov (United States)

    Dua, V K; Gupta, N C; Pandey, A C; Sharma, V P

    1996-09-01

    The repellent effect of Lantana camara flowers was evaluated against Aedes mosquitoes. Lantana flower extract in coconut oil provided 94.5% protection from Aedes albopictus and Ae. aegypti. The mean protection time was 1.9 h. One application of Lantana flower can provide more than 50% protection up to 4 h against the possible bites of Aedes mosquitoes. No adverse effects of the human volunteers were observed through 3 months after the application.

  7. [Adverse reactions to mosquito bites in scholars from Monterrey, Nuevo Leon, Mexico].

    Science.gov (United States)

    Manrique López, María Amelia; González Díaz, Sandra N; Arias Cruz, Alfredo; Sedó Mejía, Giovanni A; Canseco Villarreal, José Ignacio; Gómez Retamoza, Ernesto Antonio; Padrón López, Olga Magdalena; Cruz Moreno, Miguel Angel; Cisneros Salazar, Guillermo Daniel

    2010-01-01

    Allergic reactions to insect bites are a global problem, the true incidence and prevalence of morbidity from adverse reactions to mosquito bites are unknown. To describe the adverse reactions to mosquito bites in school-age children of Monterrey, Nuevo Leon. A cross-sectional descriptive study was made via a randomized application of questionnaires to children from public elementary schools in the metropolitan area of Monterrey, Nuevo Leon. A total of 11 public schools randomly selected were included in the study. One thousand questionnaires were submitted, of which 506 fulfilled the inclusion criteria; 55% were females. Seventy-six percent referred adverse reactions to mosquito bites, itching (75%) and rash (72%) being the most frequent ones, in the last 12 months. Adverse reactions to mosquito bites occur frequently. Early detection is important to establish a prompt treatment.

  8. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenia

    NARCIS (Netherlands)

    Impoinvil, D.E.; Kongere, J.O.; Foster, W.A.; Njiru, B.N.; Killeen, G.F.; Githure, J.I.; Beier, J.C.; Hassanali, A.; Knols, B.G.J.

    2004-01-01

    The propensity of the malaria vector mosquito Anopheles gambiae Giles (Diptera: Culicidae) to ingest sugars from various plants, and subsequent survival rates, were assessed with laboratory-reared males and females offered eight species of plants commonly cultivated and/or growing wild in western

  9. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    OpenAIRE

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that compris...

  10. Xenomonitoring of Mosquitoes (Diptera: Culicidae for the Presence of Filarioid Helminths in Eastern Austria

    Directory of Open Access Journals (Sweden)

    Sarah Susanne Übleis

    2018-01-01

    Full Text Available Information on mosquito-borne filarioid helminths in Austria is scarce, but recent discoveries of Dirofilaria repens indicate autochthonous distribution of this parasite in Eastern Austria. In the current xenomonitoring study, more than 48,000 mosquitoes were collected in Eastern Austria between 2013 and 2015, using different sampling techniques and storage conditions, and were analysed in pools with molecular tools for the presence of filarioid helminth DNA. Overall, DNA of D. repens, Setaria tundra, and two unknown filarioid helminths were documented in twenty mosquito pools within the mitochondrial cox1 gene (barcode region. These results indicate that S. tundra, with roe deer as definite hosts, is common in Eastern Austria, with most occurrences in floodplain mosquitoes (e.g., Aedes vexans. Moreover, DNA of D. repens was found in an Anopheles plumbeus mosquito close to the Slovakian border, indicating that D. repens is endemic in low prevalence in Eastern Austria. This study shows that xenomonitoring is an adequate tool to analyse the presence of filarioid helminths, but results are influenced by mosquito sampling techniques, storage conditions, and molecular protocols.

  11. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Shicheng Chen

    2017-08-01

    Full Text Available Strains of Serratia marcescens, originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi, suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi, suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi, designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae. Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important

  12. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi.

    Science.gov (United States)

    Chen, Shicheng; Blom, Jochen; Walker, Edward D

    2017-01-01

    Strains of Serratia marcescens , originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi , suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi , suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi , designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae . Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important genes involved in

  13. Vector Competence of American Mosquitoes for Three Strains of Zika Virus.

    Directory of Open Access Journals (Sweden)

    James Weger-Lucarelli

    2016-10-01

    Full Text Available In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.

  14. New insights into HCV replication in original cells from Aedes mosquitoes.

    Science.gov (United States)

    Fallecker, Catherine; Caporossi, Alban; Rechoum, Yassine; Garzoni, Frederic; Larrat, Sylvie; François, Olivier; Fender, Pascal; Morand, Patrice; Berger, Imre; Petit, Marie-Anne; Drouet, Emmanuel

    2017-08-22

    The existing literature about HCV association with, and replication in mosquitoes is extremely poor. To fill this gap, we performed cellular investigations aimed at exploring (i) the capacity of HCV E1E2 glycoproteins to bind on Aedes mosquito cells and (ii) the ability of HCV serum particles (HCVsp) to replicate in these cell lines. First, we used purified E1E2 expressing baculovirus-derived HCV pseudo particles (bacHCVpp) so we could investigate their association with mosquito cell lines from Aedes aegypti (Aag-2) and Aedes albopictus (C6/36). We initiated a series of infections of both mosquito cells (Ae aegypti and Ae albopictus) with the HCVsp (Lat strain - genotype 3) and we observed the evolution dynamics of viral populations within cells over the course of infection via next-generation sequencing (NGS) experiments. Our binding assays revealed bacHCVpp an association with the mosquito cells, at comparable levels obtained with human hepatocytes (HepaRG cells) used as a control. In our infection experiments, the HCV RNA (+) were detectable by RT-PCR in the cells between 21 and 28 days post-infection (p.i.). In human hepatocytes HepaRG and Ae aegypti insect cells, NGS experiments revealed an increase of global viral diversity with a selection for a quasi-species, suggesting a structuration of the population with elimination of deleterious mutations. The evolutionary pattern in Ae albopictus insect cells is different (stability of viral diversity and polymorphism). These results demonstrate for the first time that natural HCV could really replicate within Aedes mosquitoes, a discovery which may have major consequences for public health as well as in vaccine development.

  15. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.

    Science.gov (United States)

    Culler, Lauren E; Ayres, Matthew P; Virginia, Ross A

    2015-09-22

    Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems. © 2015 The Author(s).

  16. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    OpenAIRE

    Lef?vre, Thierry; Vantaux, Am?lie; Dabir?, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies reve...

  17. Reduced Insecticide Susceptibility in Aedes vexans (Diptera: Culicidae) Where Agricultural Pest Management Overlaps With Mosquito Abatement.

