WorldWideScience

Sample records for pitcher plant species

  1. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  2. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2007-11-21

    The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  3. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  4. Phylogeographic concordance factors quantify phylogeographic congruence among co-distributed species in the Sarracenia alata pitcher plant system.

    Science.gov (United States)

    Satler, Jordan D; Carstens, Bryan C

    2016-05-01

    Comparative phylogeographic investigations have identified congruent phylogeographic breaks in co-distributed species in nearly every region of the world. The qualitative assessments of phylogeographic patterns traditionally used to identify such breaks, however, are limited because they rely on identifying monophyletic groups across species and do not account for coalescent stochasticity. Only long-standing phylogeographic breaks are likely to be obvious; many species could have had a concerted response to more recent landscape events, yet possess subtle signs of phylogeographic congruence because ancestral polymorphism has not completely sorted. Here, we introduce Phylogeographic Concordance Factors (PCFs), a novel method for quantifying phylogeographic congruence across species. We apply this method to the Sarracenia alata pitcher plant system, a carnivorous plant with a diverse array of commensal organisms. We explore whether a group of ecologically associated arthropods have co-diversified with the host pitcher plant, and identify if there is a positive correlation between ecological interaction and PCFs. Results demonstrate that multiple arthropods share congruent phylogeographic breaks with S. alata, and provide evidence that the level of ecological association can be used to predict the degree of similarity in the phylogeographic pattern. This study outlines an approach for quantifying phylogeographic congruence, a central concept in biogeographic research. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. Restoration of pitcher plant bogs in eastern Texas, USA

    Science.gov (United States)

    Ronald Mize; Robert E. Evans; Barbara R. MacRoberts; Michael H. MacRoberts; D. Craig Rudolph

    2005-01-01

    Pitcher plant bogs, also referred to as hillside seepages bogs or hillside bogs, are extremely restricted on the West Gulf Coastal Plain. the number and extent of extant bogs is in the low hundreds, comprising no more than a few thousand hectares of habitat. These bogs support a large number of plant species of significant conservation concern. threats to existing bogs...

  6. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants.

    Science.gov (United States)

    Bazile, Vincent; Le Moguédec, Gilles; Marshall, David J; Gaume, Laurence

    2015-03-01

    Nepenthes pitcher plants have evolved modified leaves with slippery surfaces and enzymatic fluids that trap and digest prey, faeces and/or plant detritus. Although the fluid's contribution to insect capture is recognized, the physico-chemical properties involved remain underexplored and may vary among species, influencing their diet type. This study investigates the contributions of acidity and viscoelasticity in the fluid's capture efficiency of two ant and two fly species in four Nepenthes species with different nutrition strategies. Four Nepenthes species were studied, namely N. rafflesiana, N. gracilis, N. hemsleyana and N. ampullaria. Fluid was collected from pitchers of varying ages from plants growing in the field and immediately transferred to glass vials, and individual ants (tribe Campotini, Fomicinae) and flies (Calliphora vomitoria and Drosophila melanogaster) were dropped in and observed for 5 min. Water-filled vials were used as controls. Survival and lifetime data were analysed using models applied to right-censored observations. Additional laboratory experiments were carried out in which C. vomitoria flies were immersed in pH-controlled aqueous solutions and observed for 5 min. Pitcher fluid differed among Nepenthes species as regards insect retention capacity and time-to-kill, with differences observed between prey types. Only the fluids of the reputedly insectivorous species were very acidic and/or viscoelastic and retained significantly more insects than the water controls. Viscoelastic fluids were fatal to flies and were able to trap the broadest diversity of insects. Younger viscoelastic fluids showed a better retention ability than older fluids, although with less rapid killing ability, suggesting that a chemical action follows a mechanical one. Insect retention increased exponentially with fluid viscoelasticity, and this happened more abruptly and at a lower threshold for flies compared with ants. Flies were more often retained if they

  7. A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants

    OpenAIRE

    Gaume, Laurence; Forterre, Yoel

    2007-01-01

    International audience; Background : The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key...

  8. A unique resource mutualism between the giant Bornean pitcher plant, Nepenthes rajah, and members of a small mammal community.

    Directory of Open Access Journals (Sweden)

    Melinda Greenwood

    Full Text Available The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids.Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community.We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant.

  9. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities.

    Science.gov (United States)

    Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas

    2011-02-01

    Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.

  10. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  11. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  12. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  13. With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

    Directory of Open Access Journals (Sweden)

    Ulrike Bauer

    Full Text Available Carnivorous pitcher plants capture prey with modified leaves (pitchers, using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry, insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.

  14. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes.

    Science.gov (United States)

    Lee, Linda; Zhang, Ye; Ozar, Brittany; Sensen, Christoph W; Schriemer, David C

    2016-09-02

    Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.

  15. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers

    Directory of Open Access Journals (Sweden)

    Muhammad Aqil Fitri Rosli

    2017-10-01

    Full Text Available Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.

  16. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.).

    Science.gov (United States)

    Whitman, Richard L; Byers, Stacey E; Shively, Dawn A; Ferguson, Donna M; Byappanahalli, Muruleedhara

    2005-12-01

    Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.

  17. Germination and field survival of white-topped pitcher plant seeds

    Science.gov (United States)

    Kristina Connor; Hilliard Gibbs

    2012-01-01

    A study was initiated to determine longevity of white-topped pitcher plant (Sarracenia leucophylla, Raf.) seeds in the field and in cold storage. Thirty seed pods were harvested in August 2009 from plants located in Alabama 38 miles from the Gulf Coast. Of the 10,000+ seeds extracted from the pods, some were buried outside in screen-wire bags and...

  18. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar.

    Science.gov (United States)

    Bauer, Ulrike; Bohn, Holger F; Federle, Walter

    2008-02-07

    The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.

  20. Effects of seed cryopreservation, stratification and scarification on germination for five rare species of pitcher plants.

    Science.gov (United States)

    Khanna, Sruti; Jenkins, Heather; Bucalo, Kylie; Determann, Ron O; Cruse-Sanders, Jennifer M; Pullman, Gerald S

    2014-01-01

    Habitat loss and over collection have caused North American pitcher plants to become rare, including U.S. federally endangered Sarracenia alabamensis and S. oreophila, and S. leucophylla, S. psittacina and S. purpurea spp. venosa, endangered in several states. To develop reliable seed cryopreservation protocols for endangered Sarracenia species enabling similar germination percentages before and after storage in liquid nitrogen (LN) either in vivo or using in vitro tools. Seed germination pre- and post-cryopreservation were compared following seed drying with germination in soil, aseptic environment with wet filter paper or enriched medium, and using scarification or stratification for dormancy removal. After cryostorage, germination in vitro (1/6- or 1/3-strength MS medium) increased compared to germination on peat moss. Germination pre- and post-cryopreservation was similar for S. alabamensis and S. oreophila when seeds were stratified and grown in vitro. S. leucophylla and S. psittacina also showed high germination after cryopreservation when germinated on medium following stratification. Rapid liquid nitrogen exposure and rewarming induced seed coat cracking that damaged seeds, likely allowing internal damage during acid scarification and microbial entry during germination in non-sterile environments.

  1. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    Science.gov (United States)

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  2. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea leaves.

    Directory of Open Access Journals (Sweden)

    Taylor K Paisie

    Full Text Available The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  3. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  4. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

    Directory of Open Access Journals (Sweden)

    Elena V. Gorb

    2011-06-01

    Full Text Available The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1 intact pitchers, (2 chemically de-waxed pitchers, and (3 their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome or downward (towards the pitcher bottom direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  5. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2014-08-01

    Full Text Available Background To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. Methods Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. Results Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. Conclusion The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  6. MR imaging of the elbow in baseball pitchers

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Torriani, Martin [Massachusetts General Hospital, Division of Musculoskeletal Radiology, Boston, MA (United States); Labis, John [Methodist Hospital, Houston, TX (United States)

    2008-02-15

    Baseball pitcher throwing biomechanics are important to understanding the pathophysiology and magnetic resonance (MR) imaging appearances of injuries in baseball pitchers. Baseball pitchers experience repetitive excessive valgus forces at the elbow. Typical injuries are secondary to medial joint distraction, lateral joint compression, and rotatory forces at the olecranon. MR imaging is useful for evaluation of the elbow in baseball pitchers. (orig.)

  7. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    Directory of Open Access Journals (Sweden)

    Franziska Buch

    Full Text Available Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep. Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  8. Spectrum of shoulder injuries in the baseball pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Sheah, Kenneth; Torriani, Martin [Massachusetts General Hospital, Boston, Massachusetts (United States); Labis, John [Methodist Hospital, Houston, Texas (United States)

    2008-06-15

    This review describes a range of shoulder injuries experienced by baseball pitchers. It is estimated that more than 57% of pitchers suffer some form of shoulder injury during a playing season. Knowledge of the overhead throwing cycle is crucial for our understanding of these shoulder injuries. Baseball pitchers are prone to rotator cuff tears from tensile overload and impingement. Glenoid labrum degeneration or tears are also common, due to overuse syndrome (micro-instability), internal impingement and microtrauma. An understanding of the lesions involved in overhead throwing is crucial in baseball pitchers, as long-term disability can result from these injuries, sometimes with severe financial consequences to the player. (orig.)

  9. Spectrum of shoulder injuries in the baseball pitcher

    International Nuclear Information System (INIS)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Sheah, Kenneth; Torriani, Martin; Labis, John

    2008-01-01

    This review describes a range of shoulder injuries experienced by baseball pitchers. It is estimated that more than 57% of pitchers suffer some form of shoulder injury during a playing season. Knowledge of the overhead throwing cycle is crucial for our understanding of these shoulder injuries. Baseball pitchers are prone to rotator cuff tears from tensile overload and impingement. Glenoid labrum degeneration or tears are also common, due to overuse syndrome (micro-instability), internal impingement and microtrauma. An understanding of the lesions involved in overhead throwing is crucial in baseball pitchers, as long-term disability can result from these injuries, sometimes with severe financial consequences to the player. (orig.)

  10. Species richness and trophic diversity increase decomposition in a co-evolved food web.

    Directory of Open Access Journals (Sweden)

    Benjamin Baiser

    Full Text Available Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.

  11. Characterization anatomical leaf blade five species Nepenthes from Kerinci Seblat National Park, Kerinci regency, Jambi Province

    Science.gov (United States)

    Al Farishy, D. D.; Nisyawati, Metusala, D.

    2017-07-01

    Nepenthes is one of carnivorous plant genera which have key characters on leaf and pitcher as the modification. However, wide varieties of morphological features on pitcher intraspecies and between species could be tough for identification process. The objective was to provide alternative characters for identification process by anatomical features. Kerinci Seblat National Park was chosen because lack of update data on wild type of species there. Whole five species were collected at Lingkat Lake and Gunung Tujuh Lake as representative lowland and highland species. Leaves collected fresh, flawless, and has grown pitcher. Each leaf was separated into the paradermal and transversal section, dehydrated by series alcohol, and stained by safranin and fast green. Sections observed by light microscope. Result show there were specific differences between species that could be potential to be key characters. That features are stomatal density, stomatal length, sessile glands surface shaped, sessile glands density, trichome distribution, adaxial cuticle thickness, adaxial hypodermic thickness, and the number of layers of adaxial hypodermis

  12. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  13. Kinematic and kinetic differences between left-and right-handed professional baseball pitchers.

    Science.gov (United States)

    Diffendaffer, Alek Z; Fleisig, Glenn S; Ivey, Brett; Aune, Kyle T

    2018-03-21

    While 10% of the general population is left-handed, 27% of professional baseball pitchers are left-handed. Biomechanical differences between left- and right-handed college pitchers have been previously reported, but these differences have yet to be examined at the professional level. Therefore, the purpose of this study was to compare pitching biomechanics between left- and right-handed professional pitchers. It was hypothesised that there would be significant kinematic and kinetic differences between these two groups. Pitching biomechanics were collected on 96 left-handed pitchers and a group of 96 right-handed pitchers matched for age, height, mass and ball velocity. Student t-tests were used to identify kinematic and kinetic differences (p different between the groups. Landing position of the stride foot, trunk separation at foot contact, maximum shoulder external rotation and trunk forward tilt at ball release were all significantly greater in right-handed pitchers. The magnitude of the statistical differences found were small and not consistent with differences in the two previous, smaller studies. Thus, the differences found may be of minimal practical significance and mechanics can be taught the same to all pitchers, regardless of throwing hand.

  14. Four New Species of Nepenthes L. (Nepenthaceae from the Central Mountains of Mindanao, Philippines

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    2014-06-01

    Full Text Available Together with the islands of Sumatra (Indonesia and Borneo (Indonesia, Malaysia, the Philippines are the main center of diversity for carnivorous pitcher plants of the genus, Nepenthes L. Nepenthes are the largest of all carnivorous plants, and the species with the biggest pitchers are capable of trapping and digesting small amphibians and even mammals. The central cordillera of Mindanao Island in the south of the Philippines is mostly covered with old, primary forest and is the largest remaining cohesive, untouched area of wilderness in the Philippines. In a recent field exploration of two areas of the central cordillera, namely Mount Sumagaya and a section of the Pantaron range, four new taxa of Nepenthes were discovered. These four remarkable new species, N. pantaronensis, N. cornuta, N. talaandig and N. amabilis, are described, illustrated and assessed.

  15. Contribution of pitcher fragrance and fluid viscosity to high prey ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    [Di Giusto B, Grosbois V, Fargeas E, Marshall D J and Gaume L 2008 Contribution of pitcher fragrance and fluid ... but does not permit distinction between the attractive and .... sweet scent between pitchers of the lower and upper forms.

  16. SHOULDER RANGE OF MOTION, PITCH COUNT, AND INJURIES AMONG INTERSCHOLASTIC FEMALE SOFTBALL PITCHERS: A DESCRIPTIVE STUDY

    Science.gov (United States)

    Michener, Lori A.; Ellenbecker, Todd S.; Rauh, Mitchell J.

    2012-01-01

    Background/Purpose: Injury rates for softball players are similar to baseball players yet information regarding risk factors, pitching, and physical characteristics for high school windmill softball pitchers is limited. This information is needed to guide prevention, training, and rehabilitation efforts. The purpose of this study was to report descriptive data regarding the physical characteristics and pitching volume experienced by high school softball pitchers during one academic season. A secondary aim was to track and describe upper extremity injuries suffered by high school softball pitchers throughout the course of the 2009 season. Methods: Twelve uninjured female softball pitchers (13‐18y) from 5 Greenville, South Carolina high schools participated. Prior to the 2009 season, the pitchers' shoulder internal, external, total arc of rotation and horizontal adduction PROM was measured. During the 10‐week season, aggregate pitch counts (pitch volume) and occurrence of upper extremity injury were tracked for each pitcher. Results: Mean preseason internal, external, and total arc of rotation PROM was observed to be similar between the pitchers' dominant and non‐dominant shoulders. The PROM measures of horizontal abduction (HA) appear to demonstrate a side‐to‐side difference with less HA on the dominant arm of the pitchers who were examined. Subjects threw in an average of 10.1 games (±4.9) during the season. Six pitchers threw in 60% or more of the team's games and 3 of 12 pitchers pitched less than 25% of games. Pitchers averaged 61.8 pitches per game (±31.5) and 745.8 (±506.4) per season. Pitch count data did not appear to be different between injured and non‐injured pitchers. Conclusions: Knowledge of pitch volume can be used to prepare windmill softball pitchers for the seasonal stresses, guide establishment of goals when recovering from injury, or assist in training for an upcoming season. Further research is needed to examine larger samples of

  17. Visual abilities distinguish pitchers from hitters in professional baseball.

    Science.gov (United States)

    Klemish, David; Ramger, Benjamin; Vittetoe, Kelly; Reiter, Jerome P; Tokdar, Surya T; Appelbaum, Lawrence Gregory

    2018-01-01

    This study aimed to evaluate the possibility that differences in sensorimotor abilities exist between hitters and pitchers in a large cohort of baseball players of varying levels of experience. Secondary data analysis was performed on 9 sensorimotor tasks comprising the Nike Sensory Station assessment battery. Bayesian hierarchical regression modelling was applied to test for differences between pitchers and hitters in data from 566 baseball players (112 high school, 85 college, 369 professional) collected at 20 testing centres. Explanatory variables including height, handedness, eye dominance, concussion history, and player position were modelled along with age curves using basis regression splines. Regression analyses revealed better performance for hitters relative to pitchers at the professional level in the visual clarity and depth perception tasks, but these differences did not exist at the high school or college levels. No significant differences were observed in the other 7 measures of sensorimotor capabilities included in the test battery, and no systematic biases were found between the testing centres. These findings, indicating that professional-level hitters have better visual acuity and depth perception than professional-level pitchers, affirm the notion that highly experienced athletes have differing perceptual skills. Findings are discussed in relation to deliberate practice theory.

  18. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers.

    Science.gov (United States)

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Porterfield, Ronald; Simpson, Charles D; Harker, Paul; Paparesta, Nick; Andrews, James R

    2011-02-01

    Glenohumeral internal rotation deficit (GIRD) indicates a 20° or greater loss of internal rotation of the throwing shoulder compared with the nondominant shoulder. To determine whether GIRD and a deficit in total rotational motion (external rotation + internal rotation) compared with the nonthrowing shoulder correlate with shoulder injuries in professional baseball pitchers. Case series; Level of evidence, 4. Over 3 competitive seasons (2005 to 2007), passive range of motion measurements were evaluated on the dominant and nondominant shoulders for 170 pitcher-seasons. This included 122 professional pitchers during the 3 seasons of data collection, in which some pitchers were measured during multiple seasons. Ranges of motion were measured with a bubble goniometer during the preseason, by the same examiner each year. External and internal rotation of the glenohumeral joint was assessed with the participant supine and the arm abducted 90° in the plane of the scapula, with the scapula stabilized anteriorly at the coracoid process. The reproducibility of the test methods had an intraclass correlation coefficient of .81. Days in which the player was unable to participate because of injury or surgery were recorded during the season by the medical staff of the team and defined as an injury. Pitchers with GIRD (n = 40) were nearly twice as likely to be injured as those without but without statistical significance (P = .17). Pitchers with total rotational motion deficit greater than 5° had a higher rate of injury. Minor league pitchers were more likely than major league pitchers to be injured. However, when players were injured, major league pitchers missed a significantly greater number of games than minor league pitchers. Compared with pitchers without GIRD, pitchers with GIRD appear to be at a higher risk for injury and shoulder surgery.

  19. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    Science.gov (United States)

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  20. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  1. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers

    Science.gov (United States)

    Biesmeijer, Jacobus C.; Giurfa, Martin; Koedam, Dirk; Potts, Simon G.; Joel, Daniel M.; Dafni, Amots

    2005-09-01

    Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects’ orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

  2. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  3. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  4. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    Science.gov (United States)

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. Upper Extremity Functional Status of Female Youth Softball Pitchers Using the Kerlan-Jobe Orthopaedic Clinic Questionnaire.

    Science.gov (United States)

    Holtz, Kaila A; O'Connor, Russell J

    2018-01-01

    Softball is a popular sport with a high incidence of upper extremity injuries. The Kerlan-Jobe Orthopaedic Clinic (KJOC) questionnaire is a validated performance and functional assessment tool used in overhead athletes. Upper extremity pain patterns and baseline KJOC scores have not been reported for active female youth softball pitchers. The purpose of this study was to establish the prevalence of upper extremity pain and its effect in female youth softball pitchers over a competitive season. We hypothesized that participants who missed time due to injury in the past year would have lower KJOC scores. Cross-sectional study; Level of evidence, 3. Fifty-three female softball pitchers aged 12 to 18 years were recruited from softball clinics in Vancouver, British Columbia, Canada. All participants self-identified as a pitcher on a competitive travel team. Participants were administered the KJOC questionnaire before and during the playing season. Missed time due to injury in the past year, current pain patterns, and KJOC scores were primary outcomes. The mean (±SD) preseason KJOC score was 87.2 ± 10.6. In the preseason, 22.6% of pitchers reported playing with arm trouble, and 32.1% missed time due to injury in the past year. The mean KJOC score for pitchers reporting a previous injury (n = 17) was significantly lower compared with those without an injury (n = 36) (79.5 ± 13.8 vs 90.9 ± 6.2, respectively; P = .02). The posterior shoulder was the most commonly reported pain location. For the cohort completing the questionnaire both before and during the playing season (n = 35), mean KJOC scores did not change significantly over the playing season ( P = .64). Lower preseason KJOC scores were significantly related to the in-season injury risk ( P = .016). Pitchers with a preseason score of less than 90 had a 3.5 (95% CI, 1.1-11.2) times greater risk of reporting an in-season injury. Female youth softball pitchers have a high baseline functional status. However, 1 in 3

  6. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes

    OpenAIRE

    Pavlovič, Andrej

    2012-01-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the ...

  7. Trends in Revision Elbow Ulnar Collateral Ligament Reconstruction in Professional Baseball Pitchers.

    Science.gov (United States)

    Wilson, Alexander T; Pidgeon, Tyler S; Morrell, Nathan T; DaSilva, Manuel F

    2015-11-01

    To determine the frequency of revision elbow ulnar collateral ligament (UCL) reconstruction in professional baseball pitchers. Data were collected on 271 professional baseball pitchers who underwent primary UCL reconstruction. Each player was evaluated retrospectively for occurrence of revision UCL reconstructive surgery to treat failed primary reconstruction. Data on players who underwent revision UCL reconstruction were compiled to determine total surgical revision incidence and revision rate by year. The incidence of early revision was analyzed for trends. Average career length after primary UCL reconstruction was calculated and compared with that of players who underwent revision surgery. Logistic regression analysis was performed to assess risk factors for revision including handedness, pitching role, and age at the time of primary reconstruction. Between 1974 and 2014, the annual incidence of primary UCL reconstructions among professional pitchers increased, while the proportion of cases being revised per year decreased. Of the 271 pitchers included in the study, 40 (15%) required at least 1 revision procedure during their playing career. Three cases required a second UCL revision reconstruction. The average time from primary surgery to revision was 5.2 ± 3.2 years (range, 1-13 years). The average length of career following primary reconstruction for all players was 4.9 ± 4.3 years (range, 0-22 years). The average length of career following revision UCL reconstruction was 2.5 ± 2.4 years (range, 0-8 years). No risk factors for needing revision UCL reconstruction were identified. The incidence of primary UCL reconstructions among professional pitchers is increasing; however, the rate of primary reconstructions requiring revision is decreasing. Explanations for the decreased revision rate may include improved surgical technique and improved rehabilitation protocols. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by

  8. Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation.

    Science.gov (United States)

    Stodden, David F; Fleisig, Glenn S; McLean, Scott P; Andrews, James R

    2005-02-01

    To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.

  9. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Science.gov (United States)

    Hotti, Hannu; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Rischer, Heiko

    2017-01-01

    Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  10. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Directory of Open Access Journals (Sweden)

    Hannu Hotti

    Full Text Available Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  11. A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball

    Science.gov (United States)

    McDowell, M; Ciocco, M

    2005-01-01

    Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092

  12. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea.

    Science.gov (United States)

    Tran, Phuong M; Dahl, John L

    2016-11-01

    Several fast- to intermediate-growing, acid-fast, scotochromogenic bacteria were isolated from Sarracenia purpurea pitcher waters in Minnesota sphagnum peat bogs. Two strains (DL734T and DL739T) were among these isolates. On the basis of 16S rRNA gene sequences, the phylogenetic positions of both strains is in the genus Mycobacterium with no obvious relation to any characterized type strains of mycobacteria. Phenotypic characterization revealed that neither strain was similar to the type strains of known species of the genus Mycobacterium in the collective properties of growth, pigmentation or fatty acid composition. Strain DL734T grew at temperatures between 28 and 32 °C, was positive for 3-day arylsulfatase production, and was negative for Tween 80 hydrolysis, urease and nitrate reduction. Strain DL739T grew at temperatures between 28 and 37 °C, and was positive for Tween 80 hydrolysis, urea, nitrate reduction and 3-day arylsulfatase production. Both strains were catalase-negative while only DL739T grew with 5 % NaCl. Fatty acid methyl ester profiles were unique for each strain. DL739T showed an ability to survive at 8 °C with little to no cellular replication and is thus considered to be psychrotolerant. Therefore, strains DL734T and DL739T represent two novel species of the genus Mycobacterium with the proposed names Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., respectively. The type strains are DL734T (=JCM 30395T=NCCB 100519T) and DL739T (=JCM 30396T=NCCB 100520T), respectively.

  13. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    Directory of Open Access Journals (Sweden)

    Clayton Merz

    Full Text Available Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  14. Lower thoracic rib stress fractures in baseball pitchers.

