WorldWideScience

Sample records for pitcher plant species

  1. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild.

    Science.gov (United States)

    Chou, Lee Yiung; Clarke, Charles M; Dykes, Gary A

    2014-10-01

    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.

  2. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies.

    Science.gov (United States)

    Moran, Jonathan A; Hawkins, Barbara J; Gowen, Brent E; Robbins, Samantha L

    2010-03-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH(4)(+) uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H(+) fluxes to maintain less acid pitcher fluid than found in 'typical' species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of 'typical' insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes.

  3. The carnivorous syndrome in Nepenthes pitcher plants

    Science.gov (United States)

    Clarke, Charles M

    2010-01-01

    Nepenthes is the largest genus of pitcher plants, with its center of diversity in SE Asia. The plants grow in substrates that are deficient in N and offset this deficiency by trapping animal prey, primarily arthropods. Recent research has provided new insights into the function of the pitchers, particularly with regard to prey tapping and retention. Species examined to date use combinations of wettable peristomes, wax layers and viscoelastic fluid to trap and retain prey. In many respects, this has redefined our understanding of the functioning of Nepenthes pitchers. In addition, recent research has shown that several Nepenthes species target specific groups of prey animals, or are even evolving away from a strictly carnivorous mode of operation. Future research into nutrient sequestration strategies and mechanisms of prey attraction would no doubt further enhance our knowledge of the ecology of this remarkable genus. PMID:21135573

  4. Mutualism between tree shrews and pitcher plants

    Science.gov (United States)

    Moran, Jonathan A; Chin, Lijin

    2010-01-01

    Three species of Nepenthes pitcher plants from Borneo engage in a mutualistic interaction with mountain tree shrews, the basis of which is the exchange of nutritional resources. The plants produce modified “toilet pitchers” that produce copious amounts of exudates, the latter serving as a food source for tree shrews. The exudates are only accessible to the tree shrews when they position their hindquarters over the pitcher orifice. Tree shrews mark valuable resources with feces and regularly defecate into the pitchers when they visit them to feed. Feces represent a valuable source of nitrogen for these Nepenthes species, but there are many facets of the mutualism that are yet to be investigated. These include, but are not limited to, seasonal variation in exudate production rates by the plants, behavioral ecology of visiting tree shrews and the mechanism by which the plants signal to tree shrews that their pitchers represent a food source. Further research into this extraordinary animal-plant interaction is required to gain a better understanding of the benefits to the participating species. PMID:20861680

  5. Phylogeographic concordance factors quantify phylogeographic congruence among co-distributed species in the Sarracenia alata pitcher plant system.

    Science.gov (United States)

    Satler, Jordan D; Carstens, Bryan C

    2016-05-01

    Comparative phylogeographic investigations have identified congruent phylogeographic breaks in co-distributed species in nearly every region of the world. The qualitative assessments of phylogeographic patterns traditionally used to identify such breaks, however, are limited because they rely on identifying monophyletic groups across species and do not account for coalescent stochasticity. Only long-standing phylogeographic breaks are likely to be obvious; many species could have had a concerted response to more recent landscape events, yet possess subtle signs of phylogeographic congruence because ancestral polymorphism has not completely sorted. Here, we introduce Phylogeographic Concordance Factors (PCFs), a novel method for quantifying phylogeographic congruence across species. We apply this method to the Sarracenia alata pitcher plant system, a carnivorous plant with a diverse array of commensal organisms. We explore whether a group of ecologically associated arthropods have co-diversified with the host pitcher plant, and identify if there is a positive correlation between ecological interaction and PCFs. Results demonstrate that multiple arthropods share congruent phylogeographic breaks with S. alata, and provide evidence that the level of ecological association can be used to predict the degree of similarity in the phylogeographic pattern. This study outlines an approach for quantifying phylogeographic congruence, a central concept in biogeographic research. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  7. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Directory of Open Access Journals (Sweden)

    Jamie M Kneitel

    Full Text Available Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance and regional (competitive ability and colonization rate community scales. The most common species (four protozoa and a rotifer from the middle trophic level of a pitcher plant (Sarracenia purpurea inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate and other ecological traits (size, growth rate, and carrying capacity were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at

  8. In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes.

    Science.gov (United States)

    Takeuchi, Yayoi; Salcher, Michaela M; Ushio, Masayuki; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2011-01-01

    The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6) to 2.2×10(8) cells ml(-1). We measured the activity of three common enzymes in the fluid: acid phosphatases, β-D-glucosidases, and β-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.

  9. In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes.

    Directory of Open Access Journals (Sweden)

    Yayoi Takeuchi

    Full Text Available The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6 to 2.2×10(8 cells ml(-1. We measured the activity of three common enzymes in the fluid: acid phosphatases, β-D-glucosidases, and β-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.

  10. Different pitcher shapes and trapping syndromes explain resource partitioning in Nepenthes species.

    Science.gov (United States)

    Gaume, Laurence; Bazile, Vincent; Huguin, Maïlis; Bonhomme, Vincent

    2016-03-01

    Nepenthes pitcher plants display interspecific diversity in pitcher form and diets. This species-rich genus might be a conspicuous candidate for an adaptive radiation. However, the pitcher traits of different species have never been quantified in a comparative study, nor have their possible adaptations to the resources they exploit been tested. In this study, we compare the pitcher features and prey composition of the seven Nepenthes taxa that grow in the heath forest of Brunei (Borneo) and investigate whether these species display different trapping syndromes that target different prey. The Nepenthes species are shown to display species-specific combinations of pitcher shapes, volumes, rewards, attraction and capture traits, and different degrees of ontogenetic pitcher dimorphism. The prey spectra also differ among plant species and between ontogenetic morphotypes in their combinations of ants, flying insects, termites, and noninsect guilds. According to a discriminant analysis, the Nepenthes species collected at the same site differ significantly in prey abundance and composition at the level of order, showing niche segregation but with varying degrees of niche overlap according to pairwise species comparisons. Weakly carnivorous species are first characterized by an absence of attractive traits. Generalist carnivorous species have a sweet odor, a wide pitcher aperture, and an acidic pitcher fluid. Guild specializations are explained by different combinations of morpho-functional traits. Ant captures increase with extrafloral nectar, fluid acidity, and slippery waxy walls. Termite captures increase with narrowness of pitchers, presence of a rim of edible trichomes, and symbiotic association with ants. The abundance of flying insects is primarily correlated with pitcher conicity, pitcher aperture diameter, and odor presence. Such species-specific syndromes favoring resource partitioning may result from local character displacement by competition and/or previous

  11. Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana.

    Science.gov (United States)

    Bauer, Ulrike; Grafe, T Ulmar; Federle, Walter

    2011-06-01

    Nepenthes pitchers are specialized leaves that function as insect traps. Several pitcher components may contribute to trapping, including the pitcher fluid, slippery wax crystals and downward-pointing epidermal cells on the inner pitcher wall, and the wetness-dependent pitcher rim (peristome), but the relative importance of these traits is unclear. Mechanisms of prey capture and retention in the field were investigated by quantifying the effect of 'knock-out' manipulations of individual pitcher structures, and by testing the ability of pitcher fluids and water to retain insects. Two forms of Nepenthes rafflesiana Jack ('elongate' and 'typical') with contrasting combinations of pitcher traits were compared. Wax crystals on the inner pitcher wall were found to be the most important trapping structure in the elongate form, whereas the typical form relied primarily on the peristome. The pitcher fluids of both forms, differing markedly in the degree of viscoelasticity, retained significantly more ants than water. The present results show that pitcher plants utilize several mechanisms for prey capture and retention, varying in efficiency and relative importance between forms. It is proposed that these differences represent alternative prey capture strategies that may provide a mechanism to reduce competition and facilitate species co-existence in nutrient-limited habitats.

  12. Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovic, Andrej; Masarovicová, Elena; Hudák, Ján

    2007-09-01

    Pitcher plants Nepenthes alata and N. mirabilis are carnivorous species with leaves composed of a photosynthetic part (lamina) and a pitcher trap. This characteristic permitted direct physiological and anatomical comparison between these two distinct parts of the leaves to determine those features involved in the 'carnivorous syndrome', which include low net photosynthetic assimilation rate (A(N)) and low photosynthetic nitrogen use efficiency (PNUE). Photosynthetic rate (A(N)) and respiration rate (R(d)) were measured gasometrically, chlorophyll concentration was determined spectrophotometrically and nitrogen concentration was determined using a CHN elemental analyser in lamina and trap separately. Anatomy of N. alata was observed using light, fluorescence and transmission electron microscopy. A(N), foliar nitrogen and chlorophyll concentration were also compared with values for other carnivorous plant species (genera Sarracenia, Drosera) that combine both autotrophic and carnivorous functions into the same physical organ. It was found that the A(N) in Nepenthes lamina was low and PNUE was only slightly higher or similar in comparison with other carnivorous plants. It was not observed that the pitcher had a higher R(d) than the lamina, but A(N) in the pitcher was significantly lower than in the lamina. Nepenthes possesses a cluster of characters that could result in reduced photosynthesis in the pitcher and be responsible for carnivorous function of the leaf: replacement of chlorophyll-containing cells with digestive glands, low chlorophyll and nitrogen concentration, compact mesophyll with a small portion of intercellular spaces, absence of palisade parenchyma and low stomatal density. Low photosynthetic capacity, nitrogen efficiency, chlorophyll and nitrogen concentration of Nepenthes pitchers was found, together with a set of features that characterized the carnivorous syndrome. Dual use of leaves for photosynthesis and nutrient gain can decrease photosynthetic

  13. Comparative Study of Bacterial Communities in Nepenthes Pitchers and Their Correlation to Species and Fluid Acidity.

    Science.gov (United States)

    Kanokratana, Pattanop; Mhuanthong, Wuttichai; Laothanachareon, Thanaporn; Tangphatsornruang, Sithichoke; Eurwilaichitr, Lily; Kruetreepradit, Trongtham; Mayes, Shawn; Champreda, Verawat

    2016-08-01

    Pitchers are specialized digestive organs of carnivorous plants which evolved for trapping prey and represent a unique environment harboring hidden diversity of unexplored microbes forming transient hydrolytic microcosms. In this study, the diversity of bacterial communities in the pitcher fluids of seven local Nepenthes found in Thailand was assessed by tagged 16S ribosomal RNA (rRNA) gene amplicon sequencing on an Ion PGM™ platform. A total of 1,101,000 filtered sequences were obtained which were taxonomically classified into 20 phyla, 48 classes, 72 orders, 153 families, and 442 genera while the remainder (1.43 %) could not be assigned to any existing taxa. Proteobacteria represented the predominant members in closed pitchers and more diversified bacterial taxa particularly Bacteriodetes and Actinobacteria, showed increasing abundance in open pitchers containing insect bodies. Principal coordinate analysis revealed that distribution of bacterial taxa was not significantly related to the Nepenthes species but strongly correlated to the pH of the pitcher fluids (pH 1.7-6.7). Acidicella was a highly dominant bacterial genus in acidic pitcher fluids while Dyella and Mycobacterium were also common genera in most pitchers. A unique microbial community structure was found in Nepenthes ampullaria which could reflect their adaptation to digest leaf litter, in addition to insect prey. The work revealed the highly unexplored nature of bacterial microcosms in Nepenthes pitcher fluids and provides insights into their community structure in this unique ecological system.