    Science.gov (United States)

    Dunbar, Mike W; Bachmann, Amanda; Varenhorst, Adam J

    2018-05-04

    Mosquito abatement programs in Midwestern communities frequently exist within landscapes dominated by agriculture. Although separately managed, both agricultural pests and mosquitoes are targeted by similar classes of insecticides. As a result, there is the potential for unintended insecticide exposure to mosquito populations from agricultural pest management. To determine the impact that agricultural management practices have on mosquito insecticide susceptibility we compared the mortality of Aedes vexans (Meigen; Diptera: Culicidae) between populations sampled from locations with and without mosquito abatement in South Dakota, a region dominated by agricultural production. Collection locations were either within towns with mosquito abatement programs (n = 2; Brookings and Sioux Falls, SD) or located > 16 km from towns with mosquito abatement programs (n = 2; areas near Harrold and Willow Lake, SD). WHO bioassays were used to test susceptibly of adults to differing insecticide classes relative to their respective controls; 1) an organochlorine (dieldrin 4%), 2) an organophosphate (malathion 5%), and 3) a pyrethroid (lambda-cyhalothrin 0.05%). Corrected mortality did not significantly differ between locations with or without abatement; however, when locations were analized by proportion of developed land within the surrounding landscape pyrethroid mortality was significantly lower where crop production dominated the surrounding landscape and mosquito abatement was present. These data suggest that agricultural pest management may incidentally contribute to reduced mosquito susceptibility where overlap between agricultural pest management and mosquito abatement exists. Decoupling insecticide classes used by both agricultural and public health pest management programs may be necessary to ensure continued efficacy of pest management tools.

  18. Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique.

    Directory of Open Access Journals (Sweden)

    Harindranath Cholleti

    Full Text Available Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV. The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.

  19. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Dengue virus (DENV infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.

  20. Evaluation of a Noncontact, Alternative Mosquito Repellent Assay System.

    Science.gov (United States)

    Tisgratog, Rungarun; Kongmee, Monthathip; Sanguanpong, Unchalee; Prabaripai, Atchariya; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2016-09-01

    A novel noncontact repellency assay system (NCRAS) was designed and evaluated as a possible alternative method for testing compounds that repel or inhibit mosquitoes from blood feeding. Deet and Aedes aegypti were used in a controlled laboratory setting. Using 2 study designs, a highly significant difference were seen between deet-treated and untreated skin placed behind the protective screens, indicating that deet was detected and was acting as a deterrence to mosquito landing and probing behavior. However, a 2nd study showed significant differences between protected (behind a metal screen barrier) and unprotected (exposed) deet-treated forearms, indicating the screen mesh might restrict the detection of deet and thus influences landing/biting response. These findings indicate the prototype NCRAS shows good promise but requires further evaluation and possible modification in design and testing protocol to achieve more desirable operational attributes in comparison with direct skin-contact repellency mosquito assays.

  1. Gradual diffusive capture: slow death by many mosquito bites

    International Nuclear Information System (INIS)

    Redner, S; Bénichou, O

    2014-01-01

    We study the dynamics of a single diffusing particle (a ‘man’) with diffusivity D M that is attacked by another diffusing particle (a ‘mosquito’) with fixed diffusivity D m . Each time the mosquito meets and bites the man, the diffusivity of the man is reduced by a fixed amount, while the diffusivity of the mosquito is unchanged. The mosquito is also displaced by a small distance ±a with respect to the man after each encounter. The man is defined as dead when D M reaches zero. At the moment when the man dies, his probability distribution of displacements x is given by a Cauchy form, which asymptotically decays as x −2 , while the distribution of times t when the man dies decays asymptotically as t −3/2 , which has the same form as the one-dimensional first-passage probability. (paper)

  2. The mosquitoes (Diptera: Culidae of Seychelles: taxonomy, ecology, vectorial importance, and identification keys

    Directory of Open Access Journals (Sweden)

    Le Goff Gilbert

    2012-09-01

    Full Text Available Abstract Background During recent periods, the islands of the Republic of Seychelles experienced many diseases such as dengue, chikungunya, Bancroft’s filaria and malaria. Mosquitoes transmit the agents that cause these diseases. Published information on mosquitoes in the Seychelles is notably dispersed in the literature. The maximum number of species obtained on a single field survey does not exceed 14 species. Methods We performed a comprehensive bibliographic review using mosquito and Seychelles as the key words, as well as conducted a mosquito field survey for larval and adult stages during the rainy season in December 2008. Sixteen sites were sampled on four granitic islands (Mahé, Praslin, La Digue and Aride and six sites on coralline atolls in the extreme southwest of the country (Aldabra group. Results We found published references to 21 mosquito species identified at least on one occasion in the Seychelles. Our collections comprised 18 species of mosquitoes, all of them from the subfamily Culicinae; no Anophelinae was found. We also confirm that Aedes seychellensis is a junior synonym of Ae. (Aedimorphus albocephalus. The first records for Culex antennatus and Cx. sunyaniensis are presented from the country, specifically from Aldabra and Praslin, respectively. Based on a comparison of the taxa occurring on the granitic versus coralline islands, only three species, Ae. albocephalus, Cx. scottii and Cx. simpsoni are shared. Aedes albopictus appeared to exclude largely Ae. aegypti on the granitic islands; however, Ae. aegypti was common on Aldabra, where Ae. albopictus has not been recorded. The notable aggressiveness of mosquitoes towards humans on coralline islands was mainly due to two species, the females of which are difficult to distinguish: Ae. fryeri and Ae. (Aedimorphus sp. A. The number of mosquito species collected at least once in the Seychelles is now 22, among which five species (Ae. (Adm sp. A, Cx. stellatus, Uranotaenia

  3. The mosquitoes (Diptera: Culidae) of Seychelles: taxonomy, ecology, vectorial importance, and identification keys.

    Science.gov (United States)

    Le Goff, Gilbert; Boussès, Philippe; Julienne, Simon; Brengues, Cécile; Rahola, Nil; Rocamora, Gérard; Robert, Vincent

    2012-09-21

    During recent periods, the islands of the Republic of Seychelles experienced many diseases such as dengue, chikungunya, Bancroft's filaria and malaria. Mosquitoes transmit the agents that cause these diseases. Published information on mosquitoes in the Seychelles is notably dispersed in the literature. The maximum number of species obtained on a single field survey does not exceed 14 species. We performed a comprehensive bibliographic review using mosquito and Seychelles as the key words, as well as conducted a mosquito field survey for larval and adult stages during the rainy season in December 2008. Sixteen sites were sampled on four granitic islands (Mahé, Praslin, La Digue and Aride) and six sites on coralline atolls in the extreme southwest of the country (Aldabra group). We found published references to 21 mosquito species identified at least on one occasion in the Seychelles. Our collections comprised 18 species of mosquitoes, all of them from the subfamily Culicinae; no Anophelinae was found. We also confirm that Aedes seychellensis is a junior synonym of Ae. (Aedimorphus) albocephalus. The first records for Culex antennatus and Cx. sunyaniensis are presented from the country, specifically from Aldabra and Praslin, respectively. Based on a comparison of the taxa occurring on the granitic versus coralline islands, only three species, Ae. albocephalus, Cx. scottii and Cx. simpsoni are shared. Aedes albopictus appeared to exclude largely Ae. aegypti on the granitic islands; however, Ae. aegypti was common on Aldabra, where Ae. albopictus has not been recorded. The notable aggressiveness of mosquitoes towards humans on coralline islands was mainly due to two species, the females of which are difficult to distinguish: Ae. fryeri and Ae. (Aedimorphus) sp. A. The number of mosquito species collected at least once in the Seychelles is now 22, among which five species (Ae. (Adm) sp. A, Cx. stellatus, Uranotaenia browni. Ur. nepenthes and Ur. pandani) and one