    Science.gov (United States)

    Gerrie, Brayden J; Harris, Joshua D; Lintner, David M; McCulloch, Patrick C

    2016-01-01

    Stress fractures of the first rib on the dominant throwing side are well-described in baseball pitchers; however, lower thoracic rib fractures are not commonly recognized. While common in other sports such as rowing, there is scant literature on these injuries in baseball. Intercostal muscle strains are commonly diagnosed in baseball pitchers and have a nearly identical presentation but also a highly variable healing time. The diagnosis of a rib stress fracture can predict a more protracted recovery. This case series presents two collegiate baseball pitchers on one team during the same season who were originally diagnosed with intercostal muscle strains, which following magnetic resonance imaging (MRI) were found to have actually sustained lower thoracic rib stress fractures. The first sustained a stress fracture of the posterior aspect of the right 8th rib on the dominant arm side, while the second presented with a left-sided 10th rib stress fracture on the nondominant arm side. In both cases, MRI was used to visualize the fractures as plain radiographs are insensitive and commonly negative early in patient presentation. Patients were treated with activity modification, and symptomatic management for 4-6 weeks with a graduated return to throwing and competition by 8-10 weeks. The repetitive high stresses incurred by pitching may cause either dominant or nondominant rib stress fractures and this should be included in the differential diagnosis of thoracic injuries in throwers. It is especially important that athletic trainers and team physicians consider this diagnosis, as rib fractures may have a protracted course and delayed return to play. Additionally, using the appropriate imaging techniques to establish an accurate diagnosis can help inform return-to-play decisions, which have important practical applications in baseball, such as roster management and eligibility.

  15. Species identification and sex determination of the genus Nepenthes (Nepenthaceae).

    Science.gov (United States)

    Mokkamul, Piya; Chaveerach, Arunrat; Sudmoon, Runglawan; Tanee, Tawatchai

    2007-02-15

    Nepenthes species are well known for their ornamentally attractive pitchers. The species diversity was randomly surveyed in some conservation areas of Thailand and three species were found, namely N. gracilis Korth., N. mirabilis Druce. and N. smilesii Hemsl. Young plants as unknown species from Chatuchak market were added in plant sampled set. Thirty two Inter Simple Sequence Repeat (ISSR) primers were screened and 13 successful primers were used to produce DNA banding patterns for constructing a dendrogram. The dendrogram is potentially power tool to identify unknown species from Chatuchak market, differentiate species population, population by geographical areas and sex determination. The geographical area of N. mirabilis was specified to Southern and Northeastern regions and finally, subdivided into exact areas according to province. Male and female plants of N. gracilis at Phu Wua Wildlife Sanctuary and N. mirabilis at Bung Khonglong non-hunting area were determined. Two unknown species from Chatuchak market were analyzed to be N. mirabilis with the genetic similarities (S) 77.2 to 84.7. Be more sex specific in all sample studied, 37 Random Amplified Polymorphic DNA (RAPD) primers were investigated. The result shows that only one RAPD primer show high resolution results at about 750 bp specific male-related marker.

  16. Return to competition, re-injury, and impact on performance of preseason shoulder injuries in Major League Baseball pitchers.

    Science.gov (United States)

    Makhni, Eric C; Lee, Randall W; Nwosu, Ekene O; Steinhaus, Michael E; Ahmad, Christopher S

    2015-07-01

    Major league baseball (MLB) pitchers are vulnerable to overuse injury of the upper extremity, especially in the shoulder. Injuries sustained in the preseason may have negative impact on performance following return. The goal of this study was to document the frequency of preseason shoulder injury in these athletes, as well as risk for re-injury and impact on performance following return from injury. A comprehensive search of MLB injury information from 2001 to 2010 of public databases yielded a cohort of MLB pitchers who sustained preseason shoulder injuries. These databases were utilized to obtain information regarding return to MLB competition, re-injury, and performance following return from injury. All performance metrics were compared to those of an age-matched control cohort. A total of 74 pitchers were identified who sustained a preseason shoulder injury. Only 39 (53%) returned that same season to pitch in the MLB competition. Of those that returned, nearly 50% of players were re-designated on the Disabled List during the return season. There was a decline in performance in earned run average and batting average against in the year of return. Compared to age-matched control pitchers, those with preseason shoulder injury had lower performance metrics across a number of outcomes. Preseason shoulder injury in MLB pitchers has the potential to result in high re-injury rates and decreased subsequent performance.

  17. Medial supracondylar stress fracture in an adolescent pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, CA (United States); University of California, San Diego Medical Center, San Diego, CA (United States); Fronek, Jan [Scripps Healthcare, La Jolla, CA (United States)

    2014-01-15

    We report the occurrence of a medial supracondylar stress fracture in an adolescent pitcher. To our knowledge, this fracture has not been described in the literature, and awareness of this entity allows initiation of therapy and precludes further unnecessary work-up. The radiographic, computed tomography, and magnetic resonance imaging appearances are reviewed and the mechanism of injury is discussed. (orig.)

  18. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  19. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  20. Deficits in glenohumeral passive range of motion increase risk of elbow injury in professional baseball pitchers: a prospective study.

    Science.gov (United States)

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Aune, Kyle T; Porterfield, Ron A; Harker, Paul; Evans, Timothy J; Andrews, James R

    2014-09-01

    Injuries to the elbow joint in baseball pitchers appear common. There appears to be a correlation between shoulder range of motion and elbow injuries. To prospectively determine whether decreased ROM of the throwing shoulder is correlated with the onset of elbow injuries in professional baseball pitchers. Cohort study; Level of evidence, 2. For 8 consecutive years (2005-2012), passive range of motion of both the throwing and nonthrowing shoulders of all major and minor league pitchers within a single professional baseball organization were measured by using a bubble goniometer during spring training. In total, 505 examinations were conducted on 296 pitchers. Glenohumeral external rotation and internal rotation were assessed in the supine position with the arm at 90° of abduction and in the plane of the scapula. The scapula was stabilized per methods previously established. Total rotation was defined as the sum of external rotation and internal rotation. Passive shoulder flexion was assessed with the subject supine and the scapula stabilized per methods previously established. Elbow injuries and days missed because of elbow injuries were assessed and recorded by the medical staff of the team. Throwing and nonthrowing shoulder measurements were compared by using Student t tests; 1-tailed Fisher exact tests were performed to identify significant associations between shoulder motion and elbow injury. Nominal logistic regression was performed to determine the odds of elbow injury. Significant differences were noted during side-to-side comparisons within subjects. There were 49 elbow injuries and 8 surgeries in 38 players, accounting for a total of 2551 days missed. Neither glenohumeral internal rotation deficit nor external rotation insufficiency was correlated with elbow injuries. Pitchers with deficits of >5° in total rotation in their throwing shoulders had a 2.6 times greater risk for injury. Pitchers with deficit of ≥5° in flexion of the throwing shoulder had

  1. An inferential and descriptive statistical examination of the relationship between cumulative work metrics and injury in Major League Baseball pitchers.

    Science.gov (United States)

    Karakolis, Thomas; Bhan, Shivam; Crotin, Ryan L

    2013-08-01

    In Major League Baseball (MLB), games pitched, total innings pitched, total pitches thrown, innings pitched per game, and pitches thrown per game are used to measure cumulative work. Often, pitchers are allocated limits, based on pitches thrown per game and total innings pitched in a season, in an attempt to prevent future injuries. To date, the efficacy in predicting injuries from these cumulative work metrics remains in question. It was hypothesized that the cumulative work metrics would be a significant predictor for future injury in MLB pitchers. Correlations between cumulative work for pitchers during 2002-07 and injury days in the following seasons were examined using regression analyses to test this hypothesis. Each metric was then "binned" into smaller cohorts to examine trends in the associated risk of injury for each cohort. During the study time period, 27% of pitchers were injured after a season in which they pitched. Although some interesting trends were noticed during the binning process, based on the regression analyses, it was found that no cumulative work metric was a significant predictor for future injury. It was concluded that management of a pitcher's playing schedule based on these cumulative work metrics alone could not be an effective means of preventing injury. These findings indicate that an integrated approach to injury prevention is required. This approach will likely involve advanced cumulative work metrics and biomechanical assessment.

  2. Exotic plant species attack revegetation plants in post-coal mining areas

    Science.gov (United States)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  3. The nature of plant species.

    Science.gov (United States)

    Rieseberg, Loren H; Wood, Troy E; Baack, Eric J

    2006-03-23

    Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.

  4. Nepenthes Vogelii (Nepenthaceae): a new species from Sarawak

    NARCIS (Netherlands)

    Schuiteman, A.; Vogel, de E.F.

    2002-01-01

    Nepenthes vogelii Schuit. & de Vogel is described as a new species from Sarawak. It is compared with N. fusca Danser, from which it differs e.g. in the much smaller pitchers, of which the lid lacks appendages.

  5. Knee Angle and Stride Length in Association with Ball Speed in Youth Baseball Pitchers

    Directory of Open Access Journals (Sweden)

    Bart van Trigt

    2018-05-01

    Full Text Available The purpose of this study was to determine whether stride length and knee angle of the leading leg at foot contact, at the instant of maximal external rotation of the shoulder, and at ball release are associated with ball speed in elite youth baseball pitchers. In this study, fifty-two elite youth baseball pitchers (mean age 15.2 SD (standard deviation 1.7 years pitched ten fastballs. Data were collected with three high-speed video cameras at a frequency of 240 Hz. Stride length and knee angle of the leading leg were calculated at foot contact, maximal external rotation, and ball release. The associations between these kinematic variables and ball speed were separately determined using generalized estimating equations. Stride length as percentage of body height and knee angle at foot contact were not significantly associated with ball speed. However, knee angles at maximal external rotation and ball release were significantly associated with ball speed. Ball speed increased by 0.45 m/s (1 mph with an increase in knee extension of 18 degrees at maximal external rotation and 19.5 degrees at ball release. In conclusion, more knee extension of the leading leg at maximal external rotation and ball release is associated with higher ball speeds in elite youth baseball pitchers.

  6. Unusual stress fracture in an adolescent baseball pitcher affecting the trochlear groove of the olecranon

    International Nuclear Information System (INIS)

    Blake, Joseph J.; Block, John J.; Kan, J.H.; Hannah, Gene A.

    2008-01-01

    Stress fractures of the proximal ulna are known to occur in throwing athletes. Most cases extend to involve the olecranon, and cases limited to the trochlear groove are rare. In this report we present a 17-year-old elite baseball pitcher with a stress fracture of the trochlear groove of the proximal ulna. Diagnosis was made by demonstration of characteristic signal changes on MRI of the elbow. The fracture occurred at the cortical notch, also known as the pseudodefect of the trochlear groove. This case suggests that the cortical notch serves as an area of weakness predisposing pitchers to development of a stress fracture. (orig.)

  7. Kinematic and Kinetic Profiles of Trunk and Lower Limbs during Baseball Pitching in Collegiate Pitchers

    Directory of Open Access Journals (Sweden)

    Masahiro Kageyama, Takashi Sugiyama, Yohei Takai, Hiroaki Kanehisa, Akira Maeda

    2014-12-01

    Full Text Available The purpose of this study was to clarify differences in the kinematic and kinetic profiles of the trunk and lower extremities during baseball pitching in collegiate baseball pitchers, in relation to differences in the pitched ball velocity. The subjects were 30 collegiate baseball pitchers aged 18 to 22 yrs, who were assigned to high- (HG, 37.4 ± 0.8 m·s-1 and low-pitched-ball-velocity groups (LG, 33.3 ± 0.8 m·s-1. Three-dimensional motion analysis with a comprehensive lower-extremity model was used to evaluate kinematic and kinetic parameters during baseball pitching. The ground-reaction forces (GRF of the pivot and stride legs during pitching were determined using two multicomponent force plates. The joint torques of hip, knee, and ankle were calculated using inverse-dynamics computation of a musculoskeletal human model. To eliminate any effect of variation in body size, kinetic and GRF data were normalized by dividing them by body mass. The maxima and minima of GRF (Fy, Fz, and resultant forces on the pivot and stride leg were significantly greater in the HG than in the LG (p < 0.05. Furthermore, Fy, Fz, and resultant forces on the stride leg at maximum shoulder external rotation and ball release were significantly greater in the HG than in the LG (p < 0.05. The hip abduction, hip internal rotation and knee extension torques of the pivot leg and the hip adduction torque of the stride leg when it contacted the ground were significantly greater in the HG than in the LG (p < 0.05. These results indicate that, compared with low-ball-velocity pitchers, high-ball-velocity pitchers can generate greater momentum of the lower limbs during baseball pitching.

  8. Stress sonography of the ulnar collateral ligament of the elbow in professional baseball pitchers: a 10-year study.

    Science.gov (United States)

    Ciccotti, Michael G; Atanda, Alfred; Nazarian, Levon N; Dodson, Christopher C; Holmes, Laurens; Cohen, Steven B

    2014-03-01

    An injury to the ulnar collateral ligament (UCL) of the elbow is potentially career threatening for elite baseball pitchers. Stress ultrasound (US) of the elbow allows for evaluation of both the UCL and the ulnohumeral joint space at rest and with stress. Stress US can identify morphological and functional UCL changes and may predict the risk of a UCL injury in elite pitchers. Cross-sectional study; Level of evidence, 3. A total of 368 asymptomatic professional baseball pitchers underwent preseason stress US of their dominant and nondominant elbows over a 10-year period (2002-2012). Stress US examinations were performed in 30° of flexion at rest and with 150 N of valgus stress by a single musculoskeletal radiologist. Ligament thickness, ulnohumeral joint space width, and ligament abnormalities (hypoechoic foci and calcifications) were documented. There were 736 stress US studies. The mean UCL thickness in the dominant elbow (6.15 mm) was significantly greater than that in the nondominant elbow (4.82 mm) (P .05) increases in baseline ligament thickness, ulnohumeral joint space gapping with stress, and incidence of hypoechoic foci and calcifications. More than 1 stress US examination was performed in 131 players, with a mean increase of 0.78 mm in joint space gapping with subsequent evaluations. Stress US indicates that the UCL in the dominant elbow of elite pitchers is thicker, is more likely to have hypoechoic foci and/or calcifications, and has increased laxity with valgus stress over time.

  9. Application of radiotracers in an exotic field of botany. How to feed carnivorous plants

    International Nuclear Information System (INIS)

    Steinhauser, G.; Musilek, A.; Sterba, J.H.; Bichler, M.; Adlassnig, W.; Peroutka, M.; Lichtscheidl, I.K.

    2007-01-01

    In this paper, methods for the application of radiotracers in the Cobra Lily (Darlingtonia californica), a carnivorous pitcher plant, are described. The uptake of radiotracers such as 42 K and 54 Mn into the pitcher trap in aqueous solution could be proven, whereas uptake of 59 Fe ions could not be observed. No-carrier-added 54 Mn was taken up by the plants, regardless of extremely low concentrations. In contrast to earlier experiments using 14 C and 15 N-based tracers, the methodology presented allows quick, simple and reliable quantification of the nutrient uptake. The results of our experiments lead to a deeper biological understanding concerning the trace element household of this carnivorous plant and the absorption of micro- and macronutrients from trapped prey. (author)

  10. Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.

    Science.gov (United States)

    Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E

    2017-03-01

    Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.

  11. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  12. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  13. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  14. Decreased Shoulder External Rotation and Flexion Are Greater Predictors of Injury Than Internal Rotation Deficits: Analysis of 132 Pitcher-Seasons in Professional Baseball.

    Science.gov (United States)

    Camp, Christopher L; Zajac, John M; Pearson, David B; Sinatro, Alec M; Spiker, Andrea M; Werner, Brian C; Altchek, David W; Coleman, Struan H; Dines, Joshua S

    2017-09-01

    The primary aims of this work were to (1) describe normal range of motion (ROM) profiles for elite pitchers, (2) describe the characteristics of shoulder and elbow injuries in professional pitchers over a 6-year period in one Major League Baseball organization, and (3) identify ROM measures that were independently associated with a future shoulder or elbow injury. Over 6 seasons (2010-2015), a preseason assessment was performed on all pitchers invited to Major League Baseball Spring Training for a single organization. ROM measures included shoulder flexion, horizontal adduction, external rotation (ER), internal rotation, as well as elbow flexion and extension, were measured for both the dominant and nondominant arm, and total range of motion and deficits were calculated. All noncontact shoulder and elbow injuries were identified. Using multivariate binomial logistic regression analysis to control for age, height, weight, and all other ROM measures, the factors associated with an increased risk of subsequent shoulder or elbow injury were identified. A total of 53 shoulder (n = 25) and elbow (n = 28) injuries occurred during 132 pitcher seasons (n = 81 pitchers). The most significant categorical risk factor associated with increased elbow injury rates was the presence of a shoulder flexion deficit >5° (odds ratio [OR] 2.83; P = .042). For continuous variables, the risk of elbow injury increased by 7% for each degree of increased shoulder ER deficit (OR 1.07; P = .030) and 9% for each degree of decreased shoulder flexion (OR 1.09; P = .017). None of the measures significantly correlated with shoulder injuries. Preseason shoulder ER and flexion deficits are independent risk factors for the development of elbow injuries during the upcoming season. Although prior work has supported the importance of reducing glenohumeral internal rotation deficits in pitchers, this study demonstrates that deficits in shoulder ER and flexion are more significant predictors of

  15. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  16. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis.

    Science.gov (United States)

    Kadek, Alan; Tretyachenko, Vyacheslav; Mrazek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr

    2014-03-01

    Carnivorous plants of the genus Nepenthes produce their own aspartic proteases, nepenthesins, to digest prey trapped in their pitchers. Nepenthesins differ significantly in sequence from other aspartic proteases in the animal or even plant kingdoms. This difference, which also brings more cysteine residues into the structure of these proteases, can be a cause of uniquely high temperature and pH stabilities of nepenthesins. Their detailed structure characterization, however, has not previously been possible due to low amounts of protease present in the pitcher fluid and also due to limited accessibility of Nepenthes plants. In the present study we describe a convenient way for obtaining high amounts of nepenthesin-1 from Nepenthes gracilis using heterologous production in Escherichia coli. The protein can be easily refolded in vitro and its characteristics are very close to those described for a natural enzyme isolated from the pitcher fluid. Similarly to the natural enzyme, recombinant nepenthesin-1 is sensitive to denaturing and reducing agents. It also has maximal activity around pH 2.5, shows unusual stability at high pH and its activity is not irreversibly inhibited even after prolonged incubation in the basic pH range. On the other hand, temperature stability of the recombinant enzyme is lower in comparison with the natural enzyme, which can be attributed to missing N-glycosylation in the recombinant protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  18. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  19. Inventory of the Invasive Alien Plant Species in Indonesia

    OpenAIRE

    TJITROSOEDIRDJO, SRI SUDARMIYATI

    2005-01-01

    An inventory of the alien plant species in Indonesia based on the existing references and herbarium specimens concluded that 1936 alien plant species are found in Indonesia which belong to 187 families. Field studies should be done to get the complete figures of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be identified, followed by studies on the assessment of losses, biology, management and their possible utilizat...

  20. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  1. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  3. [Psychoactive plant species--actual list of plants prohibited in Poland].

    Science.gov (United States)

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  4. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  5. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  6. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  7. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  8. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  9. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers.

    Science.gov (United States)

    Ellenbecker, Todd S; Ellenbecker, Gail A; Roetert, E Paul; Silva, Rogerio Teixeira; Keuter, Greg; Sperling, Fabio

    2007-08-01

    Repetitive loading to the hip joint in athletes has been reported as a factor in the development of degenerative joint disease and intra-articular injury. Little information is available on the bilateral symmetry of hip rotational measures in unilaterally dominant upper extremity athletes. Side-to-side differences in hip joint range of motion may be present because of asymmetrical loading in the lower extremities of elite tennis players and professional baseball pitchers. Cohort (cross-sectional) study (prevalence); Level of evidence, 1. Descriptive measures of hip internal and external rotation active range of motion were taken in the prone position of 64 male and 83 female elite tennis players and 101 male professional baseball pitchers using digital photos and computerized angle calculation software. Bilateral differences in active range of motion between the dominant and nondominant hip were compared using paired t tests and Bonferroni correction for hip internal, external, and total rotation range of motion. A Pearson correlation test was used to test the relationship between years of competition and hip rotation active range of motion. No significant bilateral difference (P > .005) was measured for mean hip internal or external rotation for the elite tennis players or the professional baseball pitchers. An analysis of the number of subjects in each group with a bilateral difference in hip rotation greater than 10 degrees identified 17% of the professional baseball pitchers with internal rotation differences and 42% with external rotation differences. Differences in the elite male tennis players occurred in only 15% of the players for internal rotation and 9% in external rotation. Female subjects had differences in 8% and 12% of the players for internal and external rotation, respectively. Statistical differences were found between the mean total arc of hip range of internal and external rotation in the elite tennis players with the dominant side being greater

  10. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  11. Ulnar neuropathy and medial elbow pain in women's fastpitch softball pitchers: a report of 6 cases.

    Science.gov (United States)

    Smith, Adam M; Butler, Thomas H; Dolan, Michael S

    2017-12-01

    Elite-level women's fastpitch softball players place substantial biomechanical strains on the elbow that can result in medial elbow pain and ulnar neuropathic symptoms. There is scant literature reporting the expected outcomes of the treatment of these injuries. This study examined the results of treatment in a series of these patients. We identified 6 female softball pitchers (4 high school and 2 collegiate) with medial elbow pain and ulnar neuropathic symptoms. Trials of conservative care failed in all 6, and they underwent surgical treatment with subcutaneous ulnar nerve transposition. These patients were subsequently monitored postoperatively to determine outcome. All 6 female pitchers had early resolution of elbow pain and neuropathic symptoms after surgical treatment. Long-term follow-up demonstrated that 1 patient quit playing softball because of other injuries but no longer reported elbow pain or paresthesias. One player was able to return to pitching at the high school level but had recurrent forearm pain and neuritis 1 year later while playing a different sport and subsequently stopped playing competitive sports. Four patients continued to play at the collegiate level without further symptoms. Medial elbow pain in women's softball pitchers caused by ulnar neuropathy can be treated effectively with subcutaneous ulnar nerve transposition if nonsurgical options fail. Further study is necessary to examine the role of overuse, proper training techniques, and whether pitching limits may be necessary to avoid these injuries. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  13. The Relationship of Throwing Arm Mechanics and Elbow Varus Torque: Within-Subject Variation for Professional Baseball Pitchers Across 82,000 Throws.

    Science.gov (United States)

    Camp, Christopher L; Tubbs, Travis G; Fleisig, Glenn S; Dines, Joshua S; Dines, David M; Altchek, David W; Dowling, Brittany

    2017-11-01

    Likely due to the high level of strain exerted across the elbow during the throwing motion, elbow injuries are on the rise in baseball. To identify at-risk athletes and guide postinjury return-to-throw programs, a better understanding of the variables that influence elbow varus torque is desired. To describe the within-subject relationship between elbow varus torque and arm slot and arm rotation in professional baseball pitchers. Descriptive laboratory study. A total of 81 professional pitchers performed 82,000 throws while wearing a motusBASEBALL sensor and sleeve. These throws represented a combination of throw types, such as warm-up/catch, structured long-toss, bullpen throwing from a mound, and live game activity. Variables recorded for each throw included arm slot (angle of the forearm relative to the ground at ball release), arm speed (maximal rotational velocity of the forearm), arm rotation (maximal external rotation of the throwing arm relative to the ground), and elbow varus torque. Linear mixed-effects models and likelihood ratio tests were used to estimate the relationship between elbow varus torque and arm slot, arm speed, and arm rotation within individual pitchers. All 3 metrics-arm slot (χ 2 = 428, P relationship with elbow varus torque. Within individual athletes, a 1-N.m increase in elbow varus torque was associated with a 13° decrease in arm slot, a 116 deg/s increase in arm speed, and an 8° increase in arm rotation. Elbow varus torque increased significantly as pitchers increased their arm rotation during the arm cocking phase, increased the rotational velocity of their arm during the arm acceleration phase of throwing, and decreased arm slot at ball release. Thus, shoulder flexibility, arm speed, and elbow varus torque (and likely injury risk) are interrelated and should be considered collectively when treating pitchers. It is well established that elbow varus torque is related to ulnar collateral ligament injuries in overhead throwers. This

  14. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  15. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  16. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  17. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  18. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  19. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  20. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  1. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  2. Distribution and content of ellagitannins in Finnish plant species.

    Science.gov (United States)

    Moilanen, Johanna; Koskinen, Piia; Salminen, Juha-Pekka

    2015-08-01

    The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  4. Prospective multifactorial analysis of preseason risk factors for shoulder and elbow injuries in high school baseball pitchers.