  14. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  15. Carnivorous pitcher plants: insights in an old topic.

    Science.gov (United States)

    Mithöfer, Axel

    2011-09-01

    Plant insect interactions are usually recognized as a scenario where herbivorous insects feed on a host plant. However, also the opposite situation is known, where plants feed on insects. Carnivorous pitcher plants of the genus Nepenthes as well as other pitcher plants obtain many nutrients from caught insect prey. Special features of the pitcher traps' surface are responsible for attraction and trapping insects. Once caught, the prey is digested in the fluid of the pitchers to release nutrients and make them available for the plant. Nutrients are taken up by special glands localized on the inner surface of the pitchers. These glands also secrete the hydrolyzing enzymes into the digestion fluid. Although this is known for more than 100 years, our knowledge of the pitcher fluid composition is still limited. Only in recent years some enzymes have been purified from the pitcher fluid and their corresponding genes could be identified. Among them, many pathogenesis-related proteins have been identified, most of which exhibiting hydrolytic activities. The role of these proteins as well as the role of secondary metabolites, which have been identified in the pitcher fluid, is discussed in general and in the context of further studies on carnivorous plants that might give answers to basic questions in plant biology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Mutualists or parasites? Context-dependent influence of symbiotic fly larvae on carnivorous investment in the Albany pitcher plant.

    Science.gov (United States)

    Lymbery, Samuel J; Didham, Raphael K; Hopper, Stephen D; Simmons, Leigh W

    2016-11-01

    Carnivorous plants allocate more resources to carnivorous structures under nutrient-limited conditions, and relative investment can also be influenced by animals (infauna) that live in association with these plants and feed on their prey. We investigated these effects within a population of the pitcher plant Cephalotus follicularis containing varying densities of larvae of the fly Badisis ambulans . For plants with a relatively high proportion of adult pitchers, increasing larval density was associated with lower relative leaf allocation to new pitcher buds. For plants with relatively few adult pitchers, however, there was greater relative leaf allocation to pitcher buds with increasing larval density. In a field experiment, there was no significant effect of experimental larval presence or absence on the change in carbon-to-nitrogen (C/N) ratio of plants. Although the direction of the correlation between B. ambulans larvae and relative investment in carnivorous and non-carnivorous structures depends on the relative number of mature structures, whether the larvae enhance or reduce nutrient stress under different conditions remains unclear. The change in C/N was, however, less variable for pitchers that contained larvae, suggesting a stabilizing effect. Eighteen of 52 experimental pitchers were damaged by an unknown species, causing the pitcher fluid to drain. These pitchers were significantly more likely to survive if they contained larvae. These results suggest that the relationship between infauna and host varies with the initial resource status and environmental context of the host plant.

  17. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    Science.gov (United States)

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  18. Chloropid flies (Diptera, Chloropidae associated with pitcher plants in North America

    Directory of Open Access Journals (Sweden)

    Julia J. Mlynarek

    2018-03-01

    Full Text Available We review the taxonomy and ecology of Chloropidae (Diptera associated with pitcher plants (Sarraceniaceae in North America. Tricimba wheeleri Mlynarek sp.n. is described from the pitchers of Sarracenia alata Alph.Wood and S. leucophylla Raf. in the southeastern United States (Alabama, Mississippi. Aphanotrigonum darlingtoniae (Jones associated with Darlingtonia californica Torr. in northern California is redescribed, including the first description of male genitalic characters. A lectotype is designated for A. darlingtoniae. Published records of other species of Tricimba Lioy in pitcher plants in North America are considered accidental or facultative occurrences; published records of Aphanotrigonum Duda as pitcher plant associates in eastern North America are probably errors in identification.

  19. Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant

    Science.gov (United States)

    Clarke, Charles M.; Bauer, Ulrike; Lee, Ch'ien C.; Tuen, Andrew A.; Rembold, Katja; Moran, Jonathan A.

    2009-01-01

    Nepenthes pitcher plants are typically carnivorous, producing pitchers with varying combinations of epicuticular wax crystals, viscoelastic fluids and slippery peristomes to trap arthropod prey, especially ants. However, ant densities are low in tropical montane habitats, thereby limiting the potential benefits of the carnivorous syndrome. Nepenthes lowii, a montane species from Borneo, produces two types of pitchers that differ greatly in form and function. Pitchers produced by immature plants conform to the ‘typical’ Nepenthes pattern, catching arthropod prey. However, pitchers produced by mature N. lowii plants lack the features associated with carnivory and are instead visited by tree shrews, which defaecate into them after feeding on exudates that accumulate on the pitcher lid. We tested the hypothesis that tree shrew faeces represent a significant nitrogen (N) source for N. lowii, finding that it accounts for between 57 and 100 per cent of foliar N in mature N. lowii plants. Thus, N. lowii employs a diversified N sequestration strategy, gaining access to a N source that is not available to sympatric congeners. The interaction between N. lowii and tree shrews appears to be a mutualism based on the exchange of food sources that are scarce in their montane habitat. PMID:19515656

  20. Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo.

    Science.gov (United States)

    Giusto, Bruno Di; Grosbois, Vladimir; Fargeas, Elodie; Marshall, David J; Gaume, Laurence

    2008-03-01

    Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping:attraction, capture and retention. Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern Borneo. It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers. While this difference in prey composition has been ascribed to differences in attraction,the contribution of capture and retention has been overlooked. This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity. Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping. Rate of insect visits to the different pitcher parts and the presence or absence of a sweet fragrance was recorded to clarify the origin and mechanism of attraction. The mechanism of retention was studied by insect bioassays and measurements of fluid viscosity. Nepenthes rafflesiana was found to trap a broader prey spectrum than that previously described for any Nepenthes species,with the upper pitchers attracting and trapping a greater quantity and diversity of prey items than the lower pitchers. Capture efficiency was low compared with attraction or retention efficiency. Fragrance of the peristome,or nectar rim,accounted mainly for the observed non-specific, better prey attraction by the upper pitchers, while the retentive properties of the viscous fluid in these upper pitchers arguably explains the species richness of their flying prey. The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.

  1. The carnivorous syndrome in Nepenthes pitcher plants: current state of knowledge and potential future directions.

    Science.gov (United States)

    Moran, Jonathan A; Clarke, Charles M

    2010-06-01

    Nepenthes is the largest genus of pitcher plants, with its centre of diversity in SE Asia. The plants grow in substrates that are deficient in N and offset this deficiency by trapping animal prey, primarily arthropods. Recent research has provided new insights into the function of the pitchers, particularly with regard to prey tapping and retention. Species examined to date use combinations of wettable peristomes, wax layers and viscoelastic fluid to trap and retain prey. In many respects, this has redefined our understanding of the functioning of Nepenthes pitchers. In addition, recent research has shown that several Nepenthes species target specific groups of prey animals, or are even evolving away from a strictly carnivorous mode of operation. Future research into nutrient sequestration strategies and mechanisms of prey attraction would no doubt further enhance our knowledge of the ecology of this remarkable genus.

  2. Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants.

    Science.gov (United States)

    Bauer, Ulrike; Clemente, C J; Renner, T; Federle, W

    2012-01-01

    Carnivorous plants of the genus Nepenthes have evolved a striking diversity of pitcher traps that rely on specialized slippery surfaces for prey capture. With a comparative study of trap morphology, we show that Nepenthes pitcher plants have evolved specific adaptations for the use of either one of two distinct trapping mechanisms: slippery wax crystals on the inner pitcher wall and 'insect aquaplaning' on the wet upper rim (peristome). Species without wax crystals had wider peristomes with a longer inward slope. Ancestral state reconstructions identified wax crystal layers and narrow, symmetrical peristomes as ancestral, indicating that wax crystals have been reduced or lost multiple times independently. Our results complement recent reports of nutrient source specializations in Nepenthes and suggest that these specializations may have driven speciation and rapid diversification in this genus. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  3. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata.

    Science.gov (United States)

    Hatano, Naoya; Hamada, Tatsuro

    2012-08-03

    The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Incorporating ecological context: a revised protocol for the preservation of Nepenthes pitcher plant specimens (Nepenthaceae)

    NARCIS (Netherlands)

    Clarke, C.; Moran, J.A.

    2011-01-01

    Pitcher plants of the family Nepenthaceae are vines or subscandent shrubs which produce modified leaf organs that in most species serve to attract, trap, retain and digest animals for nutritional benefit. The sole genus within the family, Nepenthes, is abundant and diverse in Malesia. Previous

  5. With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

    Science.gov (United States)

    Bauer, Ulrike; Di Giusto, Bruno; Skepper, Jeremy; Grafe, T Ulmar; Federle, Walter

    2012-01-01

    Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.

  6. With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

    Directory of Open Access Journals (Sweden)

    Ulrike Bauer

    Full Text Available Carnivorous pitcher plants capture prey with modified leaves (pitchers, using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry, insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.

  7. Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco.