  4. Quinine, mosquitoes and empire: reassembling malaria in British India, 1890–1910

    Science.gov (United States)

    Roy, Rohan Deb

    2012-01-01

    The drug quinine figured as an object of enforced consumption in British India between the late 1890s and the 1910s, when the corresponding diagnostic category malaria itself was redefined as a mosquito-borne fever disease. This article details an overlapping milieu in which quinine, mosquitoes and malaria emerged as intrinsic components of shared and symbiotic histories. It combines insights from new imperial histories, constructivism in the histories of medicine and literature about non-humans in science studies to examine the ways in which histories of insects, drugs, disease and empire interacted and shaped one another. Firstly, it locates the production of historical intimacies between quinine, malaria and mosquitoes within the exigencies and apparatuses of imperial rule. In so doing, it explores the intersections between the worlds of colonial governance, medical knowledge, vernacular markets and pharmaceutical business. Secondly, it outlines ways to narrate characteristics and enabling properties of non-humans (such as quinines and mosquitoes) while retaining a constructivist critique of scientism and empire. Thirdly, it shows how empire itself was reshaped and reinforced while occasioning the proliferation of categories and entities like malaria, quinine and mosquitoes. PMID:24765235

  5. [Investigations on the physiology of the glands of carnivorous plants : IV. The kinetics of chloride secretion by the gland tissue of Nepenthes].

    Science.gov (United States)

    Lüttge, U

    1966-03-01

    The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.

  6. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes.

    Science.gov (United States)

    Overcash, Justin M; Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2015-02-01

    Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.

  7. Fauna and Larval Habitats of Mosquitoes (Diptera: Culicidae of West Azerbaijan Province, Northwestern Iran.

    Directory of Open Access Journals (Sweden)

    Farahnaz Khoshdel-Nezamiha

    2014-12-01

    Full Text Available Several important diseases are transmitted by mosquitoes. Despite of the potential of the occurrence of some mosquito-borne diseases such as West Nile, dirofilariasis and malaria in the region, there is no recent study of mosquitoes in West Azerbaijan Province. The aim of this investigation was to study the fauna, composition and distribution of mosquitoes and the characteristics of their larval habitats in this province.Larvae and adult collections were carried out from different habitats using the standard methods in twenty five localities of seven counties across West Azerbaijan Province.Overall, 1569 mosquitoes including 1336 larvae and 233 adults were collected from 25 localities. The details of geographical properties were recorded. Five genera along with 12 species were collected and identified including: Anopheles claviger, An. maculipennis s.l., An. superpictus, Culex pipiens, Cx. theileri, Cx. modestus, Cx. hortensis, Cx. mimeticus, Culiseta Longiareolata, Ochlerotatus caspius s.l., Oc. geniculatus and Uranotaenia unguiculata. This is the first record of Oc. geniculatus in the province.Due to the geographical location of the West Azerbaijan Province, it comprises different climatic condition which provides suitable environment for the establishment of various species of mosquitoes. The solidarity geographical, cultural and territorial exchanges complicate the situation of the province and its vectors as a threat for future and probable epidemics of mosquito-borne diseases.

  8. Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae, a vector of malaria disease

    Directory of Open Access Journals (Sweden)

    Kayode David Ileke

    2015-07-01

    Full Text Available Objective: To evaluate the insecticidal potential of Alstonia boonei (A. boonei oils and derivatives against different life stages of a malaria vector, Anopheles gambiae. Methods: The leaf, stem bark and root bark of A. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity of A. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  9. Recasting the theory of mosquito-borne pathogen transmission dynamics and control

    Science.gov (United States)

    Smith, David L.; Perkins, T. Alex; Reiner, Robert C.; Barker, Christopher M.; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M.; George, Dylan B.; Le Menach, Arnaud; Pulliam, Juliet R. C.; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A. T.; Garcia, Andres J.; Gatton, Michelle L.; Gething, Peter W.; Hartley, David M.; Johnston, Geoffrey; Klein, Eili Y.; Michael, Edwin; Lloyd, Alun L.; Pigott, David M.; Reisen, William K.; Ruktanonchai, Nick; Singh, Brajendra K.; Stoller, Jeremy; Tatem, Andrew J.; Kitron, Uriel; Godfray, H. Charles J.; Cohen, Justin M.; Hay, Simon I.; Scott, Thomas W.

    2014-01-01

    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control. PMID:24591453

  10. Recasting the theory of mosquito-borne pathogen transmission dynamics and control.

    Science.gov (United States)

    Smith, David L; Perkins, T Alex; Reiner, Robert C; Barker, Christopher M; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M; George, Dylan B; Le Menach, Arnaud; Pulliam, Juliet R C; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A T; Garcia, Andres J; Gatton, Michelle L; Gething, Peter W; Hartley, David M; Johnston, Geoffrey; Klein, Eili Y; Michael, Edwin; Lloyd, Alun L; Pigott, David M; Reisen, William K; Ruktanonchai, Nick; Singh, Brajendra K; Stoller, Jeremy; Tatem, Andrew J; Kitron, Uriel; Godfray, H Charles J; Cohen, Justin M; Hay, Simon I; Scott, Thomas W

    2014-04-01

    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.

  11. A Statewide Survey for Container-Breeding Mosquitoes in Mississippi.

    Science.gov (United States)

    Goddard, Jerome; Moraru, Gail M; Mcinnis, Sarah J; Portugal, J Santos; Yee, Donald A; Deerman, J Hunter; Varnado, Wendy C

    2017-09-01

    Container-breeding mosquitoes are important in public health due to outbreaks of Zika, chikungunya, and dengue viruses. This paper documents the distribution of container-breeding mosquito species in Mississippi, with special emphasis on the genus Aedes. Five sites in each of the 82 Mississippi counties were sampled monthly between May 1 and August 31, 2016, and 50,109 mosquitoes in 14 species were collected. The most prevalent and widely distributed species found was Ae. albopictus, being found in all 82 counties, especially during July. A recent invasive, Ae. japonicus, seems to be spreading rapidly in Mississippi since first being discovered in the state in 2011. The most abundant Culex species collected were Cx. quinquefasciatus (found statewide), Cx. salinarius (almost exclusively in the southern portion of the state), and Cx. restuans (mostly central and southern Mississippi). Another relatively recent invasive species, Cx. coronator, was found in 20 counties, predominantly in the southern one-third of the state during late summer. Co-occurrence data of mosquito species found in the artificial containers were also documented and analyzed. Lastly, even though we sampled extensively in 410 sites across Mississippi, no larval Ae. aegypti were found. These data represent the first modern statewide survey of container species in Mississippi, and as such, allows for better public health readiness for emerging diseases and design of more effective vector control programs.

  12. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion.

    NARCIS (Netherlands)

    Dinglasan, R.R.; Alaganan, A.; Ghosh, A.K.; Saito, A.; Kuppevelt, A.H.M.S.M. van; Jacobs-Lorena, M.