    Science.gov (United States)

    Shitara, Hitoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Shimoyama, Daisuke; Ichinose, Tsuyoshi; Tajika, Tsuyoshi; Osawa, Toshihisa; Iizuka, Haku; Takagishi, Kenji

    2017-10-01

    To prospectively identify preseason physical factors for shoulder and elbow injuries during the season in high school baseball pitchers. The study included 105 high school baseball pitchers [median age 16 (15-17) years]. The range of motion of the shoulder (90° abducted external and internal rotation) and elbow (extension/flexion), shoulder muscle strength (abduction and prone internal and external rotation), shoulder and elbow laxity, horizontal flexion, and scapular dyskinesis were assessed. After the season, the participants completed questionnaires regarding shoulder and/or elbow injuries, with injury defined as an inability to play for ≥1 week due to elbow/shoulder problems. The results of two groups (injured and noninjured) were compared using t tests and Chi-square analyses. Stepwise forward logistic regression models were developed to identify risk factors. Twenty-one injuries were observed. In univariate analysis, 90° abducted internal rotation and total arc of the dominant shoulder and the ratio of prone external rotation in the dominant to nondominant sides in the injured group were significantly less than those in the noninjured group (P = 0.02, 0.04, and 0.01, respectively). In logistic regression analysis, 90° abducted internal rotation in the dominant shoulder and prone external rotation ratio were significantly associated with injuries (P = 0.02 and 0.03, respectively). A low prone external rotation ratio and decreased 90° abducted internal rotation in the dominant shoulder in the preseason were significant risk factors for shoulder and elbow injuries in high school baseball pitchers. The results may contribute to reduce the incidence of these injuries. II.

  5. The preliminary attempts of in in vitro regeneration from petioles of recalcitrant species of Cephalotus follicularis Labill.

    OpenAIRE

    Tuleja M.; Chmielowska A.; Płachno B.

    2014-01-01

    Cephalotus follicularis Labill. is representative of the extraordinary carnivorous group of plants. Carnivorous plants with pitcher traps grow in nutrient poor, sunny and wet habitats, they have adapted themselves to growth in bogs, sandy soils and obtain some nutrients (e.g. nitrogen and phosphate) from insects and other arthropods or protozoa, even from small mammals occasionally (Król et al. 2012). C. follicularis belongs to the monotypic family Cephalotaceae, and it is the endemic plant o...

  6. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  8. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    Science.gov (United States)

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.

  9. Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology.

    Science.gov (United States)

    Kolter, Roberto

    2010-03-01

    This article reviews the latest findings on how extracellular signaling controls cell fate determination during the process of biofilm formation by Bacillus subtilis in the artificial setting of the laboratory. To complement molecular genetic approaches, surface-associated communities in settings as diverse as the pitcher plant Sarracenia purpurea and the human lung were investigated. The study of the pitcher plant revealed that the presence or absence of a mosquito larva in the pitcher plant controlled bacterial diversity in the ecosystem inside the pitcher plant. Through the analysis of the respiratory tract microbiota of humans suffering from cystic fibrosis (CF) a correlation between lung function and bacterial community diversity was found. Those that had lungs in good condition had also more diverse communities, whereas patients harboring Pseudomonas aeruginosa-the predominant CF pathogen-in their lungs had less diverse communities. Further studies focused on interspecies and intraspecies relationships at the molecular level in search for signaling molecules that would promote biofilm formation. Two molecules were found that induced biofilm formation in B. subtilis: nystatin-released by other species-and surfactin-released by B. subtilis itself. This is a role not previously known for two molecules that were known for other activities-nystatin as an antifungal and surfactin as a surfactant. In addition, surfactin was found to also trigger cannibalism under starvation. This could be a strategy to maintain the population because the cells destroyed serve as nutrients for the rest. The path that led the author to the study of microbial biofilms is also described.

  10. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  11. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  12. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  13. Draft Environmental Impact Statement. Space Shuttle Advanced Solid Rocket Motor Program

    Science.gov (United States)

    1988-12-01

    species, including orchids ( Orchidaceae ) and several carnivorous plants, such as sundews (Drosera sp.), pitcher plants (Sarracenia sp.) and pipeworts...a dense shrub cover including saw palmetto, sea grape (Coccoloba urifera), wax myrtle (Myrica cerifera), and tough buckthorn (Bumelia tenax) (George...Cherry Prunus serotina Shrubs Galberries Ilex glabra, I. coriacea Wax Myrtle yrica cerifeFa Vines Bamboo Vine Similax laurifolia Poison Ivy Rhus radicans

  14. Invasive Plant Species in the National Parks of Vietnam

    OpenAIRE

    Bernard Dell; Pham Quang Thu; Dang Thanh Tan

    2012-01-01

    The impact of invasive plant species in national parks and forests in Vietnam is undocumented and management plans have yet to be developed. Ten national parks, ranging from uncut to degraded forests located throughout Vietnam, were surveyed for invasive plant species. Transects were set up along roads, trails where local people access park areas, and also tracks through natural forest. Of 134 exotic weeds, 25 were classified as invasive species and the number of invasive species ranged from ...

  15. Compliance With Injury Prevention Measures in Youth Pitchers: Survey of Coaches in Little League of Puerto Rico.

    Science.gov (United States)

    Pamias-Velázquez, Kristian J; Figueroa-Negrón, Mariam M; Tirado-Crespo, Janiliz; Mulero-Portela, Ana L

    2016-05-01

    Because of the problem of elbow and shoulder injuries in baseball pitchers between 9 and 14 years of age, the USA Baseball Medical & Safety Advisory Committee and the Department of Recreation and Sports in Puerto Rico developed injury prevention guidelines for pitchers. The purpose of this study was to determine the compliance of pitching coaches of 9- to 14-year-old Little League teams in Puerto Rico with the Administrative Order 2006-01 and the USA Baseball guidelines. (1) The coaches will have a satisfactory level of compliance with the Administrative Order as well as with the USA Baseball guidelines and (2) both the level of education of the coach as well as the years of experience will correlate with the level of compliance. Descriptive cross-sectional study. Level 5. A self-administered questionnaire was developed based on the Administrative Order and on the USA Baseball guidelines. A descriptive univariate analysis was conducted to determine the mean coach compliance with both guidelines. Pearson correlation coefficients were used to describe the correlation between the level of education and the years of experience of the coaches with the level of compliance. Thirty-five coaches (response rate, 78%) participated in the study. On average, the coaches complied with 70% of the Administrative Order and with 73% of the USA Baseball guidelines. No significant correlations were found. The coaches who participated in the study did not reflect a satisfactory level of compliance with the USA Baseball guidelines or with the Administrative Order. These findings emphasize the need for reinforcing compliance with the injury prevention guidelines and the need to provide resources and training to coaches to effectively prevent elbow and shoulder injuries in pitchers. © 2016 The Author(s).

  16. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  17. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  18. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  19. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  20. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  1. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  2. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  3. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping: attraction, capture and retention. ... The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.

  4. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  5. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  6. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  7. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  8. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  9. Coexistence induced by pollen limitation in flowering-plant species.

    OpenAIRE

    Ishii, R; Higashi, M

    2001-01-01

    We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-obser...

  10. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  11. Plant antiherbivore defenses in Fabaceae species of the Chaco.

    Science.gov (United States)

    Lima, T E; Sartori, A L B; Rodrigues, M L M

    2017-01-01

    The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae) collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense - defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species), leaves (67%), and reproductive organs (56%). The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  12. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  13. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  14. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  15. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  16. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  17. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  18. Correlation among Y Balance Test-Lower Quarter Composite Scores, Hip Musculoskeletal Characteristics, and Pitching Kinematics in NCAA Division I Baseball Pitchers.

    Science.gov (United States)

    Culiver, Adam; Garrison, J Craig; Creed, Kalyssa M; Conway, John E; Goto, Shiho; Werner, Sherry

    2018-01-24

    Numerous studies have reported kinematic data on baseball pitchers using 3D motion analysis, but no studies to date have correlated this data with clinical outcome measures. To examine the relationship among Y Balance Test-Lower Quarter (YBT-LQ) composite scores, musculoskeletal characteristics of the hip and pitching kinematics in NCAA Division I baseball pitchers. Cross-sectional. 3D motion analysis laboratory. 19 healthy male collegiate baseball pitchers. Internal and external hip passive range of motion (PROM); hip abduction strength; YBT-LQ composite scores; kinematic variables of the pitching motion. Stride length demonstrated a moderate positive correlation with dominant limb YBT-LQ composite score (r=0.524, p=0.018) and non-dominant limb YBT-LQ composite score (r=0.550, p=0.012), and a weak positive correlation with normalized time to maximal humerus velocity (r=0.458, p=0.043). Stride length had a moderate negative correlation with normalized time to maximal thorax velocity (r= -0.522, p=0.018) and dominant hip TRM (r= -0.660, p=0.002), and had a strong negative correlation with normalized time from SFC to maximal knee flexion (r= -0.722, pcorrelation with hip abduction strength difference (r= -0.459, p=0.042) and normalized time to maximal thorax velocity (r= -0.468, p=0.037), as well as a moderate negative correlation with dominant hip TRM (r= -0.160, p=0.004). Non-dominant limb YBT-LQ composite score demonstrated a weak negative correlation with normalized time to maximal thorax velocity (r= -0.450, p=0.046) and had a moderate negative correlation with dominant hip TRM (r= -0.668, p=0.001). Hip abduction strength difference demonstrated a weak positive correlation with dominant hip TRM (r=0.482, p=0.032). Dominant hip TRM had a moderate positive correlation with normalized time to maximal thorax velocity (r=0.484, p=0.031). There were no other significant relationships between the remaining variables. YBT-LQ is a clinical measure which can be used to

  19. Improper trunk rotation sequence is associated with increased maximal shoulder external rotation angle and shoulder joint force in high school baseball pitchers.

    Science.gov (United States)

    Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B

    2014-09-01

    In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).

  20. Upper Extremity Functional Status of Female Youth Softball Pitchers Using the Kerlan-Jobe Orthopaedic Clinic Questionnaire

    OpenAIRE

    Holtz, Kaila A.; O’Connor, Russell J.

    2018-01-01

    Background: Softball is a popular sport with a high incidence of upper extremity injuries. The Kerlan-Jobe Orthopaedic Clinic (KJOC) questionnaire is a validated performance and functional assessment tool used in overhead athletes. Upper extremity pain patterns and baseline KJOC scores have not been reported for active female youth softball pitchers. Purpose/Hypothesis: The purpose of this study was to establish the prevalence of upper extremity pain and its effect in female youth softball pi...

  1. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  2. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  3. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  4. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  5. When Are Native Species Inappropriate for Conservation Plantings

    Science.gov (United States)

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  6. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  7. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  8. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  9. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?

    NARCIS (Netherlands)

    Bakker, C; Blair, JM; Knapp, AK

    2003-01-01

    Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in

  10. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    Science.gov (United States)

    Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.

  11. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  12. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  13. Radiocaesium accumulation by different plant species

    International Nuclear Information System (INIS)

    Filiptsova, G.G.

    2000-01-01

    Using the model object influence of mineral nutritions level on radiocaesium accumulation by different plant species has been studied. It was shown the wheat roots accumulation the minimal value on radiocaesium on normal potassium level, the rye roots accumulation maximal level radiocaesium. (authors)

  14. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  15. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  16. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  17. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  18. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  19. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained an...

  20. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  1. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a) Background. (1) A variety of plant and animal species of the United States are so reduced in numbers that...

  2. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  3. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    Since plants dominate every landscape, the impact of any environmental stressor on plants can directly affect the structure and function of an ecosystem, resulting in decreased primary productivity and degradation of wildlife habitat. The investigation goal of the present research was to study how vascular plant species' composition at a former radium mining site could be related to i) soil contamination with heavy metals and uranium and thorium decay chain radionuclides and ii) soil agrochemical properties. Between the 1930's and 1950's, the commercial extraction of radium, storage of the uranium mill tailings and radium production wastes, together with deactivation of the site with a mixture of sand and gravel completely destroyed plant communities in the vicinity of Vodny settlement (Komi Republic, Russia). The plant cover recovery started more than 60 years ago, and resulted in overgrowing with common grassland plant species. Three meadow sites were investigated, one with low contamination (on the territory of former radium production plant), one with high contamination (waste storage cell) and a reference sites out of the radiochemical plant zone of influence, but with similar natural conditions. Geo-botanical descriptions revealed 134 vascular plant species from 34 families in the meadow communities studied. The greatest richness was seen for Poaceae, Asteraceae, Rosaceae and Fabaceae families; others had 1-5 species. The highest richness in diversity was seen at reference sites with 95 vascular plant species. 87 species were registered on low contaminated sites and 75 species on high contaminated. Perennial herbs were the dominant life form on all the studied meadow communities. Arboreal species expansion in vegetation was noted at both experimental and reference sites. Shannon index calculations indicated a significant (p<0.05) decrease in species diversity on sample areas of the highly contaminated radioactive waste storage cell. Mean values

  4. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    Science.gov (United States)

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  5. Postglacial migration supplements climate in determining plant species ranges in Europe

    Science.gov (United States)

    Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian

    2011-01-01

    The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356

  6. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  7. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    Science.gov (United States)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  8. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  9. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2014-12-01

    Full Text Available Indicator species could help to compensate for a shortfall of knowledge about the diversity and distributions of undersampled and cryptic species. This paper provides background knowledge about the ecological interactions that affect and are affected by herbaceous diversity in central Chile, as part of the indicator species selection process. We focus on the ecosystem engineering role of small mammals, primarily the degu Octodon degus. We also consider the interacting effects of shrubs, trees, avian activity, livestock, slope, and soil quality on herbaceous communities in central Chile. We sampled herbaceous diversity on a private landholding characterized by a mosaic of savanna, grassland and matorral, across a range of degu disturbance intensities. We find that the strongest factors affecting endemic herbaceous diversity are density of degu runways, shrub cover and avian activity. Our results show that the degu, a charismatic and easily identifiable and countable species, could be used as an indicator species to aid potential conservation actions such as private protected area uptake. We map areas in central Chile where degus may indicate endemic plant diversity. This area is larger than expected, and suggests that significant areas of endemic plant communities may still exist, and should be identified and protected. Keywords: Cryptic species, Diversity, Endemic, Indicator species, Octodon degus, Plant

  10. Evaluating complementary networks of restoration plantings for landscape-scale occurrence of temporally dynamic species.

    Science.gov (United States)

    Ikin, Karen; Tulloch, Ayesha; Gibbons, Philip; Ansell, Dean; Seddon, Julian; Lindenmayer, David

    2016-10-01

    Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and

  11. Does enemy damage vary across the range of exotic plant species? Evidence from two coastal dune plant species in eastern Australia.

    Science.gov (United States)

    Tabassum, Samiya; Leishman, Michelle R

    2018-02-01

    Release from natural enemies is often cited as a key factor for understanding the success of invasive plant species in novel environments. However, with time invasive species will accumulate native enemies in their invaded range, with factors such as spread distance from the site of introduction, climate and leaf-level traits potentially affecting enemy acquisition rates. However, the influence of such factors is difficult to assess without examining enemy attack across the entire species' range. We tested the significance of factors associated with range expansion (distance from source population and maximum population density), climatic variables (annual temperature and rainfall) and leaf-level traits [specific leaf area (SLA) and foliar nitrogen concentration] in explaining variation in enemy damage across multiple populations of two coastal invasive plants (Gladiolus gueinzii Kunze and Hydrocotyle bonariensis Lam.) along their entire introduced distribution in eastern Australia. We found that for H. bonariensis, amount of foliar damage increased with distance from source population. In contrast, for G. gueinzii, probability and amount of foliar damage decreased with decreasing temperature and increasing rainfall, respectively. Our results show that patterns of enemy attack across species' ranges are complex and cannot be generalised between species or even range edges.

  12. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  13. Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions

    Directory of Open Access Journals (Sweden)

    Wesley Dattilo

    2012-12-01

    Full Text Available The knowledge of the mechanisms that shape biodiversity-stability relationships is essential to understand ecological and evolutionary dynamics of interacting species. However, most studies focus only on species loss and ignore the loss of interactions. In this study, I evaluated the topological structure of two different ant-plant networks: symbiotic (ants and myrmecophytes and nonsymbiotic (ants and plants with extrafloral nectaries. Moreover, I also evaluated in both networks the tolerance to plant and ant species extinction using a new approach. For this, I used models based on simulations of cumulative removals of species from the network at random. Both networks were fundamentally different in the interaction and extinction patterns. The symbiotic network was more specialized and less robust to species extinction. On the other hand, the nonsymbiotic network tends to be functionally redundant and more robust to species extinction. The difference for food resource utilization and ant nesting in both ant-plant interactions can explain the observed pattern. In short, I contributed in this manner to our understanding of the biodiversity maintenance and coevolutionary processes in facultative and obligate mutualisms.

  14. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  15. Productivity of selected plant species adapted to arid regions. [Crassulacean metabolizing plants; Agave deserti and Ferocactus acanthodes

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1980-01-01

    The biomass potential of selected arid region species for alcohol production merits careful consideration. The basis for this interest is the current low agronomic use of arid lands and the potential productivity of certain species adapted to these lands. Plants displaying Crassulacean acid metabolism (CAM) are particularly interesting with reference to biomass for fuel in regions with low rainfall, because plants with this photosynthetic process are strikingly efficient in water requirements. For CAM plants, CO/sub 2/ fixation occurs primarily at night, when tissue surface temperature and hence transpirational water loss is less than daytime values. For Agave deserti in the Sonoran desert, the water-use efficiency (mass of CO/sub 2/ fixed/mass of water transpired) over an entire year is an order of magnitude or more larger than for C-3 and C-4 plants. This indicates how well adapted CAM species are to arid regions. The potential productivity per unit land area of CAM plants is fairly substantial and, therefore, of considerable economic interest for arid areas where growth of agricultural plants is minimal.

  16. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  17. Adaptive Management Plan for Sensitive Plant Species on the Nevada Test Site

    International Nuclear Information System (INIS)

    Wills, C. A.

    2001-01-01

    The Nevada Test Site supports numerous plant species considered sensitive because of their past or present status under the Endangered Species Act and with federal and state agencies. In 1998, the U.S. Department of Energy, Nevada Operation Office (DOE/NV) prepared a Resource Management Plan which commits to protects and conserve these sensitive plant species and to minimize accumulative impacts to them. This document presents the procedures of a long-term adaptive management plan which is meant to ensure that these goals are met. It identifies the parameters that are measured for all sensitive plant populations during long-term monitoring and the adaptive management actions which may be taken if significant threats to these populations are detected. This plan does not, however, identify the current list of sensitive plant species know to occur on the Nevada Test Site. The current species list and progress on their monitoring is reported annually by DOE/NV in the Resource Management Plan

  18. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    Science.gov (United States)

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.

  19. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  20. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  1. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  2. Alien plant species (ephemerophytes in Romensko-Poltavsky Geobotanical District, Ukraine

    Directory of Open Access Journals (Sweden)

    Dvirna Tetyana S.

    2017-09-01

    Full Text Available This paper presents the results of research on ephemerophytes of the alien portion of the flora of the Romensko-Poltavsky Geobotanical District (north-eastern Ukraine. It is a detailed study of this group of plants, conducted for the first time in the Ukraine. The checklist of alien vascular plants contains 345 species, of which 27 species are ephemerophytes (or 8%: Adonis aestivalis, A. annua, Papaver albiflorum, Urtica cannabina, Gypsophila perfoliata, Atriplex micrantha, Chenopodium × preissmannii, Ch. × thellungii, Rumex longifolius, Sisymbrium polymorphum, Euphorbia humifusa, Malus sylvestris, Onobrychis viciifolia, Astrodaucus orientalis, Datura tatula, Solanum schultesii, Lindernia procumbens, Melampyrum cristatum, Helianthus annuus, Petasites spurius, Xanthium ripicola × Xanthium albinum, Echinochloa tzvelevii, Panicum capillare, Panicum capillare L. subsp. barvipulvinatum, Phalaris canariensis, Setaria ×ambigua, Sorghum halepense. The basis of this work is original data of the author obtained during field studies, and a critical study of the literature, archival, cartographic materials and herbarium collections, and the use of classical methods of botanical classification. Complex research of this group of plants was conducted and as a result of these investigations the following characteristics were established: a predominance of kenophytes of Mediterranean origin in this group, species of arid areas, cosmopolitan species with a diffuse type of space structure, therophytes, herbaceous monocarpic plants, mesotrophes, heliophytes and xeromesophytes, with an insignificant degree of impact on native plant communities and with a limited distribution within the study region. The combination of these results indicates that ephemerophytes comprise a temporary, unstable component of the flora of this region of the Ukraine. The paper provides maps of the distribution of these 27 species.

  3. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  4. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Deforestation, over-cultivation and rural growth have severely ... over-cultivation, plant populations changed, and biolo- ... Restoring community structure (e.g. species composi-tion ... plant diversity at all spatial scales are the criteria that should ..... taxonomic groups in recovering and restored forests.

  5. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species.

    Science.gov (United States)

    Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W

    2016-11-01

    When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.

  6. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Science.gov (United States)

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  7. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    Science.gov (United States)

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  9. Abilities of the pitchers of female Softball in the community Los Arados Maisí from Municipality

    Directory of Open Access Journals (Sweden)

    Roylis Noa-Chávez

    2011-06-01

    Full Text Available This study addresses a subject of great interest from the major deficiencies in female softball pitchers in the community “Los Arados” from Maisí municipality. In this sense, the researcher offers in detail a group of elements on an activity that is very young in the territory and where its practitioners are started for the first time. From the review and updating of these physical activities the specialists criteria method was applied, which confirmed the feasibility of the proposal to insert it into the female softball lesson plans.

  10. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  11. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  12. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  13. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  14. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.

    Science.gov (United States)

    Yi, Tao; Fan, Lan-Lan; Chen, Hong-Li; Zhu, Guo-Yuan; Suen, Hau-Man; Tang, Yi-Na; Zhu, Lin; Chu, Chu; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-08-09

    Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method.The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting.

  15. ecotaxonomic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    Admin

    plant species of medicinal and other economic values. The investigation was ... A total of 41 and 24 representative ... INTRODUCTION. Baseline .... at 100m interval, involving a total of 15 sampling locations .... explained by factors such as climate, productivity and ... encouraging the: Maintenance of traditional tree species.

  16. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  17. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  18. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    Science.gov (United States)

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  19. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  20. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  1. Distribution patterns of rare earth elements in various plant species

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.

    1997-01-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs

  2. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  3. Preferences for different nitrogen forms by coexisting plant species and soil microbes.

    Science.gov (United States)

    Harrison, Kathryn A; Bol, Roland; Bardgett, Richard D

    2007-04-01

    The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms

  4. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    NARCIS (Netherlands)

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from

  5. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  6. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  7. Quantifying the Water Footprint of Manufactured Products: A Case Study of Pitcher Water Filters

    Directory of Open Access Journals (Sweden)

    Ashley Barker

    2012-01-01

    Full Text Available Fresh water is a finite resource that is critically needed bysociety for a variety of purposes. The demand for freshwater will grow as the world population and global livingstandard increase, and fresh water shortages will becomemore commonplace. This will put significant stress onsociety. It has been argued that fresh water may becomethe next oil, and efforts have to be made to better manageits fresh water consumption by agricultural and domesticusers. Industry also uses large amounts. Surprisingly, onlyrecently is serious attention being directed toward waterrelatedissues. This effort to quantify the water footprint ofa manufactured product represents one of the first initiativesto characterize the role of water in a discrete good.This study employed a life cycle assessment methodologyto determine the water footprint of a pitcher water filter.This particular product was selected because many waterintensivematerials and processes are needed to produceits major components: for example, agricultural processesused to produce activated carbon and petrochemicalprocesses used to produce the polypropylene casing. Inaddition, a large amount of water is consumed during theproduct’s use phase. Water data was obtained from theEcoinvent 2.1 database and categorized as either beingassociated with blue or green water.The blue water footprint (surface water consumption forthe pitcher water filter was 76 gallons per filter: 10 gallonsconsumed for materials extraction, 15 gallons for themanufacturing stage, and 50 gallons during the use phase.The green water footprint (precipitation was associatedwith the cultivation of the coconut tree; activated carbonis obtained from the coconut shells. The green waterfootprint was calculated to be 164 gallons per filter.The overall water footprint was 240 gallons per filter;the filter footprint is heavily dominated by green water(68% rather than blue water (32%. Future studies mayinvestigate how the production and

  8. Growth and Development of Three-Dimensional Plant Form.

    Science.gov (United States)

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  10. POPULASI DAN HABITAT Nepenthes ampullaria Jack. DI CAGAR ALAM MANDOR, KALIMANTAN BARAT

    Directory of Open Access Journals (Sweden)

    Maysarah .

    2017-04-01

    Full Text Available Nepenthes ampullaria Jack. is a species which adapted on the nutrient-poor areas in Mandor nature reserve.  Its could be increasing the quality of Mandor nature reserve as protected area. This research aims to study the population and habitat of N. ampullaria in the Mandor nature reserve. This study was conducted at two habitats, heath forest and peat swamp forest. Observations were made on, population abundance and habitat factors of  N. ampullaria. The results showed that the highest population density of N. ampullaria was in heath forest. Their are growth in groups. Vegetation analysis showed that constituent species habitat of N. ampullaria consist of 69 species from 39 familly. Result of identification to insects showed Formicidae is dominant family that trapped in pitcher of N. ampullaria. Temperature and humidity in N. ampullaria’s habitat has been switable for requirements growth of pitcher plant. Rainfall during the study was normally. Ratio of sand and soil on both affected the improvement of individual N. ampullaria in Mandor nature reserve. Keywords: habitat, Mandor nature reserve, Nepenthes ampullaria Jack, population

  11. Stability of modularity and structural keystone species in temporal cumulative plant- flower-visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2012-01-01

    Modularity is a structural property of ecological networks, which has received much interest, but has been poorly explored. Modules are distinct subsets of species interacting strongly with each other, but sparsely with species outside the subset. Using a series of temporal cumulative networks, we...... all flowering plants and flower-visiting insect species throughout the flowering season at three dry heathland sites in Denmark. For each site, we constructed cumulative networks every 0.5 months, resulting in series of 10–12 networks per site. Numbers of interactions, and plant and insect species...... around one or two hubs. These hub species encompassed a small number of plant species, many of which acted as hubs at several study sites and throughout most of their flowering season. Thus, these plants become of key importance in maintaining the structure of their pollination network. We conclude...