    Science.gov (United States)

    An, Chung-Il; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2002-03-01

    Carnivorous plants acquire significant amounts of nitrogen from insects. The tropical carnivorous plant Nepenthes accumulates acidic fluid containing aspartic proteinase (AP) in its trapping organs (pitchers), suggesting that the plant utilizes insect protein as a nitrogen source. Aspartic proteinases have been purified and characterized from sterile pitcher fluid of several species of Nepenthes; however, there is, as of yet, no information about sequence and expression of Nepenthes AP genes. To identify the pitcher AP, we cloned plant AP homologs from N. alata and examined their expressions. Five AP homologs ( NaAP1-NaAP5) were obtained by reverse transcription-polymerase chain reaction with degenerate primers designed for the conserved sequences of plant APs. Alignment of deduced amino acid sequences with other plant APs demonstrated that NaAP1-NaAP4 contained a plant-specific insert (PSI), a unique sequence of plant AP. However, NaAP5 did not possess the insert, and had a shorter sequence (by >100 amino acids) than the other APs. Northern analysis using a part of the coding region of NaAP1 as a probe showed that bands of approx. 1.8 kb corresponding to the sizes of NaAP1-NaAP4 mRNA were present in roots, stems, leaves, tendrils, and lower part of the pitchers, but a band of approx. 1.3 kb corresponding to the size of NaAP5 mRNA was not observed in any organs. In pitchers, highest expressions of NaAP1-NaAP4 were seen in the lower part of open pitchers containing natural prey, suggesting that the expressions of NaAP1-NaAP4 are coupled with prey capture. Transcripts of NaAP2 and NaAP4 were detected in the digestive glands, where AP secretion may occur. This result suggests that NaAP2 and NaAP4 are the possible APs secreted into the pitcher of N. alata.

  8. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    Science.gov (United States)

    Scharmann, Mathias; Thornham, Daniel G; Grafe, T Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.

  9. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    Directory of Open Access Journals (Sweden)

    Mathias Scharmann

    Full Text Available Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15N/(14N stable isotope abundance ratio (δ(15N when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15N cannot be explained by classic ant-feeding (myrmecotrophy but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna. Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.

  10. Explorative study of tropical pitcher plants (Nepenthes sp.) types and insects that trapped inside in Sebangau National Park Palangka Raya Central Kalimantan

    Science.gov (United States)

    Lestariningsih, Nanik; Setyaningsih, Denik

    2017-01-01

    Pitcher plants (Nepenthes sp.) is a plant with unique shape either of shades of colors, pouch shape and its capability in catching insects. Pitcher plant (Nepenthes sp.) is one of the plants that protected under Law Number. 5 of 1990 about Conservation of Biological Resources and Ecosystem and Government Regulation Number 7/1999 about Preservation of Plants and Animals. Sebangau National Park is one of representative of peat swamp ecosystem and one of some types of pitcher plants (Nepenthes sp.) habitat. This study aimed to determine the types and diversity levels of pitcher plants (Nepenthes sp.) and the trapped insects inside in Sebangau National and to determine the differences of diversity levels of pitcher plants (Nepenthes sp.) and the trapped insects inside in the opened and closed forest in Sebangau National Park. The research type was conducted descriptive qualitative research. The method used survey method with purpossive sampling technique.The result of the study the number of pitcher plants (Nepenthes sp.) obtained in opened forest were three types consist of Nepenthes mirabilis, Nepenthes rafflesiana and Nepenthes gracilis with two types insects trapped inside those were Diptera ordo and Hymenoptera ordo. While the number of pitcher plants (Nepenthes sp.) obtained in closed forest as many as two types consist of Nepenthes ampullaria and Nepenthes rafflesiana with two type insects trapped inside those were Diptera ordo and Hymenoptera ordo. The results of the analysis calculation pitcher plants (Nepenthes sp.) species diversity index in opened and closed forest showed lower category. The diversity in row were 1 and 0,45 with H’ criteria ≤ 1 low diversity. The results of the study of insects trapped inside of pitcher plants (Nepenthes sp.) obtained in opened and closed forest showed low category. The diversity in a row were 0,63 and 0,52 with the criteria of H’ ≤ 1 low diversity.

  11. A simple SDS-PAGE protein pattern from pitcher secretions as a new tool to distinguish Nepenthes species (Nepenthaceae).

    Science.gov (United States)

    Biteau, Flore; Nisse, Estelle; Miguel, Sissi; Hannewald, Paul; Bazile, Vincent; Gaume, Laurence; Mignard, Benoit; Hehn, Alain; Bourgaud, Frederic

    2013-12-01

    Carnivorous plants have always fascinated scientists because these plants are able to attract, capture, and digest animal prey using their remarkable traps that contain digestive secretions. Nepenthes is one of the largest genera of carnivorous plants, with 120 species described thus far. Despite an outstanding diversity of trap designs, many species are often confused with each other and remain difficult to classify because they resemble pitchers or of the occurrence of interspecific hybrids. Here, we propose a new method to easily distinguish Nepenthes species based on a SDS PAGE protein pattern analysis of their pitcher secretions. Intraspecific comparisons were performed among specimens growing in different environmental conditions to ascertain the robustness of this method. Our results show that, at the juvenile stage and in the absence of prey in the pitcher, an examined species is characterized by a specific and stable profile, whatever the environmental conditions. The method we describe here can be used as a reliable tool to easily distinguish between Nepenthes species and to help with potential identification based on the species-specific protein pattern of their pitcher secretions, which is complementary to the monograph information.

  12. A unique resource mutualism between the giant Bornean pitcher plant, Nepenthes rajah, and members of a small mammal community.

    Science.gov (United States)

    Greenwood, Melinda; Clarke, Charles; Lee, Ch'ien C; Gunsalam, Ansou; Clarke, Rohan H

    2011-01-01

    The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers) that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids.Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community.We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant.

  13. A unique resource mutualism between the giant Bornean pitcher plant, Nepenthes rajah, and members of a small mammal community.

    Directory of Open Access Journals (Sweden)

    Melinda Greenwood

    Full Text Available The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids.Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community.We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant.

  14. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities.

    Science.gov (United States)

    Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas

    2011-02-01

    Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.

  15. How to catch more prey with less effective traps: explaining the evolution of temporarily inactive traps in carnivorous pitcher plants.

    Science.gov (United States)

    Bauer, Ulrike; Federle, Walter; Seidel, Hannes; Grafe, T Ulmar; Ioannou, Christos C

    2015-02-22

    Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems paradoxical. Here, we show that intermittent trap deactivation promotes 'batch captures' of ants. Prey surveys revealed that N. rafflesiana pitchers sporadically capture large numbers of ants from the same species. Continuous experimental wetting of the peristome increased the number of non-recruiting prey, but decreased the number of captured ants and shifted their trapping mode from batch to individual capture events. Ant recruitment was also lower to continuously wetted pitchers. Our experimental data fit a simple model that predicts that intermittent, wetness-based trap activation should allow safe access for 'scout' ants under dry conditions, thereby promoting recruitment and ultimately higher prey numbers. The peristome trapping mechanism may therefore represent an adaptation for capturing ants. The relatively rare batch capture events may particularly benefit larger plants with many pitchers. This explains why young plants of many Nepenthes species additionally employ wetness-independent, waxy trapping surfaces.

  16. Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria.

    Science.gov (United States)

    Pavlovič, Andrej; Slováková, Ludmila; Šantrůček, Jiří

    2011-11-01

    The pitcher plant Nepenthes ampullaria has an unusual growth pattern, which differs markedly from other species in the carnivorous genus Nepenthes. Its pitchers have a reflexed lid and sit above the soil surface in a tighly packed 'carpet'. They contain a significant amount of plant-derived materials, suggesting that this species is partially herbivorous. We tested the hypothesis that the plant benefits from leaf litter utilization by increased photosynthetic efficiency sensu stricto cost/benefit model. Stable nitrogen isotope abundance indicated that N. ampullaria derived around 41.7 ± 5.5% of lamina and 54.8 ± 7.0% of pitcher nitrogen from leaf litter. The concentrations of nitrogen and assimilation pigments, and the rate of net photosynthesis (A(N)), increased in the lamina as a result of feeding, but did not increase in the trap. However, maximal (F(v) /F(m)) and effective photochemical quantum yield of photosystem II (Φ(PSII)) were unaffected. Our data indicate that N. ampullaria benefits from leaf litter utilization and our study provides the first experimental evidence that the unique nitrogen sequestration strategy of N. ampullaria provides benefits in term of photosynthesis and growth. © 2011 Blackwell Publishing Ltd.

  17. The use of light in prey capture by the tropical pitcher plant Nepenthes aristolochioides.

    Science.gov (United States)

    Moran, Jonathan A; Clarke, Charles; Gowen, Brent E

    2012-08-01

    Nepenthes pitcher plants deploy tube-shaped pitchers to catch invertebrate prey; those of Nepenthes aristolochioides possess an unusual translucent dome. The hypothesis was tested that N. aristolochioides pitchers operate as light traps, by quantifying prey capture under three shade treatments. Flies are red-blind, with visual sensitivity maxima in the UV, blue, and green wavebands. Red celluloid filters were used to reduce the transmission of these wavebands into the interior of the pitchers. Those that were shaded at the rear showed a 3-fold reduction in Drosophila caught, relative to either unshaded control pitchers, or pitchers that were shaded at the front. Thus, light transmitted through the translucent dome is a fundamental component of N. aristolochioides' trapping mechanism.

  18. A Novel Type of Nutritional Ant–Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna

    Science.gov (United States)

    Scharmann, Mathias; Thornham, Daniel G.; Grafe, T. Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect–plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant–plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated 15N/14N stable isotope abundance ratio (δ15N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants’ nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a 15N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ15N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers’ trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants’ prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant. PMID:23717446

  19. A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2008-07-01

    We study the rheology of the digestive fluid secreted by the carnivorous pitcher plants Nepenthes rafflesiana and its role in the mechanism of insects trapping. Using a combination of physical measurements (surface tension, wetting properties, extensional and shear rheometry), insects bioessays and high-speed video, we show that the digestive fluid of Nepenthes rafflesiana is a highly viscoelastic fluid and that this property is crucial for the retention of insect in its trap. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements (large Deborah numbers).

  20. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  1. Degradation of a peptide in pitcher fluid of the carnivorous plant Nepenthes alata Blanco.