    2007-01-01

    Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are

  13. Larvicidal activity of neem oil (Azadirachta indica formulation against mosquitoes

    Directory of Open Access Journals (Sweden)

    Dua Virendra K

    2009-06-01

    Full Text Available Abstract Background Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of mosquitoes. Azadirachta indica (Meliaceae and its derived products have shown a variety of insecticidal properties. The present paper discusses the larvicidal activity of neem-based biopesticide for the control of mosquitoes. Methods Larvicidal efficacy of an emulsified concentrate of neem oil formulation (neem oil with polyoxyethylene ether, sorbitan dioleate and epichlorohydrin developed by BMR & Company, Pune, India, was evaluated against late 3rd and early 4th instar larvae of different genera of mosquitoes. The larvae were exposed to different concentrations (0.5–5.0 ppm of the formulation along with untreated control. Larvicidal activity of the formulation was also evaluated in field against Anopheles, Culex, and Aedes mosquitoes. The formulation was diluted with equal volumes of water and applied @ 140 mg a.i./m2 to different mosquito breeding sites with the help of pre calibrated knapsack sprayer. Larval density was determined at pre and post application of the formulation using a standard dipper. Results Median lethal concentration (LC50 of the formulation against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was found to be 1.6, 1.8 and 1.7 ppm respectively. LC50 values of the formulation stored at 26°C, 40°C and 45°C for 48 hours against Ae. aegypti were 1.7, 1.7, 1.8 ppm while LC90 values were 3.7, 3.7 and 3.8 ppm respectively. Further no significant difference in LC50 and LC90 values of the formulation was observed against Ae. aegypti during 18 months storage period at room temperature. An application of the formulation at the rate of 140 mg a.i./m2 in different breeding

  14. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed.

    Science.gov (United States)

    Muijres, F T; Chang, S W; van Veen, W G; Spitzen, J; Biemans, B T; Koehl, M A R; Dudley, R

    2017-10-15

    To escape after taking a blood meal, a mosquito must exert forces sufficiently high to take off when carrying a load roughly equal to its body weight, while simultaneously avoiding detection by minimizing tactile signals exerted on the host's skin. We studied this trade-off between escape speed and stealth in the malaria mosquito Anopheles coluzzii using 3D motion analysis of high-speed stereoscopic videos of mosquito take-offs and aerodynamic modeling. We found that during the push-off phase, mosquitoes enhanced take-off speed using aerodynamic forces generated by the beating wings in addition to leg-based push-off forces, whereby wing forces contributed 61% of the total push-off force. Exchanging leg-derived push-off forces for wing-derived aerodynamic forces allows the animal to reduce peak force production on the host's skin. By slowly extending their long legs throughout the push-off, mosquitoes spread push-off forces over a longer time window than insects with short legs, thereby further reducing peak leg forces. Using this specialized take-off behavior, mosquitoes are capable of reaching take-off speeds comparable to those of similarly sized fruit flies, but with weight-normalized peak leg forces that were only 27% of those of the fruit flies. By limiting peak leg forces, mosquitoes possibly reduce the chance of being detected by the host. The resulting combination of high take-off speed and low tactile signals on the host might help increase the mosquito's success in escaping from blood-hosts, which consequently also increases the chance of transmitting vector-borne diseases, such as malaria, to future hosts. © 2017. Published by The Company of Biologists Ltd.

  15. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles.

    Science.gov (United States)

    Ajaegbu, Elijah Eze; Danga, Simon Pierre Yinyang; Chijoke, Ikemefuna Uzochukwu; Okoye, Festus Basden Chiedu

    2016-03-01

    Aedes aegypti is a domestic mosquito and one of the primary vectors for dengue and yellow fever. Since, it is a vector of deadly diseases, its control becomes essential. Medicinal plants may be an alternative to adulticidal agents since they contain rich source of bioactive compounds. This study was designed to determine the adulticidal activity of Spondias mombin leaf methanol crude extract, n-hexane, dichloromethane and ethyl acetate fractions against female adults of Ae. aegypti mosquitoes and isolate active compound(s) responsible for the bioactivity. All leaf extract and fractions were evaluated for adulticidal activity against Ae. aegypti mosquitoes. Adult mortality was observed after 24 h of exposure. The dichloromethane fraction was further purified being the most active fraction using silica gel column chromatography and the active compounds were identified with the aid of HPLC and LC-ESI-MS/MS. The LC50 and LC90 were determined by Probit analysis. Dichloromethane fraction was the most effective fraction with LC50 value of 2172.815 μg/ml. Compounds identified were mainly ellagic acid and 1-O-Galloyl-6-O-luteoyl-α-D-glucose. The S. mombin leaf extracts and fractions proved to be a strong candidate for a natural, safe and stable adulticide, alternative to synthetic adulticide.

  16. Detection and characterization of a novel rhabdovirus in Aedes cantans mosquitoes and evidence for a mosquito-associated new genus in the family Rhabdoviridae.

    Science.gov (United States)

    Shahhosseini, Nariman; Lühken, Renke; Jöst, Hanna; Jansen, Stephanie; Börstler, Jessica; Rieger, Toni; Krüger, Andreas; Yadouleton, Anges; de Mendonça Campos, Renata; Cirne-Santos, Claudio Cesar; Ferreira, Davis Fernandes; Garms, Rolf; Becker, Norbert; Tannich, Egbert; Cadar, Daniel; Schmidt-Chanasit, Jonas

    2017-11-01

    Thanks to recent advances in random amplification technologies, metagenomic surveillance expanded the number of novel, often unclassified viruses within the family Rhabdoviridae. Using a vector-enabled metagenomic (VEM) tool, we identified a novel rhabdovirus in Aedes cantans mosquitoes collected from Germany provisionally named Ohlsdorf virus (OHSDV). The OHSDV genome encodes the canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORF in the P gene. Sequence analysis indicated that OHSDV exhibits a similar genome organization and characteristics compared to other mosquito-associated rhabdoviruses (Riverside virus, Tongilchon virus and North Creek virus). Complete L protein based phylogeny revealed that all four viruses share a common ancestor and form a deeply rooted and divergent monophyletic group within the dimarhabdovirus supergroup and define a new genus, tentatively named Ohlsdorfvirus. Although the Ohlsdorfvirus clade is basal within the dimarhabdovirus supergroup phylogeny that includes genera of arthropod-borne rhabdoviruses, it remains unknown if viruses in the proposed new genus are vector-borne pathogens. The observed spatiotemporal distribution in mosquitoes suggests that members of the proposed genus Ohlsdorfvirus are geographically restricted/separated. These findings increase the current knowledge of the genetic diversity, classification and evolution of this virus family. Further studies are needed to determine the host range, transmission route and the evolutionary relationships of these mosquito-associated viruses with those infecting vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Targeting the breeding sites of malaria mosquitoes: biological and physical control of malaria mosquito larvae

    NARCIS (Netherlands)

    Bukhari, S.T.

    2011-01-01


    Malaria causes an estimated 225 million cases and 781,000 deaths every year. About 85% of the deaths are in children under five years of age. Malaria is caused by the Plasmodium parasite which is transmitted by the Anopheles mosquito vector. Mainly two methods of intervention are used for

  18. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation.