  12. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  13. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  14. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Berge, ten W.F.; Jansen, B.P.

    2003-01-01

    Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation

  15. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  16. Climate and soil attributes determine plant species turnover in global drylands.

    Science.gov (United States)

    Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2014-12-01

    Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate

  17. Climate and soil attributes determine plant species turnover in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These

  18. CE of phytosiderophores and related metal species in plants.

    Science.gov (United States)

    Xuan, Yue; Scheuermann, Enrico B; Meda, Anderson R; Jacob, Peter; von Wirén, Nicolaus; Weber, Günther

    2007-10-01

    Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.

  19. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding.

    Science.gov (United States)

    Nithaniyal, Stalin; Vassou, Sophie Lorraine; Poovitha, Sundar; Raju, Balaji; Parani, Madasamy

    2017-02-01

    Plants are the major source of therapeutic ingredients in complementary and alternative medicine (CAM). However, species adulteration in traded medicinal plant raw drugs threatens the reliability and safety of CAM. Since morphological features of medicinal plants are often not intact in the raw drugs, DNA barcoding was employed for species identification. Adulteration in 112 traded raw drugs was tested after creating a reference DNA barcode library consisting of 1452 rbcL and matK barcodes from 521 medicinal plant species. Species resolution of this library was 74.4%, 90.2%, and 93.0% for rbcL, matK, and rbcL + matK, respectively. DNA barcoding revealed adulteration in about 20% of the raw drugs, and at least 6% of them were derived from plants with completely different medicinal or toxic properties. Raw drugs in the form of dried roots, powders, and whole plants were found to be more prone to adulteration than rhizomes, fruits, and seeds. Morphological resemblance, co-occurrence, mislabeling, confusing vernacular names, and unauthorized or fraudulent substitutions might have contributed to species adulteration in the raw drugs. Therefore, this library can be routinely used to authenticate traded raw drugs for the benefit of all stakeholders: traders, consumers, and regulatory agencies.

  20. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  1. Screening of plant species as ground cover on uranium mill tailings

    International Nuclear Information System (INIS)

    Venu Babu, P.; Eapen, S.

    2012-01-01

    The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the

  2. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  3. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  4. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  5. Tree-Dwelling Ants: Contrasting Two Brazilian Cerrado Plant Species without Extrafloral Nectaries

    Directory of Open Access Journals (Sweden)

    Jonas Maravalhas

    2012-01-01

    Full Text Available Ants dominate vegetation stratum, exploiting resources like extrafloral nectaries (EFNs and insect honeydew. These interactions are frequent in Brazilian cerrado and are well known, but few studies compare ant fauna and explored resources between plant species. We surveyed two cerrado plants without EFNs, Roupala montana (found on preserved environments of our study area and Solanum lycocarpum (disturbed ones. Ants were collected and identified, and resources on each plant noted. Ant frequency and richness were higher on R. montana (67%; 35 spp than S. lycocarpum (52%; 26, the occurrence of the common ant species varied between them, and similarity was low. Resources were explored mainly by Camponotus crassus and consisted of scale insects, aphids, and floral nectaries on R. montana and two treehopper species on S. lycocarpum. Ants have a high diversity on cerrado plants, exploring liquid and prey-based resources that vary in time and space and affect their presence on plants.

  6. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    Science.gov (United States)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  7. Hip and upper extremity kinematics in youth baseball pitchers.

    Science.gov (United States)

    Holt, Taylor; Oliver, Gretchen D

    2016-01-01

    The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, P = 0.002) and at ball release (r = 0.536, P = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.

  8. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log......-transformed species numbers as dependent and log-transformed modified area (i.e. area not covered with barren lava) as an independent variable. This holds both for total species number, for native species number, for endemic species number and for total number of seed plants as well as number of endemic seed plants...

  9. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Vegetated plots were established by planting different plant species – legumes and vegetable (Abelmoschus, esculentus, Telfaria occidentalis and Vigna unguiculata) and applied with sawdust and chromolaena leaves at different intensities of oil pollution. Toxicity of the soil was evaluated using germination percentage, ...

  10. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  11. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  12. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  13. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  14. ISOLATION AND CHARACTERIZATION OF CHITINASE GENE FROM THE UNTRADITIONAL PLANT SPECIES

    Directory of Open Access Journals (Sweden)

    Dominika Ďurechová

    2013-02-01

    Full Text Available Round-leaf sundew (Drosera rotundifolia L. from Droseraceae family belongs among a few plant species with strong antifungal potential. It was previously shown that chitinases of carnivorous plant species may play role during the insect prey digestion, when hard chitin skeleton is being decomposed. As many phytopathogenic fungi contain chitin in their cell wall our attention in this work was focused on isolation and in silico characterization of genomic DNA sequence of sundew chitinase gene. Subsequently this gene was fused to strong constitutive CaMV35S promoter and cloned into the plant binary vector pBinPlus and tested in A. tumefaciens LBA 4404 for its stability. Next, when transgenic tobacco plants are obtained, increasing of their antifungal potential will be tested.

  15. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  16. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  17. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  18. Biodegradation of 2,4-dinitrotoluene by different plant species.

    Science.gov (United States)

    Podlipná, Radka; Pospíšilová, Blanka; Vaněk, Tomáš

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l). Copyright © 2014. Published by Elsevier Inc.

  19. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  20. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  1. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  2. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  3. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    Science.gov (United States)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  4. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  5. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  7. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Directory of Open Access Journals (Sweden)

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  8. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  9. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  10. The killer of Socrates: Coniine and Related Alkaloids in the Plant Kingdom.

    Science.gov (United States)

    Hotti, Hannu; Rischer, Heiko

    2017-11-14

    Coniine, a polyketide-derived alkaloid, is poisonous to humans and animals. It is a nicotinic acetylcholine receptor antagonist, which leads to inhibition of the nervous system, eventually causing death by suffocation in mammals. Coniine's most famous victim is Socrates who was sentenced to death by poison chalice containing poison hemlock in 399 BC. In chemistry, coniine holds two historical records: It is the first alkaloid the chemical structure of which was established (in 1881), and that was chemically synthesized (in 1886). In plants, coniine and twelve closely related alkaloids are known from poison hemlock ( Conium maculatum L.), and several Sarracenia and Aloe species. Recent work confirmed its biosynthetic polyketide origin. Biosynthesis commences by carbon backbone formation from butyryl-CoA and two malonyl-CoA building blocks catalyzed by polyketide synthase. A transamination reaction incorporates nitrogen from l-alanine and non-enzymatic cyclization leads to γ-coniceine, the first hemlock alkaloid in the pathway. Ultimately, reduction of γ-coniceine to coniine is facilitated by NADPH-dependent γ-coniceine reductase. Although coniine is notorious for its toxicity, there is no consensus on its ecological roles, especially in the carnivorous pitcher plants where it occurs. Lately there has been renewed interest in coniine's medical uses particularly for pain relief without an addictive side effect.

  11. Ecological studies of plants for the control of environmental pollution. IV. Growth of various plant species as influenced by soil applied cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cha, J.W.; Kim, B.W.

    1975-03-01

    The relations of the growth response of plants, i.e. 4 species of crops, 12 species of roadside trees and 5 species of horticultural plants to cadmium (Cd) were studied in pot cultures. Growth in dry weight of corn, soybeans, barley, and wheat plants was decreased with an increase in Cd concentration. Damage to corn plants caused by Cd treatment was more or less recovered when it was grown in soil with calcium, but the other three crops did not recover. Although crop plants used here absorbed a small amount of Cd through the roots, the Cd content in the shoots was directly proportionate to the concentration of Cd added to the soil. Additions of calcium and sulfur to soil were sufficient to change the soil pH. The chlorosis on leaves caused by Cd treatment was observed in 2 species such as Euonymus japonica and Rhododendron yedoense out of 5 species of the horticultural plants, especially at 50 ppm of Cd. Euonymus japonica had symptoms of chlorosis and defoliation, and at higher concentrations the symptoms were more severe. At 200 ppm of Cd little damage was observed in Pinus koraiensis and Ginkgo biloba, but severe chlorosis was observed in Robinia pseudoacacia and Sabina chinensis, Buxus koreana, Abies holophylla and Platanus orientalis. Nevertheless, those plants that had serious damage at 200 ppm of Cd showed weakened symptoms by adding calcium to the soil. There were many Cd tolerant species out of the plants used in this experiment, such as Crassula falcata, Chrysanthemum morifolium, Hibiscus syriacus, Ligustrum ovalifolium, Liriodendron tulipeferia, and Lespedeza crytobotrys.

  12. Application of two way indicator species analysis in lowland plant types classification.

    Science.gov (United States)

    Kooch, Yahya; Jalilvand, Hamid; Bahmanyar, Mohammad Ali; Pormajidian, Mohammad Reza

    2008-03-01

    A TWINSPAN classification of 60 sample plots from the Khanikan forest (North of Iran) is presented. Plant types were determined from field observations and sample plot data arranged and analyzed in association tables. The types were defined on the basis of species patterns of presence, absence and coverage values. Vegetation was sampled with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrate and using the two-way indicator species analysis. The objectives of the study were to plant type's classification for Khanikan lowland forest in North of Iran, Identification of indicator species in plant types and increase our understanding in regarding to one of Multivariate analysis methods (TWINSPAN). Five plant types were produced for the study area by TWINSPAN, i.e., Menta aquatica, Oplismenus undulatifolius, Carex grioletia, Viola odarata and Rubus caesius. Therefore, at each step of the process, the program identifies indicator species that show strongly differential distributions between groups and so can severe to distinguish the groups. The final result, incorporating elements of classification can provide a compact and powerful summary of pattern in the data set.

  13. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong

    2015-01-01

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex

  14. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-08-15

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex.

  15. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  16. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  17. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  18. Assessment of plant species diversity based on hyperspectral indices at a fine scale.

    Science.gov (United States)

    Peng, Yu; Fan, Min; Song, Jingyi; Cui, Tiantian; Li, Rui

    2018-03-19

    Fast and nondestructive approaches of measuring plant species diversity have been a subject of excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson (R 2  = 0.83), Pielou (R 2  = 0.87) and Shannon-Wiener index (R 2  = 0.88). Stepwise linear regression of FD (R 2  = 0.81, R 2  = 0.82) and spectral vegetation indices (R 2  = 0.51, R 2  = 0.58) significantly predicted the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener indices, which are widely used as plant species diversity indicators, can be precisely estimated through hyperspectral indices at a fine scale. This research promotes the development of methods for assessment of plant diversity using hyperspectral data.

  19. INAA of microelements in plant species from the Danube floodplain

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A; Salagean, M; Scarlat, A [Department of Applie Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Magurele-Bucharest (Romania); Iordache, V [Department of Ecology, University of Bucharest, Bucharest (Romania)

    1999-07-01

    A research was developed and implemented in the Danube floodplain, as a part of a program dealing with biogeochemistry of metals, to assess the possibility of using the ubiquitous plant species in the soil pollution monitoring activity. The Danube River is heavily polluted by the input from a catchment, which includes 12 countries. Even if the concentrations in the Danube water and sediments reach acute values only in some hot spots, due to the dilution effect, they could have negative consequences by phenomena of bioaccumulation and bioconcentration. The content of Al, Ag, As, Au, Ba, Br, Ca, Cl, Ce, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sc, Se, Sm, Sr, Th, V and Zn in Bidens tripartita, Rubus caesius, Stachys palustris and Xanthium strumarium ubiquitous plant species, collected from two areas located on different regularly flooded islands of the Danube river was investigated by instrumental neutron activation analysis method at WWR-S reactor in Bucharest. From the statistical point of view, three groups of elements present highly correlated concentrations in the investigated plant samples (p(0.05))//. The first one includes Al, As, Ce, Cs, Eu, Fe, Hf, La, Sc, Sm, Th and V, the second one Au, Ca, Cu and Sr, and the third one Br, Cr, Na and Mn. For the elements of the first group, the elemental concentrations are found to be in similar ratios in the species investigated, namely: Xanthium s. < Rubus c. < Bidens t. < Stachys p. as well as for the third group: Bidens t. < Rubus c. < Stachys p. < Xanthium s, suggesting that physiological features of the species could be responsible for the observed patterns of distribution. The soil and dominating plant species were analysed for Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr by the X-ray fluorescence method at the Institute for Geological Explorations, Bucharest. The elemental content in soil is reflected in the analysed plants for Cr, Cu, Fe, Ni, Pb and Zn, but not for Mn. This could be explained by the redox

  20. INAA of microelements in plant species from the Danube floodplain

    International Nuclear Information System (INIS)

    Pantelica, A.; Salagean, M.; Scarlat, A.; Iordache, V.

    1999-01-01

    A research was developed and implemented in the Danube floodplain, as a part of a program dealing with biogeochemistry of metals, to assess the possibility of using the ubiquitous plant species in the soil pollution monitoring activity. The Danube River is heavily polluted by the input from a catchment, which includes 12 countries. Even if the concentrations in the Danube water and sediments reach acute values only in some hot spots, due to the dilution effect, they could have negative consequences by phenomena of bioaccumulation and bioconcentration. The content of Al, Ag, As, Au, Ba, Br, Ca, Cl, Ce, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sc, Se, Sm, Sr, Th, V and Zn in Bidens tripartita, Rubus caesius, Stachys palustris and Xanthium strumarium ubiquitous plant species, collected from two areas located on different regularly flooded islands of the Danube river was investigated by instrumental neutron activation analysis method at WWR-S reactor in Bucharest. From the statistical point of view, three groups of elements present highly correlated concentrations in the investigated plant samples (p(0.05))//. The first one includes Al, As, Ce, Cs, Eu, Fe, Hf, La, Sc, Sm, Th and V, the second one Au, Ca, Cu and Sr, and the third one Br, Cr, Na and Mn. For the elements of the first group, the elemental concentrations are found to be in similar ratios in the species investigated, namely: Xanthium s. < Rubus c. < Bidens t. < Stachys p. as well as for the third group: Bidens t. < Rubus c. < Stachys p. < Xanthium s, suggesting that physiological features of the species could be responsible for the observed patterns of distribution. The soil and dominating plant species were analysed for Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr by the X-ray fluorescence method at the Institute for Geological Explorations, Bucharest. The elemental content in soil is reflected in the analysed plants for Cr, Cu, Fe, Ni, Pb and Zn, but not for Mn. This could be explained by the redox

  1. Assembly-history dynamics of a pitcher-plant protozoan community in experimental microcosms.

    Directory of Open Access Journals (Sweden)

    Kohmei Kadowaki

    Full Text Available History drives community assembly through differences both in density (density effects and in the sequence in which species arrive (sequence effects. Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly.We varied density and sequence effects independently in a two-way factorial design to follow community assembly in a three-species aquatic protozoan community. A superior competitor, Colpoda steinii, mediated alternative community states; early arrival or high introduction density allowed this species to outcompete or suppress the other competitors (Poterioochromonas malhamensis and Eimeriidae gen. sp.. Multivariate analysis showed that density effects caused greater variation in community states, whereas sequence effects altered the mean community composition.A significant interaction between density and sequence effects suggests that we should refine our understanding of priority effects. These results highlight a practical need to understand not only the "ingredients" (species in ecological communities but their "recipes" as well.

  2. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity

    NARCIS (Netherlands)

    Dassen, S.; Cortois, R.; Martens, Henk; De Hollander, M.; Kowalchuk, G.A.; van der Putten, W.H.; De Deyn, G.B.

    2017-01-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil

  3. Presence of indicator plant species as a predictor of wetland vegetation integrity

    Science.gov (United States)

    Stapanian, Martin A.; Adams, Jean V.; Gara, Brian

    2013-01-01

    We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.

  4. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  5. Arsenic speciation in moso bamboo shoot - A terrestrial plant that contains organoarsenic species

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rui [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084, P.R. China (China); Zhao Mengxia [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China); Wang Hui [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China); Taneike, Yasuhito [Shimadzu Co Ltd, Spectroscopy Business Unit Analytical Instruments Div, Nakagyo Ku, Kyoto, 6048511 (Japan); Zhang Xinrong [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China)]. E-mail: xrzhang@chem.tsinghua.edu.cn

    2006-12-01

    Arsenic is predominantly found as an inorganic species in most terrestrial plants. However, we found that a significant proportion of organic arsenic was present in moso bamboo (Phyllostachys pubescens Mazel) shoot in a market survey of arsenic species in edible terrestrial plants. Moso bamboo shoots from different producing areas in China were collected for analysis to confirm the ubiquity of methylated arsenic species. The total arsenic concentrations of bamboo shoots were determined by hydride generation coupled atomic fluorescence spectrometry (HG-AFS), ranging from 27.7 to 94.0 {mu}g/kg. Information about arsenic species was acquired from cold trap-hydride generation-atomic absorption spectrometry (CT-HG-AAS). Dimethylarsinic acid (DMA) was present in the amount of 13.9% to 44.9% of sum of the arsenic species in all these samples. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also detected in certain samples in the range of 4.2-16.5% and 11.8-18.4%, respectively. In addition, bamboo shoots collected in winter were found to have more total arsenic and organic arsenic than those collected in spring. To investigate the source of the organic arsenic in moso bamboo shoots, arsenic species in the rhizosphere soils of the plants were examined. The absence of organic arsenic in soils would suggest the possibility of formation of methylated arsenic in the plants. In addition, studies of arsenic speciation in the peel and core of winter bamboo shoots showed that all the cores contained organic arsenic while no organic arsenic was detected in the peels. The study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.

  6. Plant and animal species composition and heavy metal content in fly ash ecosystems

    International Nuclear Information System (INIS)

    Brieger, G.; Wells, J.R.; Hunter, R.D.

    1992-01-01

    Plant and animal species present on a coal fly ash slurry pond site and a dry deposit site were surveyed and sampled during a two-day period in October. Elemental analyses were determined for most of the species encountered. A total of 48 plant species were observed on the two sites, with 35 species on the wet site, and 20 on the dry site. Eighteen terrestrial and 7 aquatic animal species were found on the wet site, exclusive of vertebrates which were not studied with the exception of a carp (Cyprinus carpio). Eleven terrestrial invertebrate and one aquatic species were observed on the dry site. Neutron activation analysis was carried out for: Se, Hg, Cr, Ni, Zn, Co, Sb, Cd, and As. Using literature values for phytotoxicity, it is concluded that, in general, plants did not accumulate toxic levels of metals. Only one plant (Impatiens biflora Willd.) showed a significant level of Cd. Of 20 plants analyzed on the wet site, 10 had excessive Se concentrations (>5 ppm); on the dry site 6 out of 18 had high Se values. In animals (Gryllus sp.; Melanoplus sp.; Trachelipus sp; Lumbricus terrestris; Physa integra; Cyprinus carpio) the trace metal concentration was generally in between that of control animals and that of the fly ash itself. One exception included Zn, which, although the most variable element examined, was concentrated in all the terrestrial animals to levels higher than in fly ash. Crickets are the most consistent bioconcentrators with Cr, Se, and Zn at higher levels than for control animals. All animals species studied accumulated Se compared to controls. 48 refs., 6 tabs

  7. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  9. Floristic characteristics of alien invasive seed plant species in China.

    Science.gov (United States)

    Wang, Congyan; Liu, Jun; Xiao, Hongguang; Zhou, Jiawei; DU, Daolin

    2016-01-01

    This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS) in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  10. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.

    Science.gov (United States)

    Conchou, Lucie; Anderson, Peter; Birgersson, Göran

    2017-08-01

    Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.

  11. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    Science.gov (United States)

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  12. Are plant species able to keep pace with the rapidly changing climate?

    Directory of Open Access Journals (Sweden)

    Sarah Cunze

    Full Text Available Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC scenarios and global circulation models (GCMs. Range shift rates were estimated by means of species distribution modelling (SDM. With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat - epizoochory and dispersal by animals after feeding and digestion - endozoochory considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species.

  13. Invasive vascular plant species of limnocrenic karst springs in Poland

    Science.gov (United States)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  14. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  15. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  16. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  17. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  18. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  19. The role of plant-soil feedbacks in driving native-species recovery.

    Science.gov (United States)

    Yelenik, Stephanie G; Levine, Jonathan M

    2011-01-01

    The impacts of exotic plants on soil nutrient cycling are often hypothesized to reinforce their dominance, but this mechanism is rarely tested, especially in relation to other ecological factors. In this manuscript we evaluate the influence of biogeochemically mediated plant-soil feedbacks on native shrub recovery in an invaded island ecosystem. The introduction of exotic grasses and grazing to Santa Cruz Island, California, USA, converted native shrublands (dominated by Artemisia californica and Eriogonum arborescens) into exotic-dominated grasslands (dominated by Avena barbata) over a century ago, altering nutrient-cycling regimes. To test the hypothesis that exotic grass impacts on soils alter reestablishment of native plants, we implemented a field-based soil transplant experiment in three years that varied widely in rainfall. Our results showed that growth of Avena and Artemisia seedlings was greater on soils influenced by their heterospecific competitor. Theory suggests that the resulting plant-soil feedback should facilitate the recovery of Artemisia in grasslands, although four years of monitoring showed no such recovery, despite ample seed rain. By contrast, we found that species effects on soils lead to weak to negligible feedbacks for Eriogonum arborescens, yet this shrub readily colonized the grasslands. Thus, plant-soil feedbacks quantified under natural climate and competitive conditions did not match native-plant recovery patterns. We also found that feedbacks changed with climate and competition regimes, and that these latter factors generally had stronger effects on seedling growth than species effects on soils. We conclude that even when plant-soil feedbacks influence the balance between native and exotic species, their influence may be small relative to other ecological processes.

  20. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  1. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  2. Distribution of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (Russia).

    Science.gov (United States)

    Chadin, Ivan; Dalke, Igor; Zakhozhiy, Ilya; Malyshev, Ruslan; Madi, Elena; Olga Kuzivanova; Kirillov, Dmitrii; Elsakov, Vladimir

    2017-01-01

    Occurrences of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (northeastern part of European Russia) were recorded and published in the Global Biodiversity Information Facility (GBIF http://www.gbif.org) using the RIVR information system (http://ib.komisc.ru/add/rivr/en). RIVR stands for "Rasprostranenie Invasionnyh Vidov Rastenij" [Occurrence of Invasion Plant Species]. This citizen science project aims at collecting occurrence data about invasive plant species with the help of citizen scientists. Information can be added by any user after a simple registration (concept) process. However, the data published in GBIF are provided only by professional scientists. The total study area is approximately 19,000 km 2 . The GBIF resource contains 10894 Heracleum sosnowskyi occurrence points, each with their geographical coordinates and photographs of the plants in the locus of growth. The preliminary results of species distribution modelling on the territory of European North-East Russia presented.

  3. Iron Requirement and Iron Uptake from Various Iron Compounds by Different Plant Species

    Science.gov (United States)

    Christ, Rudolf A.

    1974-01-01

    The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species. PMID:16658933

  4. Fifteen-Year Growth of Six Planted Hardwood Species on Sharkey Clay Soil

    Science.gov (United States)

    Roger M. Krinard; Harvey E. Kennedy

    1987-01-01

    Six hardwood species planted on Sharkey clay soil that had been disked the first 5 years for weed control were significantly taller at age 5 when compared to species grown on mowed sites. By age 15, there were no differences in heights within species except for sweet pecan. Average heights by species at age 15 were: cottonwood (Populus deltoides...

  5. Using phylogenetic and ionomic relationships to predict the uptake of radionuclides by any plant species

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Neil J.; Siasou, Eleni [Centre for Research In Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    It is not practical to empirically derive soil-to-plant TFs for all soil-plant combinations that are important in radiological assessments, so predictions for a range of species on different soils types are frequently impossible because TFs are unknown. This severely hampers predictions of both doses to biota and of the contamination of a variety of food chains with radioisotopes. Compilations of TFs in themselves provide no fundamental understanding of the plant factors that control the soil-to-plant transfer of radionuclides and thus no method of prediction. We have developed methods for the meta-analyses of radionuclide transfer data that can be used to make predictions of the transfer of radionuclides into any plants species for which TFs do not exist based on an understand of the plant factors that control radionuclide uptake. There is no reason a priori to think that variation in TF should be constrained by species. The species is, essentially, a reproductive unit and variation in many plant traits, some of which might control radionuclide uptake, occurs at taxonomic levels above the species. In the last 15 years genomic information has transformed the understanding of the evolutionary relationships of the living world so that new 'trees of life' (phylogenies) are now available. Using a Residual Maximum Likelihood modeling procedure to compile a significant proportion of all existing TF data onto a single scale, we here present a synthesis of the influence of phylogeny on variation in soil-to-plant TFs for radioisotopes of Cs, Sr, Co, I, Tc, and S. We show that a significant proportion of variation in TF is associated with major branches of the phylogeny of angiosperms (flowering plants) so that knowledge of a species' position on the phylogeny can be used to make predictions of transfer relative to other species. These phylogenetically-based predictions of relative transfer to any species can be used to make absolute predictions to any species

  6. Clonal growth and plant species abundance.

    Science.gov (United States)

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  7. Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach.