    Science.gov (United States)

    An, Chung-Il; Takekawa, Shoji; Okazawa, Atsushi; Fukusaki, Ei-Ichiro; Kobayashi, Akio

    2002-07-01

    Carnivorous plants acquire substantial amounts of nitrogen from insects. The tropical carnivorous plant Nepenthes produces trapping organs called pitchers at the tips of tendrils elongated from leaf ends. Acidic fluid is secreted at the bottoms of the pitchers. The pitcher fluid includes several hydrolytic enzymes, and some, such as aspartic proteinase, are thought to be involved in nitrogen acquisition from insect proteins. To understand the nitrogen-acquisition process, it is essential to identify the protein-degradation products in the pitcher fluid. To gain insight into protein degradation in pitcher fluid, we used the oxidized B-chain of bovine insulin as a model substrate, and its degradation by the pitcher fluid of N. alata was investigated using liquid chromatography-mass spectrometry (LC-MS). LC-MS analysis of the degradation products revealed that the oxidized B-chain of bovine insulin was initially cleaved at aromatic amino acids such as phenylalanine and tyrosine. These cleavage sites are similar to those of aspartic proteinases from other plants and animals. The presence of a series of peptide fragments as degradation products suggests that exopeptidase(s) is also present in the pitcher fluid. Amino acid analysis and peptide fragment analysis of the degradation products demonstrated that three amino acids plus small peptides were released from the oxidized B-chain of bovine insulin, suggesting that insect proteins are readily degraded to small peptides and amino acids in the pitcher fluid of N. alata.

  2. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host

    Science.gov (United States)

    Anand, Ganesh S.

    2017-01-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes. Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. PMID:28250210

  3. Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata.

    Science.gov (United States)

    Hatano, Naoya; Hamada, Tatsuro

    2008-02-01

    The genus Nepenthes comprises carnivorous plants that digest insects in pitcher fluid to supplement their nitrogen uptake. In a recent study, two acid proteinases (nepenthesins I and II) were purified from the pitcher fluid. However, no other enzymes involved in prey digestion have been identified, although several enzyme activities have been reported. To identify all the proteins involved, we performed a proteomic analysis of Nepenthes pitcher fluid. The secreted proteins in pitcher fluid were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and several protein bands were detected by silver staining. The proteins were identified by in-gel tryptic digestion, de novo peptide sequencing, and homology searches against public databases. The proteins included homologues of beta-D-xylosidase, beta-1,3-glucanase, chitinase, and thaumatin-like protein, most of which are designated "pathogenesis-related proteins". These proteins presumably inhibit bacterial growth in the pitcher fluid to ensure sufficient nutrients for Nepenthes growth.

  4. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes.

    Science.gov (United States)

    Rottloff, Sandy; Stieber, Regina; Maischak, Heiko; Turini, Florian G; Heubl, Günther; Mithöfer, Axel

    2011-08-01

    Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands' surrounding tissue. These results suggest that in the pitchers' tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins. © 2011 The Author(s).

  5. Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate.

    Science.gov (United States)

    Moran, Jonathan A; Gray, Laura K; Clarke, Charles; Chin, Lijin

    2013-11-01

    Nepenthes (Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling. A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, 'wet' syndrome and 'dry' syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program. Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and 'wet' syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and'dry' syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat. The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and benefits associated with a given prey capture strategy.

  6. Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate

    Science.gov (United States)

    Moran, Jonathan A.; Gray, Laura K.; Clarke, Charles; Chin, Lijin

    2013-01-01

    Background and Aims Nepenthes (Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling. Methods A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, ‘wet’ syndrome and ‘dry’ syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program. Key Results Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and ‘wet’ syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and‘dry’ syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat. Conclusions The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and

  7. Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes.

    Science.gov (United States)

    Takeuchi, Yayoi; Chaffron, Samuel; Salcher, Michaela M; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2015-07-01

    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Diversity and Growth Behaviour of Nepenthes (Pitcher Plants in Tanjung Puting National Park, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    DODO

    2005-10-01

    Full Text Available Nepenthes is one of the popular genus of pitcher plants. Research on the biodiversity and growth beharviour of Nepenthes spp. in Tanjung Puting National Park was carried out. There were four species studied, namely: N. ampullaria, N. mirabilis N. rafflesiana, and N. x. hookeriana,. There were about 2096 individuals recorded in this study consisting of 1322 N. ampullaria, 1332 N. mirabilis, 141 N. rafflesiana, and 111 N. x. hookeriana. Variation of tendril positions occurred in 1 rosette plant and 3 climbing stems (mature plants of N. ampullaria, 2 rosettes and 9 mature N. mirabilis, 1 rosette and 4 mature N. rafflesiana, 2 rosettes and 2 mature N. x. hookeriana. Their habitats were also very specific. It was noted that 6 species of other plants were grown and associated with the Nepenthes spp.

  9. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae.

    Directory of Open Access Journals (Sweden)

    Laura K Gray

    Full Text Available Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them.

  10. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae.

    Science.gov (United States)

    Gray, Laura K; Clarke, Charles; Wint, G R William; Moran, Jonathan A

    2017-01-01

    Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them.

  11. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants.

    Science.gov (United States)

    Bazile, Vincent; Le Moguédec, Gilles; Marshall, David J; Gaume, Laurence

    2015-03-01

    Nepenthes pitcher plants have evolved modified leaves with slippery surfaces and enzymatic fluids that trap and digest prey, faeces and/or plant detritus. Although the fluid's contribution to insect capture is recognized, the physico-chemical properties involved remain underexplored and may vary among species, influencing their diet type. This study investigates the contributions of acidity and viscoelasticity in the fluid's capture efficiency of two ant and two fly species in four Nepenthes species with different nutrition strategies. Four Nepenthes species were studied, namely N. rafflesiana, N. gracilis, N. hemsleyana and N. ampullaria. Fluid was collected from pitchers of varying ages from plants growing in the field and immediately transferred to glass vials, and individual ants (tribe Campotini, Fomicinae) and flies (Calliphora vomitoria and Drosophila melanogaster) were dropped in and observed for 5 min. Water-filled vials were used as controls. Survival and lifetime data were analysed using models applied to right-censored observations. Additional laboratory experiments were carried out in which C. vomitoria flies were immersed in pH-controlled aqueous solutions and observed for 5 min. Pitcher fluid differed among Nepenthes species as regards insect retention capacity and time-to-kill, with differences observed between prey types. Only the fluids of the reputedly insectivorous species were very acidic and/or viscoelastic and retained significantly more insects than the water controls. Viscoelastic fluids were fatal to flies and were able to trap the broadest diversity of insects. Younger viscoelastic fluids showed a better retention ability than older fluids, although with less rapid killing ability, suggesting that a chemical action follows a mechanical one. Insect retention increased exponentially with fluid viscoelasticity, and this happened more abruptly and at a lower threshold for flies compared with ants. Flies were more often retained if they

  12. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface.

    Science.gov (United States)

    Bohn, Holger F; Federle, Walter

    2004-09-28

    Pitcher plants of the genus Nepenthes have highly specialized leaves adapted to attract, capture, retain, and digest arthropod prey. Several mechanisms have been proposed for the capture of insects, ranging from slippery epicuticular wax crystals to downward-pointing lunate cells and alkaloid secretions that anesthetize insects. Here we report that perhaps the most important capture mechanism has thus far remained overlooked. It is based on special surface properties of the pitcher rim (peristome) and insect "aquaplaning." The peristome is characterized by a regular microstructure with radial ridges of smooth overlapping epidermal cells, which form a series of steps toward the pitcher inside. This surface is completely wettable by nectar secreted at the inner margin of the peristome and by rain water, so that homogenous liquid films cover the surface under humid weather conditions. Only when wet, the peristome surface is slippery for insects, so that most ant visitors become trapped. By measuring friction forces of weaver ants (Oecophylla smaragdina) on the peristome surface of Nepenthes bicalcarata, we demonstrate that the two factors preventing insect attachment to the peristome, i.e., water lubrication and anisotropic surface topography, are effective against different attachment structures of the insect tarsus. Peristome water films disrupt attachment only for the soft adhesive pads but not for the claws, whereas surface topography leads to anisotropic friction only for the claws but not for the adhesive pads. Experiments on Nepenthes alata show that the trapping mechanism of the peristome is also essential in Nepenthes species with waxy inner pitcher walls.

  13. Genetic diversity and geographical structure of the pitcher plant Nepenthes vieillardii in New Caledonia: A chloroplast DNA haplotype analysis.

    Science.gov (United States)

    Kurata, Kaoruko; Jaffré, Tanguy; Setoguchi, Hiroaki

    2008-12-01

    Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.

  14. Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth Exyra semicrocea: implications for conservation.

    Directory of Open Access Journals (Sweden)

    Jessica D Stephens

    Full Text Available Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae, using mitochondrial cytochrome c oxidase subunit I (COI gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9-3.0% lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.

  15. Plasma-membrane H+-ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco.

    Science.gov (United States)

    An, C I; Fukusaki, E; Kobayashi, A

    2001-03-01

    Nepenthes is a unique genus of carnivorous plants that can capture insects in trapping organs called pitchers and digest them in pitcher fluid. The pitcher fluid includes digestive enzymes and is strongly acidic. We found that the fluid pH decreased when prey accumulates in the pitcher fluid of Nepenthes alata. The pH decrease may be important for prey digestion and the absorption of prey-derived nutrients. To identify the proton pump involved in the acidification of pitcher fluid, plant proton-pump homologs were cloned and their expressions were examined. In the lower part of pitchers with natural prey, expression of one putative plasma-membrane (PM) H+-ATPase gene, NaPHA3, was considerably higher than that of the putative vacuolar H+-ATPase (subunit A) gene, NaVHA1, or the putative vacuolar H+-pyrophosphatase gene, NaV-HP1. Expression of one PM H+-ATPase gene, Na-PHA1, was detected in the head cells of digestive glands in the lower part of pitchers, where proton extrusion may occur. Involvement of the PM H+-ATPase in the acidification of pitcher fluid was also supported by experiments with proton-pump modulators; vanadate inhibited proton extrusion from the inner surface of pitchers, whereas bafilomycin A1 did not, and fusicoccin induced proton extrusion. These results strongly suggest that the PM H+-ATPase is responsible for acidification of the pitcher fluid of Nepenthes.