    Science.gov (United States)

    Ariani, Cristina V; Juneja, Punita; Smith, Sophia; Tinsley, Matthew C; Jiggins, Francis M

    2015-01-01

    Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda

    NARCIS (Netherlands)

    Hakizimana, Emmanuel; Karema, Corine; Munyakanage, Dunia; Githure, John; Mazarati, Jean Baptiste; Tongren, Jon Eric; Takken, Willem; Binagwaho, Agnes; Koenraadt, Constantianus J.M.

    2018-01-01

    To date, the Republic of Rwanda has not systematically reported on distribution, diversity and malaria infectivity rate of mosquito species throughout the country. Therefore, we assessed the spatial and temporal variation of mosquitoes in the domestic environment, as well as the nocturnal biting

  20. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector

    Science.gov (United States)

    Bäckman, Stina; Näslund, Jonas; Forsman, Mats; Thelaus, Johanna

    2015-01-01

    Mosquitoes are thought to function as mechanical vectors of Francisella tularensis subspecies holarctica (F. t. holarctica) causing tularemia in humans. We investigated the clinical relevance of transstadially maintained F. t. holarctica in mosquitoes. Aedes egypti larvae exposed to a fully virulent F. t. holarctica strain for 24 hours, were allowed to develop into adults when they were individually homogenized. Approximately 24% of the homogenates tested positive for F. t. DNA in PCR. Mice injected with the mosquito homogenates acquired tularemia within 5 days. This novel finding demonstrates the possibility of transmission of bacteria by adult mosquitoes having acquired the pathogen from their aquatic larval habitats.

  1. Discovery of antimicrobial lipodepsipeptides produced by a Serratia sp. within mosquito microbiomes.

    Science.gov (United States)

    Ganley, Jack; Carr, Gavin; Ioerger, Thomas; Sacchettini, James; Clardy, Jon; Derbyshire, Emily

    2018-04-26

    The Anopheles mosquito that harbors the Plasmodium parasite contains a microbiota that can influence both the vector and parasite. In recent years, insect-associated microbes have highlighted the untapped potential of exploiting interspecies interactions to discover bioactive compounds. In this study, we report the discovery of nonribosomal lipodepsipeptides that are produced by a Serratia sp. within the midgut and salivary glands of A. stephensi mosquitoes. The lipodepsipeptides, stephensiolides A-K, have antibiotic activity and facilitate bacterial surface motility. Bioinformatic analyses indicate that the stephensiolides are ubiquitous in nature and are likely important for Serratia spp. colonization within mosquitoes, humans, and other ecological niches. Our results demonstrate the usefulness of probing insect-microbiome interactions, enhance our understanding of the chemical ecology within Anopheles mosquitoes, and provide a secondary metabolite scaffold to further investigate this complex relationship. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wolbachia Effects on Rift Valley Virus Infection in Culex tarsalis Mosquitoes

    Science.gov (United States)

    2017-04-25

    Wolbachia density in mosquitoes. 109" 110" Materials and Methods 111" Ethics statement 112" TR-17-113 Mosquitoes were maintained on commercially available...fever virus. 379" Vet Med Today. 2009; 883–893. 380" 29. Wilson M. Rift Valley fever virus ecology and the epidemiology of disease emergence. 381

  3. Identifying the main mosquito species in China based on DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected.

  4. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Turley, Andrew P; Moreira, Luciano A; O'Neill, Scott L; McGraw, Elizabeth A

    2009-09-15

    The mosquito Aedes aegypti was recently transinfected with a life-shortening strain of the endosymbiont Wolbachia pipientis (wMelPop) as the first step in developing a biocontrol strategy for dengue virus transmission. In addition to life-shortening, the wMelPop-infected mosquitoes also exhibit increased daytime activity and metabolic rates. Here we sought to quantify the blood-feeding behaviour of Wolbachia-infected females as an indicator of any virulence or energetic drain associated with Wolbachia infection. In a series of blood-feeding trials in response to humans, we have shown that Wolbachia-infected mosquitoes do not differ in their response time to humans, but that as they age they obtain fewer and smaller blood meals than Wolbachia-uninfected controls. Lastly, we observed a behavioural characteristic in the Wolbachia infected mosquitoes best described as a "bendy" proboscis that may explain the decreased biting success. Taken together the evidence suggests that wMelPop infection may be causing tissue damage in a manner that intensifies with mosquito age and that leads to reduced blood-feeding success. These behavioural changes require further investigation with respect to a possible physiological mechanism and their role in vectorial capacity of the insect. The selective decrease of feeding success in older mosquitoes may act synergistically with other Wolbachia-associated traits including life-shortening and viral protection in biocontrol strategies.

  5. Detection of the Invasive Mosquito Species Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Portugal

    Science.gov (United States)

    Osório, Hugo Costa; Zé-Zé, Líbia; Neto, Maria; Silva, Sílvia; Marques, Fátima; Silva, Ana Sofia; Alves, Maria João

    2018-01-01

    The Asian tiger mosquito Aedes albopictus is an invasive mosquito originating from the Asia-Pacific region. This species is of major concern to public and veterinary health because of its vector role in the transmission of several pathogens, such as chikungunya, dengue, and Zika viruses. In Portugal, a National Vector Surveillance Network (REde de VIgilância de VEctores—REVIVE) is responsible for the surveillance of autochthonous, but also invasive, mosquito species at points of entry, such as airports, ports, storage areas, and specific border regions with Spain. At these locations, networks of mosquito traps are set and maintained under surveillance throughout the year. In September 2017, Ae. albopictus was detected for the first time in a tyre company located in the North of Portugal. Molecular typing was performed, and a preliminary phylogenetic analysis indicated a high similarity with sequences of Ae. albopictus collected in Europe. A prompt surveillance response was locally implemented to determine its dispersal and abundance, and adult mosquitoes were screened for the presence of arboviral RNA. A total of 103 specimens, 52 immatures and 51 adults, were collected. No pathogenic viruses were detected. Despite the obtained results suggest low abundance of the population locally introduced, the risk of dispersal and potential establishment of Ae. albopictus in Portugal has raised concern for autochthonous mosquito-borne disease outbreaks. PMID:29690531

  6. Detection of the Invasive Mosquito Species Aedes (Stegomyia albopictus (Diptera: Culicidae in Portugal

    Directory of Open Access Journals (Sweden)

    Hugo Costa Osório

    2018-04-01

    Full Text Available The Asian tiger mosquito Aedes albopictus is an invasive mosquito originating from the Asia-Pacific region. This species is of major concern to public and veterinary health because of its vector role in the transmission of several pathogens, such as chikungunya, dengue, and Zika viruses. In Portugal, a National Vector Surveillance Network (REde de VIgilância de VEctores—REVIVE is responsible for the surveillance of autochthonous, but also invasive, mosquito species at points of entry, such as airports, ports, storage areas, and specific border regions with Spain. At these locations, networks of mosquito traps are set and maintained under surveillance throughout the year. In September 2017, Ae. albopictus was detected for the first time in a tyre company located in the North of Portugal. Molecular typing was performed, and a preliminary phylogenetic analysis indicated a high similarity with sequences of Ae. albopictus collected in Europe. A prompt surveillance response was locally implemented to determine its dispersal and abundance, and adult mosquitoes were screened for the presence of arboviral RNA. A total of 103 specimens, 52 immatures and 51 adults, were collected. No pathogenic viruses were detected. Despite the obtained results suggest low abundance of the population locally introduced, the risk of dispersal and potential establishment of Ae. albopictus in Portugal has raised concern for autochthonous mosquito-borne disease outbreaks.