    Science.gov (United States)

    Van der Putten, W H; Mortimer, S R; Hedlund, K; Van Dijk, C; Brown, V K; Lepä, J; Rodriguez-Barrueco, C; Roy, J; Diaz Len, T A; Gormsen, D; Korthals, G W; Lavorel, S; Regina, I Santa; Smilauer, P

    2000-07-01

    Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien

  8. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  9. Nutritive values of some food plants, fresh and processed fish species

    Directory of Open Access Journals (Sweden)

    Ali Aberoumand

    2015-12-01

    Full Text Available The chemical composition of four edible plant foods species, three fish species and one prawn were analyzed in Food Chemistry Laboratory of Behbahan Khatam Alanbia University of Technology, Behbahan, Iran in 2014. The analysis of fatty acid and sugars composition were performed by gas liquid chromatography and high performance liquid chromatography, respectively. Protein and lipid content were founded higher in baked and fried in fish S. commersonnianus (74.29%, (20.20%, fish Sphyraena helleri (88.12% and (17.77%, respectively. Ash content in fish S. commersonnianus varies from 9.80% to 15.34%, and in fish S. helleri from 5.83% to 7.68%. Based on the proximate analysis, it can be calculated that an edible portion of 100 g of studied edible plant foods provides, on average, around 303.9±1.04 kcal. The plant Portulaca neglecta is suitable for high temperature food processes. The macronutrient profile in general revealed that the wild plant foods were with rich sources of protein and carbohydrates, and had low amounts of fat. The highest protein, the lowest fat and energy contents were found in boiled in both fish species; therefore, boiling can be recommended as the best cooking method for healthy diet.

  10. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  11. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  12. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  13. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  14. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  15. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in dete...... rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  16. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  17. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  18. Fire and invasive exotic plant species in eastern oak communities: an assessment of current knowledge

    Science.gov (United States)

    Cynthia D. Huebner

    2006-01-01

    Successful regeneration of oak-dominated communities in the Eastern United States historically requires disturbance such as fire, making them vulnerable to invasion by exotic plants. Little is currently known about the effects of fire on invasive plant species and the effects of invasive plant species on fire regimes of this region. Seventeen common eastern invaders...

  19. Rare and endangered plant species and associations in the Moravica river (Serbia

    Directory of Open Access Journals (Sweden)

    Ljevnaić-Mašić Branka B.

    2016-01-01

    Full Text Available The Moravica is a river in the southeast of Banat (Vojvodina Province, Serbia. This relatively small river is characterised by great floristic richness. A total of 87 taxa were found in the Moravica River. It is a sanctuary for some plant species that are rare and endangered both in Serbia and in Europe. Fifty-five species are on the IUCN Red List of Threatened Species and forty-five species are on the European Red List of Vascular Plants. Species Acorus calamus L., Alisma gramineum Gmel., Iris pseudacorus L., Marsilea quadrifolia L., Potamogeton fluitans Roth. and Utricularia vulgaris L. are protected or strictly protected by law in Serbia. Some of these rare species form stands of aquatic and semiaquatic vegetation rare both in Banat and in Serbia in general, such as: Lemnetum (minori - trisulcae Den Hartog 1963, Potametum nodosi Soó (1928 1960, Segal 1964, Acoreto - Glycerietum aquaticae Slavnić 1956, Rorippo - Oenanthetum (Soó 1927 Lohm. 1950, Pop 1968, and Bolboschoenetum maritimi continentale Soó (1927 1957 subass. marsiletosum quadrifoliae Ljevnaić-Mašić (2010. Because of its great diversity of flora and vegetation, the Moravica River could be a potential Important Plant Area (IPA in the future. Unfortunately, strong anthropogenic influence is a threat to this unique flora and vegetation, so appropriate and timely measures for protecting the aquatic ecosystem need to be implemented.

  20. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  1. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  2. Impact of mine dumps on transport the invasive plant species to Upper Silesia

    Science.gov (United States)

    Sotkova, N.; Lokajickova, B.; Mec, J.; Svehlakova, H.; Stalmachova, B.

    2017-10-01

    Human activities significantly change the species composition in the area. The main factor of change was the mining industry, which changed the natural conditions on Upper Silesia. The anthropogenic relief of mine dumps are the main centre of alien plant in an industrial landscape. The poster deals with the state of the invasive plant species by the phyto-sociological surveys on Upper Silesia.

  3. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2013-09-01

    Full Text Available In this paper the first results of an experiment carried out in Southern Italy (Sicily on the evapotranspiration (ET and removal in constructed wetlands with five plant species are presented. The pilot plant used for this study is made of twelve horizontal sub-surface flow constructed wetlands (each with a surface area of 4.5 m2 functioning in parallel, and it is used for tertiary treatment of part of the effluents from a conventional municipal wastewater treatment plant (trickling filter. Two beds are unplanted (control while ten beds are planted with five different macrophyte species: Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax and Phragmites australis (i.e., every specie is planted in two beds to have a replication. The influent flow rate is measured in continuous by an electronic flow meter. The effluent is evaluated by an automatic system that measure the discharged volume for each bed. Physical, chemical and microbiological analyses were carried out on wastewater samples collected at the inlet of CW plant and at the outlet of the twelve beds. An automatic weather station is installed close to the experimental plant, measuring air temperature, wind speed and direction, rainfall, global radiation, relative humidity. This allows to calculate the reference Evapotranspiration (ET0 with the Penman-Monteith formula, while the ET of different plant species is measured through the water balance of the beds. The first results show no great differences in the mean removal performances of the different plant species for TSS, COD and E.coli, ranged from, respectively, 82% to 88%, 60% to 64% and 2.7 to 3.1 Ulog. The average removal efficiency of nutrient (64% for TN; 61 for NH4-N, 31% for PO4-P in the P.australis beds was higher than that other beds. From April to November 2012 ET measured for plant species were completely different from ET0 and ETcontrol, underlining the strong effect of vegetation. The cumulative

  4. Larvicidal activity of six Nigerian plant species against Anopheles ...

    African Journals Online (AJOL)

    This study evaluated the larvicidal activity of extracts from six Nigerian plant species (Zanthoxylum zanthoxyloides, Piper guineense, Nicotianat abacum, Erythrophleum suaveoleus, Jatropha curcas and Petiveria alliacea) against laboratory-bred Anopheles gambiae and Aedes aegypti larvae. Zanthoxylum zanthoxyloides ...

  5. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Science.gov (United States)

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.

  6. Positive effects of plant species diversity on productivity in the absence of legumes

    NARCIS (Netherlands)

    Ruijven, van J.; Berendse, F.

    2003-01-01

    We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing

  7. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Wenpeng Lin

    2015-08-01

    Full Text Available Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. In this study, based on multi-spectral and high resolution (<10 m remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year and a decreasing trend from 2004 to 2012 (−7.05% per year. S. alterniflora has the biggest area (3302.20 ha as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were

  8. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    International Nuclear Information System (INIS)

    Oyelami, Ayodeji O.; Okere, Uchechukwu V.; Orwin, Kate H.; De Deyn, Gerlinde B.; Jones, Kevin C.; Semple, Kirk T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14 C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of 14 C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of 14 C-phenanthrene degradation; lag phase, maximum rates and total extents of 14 C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: ► Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. ► The effects of individual plant species and plant diversity on mineralisation of 14 C-phenanthrene in soil were investigated. ► Soil fertility was the major influence on mineralisation of 14 C-phenanthrene, and abundance of microbial community. ► The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of 14 C-phenanthrene in soil.

  9. How to conserve threatened Chinese plant species with extremely small populations?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-02-01

    Full Text Available The Chinese flora occupies a unique position in global plant diversity, but is severely threatened. Although biodiversity conservation in China has made significant progress over the past decades, many wild plant species have extremely small population sizes and therefore are in extreme danger of extinction. The concept of plant species with extremely small populations (PSESPs, recently adopted and widely accepted in China, lacks a detailed description of the methodology appropriate for conserving PSESPs. Strategies for seed sampling, reintroduction, protecting PSESP locations, managing interactions with the local human population, and other conservation aspects can substantially differ from those commonly applied to non-PSESPs. The present review is an attempt to provide a detailed conservation methodology with realistic and easy-to-follow guidelines for PSESPs in China.

  10. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  11. 75 FR 15454 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 14 Southwestern Species

    Science.gov (United States)

    2010-03-29

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 14 Southwestern Species AGENCY: Fish... species or subspecies of fish, wildlife, or plant, and any distinct population segment of any species of... extinction throughout all or a significant portion of its range. C. Threatened species (T) means any species...

  12. 75 FR 55820 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species

    Science.gov (United States)

    2010-09-14

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species AGENCY: Fish... CFR 424.02: (A) Species includes any species or subspecies of fish, wildlife, or plant, and any... species means any species that is in danger of extinction throughout all or a significant portion of its...

  13. SPECIES COMPOSITION, DISTRIBUTION, LIFE FORMS AND FOLK NOMENCLATURE OF FOREST AND COMMON LAND PLANTS OF WESTERN CHITWAN, NEPAL

    Science.gov (United States)

    Dangol, D. R.

    2012-01-01

    This paper enumerates 349 plant species belonging to 77 families of vascular plants collected in the winter seasons of 1996 and 2000 by the flora teams of the Population and Ecology Research Laboratory, Nepal. Of the total species, 249 species belong to dicotyledons, 87 species to monocotyledons and 13 species to pteridophytes. Among the families, dicotyledons contributed the highest number of families (55 in number) followed by monocotyledons and pteridophytes. In the study areas, species composition varies with the type of habitats in the study plots. Some species are unique in distribution. The highest unique species are contributed by common lands (87 spp.), followed by the Chitwan National Park forest (36 spp.) and Tikauli forest (32 spp.). Ageratum houstonianum Mill., Cynodon dactylon (L.) Pers., Imperata cylindrica (L.) Beauv., Rungia parviflora (Retz.) Nees, Saccharum spontaneum L. and Thelypteris auriculata (J. Sm.) K. Iwats are the most common species across all the research blocks. Of the listed plants, many plants have local names either in Nepalese or other tribal languages. Plants are named in different ways on the basis of habit, habitat, smell, taste, and morphological characters of the plants, which are also the basis of nomenclature in plant taxonomy. PMID:22962539

  14. Public reaction to invasive plant species in a disturbed Colorado landscape

    Science.gov (United States)

    Michael T. Daab; Courtney G. Flint

    2010-01-01

    Invasive plant species degrade ecosystems in many ways. Controlling invasive plants is costly for government agencies, businesses, and individuals. North central Colorado is currently experiencing large-scale disturbance, and millions of acres are vulnerable to invasion because of natural and socioeconomic processes. Mountain pine beetles typically endemic to this...

  15. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species

    Science.gov (United States)

    Pérez-Méndez, Néstor; Rodríguez, Airam; Nogales, Manuel

    2018-01-01

    The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.

  16. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    Science.gov (United States)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  17. A retrospective analysis of pollen host plant use by stable and declining bumble bee species.

    Science.gov (United States)

    Kleijn, David; Raemakers, Ivo

    2008-07-01

    Understanding population declines has been the objective of a wide range of ecological studies. When species have become rare such studies are complicated because particular behavior or life history traits may be the cause but also the result of the decline of a species. We approached this problem by studying species' characteristics on specimens that were collected before the onset of their decline and preserved in natural history museums. In northwestern Europe, some bumble bee species declined dramatically during the 20th century whereas other, ecologically similar, species maintained stable populations. A long-standing debate focuses on whether this is caused by declining species having stricter host plant preferences. We compared the composition of pollen loads of five bumble bee species with stable populations and five with declining populations using museum specimens collected before 1950 in Belgium, England, and The Netherlands. Prior to 1950, the number of plant taxa in pollen loads of declining species was almost one-third lower than that in stable species even though individuals of stable and declining species generally originated from the same areas. There were no systematic differences in the composition of pollen loads between stable and declining species, but the plant taxa preferred by declining species before 1950 had experienced a stronger decline in the 20th century than those preferred by stable species. In 2004 and 2005, we surveyed the areas where bumble bees had been caught in the past and compared the composition of past and present pollen loads of the stable, but not of the by now locally extinct declining species. The number of collected pollen taxa was similar, but the composition differed significantly between the two periods. Differences in composition reflected the major changes in land use in northwestern Europe but also the spread of the invasive plant species Impatiens glandulifera. The main question now is why declining species

  18. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    Directory of Open Access Journals (Sweden)

    William Oki Wong

    2015-05-01

    Full Text Available Archaeamphora longicervia H.Q.Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1 an innermost larval chamber with a distinctive outer wall; (2 an intermediate zone of nutritive tissue; and (3 an outermost zone of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the formerly reported gymnosperm Liaoningocladus boii G.Sun et al. from the Yixian Formation.

  19. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    Science.gov (United States)

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  20. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  1. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  2. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  3. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Directory of Open Access Journals (Sweden)

    Olivia Molenda

    Full Text Available Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  4. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2.  Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...

  5. Richness of Ancient Forest Plant Species Indicates Suitable Habitats for Macrofungi

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, J.; Hošek, J.; Brabec, Marek; Dvořák, D.; Beran, M.; Deckerová, H.; Burel, J.; Kříž, M.; Borovička, Jan; Běťák, J.; Vašutová, Martina

    2014-01-01

    Roč. 23, č. 8 (2014), s. 2015-2031 ISSN 0960-3115 Grant - others:GA MŽP(CZ) SP/2D1/146/08 Institutional support: RVO:67985807 ; RVO:67985831 ; RVO:67179843 Keywords : diversity * forest continuity * forest management * Herb-layer plant species * red-listed species * species richness * surrogacy Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (GLU-S); EH - Ecology, Behaviour (UEK-B) Impact factor: 2.365, year: 2014

  6. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  7. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands

    NARCIS (Netherlands)

    Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brooks, A.J.; Igual, J.M.; Mortimer, S.R.; Putten, van der W.H.

    2006-01-01

    1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community

  8. Effects of ecological restoration alternative treatments on nonnative plant species establishment

    Science.gov (United States)

    Michael T. Stoddard; Christopher M. McGlone; Peter Z. Fule

    2008-01-01

    Disturbances generated by forest restoration treatments have the potential for enhancing the establishment of nonnative species thereby impeding long-term native plant recovery. In a ponderosa pine forest next to the Fort Valley Experimental Forest, Arizona, we examined the establishment of nonnative species after three alternative treatments with different intensities...

  9. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  10. Belowground Plant–Herbivore Interactions Vary among Climate-Driven Range-Expanding Plant Species with Different Degrees of Novel Chemistry

    Directory of Open Access Journals (Sweden)

    Rutger A. Wilschut

    2017-10-01

    Full Text Available An increasing number of studies report plant range expansions to higher latitudes and altitudes in response to global warming. However, consequences for interactions with other species in the novel ranges are poorly understood. Here, we examine how range-expanding plant species interact with root-feeding nematodes from the new range. Root-feeding nematodes are ubiquitous belowground herbivores that may impact the structure and composition of natural vegetation. Because of their ecological novelty, we hypothesized that range-expanding plant species will be less suitable hosts for root-feeding nematodes than native congeneric plant species. In greenhouse and lab trials we compared nematode preference and performance of two root-feeding nematode species between range-expanding plant species and their congeneric natives. In order to understand differences in nematode preferences, we compared root volatile profiles of all range-expanders and congeneric natives. Nematode preferences and performances differed substantially among the pairs of range-expanders and natives. The range-expander that had the most unique volatile profile compared to its related native was unattractive and a poor host for nematodes. Other range-expanding plant species that differed less in root chemistry from native congeners, also differed less in nematode attraction and performance. We conclude that the three climate-driven range-expanding plant species studied varied considerably in their chemical novelty compared to their congeneric natives, and therefore affected native root-feeding nematodes in species-specific ways. Our data suggest that through variation in chemical novelty, range-expanding plant species may vary in their impacts on belowground herbivores in the new range.

  11. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2013-02-15

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of {sup 14}C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of {sup 14}C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of {sup 14}C-phenanthrene degradation; lag phase, maximum rates and total extents of {sup 14}C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: Black-Right-Pointing-Pointer Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. Black-Right-Pointing-Pointer The effects of individual plant species and plant diversity on mineralisation of {sup 14}C-phenanthrene in soil were investigated. Black-Right-Pointing-Pointer Soil fertility was the major influence on mineralisation of {sup 14}C-phenanthrene, and abundance of microbial community. Black-Right-Pointing-Pointer The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of {sup 14}C-phenanthrene in soil.

  12. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; van Dijk, Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  13. Biological assessment for rare and endangered plant species: Related to CERCLA characterization activities

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1992-04-01

    Environmental characterization in support of hazardous, radioactive, and mixed waste cleanup (in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980) can involve a large number of both nonintrusive and intrusive activities. Many of these activities could have a detrimental impact on listed plant species. These impacts can be minimized by following simple conservation policies while conducting the various field activities. For instance, frequent off-road vehicular traffic and have a severe impact on native habitats and, therefore, should be kept to a minimum. Personnel performing the field activities should be trained to preserve, respect, and minimize their impact on native habitat while performing work in the field. In addition, areas where sampling is planned should be surveyed for the presence of listed plant species before the initiation of the field activities. Extremely distributed areas could be exempted from this requirement provided adequate habitat assessments have been performed by qualified personnel. Twelve special status plant species are known to survive on or very near the Hanford Site. None of these species currently are listed as Federal Threatened or Endangered Species. However, four local species currently are candidates for federal protection. These species are the Northern Wormwood (Artemisia campestris ssp. borealis var. wormskioldii), Persistantsepal Yellowcress (Rorippa columbiae), Hoover's Desert Parsley (Lomatium tuberosum), and Columbia Milkvetch (Astragalus columbianus)

  14. Identification of invasive and expansive plant species based on airborne hyperspectral and ALS data

    Science.gov (United States)

    Szporak-Wasilewska, Sylwia; Kuc, Gabriela; Jóźwiak, Jacek; Demarchi, Luca; Chormański, Jarosław; Marcinkowska-Ochtyra, Adriana; Ochtyra, Adrian; Jarocińska, Anna; Sabat, Anita; Zagajewski, Bogdan; Tokarska-Guzik, Barbara; Bzdęga, Katarzyna; Pasierbiński, Andrzej; Fojcik, Barbara; Jędrzejczyk-Korycińska, Monika; Kopeć, Dominik; Wylazłowska, Justyna; Woziwoda, Beata; Michalska-Hejduk, Dorota; Halladin-Dąbrowska, Anna

    2017-04-01

    The aim of Natura 2000 network is to ensure the long term survival of most valuable and threatened species and habitats in Europe. The encroachment of invasive alien and expansive native plant species is among the most essential threat that can cause significant damage to protected habitats and their biodiversity. The phenomenon requires comprehensive and efficient repeatable solutions that can be applied to various areas in order to assess the impact on habitats. The aim of this study is to investigate of the issue of invasive and expansive plant species as they affect protected areas at a larger scale of Natura 2000 network in Poland. In order to determine the scale of the problem we have been developing methods of identification of invasive and expansive species and then detecting their occurrence and mapping their distribution in selected protected areas within Natura 2000 network using airborne hyperspectral and airborne laser scanning data. The aerial platform used consists of hyperspectral HySpex scanner (451 bands in VNIR and SWIR), Airborne Laser Scanner (FWF) Riegl Lite Mapper and RGB camera. It allowed to obtain simultaneous 1 meter resolution hyperspectral image, 0.1 m resolution orthophotomaps and point cloud data acquired with 7 points/m2. Airborne images were acquired three times per year during growing season to account for plant seasonal change (in May/June, July/August and September/October 2016). The hyperspectral images were radiometrically, geometrically and atmospherically corrected. Atmospheric correction was performed and validated using ASD FieldSpec 4 measurements. ALS point cloud data were used to generate several different topographic, vegetation and intensity products with 1 m spatial resolution. Acquired data (both hyperspectral and ALS) were used to test different classification methods including Mixture Tuned Matched Filtering (MTMF), Spectral Angle Mapper (SAM), Random Forest (RF), Support Vector Machines (SVM), among others

  15. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  16. Hamiguitan Range: A sanctuary for native flora.

    Science.gov (United States)

    Amoroso, Victor B; Aspiras, Reyno A

    2011-01-01

    Hamiguitan Range is one of the wildlife sanctuaries in the Philippines having unique biodiversity resources that are at risk due to forest degradation and conversion of forested land to agriculture, shifting cultivation, and over-collection. Thus, it is the main concern of this research to identify and assess the endemic and endangered flora of Hamiguitan Range. Field reconnaissance and transect walk showed five vegetation types namely: agro-ecosystem, dipterocarp, montane, typical mossy and mossy-pygmy forests. Inventory of plant species revealed 163 endemic species, 35 threatened species, and 33 rare species. Assessment of plants also showed seven species as new record in Mindanao and one species as new record in the Philippines. Noteworthy is the discovery of Nepenthes micramphora, a new species of pitcher plant found in the high altitudes of Hamiguitan Range. This species is also considered site endemic, rare, and threatened. The result of the study also showed that the five vegetation types of Mt. Hamiguitan harbor a number of endangered, endemic, and rare species of plants. Thus, the result of this study would serve as basis for the formulation of policies for the protection and conservation of these species and their habitats before these plants become extinct.

  17. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers-An Observational Study.

    Science.gov (United States)

    Zaremski, Jason L; Zeppieri, Giorgio; Jones, Deborah L; Tripp, Brady L; Bruner, Michelle; Vincent, Heather K; Horodyski, MaryBeth

    2018-04-01

    Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Cross-sectional study; Level of evidence, 3. Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury.

  18. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities.

    Science.gov (United States)

    Ewel, John J

    2006-04-01

    Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting

  19. Effects of climate-induced increases in summer drought on riparian plant species : a meta-analysis

    NARCIS (Netherlands)

    Garssen, Annemarie G.; Verhoeven, Jos T. A.; Soons, Merel B.

    Frequency and duration of summer droughts are predicted to increase in the near future in many parts of the world, with considerable anticipated effects on riparian plant community composition and species richness. Riparian plant communities along lowland streams are characterised by high species

  20. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: A field study.

    Directory of Open Access Journals (Sweden)

    Antonio I Arroyo

    Full Text Available Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain. Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the

  1. Evidence for chemical interference effect of an allelopathic plant on neighboring plant species: A field study.

    Science.gov (United States)

    Arroyo, Antonio I; Pueyo, Yolanda; Giner, M Luz; Foronda, Ana; Sanchez-Navarrete, Pedro; Saiz, Hugo; Alados, Concepción L

    2018-01-01

    Many studies have reported the phytotoxicity of allelopathic compounds under controlled conditions. However, more field studies are required to provide realistic evidences for the significance of allelopathic interference in natural communities. We conducted a 2-years field experiment in a semiarid plant community (NE Spain). Specifically, we planted juvenile individuals and sowed seeds of Salsola vermiculata L., Lygeum spartum L. and Artemisia herba-alba Asso. (three co-dominant species in the community) beneath adult individuals of the allelopathic shrub A. herba-alba, and assessed the growth, vitality, seed germination and seedling survival of those target species with and without the presence of chemical interference by the incorporation of activated carbon (AC) to the soil. In addition, juveniles and seeds of the same three target species were planted and sown beneath the canopy of adults of S. vermiculata (a shrub similar to A. herba-alba, but non-allelopathic) and in open bare soil to evaluate whether the allelopathic activity of A. herba-alba modulates the net outcome of its interactions with neighboring plants under contrasting abiotic stress conditions. We found that vitality of A. herba-alba juveniles was enhanced beneath A. herba-alba individuals when AC was present. Furthermore, we found that the interaction outcome in A. herba-alba microsite was neutral, whereas a positive outcome was found for S. vermiculata microsite, suggesting that allelopathy may limit the potential facilitative effects of the enhanced microclimatic conditions in A. herba-alba microsite. Yet, L. spartum juveniles were facilitated in A. herba-alba microsite. The interaction outcome in A. herba-alba microsite was positive under conditions of very high abiotic stress, indicating that facilitative interactions predominated over the interference of allelopathic plants under those conditions. These results highlight that laboratory studies can overestimate the significance of

  2. Variation of interception loss with different plant species at the ...

    African Journals Online (AJOL)

    USER

    Department of Water Resources Management and Agrometeorology, University of ... Interception studies of six plants groups were carried out at the campus of University of Agriculture, ... species, leaf area, seasonal characteristics and leaf.