  16. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids.

    Science.gov (United States)

    Riedel, Michael; Eichner, Anna; Meimberg, Harald; Jetter, Reinhard

    2007-05-01

    Plants of the carnivorous genus Nepenthes efficiently trap insects in leaf pitchers, mostly employing epicuticular wax crystals on the pitcher walls to make them slippery for the prey. In the present study, the compositions and micromorphologies of the wax crystals of five Nepenthes species and hybrids were analysed in order to test whether the chemical principles underlying this ecological function are widespread within the genus. Three wax layers could be distinguished within the Nepenthes pitcher cuticles: (1) the outermost part of the crystals forming the platelets visible in standard scanning electron microscopy, (2) the bottom portion of the epicuticular wax crystals, and (3) an intracuticular wax layer. The composition of the intracuticular wax differed significantly from that of the neighbouring epicuticular layer. The compositions of corresponding wax mixtures from all five Nepenthes species and hybrids were very similar, with almost equal amounts of very long chain aldehydes and primary alcohols. While triacontanal (C(30) aldehyde) was prevailing in the epicuticular crystals of Nepenthes albomarginata and Nepenthes x intermedia, Nepenthes x superba and Nepenthes x henriana were found to have especially high percentages of dotriacontanal (C(32) aldehyde). Nepenthes "khasiana" had an intermediate aldehyde composition with almost equal amounts of both chain lengths.

  17. Iso-Seq analysis ofNepenthes ampullaria,Nepenthes rafflesianaandNepenthes × hookerianafor hybridisation study in pitcher plants.

    Science.gov (United States)

    Zulkapli, Muhammad Mu'izzuddin; Rosli, Muhammad Aqil Fitri; Salleh, Faris Imadi Mohd; Mohd Noor, Normah; Aizat, Wan Mohd; Goh, Hoe-Han

    2017-06-01

    Tropical pitcher plants in the species-rich Nepenthaceae family of carnivorous plants possess unique pitcher organs. Hybridisation, natural or artificial, in this family is extensive resulting in pitchers with diverse features. The pitcher functions as a passive insect trap with digestive fluid for nutrient acquisition in nitrogen-poor habitats. This organ shows specialisation according to the dietary habit of different Nepenthes species. In this study, we performed the first single-molecule real-time isoform sequencing (Iso-Seq) analysis of full-length cDNA from Nepenthes ampullaria which can feed on leaf litter, compared to carnivorous Nepenthes rafflesiana , and their carnivorous hybrid Nepenthes  ×  hookeriana . This allows the comparison of pitcher transcriptomes from the parents and the hybrid to understand how hybridisation could shape the evolution of dietary habit in Nepenthes. Raw reads have been deposited to SRA database with the accession numbers SRX2692198 ( N. ampullaria ), SRX2692197 ( N. rafflesiana ), and SRX2692196 ( N.  ×  hookeriana ).

  18. Iso-Seq analysis of Nepenthes ampullaria, Nepenthes rafflesiana and Nepenthes × hookeriana for hybridisation study in pitcher plants

    Directory of Open Access Journals (Sweden)

    Muhammad Mu'izzuddin Zulkapli

    2017-06-01

    Full Text Available Tropical pitcher plants in the species-rich Nepenthaceae family of carnivorous plants possess unique pitcher organs. Hybridisation, natural or artificial, in this family is extensive resulting in pitchers with diverse features. The pitcher functions as a passive insect trap with digestive fluid for nutrient acquisition in nitrogen-poor habitats. This organ shows specialisation according to the dietary habit of different Nepenthes species. In this study, we performed the first single-molecule real-time isoform sequencing (Iso-Seq analysis of full-length cDNA from Nepenthes ampullaria which can feed on leaf litter, compared to carnivorous Nepenthes rafflesiana, and their carnivorous hybrid Nepenthes × hookeriana. This allows the comparison of pitcher transcriptomes from the parents and the hybrid to understand how hybridisation could shape the evolution of dietary habit in Nepenthes. Raw reads have been deposited to SRA database with the accession numbers SRX2692198 (N. ampullaria, SRX2692197 (N. rafflesiana, and SRX2692196 (N. × hookeriana.

  19. Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis.

    Science.gov (United States)

    Pavlovic, Andrej; Singerová, Lucia; Demko, Viktor; Hudák, Ján

    2009-08-01

    Cost-benefit models predict that carnivory can increase the rate of photosynthesis (A(N)) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased A(N) and increased respiration rates (R(D)) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae. Pitchers of Nepenthes grown at 200 micromol m(-2) s(-1) photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations. A(N) and maximum (F(v)/F(m)) and effective quantum yield of photosystem II (Phi(PSII)) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower Phi(PSII), resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower A(N) and Phi(PSII) in pitchers than in laminae, but R(D) depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and A(N) in the pitchers was not found. Cost-benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 micromol m(-2) s(-1) PAR after which it did not increase further. All fed plants began to

  20. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes.

    Science.gov (United States)

    Schulze, W; Frommer, W B; Ward, J M

    1999-03-01

    Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes, insect-derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes. Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1, was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem.

  1. Germination and field survival of white-topped pitcher plant seeds

    Science.gov (United States)

    Kristina Connor; Hilliard Gibbs

    2012-01-01

    A study was initiated to determine longevity of white-topped pitcher plant (Sarracenia leucophylla, Raf.) seeds in the field and in cold storage. Thirty seed pods were harvested in August 2009 from plants located in Alabama 38 miles from the Gulf Coast. Of the 10,000+ seeds extracted from the pods, some were buried outside in screen-wire bags and...

  2. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory

    DEFF Research Database (Denmark)

    Fukushima, Kenji; Fang, Xiaodong; Alvarez-Ponce, David

    2017-01-01

    Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in...

  3. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea leaves.

    Directory of Open Access Journals (Sweden)

    Taylor K Paisie

    Full Text Available The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  4. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes.

    Science.gov (United States)

    Lee, Linda; Zhang, Ye; Ozar, Brittany; Sensen, Christoph W; Schriemer, David C

    2016-09-02

    Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.

  5. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    Science.gov (United States)

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  6. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  7. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae).

    Science.gov (United States)

    Gorb, E V; Gorb, S N

    2006-11-01

    Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention.

  8. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Directory of Open Access Journals (Sweden)

    Hannu Hotti

    Full Text Available Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  9. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Science.gov (United States)

    Hotti, Hannu; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Rischer, Heiko

    2017-01-01

    Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  10. Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes

    Science.gov (United States)

    Hsu, Chiao-Peng; Lin, Yu-Min; Chen, Po-Yu

    2015-04-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved specialized leaves fulfilling the multi-functions of attracting, capturing, retaining and digesting the prey, mostly arthropods. Different capturing mechanisms have been proposed and discussed in previous works. The most important capture mechanism is the unique super-hydrophilic surface properties of the peristome. The combination of a hierarchical surface structure and nectar secretions results in an exceptional water-lubricated trapping system. Anisotropic and unidirectional wettability is attributed to the ridge-like surface and epidermal folding. The three-dimensional plate-like wax crystals in the hydrophobic waxy zone can further prevent the prey from escaping. The captured prey are then digested in the hydrophilic digestive zone. The hybrid species Nepenthes × Miranda was investigated in this study. The surface morphology and hierarchical microstructure were characterized by scanning electron microscope. Contact angle measurement and wetting efficiency tests were performed to determine the wettability of the peristome under fresh, nectar-free and sucrose-coated conditions with controlled temperature and humidity. The results showed that sucrose-coated peristome surfaces possess the best wetting efficiency. The structure-property-function relationship and the capturing mechanism of Nepenthes were elucidated, which could further lead to the design and synthesis of novel bio-inspired surfaces and potential applications.

  11. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers.

    Science.gov (United States)

    Riedel, Michael; Eichner, Anna; Jetter, Reinhard

    2003-11-01

    Plants in the genus Nepenthes obtain a substantial nutrient supply by trapping insects in highly modified leaves. A broad zone of the inner surface of these pitchers is densely covered with wax crystals on which most insects lose their footing. This slippery wax surface, capturing prey and preventing its escape from the trap, plays a pivotal role in the carnivorous syndrome. To understand the mechanism of slipperiness, the present investigation aimed at an ultrastructural and physico-chemical characterization of the wax crystals in pitchers of N. alata Blanco. Scanning electron microscopy revealed that entire platelets protruded perpendicularly from the surface. Methods were developed that allowed the mechanical removal of wax crystals from the pitcher surface. It could be shown that the sampling was selective for the epicuticular wax, relevant for plant-insect interactions. The crystals consisted of a mixture of aliphatic compounds dominated by very-long-chain aldehydes. Triacontanal, at 43% the most abundant constituent, was largely responsible for crystal formation. Solubility data indicate that the Nepenthes crystals contained polymeric forms of this aldehyde. The resulting mechanical properties of the polymer crystals and the mechanism of slipperiness are discussed.

  12. Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana.

    Science.gov (United States)

    Eilenberg, Haviva; Pnini-Cohen, Smadar; Schuster, Silvia; Movtchan, Anna; Zilberstein, Aviah

    2006-01-01

    The genus Nepenthes represents carnivorous plants with pitcher traps capable of efficient prey capture and digestion. The possible involvement of plant chitinases in this process was studied in Nepenthes khasiana. Two different types of endochitinases were identified in the liquid of closed traps exhibiting substrate specificity for either long chitin polymers or N-acetylglucosamine (GlcNAc) oligomers. Injection of chitin into such closed sterile pitchers induced the appearance of additional endochitinase isoenzymes, with substrate specificity only for long chitin polymers. No significant exochitinase (N-acetyl-beta-glucosaminidase) or chitobiosidase activity could be detected in the non-induced or induced trap liquid. Four genes representing two subgroups of basic chitinases, denoted as Nkchit1b and Nkchit2b, were isolated from the secretory region of N. khasiana pitchers. The main differences between the two subgroups are the presence of a proline-rich hinge region only in NkCHIT1b and a C-terminal putative vacuole targeting extension only in NkCHIT2b, indicating different compartmentalization of the two enzymes. Reverse transcription-polymerase chain reaction (RT-PCR) evaluation of mRNA levels showed that the Nkchit2b genes are constitutively expressed in the secretory cells while transcription of Nkchit1b genes is induced by chitin injection. These results show for the first time the involvement of genes encoding chitinases in prey-trap interaction and their differential expression and activity during prey trapping.