  7. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    Science.gov (United States)

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  8. Relationship between exposure to vector bites and antibody responses to mosquito salivary gland extracts.

    Science.gov (United States)

    Fontaine, Albin; Pascual, Aurélie; Orlandi-Pradines, Eve; Diouf, Ibrahima; Remoué, Franck; Pagès, Frédéric; Fusaï, Thierry; Rogier, Christophe; Almeras, Lionel

    2011-01-01

    Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological

  9. Dusk to dawn activity patterns of anopheline mosquitoes in West Timor and Java, Indonesia.

    Science.gov (United States)

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2011-05-01

    Malaria is a serious health issue in Indonesia. We investigated the dusk to dawn anopheline mosquito activity patterns, host-seeking and resting locations in coastal plain, hilly and highland areas in West Timor and Java. Adult mosquitoes were captured landing on humans or resting in houses or animal barns. Data analyzed were: mosquito night-time activities; period of peak activity; night-time activity in specific periods of time and for mosquito resting locations. Eleven species were recorded; data were sparse for some species therefore detailed analyses were performed for four species only. In Java Anopheles vagus was common, with a bimodal pattern of high activity. In West Timor, its activity peaked around midnight. Other species with peak activity around the middle of the night were An. barbirostris and An. subpictus. Most species showed no biting and resting preference for indoors or outdoors, although An. barbirostris preferred indoors in West Timor, but outdoors in Java. An. aconitus and An. annularis preferred resting in human dwellings; An. subpictus and An. vagus preferred resting in animal barns. An. barbirostris preferred resting in human dwellings in West Timor and in animal barns in Java. The information is useful for planning the mosquito control aspect of malaria management. For example, where mosquito species have peak activity at night indoors, bednets and indoor residual spraying should reduce malaria risk, but where mosquitoes are most active outdoors, other options may be more effective.

  10. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-08

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.

  11. Blood Meal Analysis of Mosquitoes Involved in a Rift Valley fever Outbreak

    Science.gov (United States)

    Background: Rift Valley fever (RVF) is a zoonosis of domestic ruminants in Africa. Bloodfed mosquitoes collected during the 2006-2007 RVF outbreak in Kenya were analyzed to determine the virus infection status and animal source of the bloodmeals. Bloodmeals from individual mosquito abdomens were sc...

  12. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system

    Science.gov (United States)

    Alternative methods of mosquito control are needed to tackle the rising burden of mosquito-borne diseases while minimizing the use of synthetic insecticides which are not only harmful to the environment but also are increasingly threatened by the rapid and widespread development of insecticide resis...

  13. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector

    NARCIS (Netherlands)

    Boëte, C.H.J.J.; Paul, R.E.L.; Koëlla, J.C.

    2004-01-01

    Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito's immune responses during their long development? Whereas older oocysts might camouflage

  14. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two...... previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10...... identification of a mosquito neuropeptide receptor....

  15. Assessment of Clarias gariepinus as a biological control agent against mosquito larvae.

    Science.gov (United States)

    Chala, Buze; Erko, Berhanu; Animut, Abebe; Degarege, Abraham; Petros, Beyene

    2016-05-31

    The emergence and spread of insecticide resistant mosquitoes renewed interest in investigating the use of larvivorous fish as a biological control agent. The potential of Clarias gariepinus fish in controlling Anopheles arabiensis and culicine larvae was assessed under laboratory and semi-field conditions. Small size (15-20 cm) C. gariepinus fish consumed greater number of mosquito larvae than the large size fish (25-40 cm) in the multivariate regression model (β = 13.36, 95 % CI = 4.57, 22.15). The Anopheles larvae consumed was greater in number than the culicines larvae consumed by the fish (β = 12.10, 95 % CI = 3.31, 20.89). The number of larvae consumed was greater during the night hours than during the light hours (β = 30.06, 95 % CI = 21.27, 38.85). Amount of supplementary fish food did not cause significant differences in the number of mosquito larvae consumed by the fish among different groups. C. gariepinus was observed to feed on mosquito larvae under laboratory and semi-field conditions. C. gariepinus fed on the larvae of An. arabiensis and culicines readily. Hence, it can be used as an alternative mosquito control agent in Ethiopia where the breeding habitats are small and localized.

  16. Zika mosquito vectors: the jury is still out [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Walter S. Leal

    2016-10-01

    Full Text Available After a 40-year hiatus, the International Congress of Entomology (ICE 2016 convened in Orlando, Florida (September 25-30, 2016. One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.

  17. Zika mosquito vectors: the jury is still out [version 2; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Walter S. Leal

    2016-11-01

    Full Text Available After a 40-year hiatus, the International Congress of Entomology (ICE 2016 convened in Orlando, Florida (September 25-30, 2016. One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.

  18. Effectiveness of Mosquito Trap with Sugar Fermented Attractant to the Vector of Dengue Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Endang Puji Astuti

    2011-06-01

    Full Text Available Aedes aegypti is the main vector of dengue fever that is still become health problem in the world. Various control efforts has been done at several areas through chemically or naturally control. Developing mosquitoes trapping tool is an alternative method to control mosquitoes besides insecticides utilization. This laboratorium research utilize sugar fermented process to yield CO2 as one of attractan to mosquito. Production of ethanol and CO2 can be yielded from anaerob sugar fermentation proccess (without O2 by khamir Saccharomyces cerevisiae activities. The trapped mosquitoes was observed up to 48 hours exposure, the highest average of mosquito trapped is on solution treatment with yeast 1 gram (43.2% and 40 gr sugar (48.4%. The highest effectivity of trapping tool both inside or outside was on the 14th day. There were declained amount of trapped mosquitos on 16th and 18th days. This laboratorium research has described that trapping tool with sugar fermented solution were effective to control population of dengue vector.

  19. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?

    Science.gov (United States)

    Macias, Vanessa M; Ohm, Johanna R; Rasgon, Jason L

    2017-09-02

    Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.

  20. Simulating the spread of malaria using a generic transmission model for mosquito-borne infectious diseases

    Science.gov (United States)

    Kon, Cynthia Mui Lian; Labadin, Jane

    2016-06-01

    Malaria is a critical infection caused by parasites which are spread to humans through mosquito bites. Approximately half of the world's population is in peril of getting infected by malaria. Mosquito-borne diseases have a standard behavior where they are transmitted in the same manner, only through vector mosquito. Taking this into account, a generic spatial-temporal model for transmission of multiple mosquito-borne diseases had been formulated. Our interest is to reproduce the actual cases of different mosquito-borne diseases using the generic model and then predict future cases so as to improve control and target measures competently. In this paper, we utilize notified weekly malaria cases in four districts in Sarawak, Malaysia, namely Kapit, Song, Belaga and Marudi. The actual cases for 36 weeks, which is from week 39 in 2012 to week 22 in 2013, are compared with simulations of the generic spatial-temporal transmission mosquito-borne diseases model. We observe that the simulation results display corresponding result to the actual malaria cases in the four districts.