  3. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and

  4. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  6. 75 FR 18233 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species

    Science.gov (United States)

    2010-04-09

    ...] Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species AGENCY: Fish.... Definitions A. Species includes any species or subspecies of fish, wildlife, or plant, and any distinct... means any species that is in danger of extinction throughout all or a significant portion of its range...

  7. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  8. Plant species invasions along the latitudinal gradient in the United States

    Science.gov (United States)

    Thomas J. Stohlgren; David Barnett; Curtis Flather; John Kartesz; Bruce Peterjohn

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the...

  9. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    Science.gov (United States)

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-07

    The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  10. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Science.gov (United States)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  11. The killer of Socrates: Coniine and Related Alkaloids in the Plant Kingdom

    Directory of Open Access Journals (Sweden)

    Hannu Hotti

    2017-11-01

    Full Text Available Coniine, a polyketide-derived alkaloid, is poisonous to humans and animals. It is a nicotinic acetylcholine receptor antagonist, which leads to inhibition of the nervous system, eventually causing death by suffocation in mammals. Coniine’s most famous victim is Socrates who was sentenced to death by poison chalice containing poison hemlock in 399 BC. In chemistry, coniine holds two historical records: It is the first alkaloid the chemical structure of which was established (in 1881, and that was chemically synthesized (in 1886. In plants, coniine and twelve closely related alkaloids are known from poison hemlock (Conium maculatum L., and several Sarracenia and Aloe species. Recent work confirmed its biosynthetic polyketide origin. Biosynthesis commences by carbon backbone formation from butyryl-CoA and two malonyl-CoA building blocks catalyzed by polyketide synthase. A transamination reaction incorporates nitrogen from l-alanine and non-enzymatic cyclization leads to γ-coniceine, the first hemlock alkaloid in the pathway. Ultimately, reduction of γ-coniceine to coniine is facilitated by NADPH-dependent γ-coniceine reductase. Although coniine is notorious for its toxicity, there is no consensus on its ecological roles, especially in the carnivorous pitcher plants where it occurs. Lately there has been renewed interest in coniine’s medical uses particularly for pain relief without an addictive side effect.

  12. Effect of Rhizosphere Enzymes on Phytoremediation in PAH-Contaminated Soil Using Five Plant Species

    Science.gov (United States)

    Liu, Rui; Dai, Yuanyuan; Sun, Libo

    2015-01-01

    A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix), dehydrogenase (except Fire Phoenix), and urease (except Medicago sativa L.) were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592). The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix) was inhibited during the cultivation process (at 60d and 120d). At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665). Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil. PMID:25822167

  13. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward.

    Science.gov (United States)

    Richards, Christina L; Alonso, Conchita; Becker, Claude; Bossdorf, Oliver; Bucher, Etienne; Colomé-Tatché, Maria; Durka, Walter; Engelhardt, Jan; Gaspar, Bence; Gogol-Döring, Andreas; Grosse, Ivo; van Gurp, Thomas P; Heer, Katrin; Kronholm, Ilkka; Lampei, Christian; Latzel, Vít; Mirouze, Marie; Opgenoorth, Lars; Paun, Ovidiu; Prohaska, Sonja J; Rensing, Stefan A; Stadler, Peter F; Trucchi, Emiliano; Ullrich, Kristian; Verhoeven, Koen J F

    2017-12-01

    Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  14. [Ecological risk assessment of dam construction for terrestrial plant species in middle reach of Lancangjiang River, Southwest China].

    Science.gov (United States)

    Li, Xiao-Yan; Dong, Shi-Kui; Liu, Shi-Liang; Peng, Ming-Chun; Li, Jin-Peng; Zhao, Qing-He; Zhang, Zhao-Ling

    2012-08-01

    Taking the surrounding areas of Xiaowan Reservoir in the middle reach of Lancangjiang River as study area, and based on the vegetation investigation at three sites including electricity transmission area (site 1), electricity-transfer substation and roadsides to the substation (site 2), and emigration area (site 3) in 1997 (before dam construction), another investigation was conducted on the vegetation composition, plant coverage, and dominant species at the same sites in 2010 (after dam construction), aimed to evaluate the ecological risk of the dam construction for the terrestrial plant species in middle reach of Lancangjiang River. There was an obvious difference in the summed dominance ratio of dominant species at the three sites before and after the dam construction. According the types of species (dominant and non-dominant species) and the changes of plant dominance, the ecological risk (ER) for the plant species was categorized into 0 to IV, i.e., no or extremely low ecological risk (0), low ecological risk (I), medium ecological risk (II), high ecological risk (III), and extremely high ecological risk (IV). As affected by the dam construction, the majority of the species were at ER III, and a few species were at ER IV. The percentage of the plant species at ER III and ER IV at site 3 was higher than that at sites 1 and 2. The decrease or loss of native plants and the increase of alien or invasive plants were the major ecological risks caused by the dam construction. Effective protection strategies should be adopted to mitigate the ecological risk of the dam construction for the terrestrial plants at species level.

  15. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants.

    Science.gov (United States)

    Ishida, Mariko; Kitao, Naoko; Mizuno, Kouichi; Tanikawa, Natsu; Kato, Misako

    2009-02-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-(14)C]adenine and [8-(14)C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue.

  16. [FQA: A method for floristic quality assessment based on conservatism of plant species].

    Science.gov (United States)

    Cao, Li Juan; He, Ping; Wang, Mi; Xui, Jie; Ren, Ying

    2018-04-01

    FQA, which uses the conservatism of plant species for particular habitats and the species richness of plant communities, is a rapid method for the assessment of habitat quality. This method is based on species composition of quadrats and coefficients of conservatism for species which assigned by experts. Floristic Quality Index (FQI) that reflects vegetation integrity and degradation of a site can be calculated by a simple formula and be used for space-time comparison of habitat quality. It has been widely used in more than ten countries including the United States and Canada. This paper presented the principle, calculation formulas and application cases of this method, with the aim to provide a simple, repeatable and comparable method to assess habitat quality for ecological managers and researchers.

  17. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  18. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  19. The importance of education in managing invasive plant species

    Science.gov (United States)

    Invasive plant species can establish in diverse environments and with the increase in human mobility, they are no longer restricted to isolated pockets in remote parts of the world. Cheat grass (Bromus tectorum L.) in rangelands, purple loosestrife (Lythrum salicaria L.) in wet lands and Canada this...

  20. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    Science.gov (United States)

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  1. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  2. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions.

    Directory of Open Access Journals (Sweden)

    Boris Zimmermann

    Full Text Available BACKGROUND: It is imperative to have reliable and timely methodologies for analysis and monitoring of seed plants in order to determine climate-related plant processes. Moreover, impact of environment on plant fitness is predominantly based on studies of female functions, while the contribution of male gametophytes is mostly ignored due to missing data on pollen quality. We explored the use of infrared spectroscopy of pollen for an inexpensive and rapid characterization of plants. METHODOLOGY: The study was based on measurement of pollen samples by two Fourier transform infrared techniques: single reflectance attenuated total reflectance and transmission measurement of sample pellets. The experimental set, with a total of 813 samples, included five pollination seasons and 300 different plant species belonging to all principal spermatophyte clades (conifers, monocotyledons, eudicots, and magnoliids. RESULTS: The spectroscopic-based methodology enables detection of phylogenetic variations, including the separation of confamiliar and congeneric species. Furthermore, the methodology enables measurement of phenotypic plasticity by the detection of inter-annual variations within the populations. The spectral differences related to environment and taxonomy are interpreted biochemically, specifically variations of pollen lipids, proteins, carbohydrates, and sporopollenins. The study shows large variations of absolute content of nutrients for congenital species pollinating in the same environmental conditions. Moreover, clear correlation between carbohydrate-to-protein ratio and pollination strategy has been detected. Infrared spectral database with respect to biochemical variation among the range of species, climate and biogeography will significantly improve comprehension of plant-environment interactions, including impact of global climate change on plant communities.

  3. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  4. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  5. 77 FR 38762 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Listed Species

    Science.gov (United States)

    2012-06-29

    ... reviews under the Endangered Species Act of 1973, as amended (Act), of seven animal and plant species. We... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... species means any species that is in danger of extinction throughout all or a significant portion of its...

  6. Danger to biodiversity of High Tatras by spreading of invasive plant species

    International Nuclear Information System (INIS)

    Strba, P.; Gogolakova, A.

    2010-01-01

    The aim of our work was to analyze the current status of invasive plant species - their generic representation and current extension (horizontal and vertical extension). The authors used the method of inventory of species richness. Sites were recorded on a tourist map and GPS (Garmin).

  7. Extraction and antioxidant activities of two species Origanum plant ...

    African Journals Online (AJOL)

    The antioxidant of ethanolic extract of two species of Origanum and essential oil of plant Origanum vulgare were investigated and also the total phenolic and flavonoid content measured. The radical scavenging activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Total phenolic and flavonoid ...

  8. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  9. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    Directory of Open Access Journals (Sweden)

    Linjian Jiang

    Full Text Available Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  10. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    Science.gov (United States)

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  11. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Discriminant WSRC for Large-Scale Plant Species Recognition

    Directory of Open Access Journals (Sweden)

    Shanwen Zhang

    2017-01-01

    Full Text Available In sparse representation based classification (SRC and weighted SRC (WSRC, it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  13. New evidence for electrotropism in some plant species

    Science.gov (United States)

    Gorgolewski, S.; Rozej, B.

    The ever-present global Atmospheric Electrical F ield (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity to electrotropic effect in different electric field intensities and directions. It was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions in plant tissues. We use a "reference field" (130 V/m) and stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed field polarity. In conclusion electrotropic pl nts deprived of the electrical field do not develop asa expected, as can be seen in BIOSPHERE 2. It was a sad example of what happens when one forgets to provide the plants with this vital natural environmental factor. Electrical fields of different intensity and direction are cheap and easy to generate. More plants were investigated in order to verify their response to electrical fields. Effect of several kV/m horizontal fields, was compared with the vertical 130 V/m field (ued as a reference) and it was shown that electrotropic sensitivity can be found easily. Surprisingly even the nonelectrotropic plants, whose initial growth rate does not depend on the field strength, when they develop leaves begin to lean towards the positive electrode, and become elect rotropic. Ground based fitotron experiments enable us to select cheaply plants which shall be suitable

  14. Use and valuation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia

    Science.gov (United States)

    2013-01-01

    Background Medicinal plant species contribute significantly to folk medicine in Colombia. However, few local studies have investigated whether species used are introduced or native and whether there is a difference in importance of native and introduced medicinal plant species. The aim of the present study was to describe the use of medicinal plants within two municipalities, Campo Hermoso and Zetaquira, both in the department of Boyacá, Colombia and to assess the importance of native and introduced plants to healers, amateur healers and local people. As local healers including amateur healers have no history of introduced species our working hypotheses (H1-2) were that H1: native and introduced medicinal plant species are of equal importance and H2: healers and amateur healers do not differentiate in their preferences between native and introduced medicinal plant species. Methods Ten villages were included in the study. A combination of quantitative and qualitative methods was used including questionnaires, semi-structured interviews, in- depth interviews, and open talks. Voucher specimens were collected in home gardens and during field walks. For data analysis, we calculated use value indices and Jaccard index and tested for the above hypothesis using Spearman rank-correlation coefficients and Wilcoxon-Mann–Whitney tests. Results Eighty medicinal plant species were described by locals as the most frequently used. Of these, 78 species were taxonomically identified, distributed within 41 families and 74 genera, which included 35 native species and 43 introduced. The highest valued families were: Asteraceae, Lamiaceae, Apiaceae, Rutaceae and Verbenaceae. The species ranked highest according to their Use Values, in both municipalities, were Mentha suaveolens Ehrh., Ambrosia cumanensis Kunth, and Verbena littoralis Kunth. Introduced species were more important than native ones in Zetaquira, while there was no difference in importance in Campo Hermoso. While healers

  15. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    Science.gov (United States)

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (H max ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' H max , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of H max of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative H max of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not

  16. The Species Richness of Vascular Plants and Amphibia in Major Plant Communities in Temperate to Tropical Australia: Relationship with Annual Biomass Production

    International Nuclear Information System (INIS)

    Specht, R. L.; Tyler, M.J.

    2010-01-01

    Aerodynamic fluxes (frictional, thermal, evaporative) in the atmosphere as it flows over and through a plant community determine the Foliage Projective Covers and eco-morphological attributes of new leaves developed annually in overstorey and understorey strata. The number of leaves produced on vertical foliage shoots depends on available soil water and nutrients, also ambient temperature, during this short growth season. Stem density (number of stems per hectare) and species richness (number of species per hectare) in the overstorey of major Floristic Groups are correlated with annual shoot growth (ASG, t ha-1) in that stratum. Species richness in the overstorey increases in the climatic gradient from the arid to the humid zone as well as with increasing air temperatures (about 10 degree C) from temperate to tropical Australia. Species richness in the understorey is highest in plant communities in temperate Australia, decreasing in the temperature gradient towards the tropics. As with other major plant and animal groups within an ecosystem, the species richness of Amphibia is correlated with the amount of solar energy fixed (per annum) by the major plant formation in the regional photosynthetic potential determined by the foliage shoots (ASG, t ha-1) produced annually in the overstorey.

  17. The Species Richness of Vascular Plants and Amphibia in Major Plant Communities in Temperate to Tropical Australia: Relationship with Annual Biomass Production

    Directory of Open Access Journals (Sweden)

    R. L. Specht

    2010-01-01

    Full Text Available Aerodynamic fluxes (frictional, thermal, evaporative in the atmosphere as it flows over and through a plant community determine the Foliage Projective Covers and eco-morphological attributes of new leaves developed annually in overstorey and understorey strata. The number of leaves produced on vertical foliage shoots depends on available soil water and nutrients, also ambient temperature, during this short growth season. Stem density (number of stems per hectare and species richness (number of species per hectare in the overstorey of major Floristic Groups are correlated with annual shoot growth (ASG, t ha−1 in that stratum. Species richness in the overstorey increases in the climatic gradient from the arid to the humid zone as well as with increasing air temperatures (about 10oC from temperate to tropical Australia. Species richness in the understorey is highest in plant communities in temperate Australia, decreasing in the temperature gradient towards the tropics. As with other major plant and animal groups within an ecosystem, the species richness of Amphibia is correlated with the amount of solar energy fixed (per annum by the major plant formation in the region—a photosynthetic potential determined by the foliage shoots (ASG, t ha−1 produced annually in the overstorey.

  18. Patch size effects on plant species decline in an experimentally fragmented landscape.

    Science.gov (United States)

    Collins, Cathy D; Holt, Robert D; Foster, Bryan L

    2009-09-01

    Understanding local and global extinction is a fundamental objective of both basic and applied ecology. Island biogeography theory (IBT) and succession theory provide frameworks for understanding extinction in changing landscapes. We explore the relative contribution of fragment size vs. succession on species' declines by examining distributions of abundances for 18 plant species declining over time in an experimentally fragmented landscape in northeast Kansas, U.S.A. If patch size effects dominate, early-successional species should persist longer on large patches, but if successional processes dominate, the reverse should hold, because in our system woody plant colonization is accelerated on large patches. To compare the patterns in abundance among patch sizes, we characterize joint shifts in local abundance and occupancy with a new metric: rank occupancy-abundance profiles (ROAPs). As succession progressed, statistically significant patch size effects emerged for 11 of 18 species. More early-successional species persisted longer on large patches, despite the fact that woody encroachment (succession) progressed faster in these patches. Clonal perennial species persisted longer on large patches compared to small patches. All species that persisted longer on small patches were annuals that recruit from the seed bank each year. The degree to which species declined in occupancy vs. abundance varied dramatically among species: some species declined first in occupancy, others remained widespread or even expanded their distribution, even as they declined in local abundance. Consequently, species exhibited various types of rarity as succession progressed. Understanding the effect of fragmentation on extinction trajectories requires a species-by-species approach encompassing both occupancy and local abundance. We propose that ROAPs provide a useful tool for comparing the distribution of local abundances among landscape types, years, and species.

  19. The Phytotoxicity of Designated Pollutants on Plant Species

    Science.gov (United States)

    1984-03-01

    Only seeds collected from those flowers exposed during pollin 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION...acid exposure during pollination lowered the germination rate of mature seeds. Plant injury was chiefly a function of acid concentration, but amount...TESTS Species Name Variety Barley Hordeum vulgare L. CM67 Bean Phaseolus vulgaris L. Pinto Citrus Citrus limon (L.) Lupe Lemon Lettuce Lactuca sativa

  20. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  1. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  2. Ecotaxonmic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    The survey of the flora composition of an ecosystem is important in several environmental baseline studies. An ecotaxonomic assessment was carried out in Ase-Ndoni proposed Rivgas Refinery project site in other to find out the plant species of medicinal and other economic values. The investigation was carried out to ...

  3. Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits [Chapter 10

    Science.gov (United States)

    Jeanne C. Chambers; Matthew J. Germino; Jayne Belnap; Cynthia S. Brown; Eugene W. Schupp; Samuel B. St. Clair

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromus hereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in...

  4. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  5. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  6. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  7. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  8. Infection of Melanoplus sanguinipes Grasshoppers following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus▿

    Science.gov (United States)

    Drolet, Barbara S.; Stuart, Melissa A.; Derner, Justin D.

    2009-01-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV. PMID:19286779

  9. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.

    Science.gov (United States)

    Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D

    2009-05-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.

  10. Response of three semi-arid plant species to fluoride; consequences for chlorophyll florescence.

    Science.gov (United States)

    Baunthiyal, M; Sharma, V

    2014-01-01

    The study was done to investigate the ability of three semi-arid plant species viz. Acacia tortilis, Cassia fistula and Prosopis juliflora to adapt to fluoride (F) stress. Here we examined the changes in activities of chlorophyll a fluorescence and photosynthetic pigment concentration during early growth of these plants. One month old plants were treated with 10, 20, and 50 mg kg(-1) F in soilrite. We did not observe any major change in photosynthetic performance of these plants during early growth. This was revealed by ETR, ETRmax, PPFD-sat and deltaF/Fm'-sat values which were higher in these plants. The decrease in chl a, chl b and total chl concentrations were significant only at 5 days. For most of the parameters, C. fistula was found to be more sensitive to F stress and P. juliflora showed least damage from F. The lesser inhibition in the parameters reflected the F tolerant nature of these plants with respect to photosynthesis. This opens the possibility of potential use of these species for treatment of F contaminated soil and water.

  11. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda.

    Science.gov (United States)

    Tugume, Patience; Kakudidi, Esezah K; Buyinza, Mukadasi; Namaalwa, Justine; Kamatenesi, Maud; Mucunguzi, Patrick; Kalema, James

    2016-01-13

    An ethnobotanical study of medicinal plants was carried out in 14 villages adjacent to Mabira Central Forest Reserve (CFR) in Central Uganda between August 2013 and March 2014. Information was obtained through interviews using semi- structured questionnaires. Field excursions with traditional healers and herbal medicine collectors were carried out. Descriptive statistics were used to present the data. Fidelity ratios and Informant consensus agreements were calculated. A total of 190 plant species in 61 families and 152 genera were reported in the treatment of various health conditions. Family Fabaceae was dominant representing 14 % of the plant species documented. Vernonia amygdalina was the preferred species for treating malaria. Leaves (68 %) were the most frequently used parts in preparing herbal remedies. Decoctions (29 %) and oral route (53 %) of administration were commonly used method of herbal medicine preparation and administration respectively. Fifty-eight health conditions grouped in 25 categories were treated using medicinal plants. Informant consensus agreement was highest for blood system disorders (0.9) that included anaemia, hypertension and blood cleansing indicating homogeneity of informant's knowledge about remedies used. Vernonia amygdalina and Erythrina abyssinica had 100 % fidelity level for treatment of malaria and vomiting respectively. The diversity of medicinal plant species used and the associated indigenous knowledge are of great value to the local community and their conservation and preservation is paramount. The therapeutic uses of the documented plants provides basic data for further research focused on pharmacological studies and conservation of the most important species.

  12. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  13. Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident.

    Science.gov (United States)

    Yamashita, Jun; Enomoto, Takashi; Yamada, Masao; Ono, Toshiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Sonoda, Shoji; Yamamoto, Yoko

    2014-01-01

    One year after the deposition of radionuclides from the Fukushima 1 Nuclear Power Plant (A formal name is Fukushima Daiichi Nuclear Power Station) in March 2011, radiocesium (¹³⁴Cs, ¹³⁷Cs) concentrations ([Cs]) were comprehensively investigated in the wild plants of 99 species most of which were annual or summer green perennial herbs and started to grow from April 2012 at the heavily contaminated fields of paddy (three study sites) and upland (one study site) in Fukushima Prefecture. The survey was conducted three times (April, July and October) in the year. In each site, soils (soil cores of 5-cm depth) and plants (aerial shoots) were collected for determination of [Cs] on a dry weight basis, and then the transfer factor (TF) of radiocesium from soil to plant ([Cs]plant/[Cs]soil) was estimated in each species. The [Cs] values of both soils and plants largely varied. However, some species exhibited relatively high TF values (more than 0.4) (e.g., Athyrium yokoscense, Dryopteris tokyoensis, and Cyperus brevifolius), while others exhibited almost negligible values (less than 0.01) (e.g., Salix miyabeana, Humulus scandens, and Elymus tsukushiensis). In addition, judging from the 11 species grown in both paddy and upland fields, TF values were generally higher in the paddy fields. The estimation of phytoextraction efficiency of soil radiocesium by weed communities in the paddy fields suggests that the weed community is not a practical candidate for phytoremediation technique.

  14. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    1984-09-01

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management of vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.

  15. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    International Nuclear Information System (INIS)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    1984-09-01

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management of vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables

  16. Stimulation of flower nectar replenishment by removal: A survey of eleven animal-pollinated plant species

    Directory of Open Access Journals (Sweden)

    Elaine Y Luo

    2014-02-01

    Full Text Available Understanding the interaction between reward-seeking flower feeding animals and plants requires consideration of the dynamic nature of nectar secretion. Studies on several plants suggest that nectar secretion may increase in response to its removal, but it is not clear whether the phenomenon is widespread. We determined whether 11 species of Colorado mountain wildflowers showed removal-enhanced nectar replenishment (RENR. We measured floral phenology, nectar volumes, rate of replenishment, and compared the cumulative nectar produced following five hourly removals with that accumulated after five hours. Nectar replenishment occurred rapidly, within minutes; statistically significant RENR was observed in 9 of our 11 study species, with the strongest effects in bee-pollinated species. We discuss the implications of RENR in plant species on the measurement of nectar, the adaptive advantage of RENR, and the energetic costs of RENR.

  17. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  18. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats

  19. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  20. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana; Šurinová, Mária

    2015-01-01

    Roč. 6, č. 11 (2015), s. 1-16 ISSN 2150-8925 R&D Projects: GA ČR(CZ) GA15-11635S Institutional support: RVO:67985939 Keywords : phylogenetic relationships * species traits * plant-soil feedback Subject RIV: EF - Botanics Impact factor: 2.287, year: 2015

  1. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh.

    Science.gov (United States)

    Mahmud, Rezwanul; Inoue, Naoto; Kasajima, Shin-Ya; Shaheen, Riffat

    2008-01-01

    Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.

  2. Invasive plant species in the West Indies: geographical, ecological, and floristic insights.

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Tremblay, Raymond L; Acevedo-Rodríguez, Pedro; Díaz-Soltero, Hilda

    2017-07-01

    The level of invasion (number or proportion of invasive species) in a given area depends on features of the invaded community, propagule pressure, and climate. In this study, we assess the invasive flora of nine islands in the West Indies to identify invasion patterns and evaluate whether invasive species diversity is related to geographical, ecological, and socioeconomic factors. We compiled a database of invasive plant species including information on their taxonomy, origin, pathways of introduction, habitats, and life history. This database was used to evaluate the similarity of invasive floras between islands and to identify invasion patterns at regional (West Indies) and local (island) scales. We found a total of 516 alien plant species that are invasive on at least one of the nine islands studied, with between 24 to 306 invasive species per island. The invasive flora on these islands includes a wide range of taxonomic groups, life forms, and habitats. We detected low similarity in invasive species diversity between islands, with most invasive species (>60%) occurring on a single island and 6% occurring on at least five islands. To assess the importance of different models in predicting patterns of invasive species diversity among islands, we used generalized linear models. Our analyses revealed that invasive species diversity was well predicted by a combination of island area and economic development (gross domestic product per capita and kilometers of paved roadways). Our results provide strong evidence for the roles of geographical, ecological, and socioeconomic factors in determining the distribution and spread of invasive species on these islands. Anthropogenic disturbance and economic development seem to be the major drivers facilitating the spread and predominance of invasive species over native species.