  13. Rhythmic components of photoperiodic time measurement in the pitcher-plant mosquito, Wyeomyia smithii.

    Science.gov (United States)

    Wegis, M C; Bradshaw, W E; Davison, T E; Holzapfel, C M

    1997-03-01

    Photoperiodic time measurement regulating larval diapause in the pitcher-plant mosquito, Wyeomyia smithii, varies in a close relationship with latitude. The critical photoperiod mediating the maintenance and termination of diapause is positively correlated with latitude (r 2  = 0.977) among six populations from southern (30-31° N), intermediate (40° N), and northern (46-49° N) latitudes in North America. The developmental response to unnaturally short and to unnaturally long photoperiods declines with increasing latitude, so that longer critical photoperiods are associated with a downward rather than a lateral shift in the photoperiodic response curve. Exotic light and dark cycles of varying period (T) with a short (10 h) photophase and a scotophase ranging from 14 (T = 24) to 62 (T = 72) h, reveal two geographic patterns: a decline in perturbability of the photoperiodic clock with increasing latitude, and no change with latitude in the 21-h period of rising and falling development with increasing T. These results show (1) that there is a rhythmic component to photoperiodic time measurement in W. smithii, (2) that the period of this rhythm is about 21 h in all populations, and (3) that more northern populations show decreasing responsiveness to photoperiod and increasing stability against perturbation by exotic period lengths (T > 24). Previous studies on W.␣smithii indicate that this single temperate species of a tropical and subtropical genus has evolved from south to north. We therefore conclude that the evolution of increasing critical photoperiod in W. smithii during its adaptive radiation into North America has more likely involved the amplitude and not the period of the underlying circadian pacemaker.

  14. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants.

    Science.gov (United States)

    Bauer, Ulrike; Willmes, Christoph; Federle, Walter

    2009-06-01

    Nepenthes pitchers are sophisticated traps that employ a variety of mechanisms to attract, capture and retain prey. The underlying morphological structures and physiological processes are subject to change over the lifetime of a pitcher. Here an investigation was carried out on how pitcher properties and capture efficiency change over the first 2 weeks after pitcher opening. Prey capture, trapping efficiency, extrafloral nectar secretion, pitcher odour, as well as pH and viscoelasticity of the digestive fluid in N. rafflesiana pitchers were monitored in the natural habitat from pitcher opening up to an age of 2 weeks. Pitchers not only increased their attractiveness over this period by becoming more fragrant and secreting more nectar, but also gained mechanical trapping efficiency via an enhanced wettability of the upper pitcher rim (peristome). Consistently, natural prey capture was initially low and increased 3-6 d after opening. It was, however, highly variable within and among pitchers. At the same time, the pH and viscoelasticity of the digestive fluid decreased, suggesting that the latter is not essential for effective prey capture. Prey capture and attraction by Nepenthes are dynamic processes strongly influenced by the changing properties of the pitcher. The results confirm insect aquaplaning on the peristome as the main capture mechanism in N. rafflesiana.

  16. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    Science.gov (United States)

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  17. Proteomic analysis of pitcher fluid from Nepenthes × ventrata

    Directory of Open Access Journals (Sweden)

    Wan Nor Adibah Wan Zakaria

    2018-04-01

    Full Text Available The carnivorous plants of genus Nepenthes produce unique pitchers containing secretory glands, which secrete proteins into the digestive fluid. We investigated protein profile in the pitcher fluid during the first three days of opening to understand carnivory trait of Nepenthes × ventrata. The proteome analysis of pitcher fluid from N. × ventrata was performed by label-free quantitative liquid chromatography mass spectrometry (nLC-MS/MSALL. Raw MS data have been deposited to the ProteomeXchange with identifier PXD007251. This dataset allows the identification and quantification of proteins from pitcher fluids to elucidate proteins involved in carnivory physiology of Nepenthes species. Keywords: Carnivorous plant, Digestive enzyme, Nepenthes, Proteomics, SWATH

  18. The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle.

    Directory of Open Access Journals (Sweden)

    Jim D Karagatzides

    2009-07-01

    Full Text Available Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition.At sites in Canada (low nitrogen deposition and the United States (high nitrogen deposition, individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate, individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake.By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture.

  19. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.)

    Science.gov (United States)

    Whitman, Richard L.; Byers, Stacey E.; Shively, Dawn A.; Ferguson, Donna M.; Byappanahalli, Muruleedhara N.

    2005-01-01

    Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n = 43 plants), with mean densities (log CFU mL-1) of 1.28 ± 0.23 and 1.97 ± 0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 °C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.

  20. Proteome analysis of digestive fluids in Nepenthes pitchers.

    Science.gov (United States)

    Rottloff, Sandy; Miguel, Sissi; Biteau, Flore; Nisse, Estelle; Hammann, Philippe; Kuhn, Lauriane; Chicher, Johana; Bazile, Vincent; Gaume, Laurence; Mignard, Benoit; Hehn, Alain; Bourgaud, Frédéric

    2016-03-01

    Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and β-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Proteome analysis of digestive fluids in Nepenthes pitchers

    Science.gov (United States)

    Rottloff, Sandy; Miguel, Sissi; Biteau, Flore; Nisse, Estelle; Hammann, Philippe; Kuhn, Lauriane; Chicher, Johana; Bazile, Vincent; Gaume, Laurence; Mignard, Benoit; Hehn, Alain; Bourgaud, Frédéric

    2016-01-01

    Background and Aims Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. Methods In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. Key Results This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and β-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. Conclusions Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants. PMID:26912512

  2. Contribution of pitcher fragrance and fluid viscosity to high prey ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern. Borneo. It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers. While this difference in prey composition has been ascribed to differences in attraction, the contribution ...

  3. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana.

    Science.gov (United States)

    Eilenberg, Haviva; Pnini-Cohen, Smadar; Rahamim, Yocheved; Sionov, Edward; Segal, Esther; Carmeli, Shmuel; Zilberstein, Aviah

    2010-03-01

    Nepenthes spp. are carnivorous plants that have developed insect capturing traps, evolved by specific modification of the leaf tips, and are able to utilize insect degradation products as nutritional precursors. A chitin-induced antifungal ability, based on the production and secretion to the trap liquid of droserone and 5-O-methyldroserone, is described here. Such specific secretion uniquely occurred when chitin injection was used as the eliciting agent and probably reflects a certain kind of defence mechanism that has been evolved for protecting the carnivory-based provision of nutritional precursors. The pitcher liquid containing droserone and 5-O-methyldroserone at 3:1 or 4:1 molar ratio, as well as the purified naphthoquinones, exerted an antifungal effect on a wide range of plant and human fungal pathogens. When tested against Candida and Aspergillus spp., the concentrations required for achieving inhibitory and fungicidal effects were significantly lower than those causing cytotoxicity in cells of the human embryonic kidney cell line, 293T. These naturally secreted 1,4-naphthoquinone derivatives, that are assumed to act via semiquinone enhancement of free radical production, may offer a new lead to develop alternative antifungal drugs with reduced selectable pressure for potentially evolved resistance.

  4. Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii.

    Science.gov (United States)

    Lair, K P; Bradshaw, W E; Holzapfel, C M

    1997-12-01

    We determine the contribution of composite additive, dominance, and epistatic effects to the genetic divergence of photoperiodic response along latitudinal, altitudinal, and longitudinal gradients in the pitcher-plant mosquito, Wyeomyia smithii. Joint scaling tests of crosses between populations showed widespread epistasis as well as additive and dominance differences among populations. There were differences due to epistasis between an alpine population in North Carolina and populations in Florida, lowland North Carolina, and Maine. Longitudinal displacement resulted in differences due to epistasis between Florida and Alabama populations separated by 300 km but not between Maine and Wisconsin populations separated by 2000 km. Genetic differences between New Jersey and Ontario did not involve either dominance or epistasis and we estimated the minimum number of effective factors contributing to a difference in mean critical photoperiod of 5 SD between them as nE = 5. We propose that the genetic similarity of populations within a broad northern region is due to their more recent origin since recession of the Laurentide Ice Sheet and that the unique genetic architecture of each population is the result of both mutation and repeated migration-founder-flush episodes during the dispersal of W. smithii in North America. Our results suggest that differences in composite additive and dominance effects arise early in the genetic divergence of populations while differences due to epistasis accumulate after more prolonged isolation.

  5. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers.

    Science.gov (United States)

    Rosli, Muhammad Aqil Fitri; Azizan, Kamalrul Azlan; Baharum, Syarul Nataqain; Goh, Hoe-Han

    2017-10-01

    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana . Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.

  6. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers

    Directory of Open Access Journals (Sweden)

    Muhammad Aqil Fitri Rosli

    2017-10-01

    Full Text Available Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.

  7. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea.

    Science.gov (United States)

    Tran, Phuong M; Dahl, John L

    2016-11-01

    Several fast- to intermediate-growing, acid-fast, scotochromogenic bacteria were isolated from Sarracenia purpurea pitcher waters in Minnesota sphagnum peat bogs. Two strains (DL734T and DL739T) were among these isolates. On the basis of 16S rRNA gene sequences, the phylogenetic positions of both strains is in the genus Mycobacterium with no obvious relation to any characterized type strains of mycobacteria. Phenotypic characterization revealed that neither strain was similar to the type strains of known species of the genus Mycobacterium in the collective properties of growth, pigmentation or fatty acid composition. Strain DL734T grew at temperatures between 28 and 32 °C, was positive for 3-day arylsulfatase production, and was negative for Tween 80 hydrolysis, urease and nitrate reduction. Strain DL739T grew at temperatures between 28 and 37 °C, and was positive for Tween 80 hydrolysis, urea, nitrate reduction and 3-day arylsulfatase production. Both strains were catalase-negative while only DL739T grew with 5 % NaCl. Fatty acid methyl ester profiles were unique for each strain. DL739T showed an ability to survive at 8 °C with little to no cellular replication and is thus considered to be psychrotolerant. Therefore, strains DL734T and DL739T represent two novel species of the genus Mycobacterium with the proposed names Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., respectively. The type strains are DL734T (=JCM 30395T=NCCB 100519T) and DL739T (=JCM 30396T=NCCB 100520T), respectively.