  1. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity

    Science.gov (United States)

    Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka

    2013-01-01

    A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408

  2. Mosquito repellency of novel Trifluoromethylphenyl amides

    Science.gov (United States)

    Human diseases caused by mosquito-transmitted pathogens include malaria, dengue and yellow fever and are responsible for several million human deaths every year, according to the World Health Organization (WHO). Our current research projects focus on the development of new insecticides and repellent...

  3. British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology

    Science.gov (United States)

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  4. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia.

    Science.gov (United States)

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2010-08-26

    Malaria is a serious health issue in Indonesia. Mosquito control is one aspect of an integrated malaria management programme. To focus resources on priority areas, information is needed about the vectors and their habitats. This research aimed to identify the relationship between anopheline mosquitoes and topography in West Timor and Java. Study areas were selected in three topographic types in West Timor and Java. These were: coastal plain, hilly (rice field) and highland. Adult mosquitoes were captured landing on humans identified to species level and counted. Eleven species were recorded, four of which were significant for malaria transmission: Anopheles aconitus, Anopheles barbirostris, Anopheles subpictus and Anopheles sundaicus. Each species occupied different topographies, but only five were significantly associated: Anopheles annularis, Anopheles vagus and Anopheles subpictus (Java only) with hilly rice fields; Anopheles barbirostris, Anopheles maculatus and Anopheles subpictus (West Timor only) with coastal areas. Information on significant malaria vectors associated with specific topography is useful for planning the mosquito control aspect of malaria management.

  5. Extension of habitat of female blood-sucking mosquitoes in Solomenskiy district, Kiev

    Directory of Open Access Journals (Sweden)

    N.P. Kilochytska

    2013-09-01

    2010 in Solomyanskyi district with measurement of temperature at the locations of collection. It turned out that the air temperature in the sheds was 2–4 °C lower than outside in the shade, in the basements lower by 4–11 °C, and in the cellars lower by 4–12 °C. Comparison of the temperature in the daytime habitats and number of mosquitoes found there showed a direct relation between the outdoor temperature and the number of mosquitoes in the daytime habitat on the premises. The data indicate that there is a tendency for the number of synanthropic blood-sucking mosquito species to increase owing to the occupation of domestic premises as a daytime habitat by those species of mosquitoes for which this phenomenon was not typical earlier. If global warming and the current trend to increase in summer temperatures persist, this can cause a deterioration of the epidemiological situation in the megalopolis.

  6. Malaria-induced changes in host odors enhance mosquito attraction.

    Science.gov (United States)

    De Moraes, Consuelo M; Stanczyk, Nina M; Betz, Heike S; Pulido, Hannier; Sim, Derek G; Read, Andrew F; Mescher, Mark C

    2014-07-29

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.

  7. Larval diet affects mosquito development and permissiveness to Plasmodium infection

    OpenAIRE

    Gendrin, MEM; Christophides; Linenberg, Inbar

    2016-01-01

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii . We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clar...

  8. Synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils.

    Science.gov (United States)

    Das, N G; Dhiman, Sunil; Talukdar, P K; Rabha, Bipul; Goswami, Diganta; Veer, Vijay

    2015-01-01

    Mosquito repellents play an important role in preventing man-mosquito contact. In the present study, we evaluated the synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils. The mosquito repellent efficacies of three essential oils were evaluated separately and in combination under laboratory and field conditions. N,N-Diethylphenylacetamide (DEPA) and dimethylphthalate (DMP) were used for comparison of the protection time of the mixture of essential oils. At an optimum concentration of 20%, the essential oils of C. longa, Z. limonella and P. heyneanus provided complete protection times (CPTs) of 96.2, 91.4 and 123.4 min, respectively, against Aedes albopictus mosquitoes in the laboratory. The 1:1:2 mixture of the essential oils provided 329.4 and 391.0 min of CPT in the laboratory and field trials, respectively. The percent increases in CPTs for the essential oil mixture were 30 for DMP and 55 for N,N-diethylphenylacetamide (DEPA). The synergistic repellent activity of the essential oils used in the present study might be useful for developing safer alternatives to synthetic repellents for personal protection against mosquitoes. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  9. Malaria model with periodic mosquito birth and death rates.

    Science.gov (United States)

    Dembele, Bassidy; Friedman, Avner; Yakubu, Abdul-Aziz

    2009-07-01

    In this paper, we introduce a model of malaria, a disease that involves a complex life cycle of parasites, requiring both human and mosquito hosts. The novelty of the model is the introduction of periodic coefficients into the system of one-dimensional equations, which account for the seasonal variations (wet and dry seasons) in the mosquito birth and death rates. We define a basic reproduction number R(0) that depends on the periodic coefficients and prove that if R(0)1 then the disease is endemic and may even be periodic.

  10. Monthly prevalence and diversity of mosquitoes (Diptera: Culicidae in Fars Province, Southern Iran

    Directory of Open Access Journals (Sweden)

    Davood Keshavarzi

    2017-02-01

    Full Text Available Objective: To get new data about the ecology of mosquitoes, which would be valuable to develop programs for future provision of mosquito controls in the study area. Methods: During April to September 2012, larvae of mosquitoes were collected from six counties in south of Fars Province using dipping method. Characteristics of larval breeding places were considered based on water conditions. Species diversity was examined in terms of alpha and beta measures, with the intent of comparing mosquito diversity according to the typology of regions. Results: During this investigation, totally, 5 057 larvae of mosquitoes belonging to 5 genera and 17 different mosquito species were recognized, namely, Anopheles dthali, Anopheles fluviatilis, Anopheles stephensi, Anopheles superpictus, Culex quinquefasciatus (Cx. quinquefasciatus, Culex mimeticus, Culex perexiguus, Culex pipiens (Cx. pipiens, Culex tritaeniorhynchus, Culex theileri (Cx. theileri, Culex tritaeniorhynchus, Culex sinaiticus, Culex torrentium, Culex modestus, Ochlerotatus caspius, Culiseta longiareolata and Aedes vexans (Ae. vexans. This is the first record of Ae. vexans, Culex perexiguus and Culex modestus in the Province. Cx. pipiens (27.3%, Cx. theileri (15.9% and Cx. quinquefasciatus (9.4% were the most abundant species found respectively. Cx. pipiens reached the highest density in August and July, while Cx. theileri, Cx. quinquefasciatus and Ae. vexans were found in high numbers in June. Diversity analysis indicated the highest species diversity in the Mohr County (Margalef index of 1.41 and Shannon index of 1.7 and the lowest species diversity in the Lamerd County (Margalef index of 0.33 and Shannon index of 0.38. Conclusions: Regarding to this research, there are some potential vectors of medical and veterinary importance in Fars Province. Results of the present study may serve as a basis for risk assessment of emerging mosquito-borne diseases.