  3. The association of foot arch posture and prior history of shoulder or elbow surgery in elite-level baseball pitchers.

    Science.gov (United States)

    Feigenbaum, Luis A; Roach, Kathryn E; Kaplan, Lee D; Lesniak, Bryson; Cunningham, Sean

    2013-11-01

    Case-control. The specific aim of this study was to examine the association between abnormal foot arch postures and a history of shoulder or elbow surgery in baseball pitchers. Pitching a baseball generates forces throughout the musculoskeletal structures of the upper and lower limbs. Structures such as the longitudinal arch of the foot are adaptable to stresses over time. Repeated pitching-related stresses may contribute to acquiring abnormal foot arch postures. Inversely, congenitally abnormal foot arch posture may lead to altered stresses of the upper limb during pitching. A convenience sample of 77 pitchers was recruited from a Division I university team and a professional baseball franchise. Subjects who had a history of shoulder or elbow surgery to the pitching arm were classified as cases. Subjects who met the criteria for classification of pes planus or pes cavus based on longitudinal arch angle were classified as having abnormal foot arch posture. Odds ratios were calculated to examine the association between abnormal foot arch posture and pitching-arm injury requiring surgery. Twenty-three subjects were classified as cases. The odds of being a case were 3.4 (95% confidence interval: 1.2, 9.6; P = .02) times greater for subjects with abnormal foot arch posture and 2.9 (95% confidence interval: 1.0, 8.1; P = .04) times greater for subjects with abnormal foot posture on the lunge leg. Abnormal foot arch posture and a surgical history in the pitching shoulder or elbow may be associated. Because the foot and its arches are adaptable and change over time, the pathomechanics of this association should be further explored.

  4. Hydroperiod regime controls the organization of plant species in wetlands.

    Science.gov (United States)

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands.

  5. Twinflower (Linnaea borealis L. – plant species of potential medicinal properties

    Directory of Open Access Journals (Sweden)

    Thiem Barbara

    2017-09-01

    Full Text Available Twinflower (Linnaea borealis L. is a widespread circumboreal plant species belonging to Linnaeaceae family (previously Caprifoliaceae. L. borealis commonly grows in taiga and tundra. In some countries in Europe, including Poland, twinflower is protected as a glacial relict. Chemical composition of this species is not well known, however in folk medicine of Scandinavian countries, L. borealis has a long tradition as a cure for skin diseases and rheumatism. It is suggested that twinflower has potential medicinal properties. The new study on lead secondary metabolites responsible for biological activity are necessary. This short review summarizes very sparse knowledge on twinflower: its biology, distribution, conservation status, chemical constituents, and describes the role of this plant in folk tradition of Scandinavian countries.

  6. Invasive vascular plant species of oxbow lakes in south-western Poland

    Directory of Open Access Journals (Sweden)

    Spałek Krzysztof

    2015-06-01

    Full Text Available Natural water reservoirs are very valuable floristic sites in south-western Poland. Among them, the most important for the preservation of biodiversity of flora are oxbow lakes. The long-term process of human pressure on habitats of this type caused disturbances of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of the last two hundred years, led to systematic disappearances of localities of many plant species connected with rare habitats and also to the appearance of numerous invasive plant species. They are: Azolla filiculoides, Echinocystis lobata, Erechtites hieraciifolia, Impatiens glandulifera, I. parviflora, Reynoutria japonica, Solidago canadensis, S. gigantea and S. graminifolia. Field works were conducted in years 2005-2012.

  7. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning

    Science.gov (United States)

    Huang, Jihong; Huang, Jianhua; Lu, Xinghui; Ma, Keping

    2016-01-01

    Endemism is an important concept in biogeography and biodiversity conservation. China is one of the richest countries in biodiversity, with very high levels of plant endemism. In this study, we analysed the distribution patterns of diversity, the degree of differentiation, and the endemicity of Chinese endemic seed plants using the floristic unit as a basic spatial analysis unit and 11 indices. The analysis was based on distribution data of 24,951 native seed plant species (excluding subspecies and varieties) and 12,980 Chinese endemic seed plant species, which were sourced from both specimen records and published references. The distribution patterns of Chinese endemic flora were generally consistent but disproportionate across China for diversity, degree of differentiation and endemicity. The South Hengduan Mountains Subregion had the highest values for all indices. At the regional level, both the Hengduan Mountains and the Central China regions were highest in diversity and degrees of differentiation. However, both the rate of local endemic to native species and the rate of local to Chinese endemic species were highest in the Taiwan Region and the South Taiwan Region. The Hengduan Mountains Region and the Central China Region are two key conservation priority areas for Chinese endemic seed plants. PMID:27658845

  8. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inventory of Invasive Plant Species along the corridor of Kawah Ijen Nature Tourism Park, Banyuwangi, East Java

    Directory of Open Access Journals (Sweden)

    Lia Hapsari

    2014-01-01

    Full Text Available A field survey was conducted in November 2013 to inventory invasive plant species present along the corridor of Kawah Ijen Nature Tourism Park exploratively. Result showed that there were 11 plant species found abundantly along the corridor. Typical native species were dominated by Cyathea contaminans, Casuarina junghuhniana and Vaccinium varingiaefolium. Three species were determined as invasive alien species i.e. Chromolaena odorata, Acacia decurrens and Blumea lacera whereas five species were determined as native species but potential invaders i.e. Rubus moluccanus, Melastoma malabatrichum, Polygonum barbatum, Debregeasia longifolia and Pteridium aquilinum. In term of tourism particularly on nature-based destinations enable moving in and out of invasive alien species due to opening the access of some natural protected areas. The environmental impact of an alien species whether it becomes invasive at its destination depends on its biological key point,  what ecological role the species may play, and on additional factors such as its tolerance of the gross features of the environment in the new range. Keyword: invasive plants, corridor, Kawah Ijen, Nature Tourism Park, Banyuwangi

  10. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    Science.gov (United States)

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  11. Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii volcanoes national park

    Science.gov (United States)

    Alison Ainsworth; J. Boone Kauffman

    2010-01-01

    Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr...

  12. Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    Most plant species in mixed grassland vegetation are colonized by arbuscular mycorrhizal (AM) fungi. Previous studies have reported differences in host preferences among AM fungi, although the fungi are known to lack host specificity. In the present study, the distribution of phylogenetic groups...... of AM fungi belonging to a clade of Glomus species was studied in five plant species from a coastal grassland in Denmark. The occurrence of the fungi was determined by PCR analyses of fungal large subunit ribosomal DNA sequences amplified from root fragments using a specific primer set. The results...... showed that the dominant Glomus species were able to colonize all the studied plant species, supporting the view that the AM fungi represent a large underground interconnecting mycelial network....

  13. Danger to biodiversity of High Tatras by spread of invasive plant species

    International Nuclear Information System (INIS)

    Strba, P.; Gogolakova, A.

    2010-01-01

    The aim of our work was to analyze the current status of invasive plant species - their generic representation of a current extension (horizontal and vertical extension). We have been working method inventory of species richness. Site was recorded on a tourist map and a GPS (Garmin). Populations of invasive plants are studied localities mostly small (a few individuals to hundreds of individuals), but at the high anthropogenic impacts (construction activity, excessive tourist traffic), by synantropization of habitats and concurrently with the impacts of climate change here can create important focal point of the country and pose a serious threat to biodiversity is very valuable ecosystems.

  14. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  15. Assessment of bioaccumulation of REEs by plant species in a mining area by INAA

    International Nuclear Information System (INIS)

    Hossain Md Anawar; Maria do Carmo Freitas; Nuno Canha; Isabel Dionisio; Ho Manh Dung; Catarina Galinha; Pacheco, A.M.G.

    2012-01-01

    Native plant species, lichens and tailings, sampled from a copper-sulphide mining area located in southern-eastern Portugal, were analysed by neutron activation analysis (INAA) for determination of rare earth elements (REEs). Values of ΣREEs and individual REEs concentration of tailing samples are higher than those of natural background concentrations. The higher values of REEs are found in modern slags and the mixture of oxidized gossan and sulphide disseminated country rocks when compared with the alluvial sediments contaminated by mine tailings. The total concentrations of light REEs are higher than those of heavy REEs in all tailing samples. Distribution patterns of PAAS-normalized REEs in mine tailings show slightly LREE enriched and flat HREE pattern with negative Eu anomaly. Lichens accumulated higher concentration of lanthanides than vascular plants. The elevated levels of REEs in lichen, native plant species and tailing samples reflect the contamination of REEs in Sao Domingos mining area. The Carlina corymbosa, Erica australis and Lavandula luisierra accumulated the higher amounts of La, Ce and other REEs than the other plant species grown in this mining area. (author)

  16. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  18. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  19. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingmao, E-mail: ma@engr.siu.edu [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Gurung, Arun [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Deng, Yang [Earth and Environmental Studies, Montclair State University, NJ 07403 (United States)

    2013-01-15

    Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids × Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0–1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (> 200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. - Highlights: ► nZVI may exert phytotoxic effects on plants at concentrations (> 200 mg/L) often encountered in site remediation practices. ► nZVI deposits on plant root surface as aggregates and some could internalize in plant root cells. ► Plant uptake and accumulation of nZVI are plant species-dependent. ► Upward transport from roots to shoots was not observed.

  20. Study of Plant Species Richness in Habitats with Different Grazing Intensities at Golestan National Park and Surrounding Area

    Directory of Open Access Journals (Sweden)

    A. Bagheri

    2016-12-01

    Full Text Available Considering the importance of plant diversity and to evaluate the effect of grazing pressure on species richness and structure of plant communities, this experiment was conducted at Golestan National Park and its surrounding areas in the north east of Iran. Sampling was conducted in intact and abandoned habitats and habitats under seasonal and heavy grazing, using Modified Whitaker Plot in 1, 10,100 and 1000 m2 spatial scales. Results showed that the composition of plant species from different habitats was different. In addition the increasing intensity of grazing increased the importance of therophytes and decreased the role of hemicryptophytes and phanerophytes and also decreasd the amount of species richness. Mean species richness of studied habitat showed a significant difference in all four sampling spatial scales. The results showed that plant species richness decreased in the areas affected by heavy grazing and conservation against grazing plays an important role in maintaining species richness.

  1. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    of these conditions is limited due to the scarcity of studies, especially in the High Arctic. 2. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast-inland gradient in Northeast Greenland using a stratified random design......1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance....... We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant-plant interactions. Latent variable models were used to explain patterns in plant community...

  3. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  4. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    Science.gov (United States)

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  5. Role of plant MicroRNA in cross-species regulatory networks of humans.

    Science.gov (United States)

    Zhang, Hao; Li, Yanpu; Liu, Yuanning; Liu, Haiming; Wang, Hongyu; Jin, Wen; Zhang, Yanmei; Zhang, Chao; Xu, Dong

    2016-08-08

    It has been found that microRNAs (miRNAs) can function as a regulatory factor across species. For example, food-derived plant miRNAs may pass through the gastrointestinal (GI) tract, enter into the plasma and serum of mammals, and interact with endogenous RNAs to regulate their expression. Although this new type of regulatory mechanism is not well understood, it provides a fresh look at the relationship between food consumption and physiology. To investigate this new type of mechanism, we conducted a systematic computational study to analyze the potential functions of these dietary miRNAs in the human body. In this paper, we predicted human and plant target genes using RNAhybrid and set some criteria to further filter them. Then we built the cross-species regulatory network according to the filtered targets, extracted central nodes by PageRank algorithm and built core modules. We summarized the functions of these modules to three major categories: ion transport, metabolic process and stress response, and especially some target genes are highly related to ion transport, polysaccharides and the lipid metabolic process. Through functional analysis, we found that human and plants have similar functions such as ion transport and stress response, so our study also indicates the existence of a close link between exogenous plant miRNA targets and digestive/urinary organs. According to our analysis results, we suggest that the ingestion of these plant miRNAs may have a functional impact on consuming organisms in a cross-kingdom way, and the dietary habit may affect the physiological condition at a genetic level. Our findings may be useful for discovering cross-species regulatory mechanism in further study.

  6. Widespread plant species: natives versus aliens in our changing world

    Czech Academy of Sciences Publication Activity Database

    Stohlgren, T. J.; Pyšek, Petr; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D. M.; Wilson, J. R. U.; Murray, B. R.; Phillips, M. L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Roč. 13, č. 9 (2011), s. 1931-1944 ISSN 1387-3547 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species distribution * Old and New World Subject RIV: EF - Botanics Impact factor: 2.896, year: 2011

  7. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  8. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  9. A 12-week rehabilitation program improves body composition, pain sensation, and internal/external torques of baseball pitchers with shoulder impingement symptom.

    Science.gov (United States)

    Cha, Jun-Youl; Kim, Jae-Hak; Hong, Ju; Choi, Young-Tae; Kim, Min-Ho; Cho, Ji-Hyun; Ko, Il-Gyu; Jee, Yong-Seok

    2014-02-01

    The aim of this study was to investigate the effects of a 12-week rehabilitation program on body composition, shoulder pain, and isokinetic internal/external torques of pitchers with impingement syndrome. A total of 30 pitchers were divided into 2 groups: experimental group (EG, n = 16) and control group (CG, n= 14). The rehabilitation program consisted of physical therapy, warm-up, work-out, and cool-down. As results, body weight and fat mass of EG were decreased whereas muscle mass of EG was significantly increased after the experiment. The pain degrees in resting, normal daily activity, and strenuous activity on the numeric pain rating scale were significantly decreased in the EG. The internal and external peak torques (PTs) of uninvolved and involved sides of EG were increased in EG after 12 weeks. Such results provide a deficit ratio of both sides in EG close to normal values. The ratios of internal/external PTs in EG were also close to the reference values. The internal and external total works of both sides in EG were similar to the values of PT. The fatigue indices of internal and external rotators of both sides in EG were decreased. As a conclusion, a 12-week rehabilitation program reduced the shoulder pain, improved the body composition and enhanced the isokinetic shoulder internal/external rotators in EG with impingement symptoms. Also the study suggested that the rehabilitation program evened out the ratio between internal and external rotators and lowered the fatigue level after the experiment.

  10. Rarity, species richness, and the threat of extinction--are plants the same as animals?

    Directory of Open Access Journals (Sweden)

    Sandra Knapp

    2011-05-01

    Full Text Available Assessment of conservation status is done both for areas or habitats and for species (or taxa. IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely following methods derived from studies of vertebrates may not provide the best estimates of extinction risk for plants. Biology, geography, and history all are important factors in risk, and the study poses many questions about how we categorise and assess species for conservation priorities.

  11. Biomass of tree species as a response to planting density and interspecific competition

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2014-04-01

    Full Text Available Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3 were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a gliricidia (G and sabiá (S, as a response to planting density; b G, S, and neem (N in competition; c G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1 as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants. E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.

  12. Pioneer plant species contributing to phytoestabilization of contaminated soils in mine areas

    Science.gov (United States)

    João Batista, Maria; Gonzalez-Fernandez, Oscar; Abreu, Maria Manuela; Carvalho, Luisa; Queralt, Ignasi

    2013-04-01

    Young and mature leaves from several plant species of the genus Cistus L. (C. crispus, C. ladanifer, C. monspeliensis, C. salviifolius), Erica australis L., and Lavandula sampaioana (Rozeira) Rivas Mart., T.E. Díaz& Fern. Gonz., as well as soils where plants grew, were sampled in various areas of São Domingos abandoned mine. The São Domingos mine, dating from pre-Roman times, is 60 km SE of Beja, Southeast Portugal. This mine belongs to the world class metallogenetic province of the Iberian Pyrite Belt. Sampling occurred throughout spring and winter to better understand plant behaviour and natural attenuation of contaminated soils. Multiple Correspondence Analysis (MCA) was used to synthesize the information and group characteristics that could justify different chemical concentrations. Soils are extremely acid (pH between 3.4 and 5.2) and present a wide range of Corganic concentrations (10.2-109 g/kg). Total nitrogen and extractable phosphorus concentrations are low to very low, but extractable potassium show medium to high concentrations. Chemical elements concentrations, analysed for total fraction, were great in soils, especially arsenic and lead that can attain 7.6 g/kg and 17.2 g/kg, respectively. However, only a small percentage (in general plants showed different behaviour on the trace-elements uptake and translocation. Winter and spring variations in most chemical elements concentrations in the plants leaves are not significantly different, except for arsenic, probably because plants were not exposed to important dry conditions during the sampling seasons. Nevertheless, MCA of the individuals makes a clear distinction between winter and spring leaves. Generally, mature leaves have higher concentrations of arsenic, copper, iron, lead, manganese and zinc than younger ones. However, in this study, sulfur concentrations show an opposite behaviour. Soil total and available fraction concentrations of the chemical elements have similar behaviour between sites

  13. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    Science.gov (United States)

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  14. Use of Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: spring barley (Horduem vulgare L.), an annual grass; crested wheatgrass (Agropyron cristatum L.), a perennial grass; alfalfa (lucerne) (Medicago sativa L.), a perennial legume; and fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. 11 refs.

  15. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    Science.gov (United States)

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  16. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  17. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  18. Transferability of retrotransposon primers derived from Persimmon (Diospyros kaki Thunb.) across other plant species.

    Science.gov (United States)

    Du, X Y; Hu, Q N; Zhang, Q L; Wang, Y B; Luo, Z R

    2013-06-06

    Retrotransposon-based molecular markers are powerful molecular tools. However, these markers are not readily available due to the difficulty in obtaining species-specific retrotransposon primers. Although recent techniques enabling the rapid isolation of retrotransposon sequences have facilitated primer development, this process nonetheless remains time-consuming and costly. Therefore, research into the transferability of retrotransposon primers developed from one plant species onto others would be of great value. The present study investigated the transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon (Diospyros kaki Thunb.) across other fruit crops, as well as within the genus using inter-retrotransposon amplified polymorphism molecular marker. Fourteen of the 26 retrotransposon primers tested (53.85%) produced robust and reproducible amplification products across all fruit crops tested, indicating their applicability across plant species. Four of the 13 fruit crops showed the best transferability performances: persimmon, grape, citrus, and peach. Furthermore, similarity coefficients and UPGMA clustering indicated that these primers could further offer a potential tool for germplasm differentiation, parentage identification, genetic diversity assessment, classification, and phylogenetic studies across a variety of plant species. Transferability was further confirmed by examining published primers derived from Rosaceae, Gramineae, and Solanaceae. This study is one of the few currently available studies concerning the transferability of retrotransposon primers across plant species in general, and is the first successful study of the transferability of retrotransposon primers derived from persimmon. The primers presented here will help reduce costs for future retrotransposon primer development and therefore contribute to the popularization of retrotransposon molecular markers.

  19. Do competitive interactions in dry heathlands explain plant abundance patterns and species coexistence?

    DEFF Research Database (Denmark)

    Ransijn, Johannes; Damgaard, Christian; Schmidt, Inger K

    2015-01-01

    Plant community patterns in space and time may be explained by the interactions between competing plant species. The presented study investigates this in a nutrient and species poor ecosystem. The study presents a methodology for inferring competitive interactions from yearly vegetation inventories...... to predict the community dynamics of C. vulgaris and D. flexuosa. This was compared with the observed plant community structure at 198 Danish dry heathland sites. Interspecific competition will most likely lead to competitive exclusion of D. flexuosa at the observed temporal and spatial scale...... and uses this to assess the outcome of competitive interactions and to predict community patterns and dynamics in a Northwest-European dry heathland. Inferred competitive interactions from five consecutive years of measurements in permanent vegetation frames at a single dry heathland site were used...

  20. 78 FR 48943 - Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for...

    Science.gov (United States)

    2013-08-12

    ... Atmospheric Administration Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing...; Endangered Species Act Listing Determination for Alewife and Blueback Herring AGENCY: National Marine... (Alosa aestivalis) as threatened under the Endangered Species Act (ESA) throughout all or a significant...

  1. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Directory of Open Access Journals (Sweden)

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  2. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    Science.gov (United States)

    Irvine, Irina C; Brigham, Christy A; Suding, Katharine N; Martiny, Jennifer B H

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  3. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion.

    Science.gov (United States)

    Silva, Lucas C R; Corrêa, Rodrigo S; Doane, Timothy A; Pereira, Engil I P; Horwath, William R

    2013-09-01

    Opencast mining causes severe impacts on natural environments, often resulting in permanent damage to soils and vegetation. In the present study we use a 14-year restoration chronosequence to investigate how resource input and spontaneous plant colonization promote the revegetation and reconstruction of mined soils in central Brazil. Using a multi-proxy approach, combining vegetation surveys with the analysis of plant and soil isotopic abundances (delta13C and delta15N) and chemical and physical fractionation of organic matter in soil profiles, we show that: (1) after several decades without vegetation cover, the input of nutrient-rich biosolids into exposed regoliths prompted the establishment of a diverse plant community (> 30 species); (2) the synergistic effect of resource input and plant colonization yielded unprecedented increases in soil carbon, accumulating as chemically stable compounds in occluded physical fractions and reaching much higher levels than observed in undisturbed ecosystems; and (3) invasive grasses progressively excluded native species, limiting nutrient availability, but contributing more than 65% of the total accumulated soil organic carbon. These results show that soil-plant feedbacks regulate the amount of available resources, determining successional trajectories and alternative stable equilibria in degraded areas undergoing restoration. External inputs promote plant colonization, soil formation, and carbon sequestration, at the cost of excluding native species. The introduction of native woody species would suppress invasive grasses and increase nutrient availability, bringing the system closer to its original state. However, it is difficult to predict whether soil carbon levels could be maintained without the exotic grass cover. We discuss theoretical and practical implications of these findings, describing how the combination of resource manipulation and management of invasive species could be used to optimize restoration strategies

  4. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  5. Plant invasions: Merging the concepts of species invasiveness and community invasibility

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2006-01-01

    Roč. 30, č. 3 (2006), s. 409-431 ISSN 0309-1333 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species invasiveness * community invasibility Subject RIV: EF - Botanics Impact factor: 1.278, year: 2006

  6. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  7. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van Ruijven, J.; Berendse, F.; Van der Putten, W.H.

    2004-01-01

    Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or

  8. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Curtis H. Flather; Pam L. Fuller; Bruce G. Peterjohn; John T. Kartesz; Lawrence L. Master

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following...

  9. Intraspecific variability and reaction norms of forest understory plant species traits

    Science.gov (United States)

    Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.

    2017-01-01

    Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species

  10. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control.

    Science.gov (United States)

    Skirvin, D J; Fenlon, J S

    2001-02-01

    The functional response of the predatory mite Phytoseiulus persimilis Athias-Henriot to eggs of its prey, the spider mite Tetranychus urticae Koch was examined on three plant species. Experiments were done to determine whether differences in the functional response on the three plant species were due to the morphological features of the crop directly on the predator or through an effect of the plant species on the prey. The results show that crop morphology is the only factor influencing the predatory ability of P. persimilis on the three plant species. Fewer eggs were eaten on Ceanothus thyrsiflorus var. 'Autumnal Blue', the plant species with hairy leaves, and greater numbers of prey consumed on Choisya ternata, a species with smooth leaves. However, similarly few eggs were eaten on the smooth, but waxy leaved Euonymus japonicus as on Ceanothus thyrsiflorus, demonstrating that morphological characters of leaves other than the possession of hairs and trichomes may affect the rates of predation. The implications of these results for the tritrophic interactions between plant, predator and prey, and the development of suitable biological control strategies are discussed.

  11. Baseline survey for rare plant species and native plant communities within the Kamehameha Schools 'Lupea Safe Harbor Planning Project Area, North Kona District, Island of Hawai'i

    Science.gov (United States)

    Jacobi, James; Warshauer, F. R.; Price, Jonathan

    2010-01-01

    Kamehameha Schools, in conjunction with several federal, state, and private organizations, has proposed to conduct conservation management on approximately 5,340 ha (~13,200 acres) of land they own in the vicinity of Kīpukalupea in the North Kona District on the island of Hawai'i. The goal of this program is to restore and enhance the habitat to benefit native plant and animal populations that are currently, or were formerly, found in this site. The initial phase of this project has been focused on various activities including conducting baseline surveys for bird and plant species so Kamehameha Schools could develop a Safe Harbor Agreement (SHA) for the proposed project lands relative to the habitat management and species reintroduction efforts they would like to conduct in the Lupea Project area. This report summarizes methods that were used to collect field data on plant species and communities within the project area, and the results of that initial survey. The information was used to calculate baseline values for all listed threatened or endangered plant species found, or expected to be found, within the project area, and to design a monitoring program to assess changes in plant communities and rare plant species relative to management activities over the duration of the SHA.

  12. Climate vs. topography – spatial patterns of plant species diversity and endemism on a high-elevation island

    DEFF Research Database (Denmark)

    Irl, Severin David Howard; Harter, David E. V.; Steinbauer, Manuel

    2015-01-01

    the independent contribution of climatic and topographic variables to spatial diversity patterns. We constructed a presence/absence matrix of perennial endemic and native vascular plant species (including subspecies) in 890 plots on the environmentally very heterogeneous island of La Palma, Canary Islands......Climate and topography are among the most fundamental drivers of plant diversity. Here, we assessed the importance of climate and topography in explaining diversity patterns of species richness, endemic richness and endemicity on the landscape scale of an oceanic island and evaluated...... to ecological speciation and specialization to local conditions. We highlight the importance of incorporating climatic variability into future studies of plant species diversity and endemism. The spatial incongruence in hot spots of species richness, endemic richness and endemicity emphasizes the need...