  8. Contribution of pitcher fragrance and fluid viscosity to high prey ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    important yet unsuspected role in the ecological success of the species. [Di Giusto B, Grosbois V, Fargeas E, Marshall D J and Gaume L 2008 Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo; J. Biosci. 33 121–136] http://www.ias.ac.in/jbiosci. J. Biosci.

  9. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida.

    Science.gov (United States)

    Morohoshi, Tomohiro; Oikawa, Manabu; Sato, Shoko; Kikuchi, Noriko; Kato, Norihiro; Ikeda, Tsukasa

    2011-10-01

    Members of the genus Nepenthes are carnivorous plants that use the pitfall method of insect capture as a supplementary nutritional source. We extracted metagenomic DNA from the microbial community found in the pitcher fluid of Nepenthes and constructed a plasmid-based metagenomic library. An activity-based screening method enabled the isolation of two lipase genes, lip1 and lip2. Both Lip1 and Lip2 belong to a novel family or subfamily of lipases and show lipase activities in acidic conditions, such as those found in pitcher fluid. This study was conducted under the assumption that the secreted Lip1 and Lip2 were capable of enzymatic activity in the acidic pitcher fluid. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar.

    Science.gov (United States)

    Bauer, Ulrike; Bohn, Holger F; Federle, Walter

    2008-02-07

    The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.

  11. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    Science.gov (United States)

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  12. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid

    Science.gov (United States)

    Wang, Lixin; Zhou, Qiang

    2016-01-01

    To investigate the hydrophobicity of slippery zones, static contact angle measurement and microstructure observation of slippery surfaces from two Nepenthes species and a hybrid were conducted. Marginally different static contact angles were observed, as the smallest (133.83°) and greatest (143.63°) values were recorded for the N. alata and N. miranda respectively, and the median value (140.40°) was presented for the N. khasiana. The slippery zones under investigation exhibited rather similar surface morphologies, but different structural dimensions. These findings probably suggest that the geometrical dimensions of surface architecture exert primary effects on differences in the hydrophobicity of the slippery zone. Based on the Wenzel and Cassie-Baxter equations, models were proposed to analyze the manner in which geometrical dimensions affect the hydrophobicity of the slippery surfaces. The results of our analysis demonstrated that the different structural dimensions of lunate cells and wax platelets make the slippery zones present different real area of the rough surface and thereby generate somewhat distinguishable hydrophobicity. The results support a supplementary interpretation of surface hydrophobicity in plant leaves, and provide a theoretical foundation for developing bioinspired materials with hydrophobic properties and self-cleaning abilities.

  13. Factors affecting in vitro seed germination and shoot multiplication of a pitcher plant (Nepenthes mirabilis (Lour. Druce

    Directory of Open Access Journals (Sweden)

    Tokhao, W

    2007-03-01

    Full Text Available Mature seeds of a pitcher plant (Nepenthes mirabilis (Lour. Druce were cultured in liquid and solid MS medium (Murashige and Skoog, 1962 supplemented with BA (6-benzyladenine at 1, 3 or 5 mg/l or withcoconut water (20% v/v. The cultures were incubated under light and dark conditions. Seeds germinated only under light incubation and BA supplemented to both types of media, and solid medium with 3 mg/l BAresulted the highest seed germination (26% with good development of seedlings. On the contrary, the addition of coconut water to the basal medium produced poor seed germination and seedling growth. Moreover,all cultures in liquid medium terminated their growth after 6 weeks of culture. Young seedlings were subsequently transferred to fresh media of the same treatments after 15 weeks of seed culture. Multipleshoots were proliferated in all levels of BA after 6 weeks of transferring and more shoots were produced as BA level was increased. However, at high BA level of 5 mg/l, rosetting of shoots occurred while lowering BA level to 3 mg/l, fewer shoots were produced but they were vigorous, larger shoots with complete leaves. Rootdevelopment finally occurred in all BA treatments except the addition of coconut water.To evaluate the potential of shoot multiplication in different strengths of MS macromutrient, two types of explants, viz. shoot explants and stem explants (both approx. 1.5 cm long from in vitro seedlings,were cultured on full-strength MS macronutrient medium, 1/2 MS, 1/4 MS and 1/8 MS medium. Following 16 weeks of culture, shoot production (number/ explant increased in both explant types as the macronutrientstrength decreased. However, when lowering to 1/8 MS, the fewest shoots were produced and exhibited nutrient deficiency of leaf chlorosis. The optimum strength of MS macronutrient for the maximumproduction of normal shoots with complete leaves was 1/2 MS medium while 1/4 MS medium produced the highest shoot number from stem explants but

  14. Quantitative Trait Loci Associated with Photoperiodic Response and Stage of Diapause in the Pitcher-Plant Mosquito, Wyeomyia smithii

    Science.gov (United States)

    Mathias, Derrick; Jacky, Lucien; Bradshaw, William E.; Holzapfel, Christina M.

    2007-01-01

    A wide variety of temperate animals rely on length of day (photoperiodism) to anticipate and prepare for changing seasons by regulating the timing of development, reproduction, dormancy, and migration. Although the molecular basis of circadian rhythms regulating daily activities is well defined, the molecular basis for the photoperiodic regulation of seasonal activities is largely unknown. We use geographic variation in the photoperiodic control of diapause in the pitcher-plant mosquito Wyeomyia smithii to create the first QTL map of photoperiodism in any animal. For critical photoperiod (CPP), we detect QTL that are unique, a QTL that is sex linked, QTL that overlap with QTL for stage of diapause (SOD), and a QTL that interacts epistatically with the circadian rhythm gene, timeless. Results presented here confirm earlier studies concluding that CPP is under directional selection over the climatic gradient of North America and that the evolution of CPP is genetically correlated with SOD. Despite epistasis between timeless and a QTL for CPP, timeless is not located within any detectable QTL, indicating that it plays an ancillary role in the evolution of photoperiodism in W. smithii. Finally, we highlight one region of the genome that includes loci contributing to CPP, SOD, and hormonal regulation of development. PMID:17339202

  15. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    Directory of Open Access Journals (Sweden)

    Clayton Merz

    Full Text Available Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  16. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    OpenAIRE

    Hanna Yolanda; Ingrid M. Makahinda; Maureen Aprilia; Nikki Sanjaya; Harry Gunawan; Rita Dewi

    2015-01-01

    BACKGROUND To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL) from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. METHODS Collected pitcher liquids were of 3 types: non-induced l...

  17. Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid

    OpenAIRE

    Chan, Xin-Yue; Hong, Kar-Wai; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Tropical carnivorous plant, Nepenthes, locally known as ?monkey cup?, utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes...

  18. Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    Science.gov (United States)

    Ishisaki, Kana; Arai, Sachiko; Hamada, Tatsuro; Honda, Yuji

    2012-11-01

    A class III chitinase belonging to the GH18 family from Nepenthes alata (NaCHIT3) was expressed in Escherichia coli. The enzyme exhibited hydrolytic activity toward colloidal chitin, ethylene glycol chitin, and (GlcNAc)(n) (n=5 and 6). The enzyme hydrolyzed the fourth glycosidic linkage from the non-reducing end of (GlcNAc)(6). The anomeric form of the products indicated it was a retaining enzyme. The colloidal chitin hydrolytic reaction displayed high activity between pH 3.9 and 6.9, but the pH optimum of the (GlcNAc)(6) hydrolytic reaction was 3.9 at 37 °C. The optimal temperature for activity was 65 °C in 50 mM sodium acetate buffer (pH 3.9). The pH optima of NaCHIT3 and NaCHIT1 might be related to their roles in chitin degradation in the pitcher fluid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Tuning of color contrast signals to visual sensitivity maxima of tree shrews by three Bornean highland Nepenthes species.

    Science.gov (United States)

    Moran, Jonathan A; Clarke, Charles; Greenwood, Melinda; Chin, Lijin

    2012-10-01

    Three species of Nepenthes pitcher plants (Nepenthes rajah, Nepenthes lowii and Nepenthes macrophylla) specialize in harvesting nutrients from tree shrew excreta in their pitchers. In all three species, nectaries on the underside of the pitcher lid are the focus of the tree shrews' attention. Tree shrews are dichromats, with visual sensitivity in the blue and green wavebands. All three Nepenthes species were shown to produce visual signals, in which the underside of the pitcher lid (the area of highest nectar production) stood out in high contrast to the adjacent area on the pitcher (i.e., was brighter), in the blue and green wavebands visible to the tree shrews. N. rajah showed the tightest degree of "tuning," notably in the green waveband. Conversely, pitchers of Nepenthes burbidgeae, a typical insectivorous species sympatric with N. rajah, did not produce a color pattern tuned to tree shrew sensitivity maxima.

  20. Differential expressed protein in developing stages of Nepenthes gracilis Korth. pitcher.

    Science.gov (United States)

    Pinthong, Krit; Chaveerach, Arunrat; Tanee, Tawatchai; Sudmoon, Runglawan; Mokkamul, Piya

    2009-03-15

    Nepenthes gracilis Korth. is a member of carnivorous plants in family Nepenthaceae. The plants have beautiful and economically important pitchers. It is interesting to study the protein(s) correlated with the pitcher. Crude proteins were extracted from leaf, leaf with developing pitcher and developed pitcher of the same plant and analyzed by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Two protein bands with molecular weights of 42.7 and 38 kDa were obtained from young leaf and leaf with developing pitcher, respectively. The 42.7 kDa protein was identified as phosphoglycerate kinase (PGK) by Liquid Chromatography Mass Spectrometry (LC-MS/MS), but the 38 kDa band is an unknown protein. Both proteins were differentially expressed in each developing stage of the pitcher, thus may be powerful candidates play role in development pathway of leaf and pitcher.

  1. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention.