  11. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background - Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  12. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background: Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  13. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Andrew P Turley

    Full Text Available BACKGROUND: The mosquito Aedes aegypti was recently transinfected with a life-shortening strain of the endosymbiont Wolbachia pipientis (wMelPop as the first step in developing a biocontrol strategy for dengue virus transmission. In addition to life-shortening, the wMelPop-infected mosquitoes also exhibit increased daytime activity and metabolic rates. Here we sought to quantify the blood-feeding behaviour of Wolbachia-infected females as an indicator of any virulence or energetic drain associated with Wolbachia infection. METHODOLOGY/PRINCIPAL FINDINGS: In a series of blood-feeding trials in response to humans, we have shown that Wolbachia-infected mosquitoes do not differ in their response time to humans, but that as they age they obtain fewer and smaller blood meals than Wolbachia-uninfected controls. Lastly, we observed a behavioural characteristic in the Wolbachia infected mosquitoes best described as a "bendy" proboscis that may explain the decreased biting success. CONCLUSIONS/SIGNIFICANCE: Taken together the evidence suggests that wMelPop infection may be causing tissue damage in a manner that intensifies with mosquito age and that leads to reduced blood-feeding success. These behavioural changes require further investigation with respect to a possible physiological mechanism and their role in vectorial capacity of the insect. The selective decrease of feeding success in older mosquitoes may act synergistically with other Wolbachia-associated traits including life-shortening and viral protection in biocontrol strategies.

  14. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    2015-03-01

    Full Text Available Globally, regions at the highest risk for emerging infectious diseases are often the ones with the fewest resources. As a result, implementing sustainable infectious disease surveillance systems in these regions is challenging. The cost of these programs and difficulties associated with collecting, storing and transporting relevant samples have hindered them in the regions where they are most needed. Therefore, we tested the sensitivity and feasibility of a novel surveillance technique called xenosurveillance. This approach utilizes the host feeding preferences and behaviors of Anopheles gambiae, which are highly anthropophilic and rest indoors after feeding, to sample viruses in human beings. We hypothesized that mosquito bloodmeals could be used to detect vertebrate viral pathogens within realistic field collection timeframes and clinically relevant concentrations.To validate this approach, we examined variables influencing virus detection such as the duration between mosquito blood feeding and mosquito processing, the pathogen nucleic acid stability in the mosquito gut and the pathogen load present in the host's blood at the time of bloodmeal ingestion using our laboratory model. Our findings revealed that viral nucleic acids, at clinically relevant concentrations, could be detected from engorged mosquitoes for up to 24 hours post feeding by qRT-PCR. Subsequently, we tested this approach in the field by examining blood from engorged mosquitoes from two field sites in Liberia. Using next-generation sequencing and PCR we were able to detect the genetic signatures of multiple viral pathogens including Epstein-Barr virus and canine distemper virus.Together, these data demonstrate the feasibility of xenosurveillance and in doing so validated a simple and non-invasive surveillance tool that could be used to complement current biosurveillance efforts.

  15. The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Directory of Open Access Journals (Sweden)

    Thomas Matthew B

    2011-07-01

    Full Text Available Abstract Background The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors. Presentation of hypothesis If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor vs outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate. Testing the hypothesis Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude. Implications of the hypothesis Differences in indoor vs outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.

  16. Nectar protein content and attractiveness to Aedes aegypti and Culex pipiens in plants with nectar/insect associations.

    Science.gov (United States)

    Chen, Zhongyuan; Kearney, Christopher M

    2015-06-01

    We chose five easily propagated garden plants previously shown to be attractive to mosquitoes, ants or other insects and tested them for attractiveness to Culex pipiens and Aedes aegypti. Long term imbibition was tested by survival on each plant species. Both mosquito species survived best on Impatiens walleriana, the common garden impatiens, followed by Asclepias curassavica, Campsis radicans and Passiflora edulis, which sponsored survival as well as the 10% sucrose control. Immediate preference for imbibition was tested with nectar dyed in situ on each plant. In addition, competition studies were performed with one dyed plant species in the presence of five undyed plant species to simulate a garden setting. In both preference studies I. walleriana proved superior. Nectar from all plants was then screened for nectar protein content by SDS-PAGE, with great variability being found between species, but with I. walleriana producing the highest levels. The data suggest that I. walleriana may have value as a model plant for subsequent studies exploring nectar delivery of transgenic mosquitocidal proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review.

    Science.gov (United States)

    Fiorenzano, Jodi M; Koehler, Philip G; Xue, Rui-De

    2017-04-10

    Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.

  18. [Evaluation of effectiveness of several repellents against mosquito bites available at the Polish market].

    Science.gov (United States)

    Mikulak, Ewa; Gliniewicz, Aleksandra; Królasik, Agnieszka; Sawicka, Bozena; Rabczenko, Daniel

    2012-01-01

    BACKGROUND. Mosquitoes are blood-sucking insects, nuisance to humans and animals. Their bites cause itching and allergic reactions. These insects are also vectors of several viruses, bacteria and parasites. Protection against mosquitoes is therefore justified and desirable. This can give repellents and products for protection small outdoor areas such as terraces, home gardens. OBJECTIVE. The aim of this study was to evaluate the effectiveness of eight selected products with different formulations used against mosquitoes including: 5 preparations for use on the body or clothing (repellents A, B, C, D, E and 3 products for use in small outdoor spaces (I, J, K). [corrected] Repellents were tested in laboratory trials, when volunteers were exposed to Aedes aegypti females breeding in the laboratory. Products I, J, K were tested in field trials; volunteers were exposed to female mosquitoes at various ages from the environment (Aedes sp, Culex sp). The results showed that all tested repellents were efficient during 4 hrs. After this time their effectiveness decreased--fast in the case of repellent B (10% DEET), not very fast, but significant--in the case of repellent C (15% DEET). Three products for small area protection gave (each of them) 3-hour protection against mosquito bites. Product K (21,97% allethrin) was 100% effective (no bites at all). Both kinds of product can give effective protection against mosquito bites. Their use is most effective, cheaper and more safe for the environment method of protection against mosquitoes than chemical spraying of large areas.

  19. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  20. Capitalizing on Citizen Science Data for Validating Models and Generating Hypotheses Describing Meteorological Drivers of Mosquito-Borne Disease Risk

    Science.gov (United States)

    Boger, R. A.; Low, R.; Paull, S.; Anyamba, A.; Soebiyanto, R. P.

    2017-12-01

    Temperature and precipitation are important drivers of mosquito population dynamics, and a growing set of models have been proposed to characterize these relationships. Validation of these models, and development of broader theories across mosquito species and regions could nonetheless be improved by comparing observations from a global dataset of mosquito larvae with satellite-based measurements of meteorological variables. Citizen science data can be particularly useful for two such aspects of research into the meteorological drivers of mosquito populations: i) Broad-scale validation of mosquito distribution models and ii) Generation of quantitative hypotheses regarding changes to mosquito abundance and phenology across scales. The recently released GLOBE Observer Mosquito Habitat Mapper (GO-MHM) app engages citizen scientists in identifying vector taxa, mapping breeding sites and decommissioning non-natural habitats, and provides a potentially useful new tool for validating mosquito ubiquity projections based on the analysis of remotely sensed environmental data. Our early work with GO-MHM data focuses on two objectives: validating citizen science reports of Aedes aegypti distribution through comparison with accepted scientific data sources, and exploring the relationship between extreme temperature and precipitation events and subsequent observations of mosquito larvae. Ultimately the goal is to develop testable hypotheses regarding the shape and character of this relationship between mosquito species and regions.