  13. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake.

    Science.gov (United States)

    Saj, Stéphane; Mikola, Juha; Ekelund, Flemming

    2009-08-01

    Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants-Holcus lanatus, Plantago lanceolata and Lotus corniculatus-in soils into which (15)N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.

  14. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  15. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  16. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species

    Directory of Open Access Journals (Sweden)

    Singh Hemant

    2012-01-01

    Full Text Available Abstract Background Based on the testing of several loci, predominantly against floristic backgrounds, individual or different combinations of loci have been suggested as possible universal DNA barcodes for plants. The present investigation was undertaken to check the applicability of the recommended locus/loci for congeneric species with Dendrobium species as an illustrative example. Results Six loci, matK, rbcL, rpoB, rpoC1, trnH-psbA spacer from the chloroplast genome and ITS, from the nuclear genome, were compared for their amplification, sequencing and species discrimination success rates among multiple accessions of 36 Dendrobium species. The trnH-psbA spacer could not be considered for analysis as good quality sequences were not obtained with its forward primer. Among the tested loci, ITS, recommended by some as a possible barcode for plants, provided 100% species identification. Another locus, matK, also recommended as a universal barcode for plants, resolved 80.56% species. ITS remained the best even when sequences of investigated loci of additional Dendrobium species available on the NCBI GenBank (93, 33, 20, 18 and 17 of ITS, matK, rbcL, rpoB and rpoC1, respectively were also considered for calculating the percent species resolution capabilities. The species discrimination of various combinations of the loci was also compared based on the 36 investigated species and additional 16 for which sequences of all the five loci were available on GenBank. Two-locus combination of matK+rbcL recommended by the Plant Working Group of Consortium for Barcoding of Life (CBOL could discriminate 86.11% of 36 species. The species discriminating ability of this barcode was reduced to 80.77% when additional sequences available on NCBI were included in the analysis. Among the recommended combinations, the barcode based on three loci - matK, rpoB and rpoC1- resolved maximum number of species. Conclusions Any recommended barcode based on the loci tested so

  17. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species.

    Science.gov (United States)

    Singh, Hemant Kumar; Parveen, Iffat; Raghuvanshi, Saurabh; Babbar, Shashi B

    2012-01-19

    Based on the testing of several loci, predominantly against floristic backgrounds, individual or different combinations of loci have been suggested as possible universal DNA barcodes for plants. The present investigation was undertaken to check the applicability of the recommended locus/loci for congeneric species with Dendrobium species as an illustrative example. Six loci, matK, rbcL, rpoB, rpoC1, trnH-psbA spacer from the chloroplast genome and ITS, from the nuclear genome, were compared for their amplification, sequencing and species discrimination success rates among multiple accessions of 36 Dendrobium species. The trnH-psbA spacer could not be considered for analysis as good quality sequences were not obtained with its forward primer. Among the tested loci, ITS, recommended by some as a possible barcode for plants, provided 100% species identification. Another locus, matK, also recommended as a universal barcode for plants, resolved 80.56% species. ITS remained the best even when sequences of investigated loci of additional Dendrobium species available on the NCBI GenBank (93, 33, 20, 18 and 17 of ITS, matK, rbcL, rpoB and rpoC1, respectively) were also considered for calculating the percent species resolution capabilities. The species discrimination of various combinations of the loci was also compared based on the 36 investigated species and additional 16 for which sequences of all the five loci were available on GenBank. Two-locus combination of matK+rbcL recommended by the Plant Working Group of Consortium for Barcoding of Life (CBOL) could discriminate 86.11% of 36 species. The species discriminating ability of this barcode was reduced to 80.77% when additional sequences available on NCBI were included in the analysis. Among the recommended combinations, the barcode based on three loci - matK, rpoB and rpoC1- resolved maximum number of species. Any recommended barcode based on the loci tested so far, is not likely to provide 100% species identification

  18. Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Viktor Brygadyrenko

    2015-02-01

    Full Text Available We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrum sabulosum (Linnaeus, 1761 – a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosa ucrainca (5.21 mg/specimen/24 hours, Euphorbia virgata (3.45, Solanum nigrum (3.32, Centauria scabiosa (2.47, Lamium album (2.41, Aristolochia clematitis (1.76, Chenopodium album (1.73, Arctium lappa (1.51, Asperula odorata (1.20. A high rate of leaf consumption is also characteristic for cultivated species, for example, Perilla nankinensis (5.05 mg/specimen/24 hours, Lycopersicon esculentum (3.75, Tropaeolum majus (3.29, Nicotiana tabacum (2.66, Rumex acetosa (1.96, Beta vulgaris (1.27. O. sabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched.

  19. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    Directory of Open Access Journals (Sweden)

    Irina C Irvine

    Full Text Available Pink-pigmented facultative methylotrophic bacteria (PPFMs are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2 to 10(5 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives than perennial species (all natives. Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  20. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  1. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  2. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P.

    2003-01-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 μg m -3 in 1982 and 15.6 μg m -3 in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants

  3. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  4. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    Science.gov (United States)

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  5. 75 FR 606 - Endangered and Threatened Wildlife and Plants; Listing Foreign Bird Species in Peru and Bolivia...

    Science.gov (United States)

    2010-01-05

    ... Threatened Wildlife and Plants; Listing Foreign Bird Species in Peru and Bolivia as Endangered Throughout... Plants; Listing Foreign Bird Species in Peru and Bolivia as Endangered Throughout Their Range AGENCY...)-- all native to Peru. The ash-breasted tit-tyrant and royal cinclodes are also native to Bolivia. This...

  6. Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species.

    Science.gov (United States)

    Li, Yi-Han; Ahmed, Muhammad Z; Li, Shao-Jian; Lv, Ning; Shi, Pei-Qiong; Chen, Xiao-Sheng; Qiu, Bao-Li

    2017-12-01

    A growing number of studies have revealed the presence of closely related endosymbionts in phylogenetically distant arthropods, indicating horizontal transmission of these bacteria. Here we investigated the interspecific horizontal transmission of Rickettsia between two globally invasive whitefly species, Bemisia tabaci MEAM1 and B. tabaci MED, via cotton plants. We found both scattered and confined distribution patterns of Rickettsia in these whiteflies. After entering cotton leaves, Rickettsia was restricted to the leaf phloem vessels and could be taken up by both species of the Rickettsia-free whitefly adults, but only the scattered pattern was observed in the recipient whiteflies. Both the relative quantity of Rickettsia and the efficiency of transmitting Rickettsia into cotton leaves were significantly higher in MEAM1 females than in MED females. The retention time of Rickettsia transmitted from MEAM1 into cotton leaves was at least 5 days longer than that of MED. Phylogenetic analysis based on 16S rRNA and gltA genes confirmed that the Rickettsia extracted from the donor MEAM1, the cotton leaves, the recipient MEAM1 and the recipient MED were all identical. We conclude that cotton plants can mediate horizontal transmission of Rickettsia between different insect species, and that the transmission dynamics of Rickettsia vary with different host whitefly species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    Science.gov (United States)

    Roy, Sribash; Tyagi, Antariksh; Shukla, Virendra; Kumar, Anil; Singh, Uma M.; Chaudhary, Lal Babu; Datt, Bhaskar; Bag, Sumit K.; Singh, Pradhyumna K.; Nair, Narayanan K.; Husain, Tariq; Tuli, Rakesh

    2010-01-01

    Background The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. Methodology and Principal Findings We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome- ITS, and three from plastid genome- trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. Conclusions/Significance We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may

  8. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species.

    Directory of Open Access Journals (Sweden)

    Sribash Roy

    Full Text Available BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI. In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK in species of Indian Berberis L. (Berberidaceae and two other genera, Ficus L. (Moraceae and Gossypium L. (Malvaceae. Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus

  9. A proposal to rationalize within-species plant virus nomenclature: benefits and implications of inaction.

    Science.gov (United States)

    Jones, Roger A C; Kehoe, Monica A

    2016-07-01

    Current approaches used to name within-species, plant virus phylogenetic groups are often misleading and illogical. They involve names based on biological properties, sequence differences and geographical, country or place-association designations, or any combination of these. This type of nomenclature is becoming increasingly unsustainable as numbers of sequences of the same virus from new host species and different parts of the world increase. Moreover, this increase is accelerating as world trade and agriculture expand, and climate change progresses. Serious consequences for virus research and disease management might arise from incorrect assumptions made when current within-species phylogenetic group names incorrectly identify properties of group members. This could result in development of molecular tools that incorrectly target dangerous virus strains, potentially leading to unjustified impediments to international trade or failure to prevent such strains being introduced to countries, regions or continents formerly free of them. Dangerous strains might be missed or misdiagnosed by diagnostic laboratories and monitoring programs, and new cultivars with incorrect strain-specific resistances released. Incorrect deductions are possible during phylogenetic analysis of plant virus sequences and errors from strain misidentification during molecular and biological virus research activities. A nomenclature system for within-species plant virus phylogenetic group names is needed which avoids such problems. We suggest replacing all other naming approaches with Latinized numerals, restricting biologically based names only to biological strains and removing geographically based names altogether. Our recommendations have implications for biosecurity authorities, diagnostic laboratories, disease-management programs, plant breeders and researchers.

  10. Plant species visited by the Horned Sungem Heliactin bilophus (Aves, Trochilidae at Chapada dos Veadeiros, during the rainy season

    Directory of Open Access Journals (Sweden)

    Gabriel Baruffaldi Ghiringhello

    2009-12-01

    Full Text Available The feeding habits of the Horned Sungem remain little known. This study aimed to identify the plant species most often visited by H. bilophus with feeding purposes (consumption of nectar during the rainy season at Chapada dos Veadeiros National Park, Goiás. Observations were made during two rainy seasons (January 2006 and February 2008. The methodology consisted of walking through trails within two areas of campo sujo and two areas of campo rupestre. The record of an individual consuming the nectar of a flowering plant was considered to constitute a visit. A total of 296 visits were observed, comprising eight species of shrubs and herbs. The most often visited plant species were Bauhinia tenella (Caesalpinoideae and Vochysia pumila (Vochysiaceae in campo sujo, and Lychnophora ericoides (Asteraceae in campo rupestre. These three species were commonly found at the study sites. In both physiognomies, Heliactin bilophus consumed the nectar of few plant species. The most frequently visited species bore high numbers of flowers.

  11. Identification of Bottlenecks in the Plant Life Cycle for Sustainable Conservation of Rare and Endangered Species

    Directory of Open Access Journals (Sweden)

    Giovanna Aronne

    2017-07-01

    Full Text Available Long term survival of a species relies on maintenance of genetic variability and natural selection by means of successful reproduction and generation turnover. Although, basic to monitor the conservation status of a plant species, life history data are rarely available even for threatened species due to the gap between the large amount of information required and the limits in terms of time and available economic resources to gather these data. Here, the focus on bottlenecks in life-cycle of rare endangered plant species is proposed as a resolving approach to address the challenges of feasible conservation actions. Basic considerations for this approach are: (a all biological and ecological studies on plant species can be scientifically important, but not all of them are equally relevant to conservation planning and management requirements; (b under a changing environment, long term survival of a species relies on generation turnover; (c for conservation purposes, priority should be given to studies aimed to focus on bottlenecks in the succession of generations because they prevent, or slow down natural selection processes. The proposed procedure, named Systematic Hazard Analysis of Rare-endangered Plants (SHARP, consists of a preliminary survey of the already available information on the species and two main components. The first component is the identification of the bottlenecks in the life cycle by means of field surveys. The second is the diagnosis of the causes of the bottleneck by appropriate experimental methods. The target is to provide researchers, managers and practitioners with substantiated indications for sustainable conservation measures.

  12. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    Science.gov (United States)

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils.

    Science.gov (United States)

    Castanheira, N; Dourado, A C; Kruz, S; Alves, P I L; Delgado-Rodríguez, A I; Pais, I; Semedo, J; Scotti-Campos, P; Sánchez, C; Borges, N; Carvalho, G; Barreto Crespo, M T; Fareleira, P

    2016-03-01

    To search for culturable Burkholderia species associated with annual ryegrass in soils from natural pastures in Portugal, with plant growth-promoting effects. Annual ryegrass seedlings were used to trap Burkholderia from two different soils in laboratory conditions. A combined approach using genomic fingerprinting and sequencing of 16S rRNA and recA genes resulted in the identification of Burkholderia strains belonging to the species Burkholderia graminis, Burkholderia fungorum and the Burkholderia cepacia complex. Most strains were able to solubilize mineral phosphate and to synthesize indole acetic acid; some of them could produce siderophores and antagonize the phytopathogenic oomycete, Phytophthora cinnamomi. A strain (G2Bd5) of B. graminis was selected for gnotobiotic plant inoculation experiments. The main effects were the stimulation of root growth and enhancement of leaf lipid synthesis and turnover. Fluorescence in situ hybridization and confocal laser microscopy evidenced that strain G2Bd5 is a rhizospheric and endophytic colonizer of annual ryegrass. This work revealed that annual ryegrass can naturally associate with members of the genus Burkholderia. A novel plant growth promoting strain of B. graminis was obtained. The novel strain belongs to the plant-associated Burkholderia cluster and is a promising candidate for exploitation as plant inoculant in field conditions. © 2015 The Society for Applied Microbiology.

  14. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    Science.gov (United States)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  15. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  16. Covariation in plant functional traits and soil fertility within two species-rich forests.

    Directory of Open Access Journals (Sweden)

    Xiaojuan Liu

    Full Text Available The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20 × 20 m using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied.

  17. Habitat Modeling of Alien Plant Species at Varying Levels of Occupancy

    Directory of Open Access Journals (Sweden)

    Jennifer A. Brown

    2012-09-01

    Full Text Available Distribution models of invasive plants are very useful tools for conservation management. There are challenges in modeling expanding populations, especially in a dynamic environment, and when data are limited. In this paper, predictive habitat models were assessed for three invasive plant species, at differing levels of occurrence, using two different habitat modeling techniques: logistic regression and maximum entropy. The influence of disturbance, spatial and temporal heterogeneity, and other landscape characteristics is assessed by creating regional level models based on occurrence records from the USDA Forest Service’s Forest Inventory and Analysis database. Logistic regression and maximum entropy models were assessed independently. Ensemble models were developed to combine the predictions of the two analysis approaches to obtain a more robust prediction estimate. All species had strong models with Area Under the receiver operator Curve (AUC of >0.75. The species with the highest occurrence, Ligustrum spp., had the greatest agreement between the models (93%. Lolium arundinaceum had the most disagreement between models at 33% and the lowest AUC values. Overall, the strength of integrative modeling in assessing and understanding habitat modeling was demonstrated.

  18. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  19. High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth

    Science.gov (United States)

    Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

    2008-09-01

    We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

  20. Accumulation of cesium-137 by different species of plants in the zone of floods

    International Nuclear Information System (INIS)

    Matsko, V.P.; Gaponenko, V.I.; Sukhover, L.K.

    2000-01-01

    Study was carried out in some areas of Brest, Gomel and Mogilev regions suffering from periodical floods. Cesium-137 accumulation by plants of various species and families differing phylogenetically and with different root systems has been investigated. The specific activity of soil (SAS) for Cs137 varied within the range of 190...154700 Bq/kg and that of overground phytomass was within 20...28000 Bq/kg. The inverse relationship was found between SAS and the values of radionuclide accumulation factor (RAF) by plants, the correlation of SAP (Bq/kg) and SAS (Bq/kg) as well as great importance of morpho-physiological characteristics in this process. RAF in higly organized species (angiospermous) is lower than in phylogenetically older plants (lichens, mosses)

  1. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road

    Directory of Open Access Journals (Sweden)

    Nasser eSewelam

    2016-02-01

    Full Text Available Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature, studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g. calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide

  2. Why would plant species become extinct locally if growing conditions improve?

    NARCIS (Netherlands)

    Kramer, K.; Bijlsma, R.J.; Hickler, T.; Thuiller, W.

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing

  3. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  4. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  5. Potential effects of sea-level rise on plant productivity: Species-specific responses in northeast Pacific tidal marshes

    Science.gov (United States)

    Janousek, Christopher; Buffington, Kevin J.; Thorne, Karen M.; Guntenspergen, Glenn R.; Takekawa, John Y.; Dugger, Bruce D.

    2016-01-01

    Coastal wetland plants are adapted to varying degrees of inundation. However, functional relationships between inundation and productivity are poorly characterized for most species. Determining species-specific tolerances to inundation is necessary to evaluate sea-level rise (SLR) effects on future marsh plant community composition, quantify organic matter inputs to marsh accretion, and inform predictive modeling of tidal wetland persistence. In 2 macrotidal estuaries in the northeast Pacific we grew 5 common species in experimental mesocosms across a gradient of tidal elevations to assess effects on growth. We also tested whether species abundance distributions along elevation gradients in adjacent marshes matched productivity profiles in the mesocosms. We found parabolic relationships between inundation and total plant biomass and shoot counts in Spartina foliosa and Bolboschoenus maritimus in California, USA, and in Carex lyngbyei in Oregon, USA, with maximum total plant biomass occurring at 38, 28, and 15% time submerged, respectively. However, biomass of Salicornia pacifica and Juncus balticus declined monotonically with increasing inundation. Inundation effects on the ratio of belowground to aboveground biomass varied inconsistently among species. In comparisons of field distributions with mesocosm results, B. maritimus, C. lyngbyei and J. balticus were abundant in marshes at or above elevations corresponding with their maximum productivity; however, S. foliosa and S. pacifica were frequently abundant at lower elevations corresponding with sub-optimal productivity. Our findings show species-level differences in how marsh plant growth may respond to future SLR and highlight the sensitivity of high marsh species such as S. pacifica and J. balticus to increases in flooding.

  6. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  7. A comparison of phytoremediation capability of selected plant species for given trace elements

    International Nuclear Information System (INIS)

    Fischerova, Zuzana; Tlustos, Pavel; Jirina Szakova; Kornelie Sichorova

    2006-01-01

    In our experiment, As, Cd, Pb, and Zn remediation possibilities on medium contaminated soil were investigated. Seven plant species with a different trace element accumulation capacity and remediation potential were compared. We found good accumulation capabilities and remediation effectiveness of Salix dasyclados similar to studied hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens). We have noticed better remediation capability in willow compared to poplar for most of the elements considered in this experiment. On the contrary, poplar species were able to remove a larger portion of Pb as opposed to other species. Nevertheless, the removed volume was very small. The elements found in plant biomass depend substantially on the availability of these elements in the soil. Different element concentrations were determined in natural soil solution and by inorganic salt solution extraction (0.01 mol L -1 CaCl 2 ). Extracted content almost exceeded the element concentration in the soil solution. Element concentrations in soil solution were not significantly affected by sampling time. - Selected accumulator trees grown on medium contaminated soil may have remediation capacity similar to hyperaccumulator species

  8. Chemical composition and digestibility of some browse plant species collected from Algerian arid rangelands

    Energy Technology Data Exchange (ETDEWEB)

    Boufennara, S.; Lopez, S.; Boussebouna, H.; Bodas, R.; Bouazza, L.

    2012-11-01

    Many wild browse and bush species are undervalued mainly because of insufficient knowledge about their potential feeding value. The objective was to evaluate some nutritional attributes of various Algerian browse and shub species (Atriplex halimus, Artemisia campestris, Artemisia herba-alba, Astragalus gombiformis, Calobota saharae, Retama raetam, Stipagrostis pungens, Lygeum spartum and Stipa tenacissima). Chemical composition, phenols and tannins concentration, in vitro digestibility, in vitro gas production kinetics and in vitro bio-assay for assessment of tannins using buffered rumen fluid, and in situ disappearence of the edible parts of the plants (leaves, thin twigs and flowers) were determined. In general, protein content in dicotyledon species was always greater than in monocotyledon grasses, these showing higher neutral and acid detergent fibre and lower lignin contents than dicots. The tannin concentrations varied considerably between species, but in general the plants investigated in this study had low tannin contents (except for Artemisia spp. and S. tenacissima). Monocots showed lower in vitro and in situ digestibilities, fermentation rate, cumulative gas production and extent of degradation than dicot species. The plants were clustered by principal components analysis in two groups: poor-quality grasses and the most digestible dicot species. Chemical composition (neutral detergent fibre and protein) and digestibility were the main influential variables determining the ranking. In conclusion, A. halimus, A. campestris, A. herba-alba and A. gombiformis can be considered of greater nutritional value than the highly fibrous and low digestible grasses (S. pungens, L. spartum and S. tenacissima) that should be considered emergency roughages. (Author) 46 refs.

  9. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  10. Soil seed banks in plant invasions: promoting species invasiveness and long-term impakt on plant community dynamics

    Czech Academy of Sciences Publication Activity Database

    Gioria, M.; Pyšek, Petr; Moravcová, Lenka

    2012-01-01

    Roč. 84, č. 2 (2012), s. 327-350 ISSN 0032-7786 R&D Projects: GA ČR GA206/09/0563 Institutional support: RVO:67985939 Keywords : soil seed bank * plant invasions * species invasive ness Subject RIV: EF - Botanics Impact factor: 2.833, year: 2012

  11. Ethnopharmacological survey of plant species used in folk medicine against central nervous system disorders in Togo.

    Science.gov (United States)

    Kantati, Yendube T; Kodjo, K Magloire; Dogbeavou, Koffi S; Vaudry, David; Leprince, Jérôme; Gbeassor, Messanvi

    2016-04-02

    Neurological diseases are rising all around the world. In a developing country such as Togo, although plant-based medicines are the only means, still very little is known regarding the nature and efficiency of medicinal plants used by indigenous people to manage central nervous system (CNS) disorders. This study, an ethnobotanical survey, aimed to report plant species used in traditional medicine (TM) for the management of various CNS disorders in Togo. 52 traditional actors (TA) including 33 traditional healers (TH) and 19 medicinal plant sellers (MPS) were interviewed, using a questionnaire mentioning informants' general data and uses of medicinal plants. The present study reports 44 medicinal plant species distributed into 26 families, mentioning scientific and common local names, plant organs used, preparation method, root of administration and putative applications. It appears that there is a real knowledge on medicinal plants used for traditional treatment of CNS disorders in Togo and that the local flora abounds of potentially neuroactive plants which could be useful for the discovery of antipsychotic or neuroprotective molecules. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.

  13. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    Science.gov (United States)

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  14. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  15. Students' Perception of Plant and Animal Species: A Case Study from Rural Argentina

    Science.gov (United States)

    Nates, Juliana; Campos, Claudia; Lindemann-Matthies, Petra

    2010-01-01

    Exotic species seriously affect local biodiversity in Argentina. This article investigates how students in San Juan province perceive native and exotic species. With the help of a written questionnaire, 865 students (9-17 years old) were asked to name the plant and animal they liked most, disliked most, and perceived as most useful, and to name…

  16. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities.

    Science.gov (United States)

    Leverkus, Alexandro B; Lorite, Juan; Navarro, Francisco B; Sánchez-Cañete, Enrique P; Castro, Jorge

    2014-01-15

    An intense debate exists on the effects of post-fire salvage logging on plant community regeneration, but scant data are available derived from experimental studies. We analyzed the effects of salvage logging on plant community regeneration in terms of species richness, diversity, cover, and composition by experimentally managing a burnt forest on a Mediterranean mountain (Sierra Nevada, S Spain). In each of three plots located at different elevations, three replicates of three treatments were implemented seven months after the fire, differing in the degree of intervention: "Non-Intervention" (all trees left standing), "Partial Cut plus Lopping" (felling 90% of the trees, cutting the main branches, and leaving all the biomass in situ), and "Salvage Logging" (felling and piling the logs, and masticating the woody debris). Plant composition in each treatment was monitored two years after the fire in linear point transects. Post-fire salvage logging was associated with reduced species richness, Shannon diversity, and total plant cover. Moreover, salvaged sites hosted different species assemblages and 25% lower cover of seeder species (but equal cover of resprouters) compared to the other treatments. Cover of trees and shrubs was also lowest in Salvage Logging, which could suggest a potential slow-down of forest regeneration. Most of these results were consistent among the three plots despite plots hosting different plant communities. Concluding, our study suggests that salvage logging may reduce species richness and diversity, as well as the recruitment of woody species, which could delay the natural regeneration of the ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  18. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations.

    Science.gov (United States)

    Cesarz, Simone; Ciobanu, Marcel; Wright, Alexandra J; Ebeling, Anne; Vogel, Anja; Weisser, Wolfgang W; Eisenhauer, Nico

    2017-07-01

    The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.

  19. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    Science.gov (United States)

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  20. [Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin].

    Science.gov (United States)

    Xu, Jing-Jing; Ci, Hua-Cong; He, Xing-Dong; Xue, Ping-Ping; Zhao, Xue-Lai; Guo, Jian-Tan; Gao, Yu-Bao

    2012-05-01

    Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.