    Science.gov (United States)

    Gorb, Elena; Kastner, Victoria; Peressadko, Andrei; Arzt, Eduard; Gaume, Laurence; Rowe, Nick; Gorb, Stanislav

    2004-08-01

    Carnivorous plants of the genus Nepenthes grow in nutrient-poor habitats and have evolved specialised trapping organs, known as pitchers. These are composed of different surface zones serving the functions of attraction, capture and digestion of insects, which represent a main source of nitrogen. To investigate the role of the glandular digestive zone in the trapping mechanism of the pitcher, structural, mechanical and physico-chemical studies were applied to N. ventrata and combined with insect behavioural experiments. It was found that the glandular surface is microscopically rough since it is regularly structured with multicellular glands situated in epidermal depressions. The presence of downward-directed 'hoods' over the upper part of glands and sloped depressions in the proximal direction of the pitcher causes a marked anisotropy of the surface. The glandular zone surface is composed of relatively stiff material (Young's modulus, 637.19+/-213.44 kPa). It is not homogeneous, in terms of adhesive properties, and contains numerous areas without adhesion as well as adhesive areas differing greatly in tenacity values (range, 1.39-28.24 kPa). The surface is readily wettable with water (contact angle, 31.9-36.0 degrees C) and has a high surface free energy (56.84-61.93 mN m(-1)) with a relatively high polar component (33.09-52.70 mN m(-1)). To examine the effect of the glandular secretion on attachment systems of insects having hairy and smooth adhesive pads, forces generated on different surfaces by Calliphora vicina flies and Pyrrhocoris apterus bugs, respectively, were measured. Flies attached equally well to both fresh and air-dried glandular surfaces whereas bugs generated a significantly lower force on the fresh glandular surface compared with the air-dried one. It is assumed that the contribution of the glandular surface to insect retention, due to its effect on insect attachment, differs depending on insect weight and the type of insect attachment system

  2. Fenestration: a window of opportunity for carnivorous plants.

    Science.gov (United States)

    Schaefer, H Martin; Ruxton, Graeme D

    2014-01-01

    A long-standing but controversial hypothesis assumes that carnivorous plants employ aggressive mimicry to increase their prey capture success. A possible mechanism is that pitcher plants use aggressive mimicry to deceive prey about the location of the pitcher's exit. Specifically, species from unrelated families sport fenestration, i.e. transparent windows on the upper surfaces of pitchers which might function to mimic the exit of the pitcher. This hypothesis has not been evaluated against alternative hypotheses predicting that fenestration functions to attract insects from afar. By manipulating fenestration, we show that it does not increase the number of Drosophila flies or of two ant species entering pitchers in Sarracenia minor nor their retention time or a pitcher's capture success. However, fenestration increased the number of Drosophila flies alighting on the pitcher compared with pitchers of the same plant without fenestration. We thus suggest that fenestration in S. minor is not an example of aggressive mimicry but rather functions in long-range attraction of prey. We highlight the need to evaluate aggressive mimicry relative to alternative concepts of plant-animal communication.

  3. Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid.

    Science.gov (United States)

    Chan, Xin-Yue; Hong, Kar-Wai; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-28

    Tropical carnivorous plant, Nepenthes, locally known as "monkey cup", utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid.

  4. Nepenthes pitchers are CO2-enriched cavities, emit CO2to attract preys.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Zachariah, Elavinamannil Jacob; Hussain, Abdul Azeez

    2017-09-12

    Carnivorous plants of the genus Nepenthes supplement their nutrient deficiency by capturing arthropods or by mutualistic interactions, through their leaf-evolved biological traps (pitchers). Though there are numerous studies on these traps, mostly on their prey capture mechanisms, the gas composition inside them remains unknown. Here we show that, Nepenthes unopened pitchers are CO 2 -enriched 'cavities', when open they emit CO 2 , and the CO 2 gradient around open pitchers acts as a cue attracting preys towards them. CO 2 contents in near mature, unopened Nepenthes pitchers were in the range 2500-5000 ppm. Gas collected from inside open N. khasiana pitchers showed CO 2 at 476.75 ± 59.83 ppm. CO 2 -enriched air-streaming through N. khasiana pitchers (at 619.83 ± 4.53 ppm) attracted (captured) substantially higher number of aerial preys compared to air-streamed pitchers (CO 2 at 412.76 ± 4.51 ppm). High levels of CO 2 dissolved in acidic Nepenthes pitcher fluids were also detected. We demonstrate respiration as the source of elevated CO 2 within Nepenthes pitchers. Most unique features of Nepenthes pitchers, viz., high growth rate, enhanced carbohydrate levels, declined protein levels, low photosynthetic capacity, high respiration rate and evolved stomata, are influenced by the CO 2 -enriched environment within them.

  5. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.

    Science.gov (United States)

    Gorb, E; Haas, K; Henrich, A; Enders, S; Barbakadze, N; Gorb, S

    2005-12-01

    The slippery zone situated below the peristome inside pitchers of most carnivorous plants from the genus Nepenthes is covered with a thick layer of epicuticular wax. This slippery zone is reported to play a crucial role in animal trapping and prey retention. In N. alata, the wax coverage consists of two clearly distinguished layers. These layers differ in their structure, chemical composition and mechanical properties, and they reduce the insect attachment in different ways. The lower layer resembles foam, composed of interconnected membraneous platelets protruding from the surface at acute angles. The upper layer consists of densely placed separate irregular platelets, located perpendicular to the subjacent layer. Crystals of the upper layer bear small stalks, directed downwards and providing connections to the lower layer. These morphological distinctions correlate with differences in the chemical composition of waxes. The compound classes of alkanes, aldehydes, primary alcohols, free fatty acids, esters and triterpenoids occurred in extracts from both wax layers, but in different proportions. Chain length distributions in aliphatics were different in extracts from the lower and the upper wax layers. Waxes of the upper and lower layers exhibited different mechanical properties: wax of the lower layer is harder and stiffer than that of the upper layer. Moreover, crystals of the upper layer are brittle and may be easily exfoliated or broken to tiny pieces. Laboratory experiments using tethered insects showed that both wax layers reduce the attachment force of insects. It is assumed that a decrease in insect attachment on the two distinct wax layers is provided by the two different mechanisms: (1) crystals of the upper wax layer contaminate insects' adhesive pads; (2) the lower wax layer leads to a reduction of the real contact area of insects' feet with the plant surface.

  6. The Pitcher Plant Sarracenia purpurea Can Directly Acquire Organic Nitrogen and Short-Circuit the Inorganic Nitrogen Cycle

    OpenAIRE

    Karagatzides, Jim D.; Butler, Jessica L.; Ellison, Aaron M.

    2009-01-01

    Background: Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in the...

  7. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2014-08-01

    Full Text Available Background To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. Methods Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. Results Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. Conclusion The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  8. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2015-12-01

    Full Text Available BACKGROUND To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. METHODS Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. RESULTS Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. CONCLUSION The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  9. The insect-trapping rim of Nepenthes pitchers

    Science.gov (United States)

    Federle, Walter

    2009-01-01

    Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface chemistry, surface roughness and the presence of hygroscopic nectar. Insect foot attachment could be prevented by the delayed drainage of the thin water film between the adhesive pad and the surface. Drainage should be faster for insects with a hairy adhesive system; however, they slip equally on the wet peristome. Therefore the stability of the water film against dewetting appears to be the key factor for aquaplaning. New experimental techniques may help to clarify the detailed function of the pitcher plant peristome and to explore its potential for biomimetic applications. PMID:20009546

  10. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment.

    Science.gov (United States)

    Gorb, Elena V; Gorb, Stanislav N

    2011-01-01

    The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1) intact pitchers, (2) chemically de-waxed pitchers, and (3) their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome) or downward (towards the pitcher bottom) direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i) due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii) claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  11. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

    Directory of Open Access Journals (Sweden)

    Elena V. Gorb

    2011-06-01

    Full Text Available The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1 intact pitchers, (2 chemically de-waxed pitchers, and (3 their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome or downward (towards the pitcher bottom direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  12. Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants.

    Science.gov (United States)

    Schöner, Michael G; Schöner, Caroline R; Simon, Ralph; Grafe, T Ulmar; Puechmaille, Sébastien J; Ji, Liaw Lin; Kerth, Gerald

    2015-07-20

    Mutualisms between plants and animals shape the world's ecosystems. In such interactions, achieving contact with the partner species is imperative. Plants regularly advertise themselves with signals that specifically appeal to the partner's perceptual preferences. For example, many plants have acquired traits such as brightly colored, fragrant flowers that attract pollinators with visual, olfactory, or--in the case of a few bat-pollinated flowers--even acoustic stimuli in the form of echo-reflecting structures. However, acoustic attraction in plants is rare compared to other advertisements and has never been found outside the pollination context and only in the Neotropics. We hypothesized that this phenomenon is more widespread and more diverse as plant-bat interactions also occur in the Paleotropics. In Borneo, mutualistic bats fertilize a carnivorous pitcher plant while roosting in its pitchers. The pitcher's orifice features a prolonged concave structure, which we predicted to distinctively reflect the bats' echolocation calls for a wide range of angles. This structure should facilitate the location and identification of pitchers even within highly cluttered surroundings. Pitchers lacking this structure should be less attractive for the bats. Ensonifications of the pitchers around their orifice revealed that this structure indeed acts as a multidirectional ultrasound reflector. In behavioral experiments where bats were confronted with differently modified pitchers, the reflector's presence clearly facilitated the finding and identification of pitchers. These results suggest that plants have convergently acquired reflectors in the Paleotropics and the Neotropics to acoustically attract bats, albeit for completely different ecological reasons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development and regeneration ability of the wax coverage in Nepenthes alata pitchers: a cryo-SEM approach.

    Science.gov (United States)

    Gorb, Elena V; Baum, Martina J; Gorb, Stanislav N

    2013-10-29

    The morphogenesis of the composite epicuticular wax coverage and regeneration ability of the upper wax layer in Nepenthes alata pitchers were studied using a cryo-scanning electron microscopy. Examination of pitchers of different ages revealed six stages in the wax coverage development. In the first stage, wax crystals resemble those found recently in mature pitches of N. dicksoniana and N. ventricosa. Platelets of the upper wax layer originate from broadened tips of stalks during the last developmental stage. Contrary to previous hypotheses, we found that wax crystals of both layers as well as the stalks connecting them are oriented perpendicularly to the pitcher wall. No changes in the height of the wax coverage were detected in 4-8 weeks after mechanical removal of the upper wax layer from mature pitchers on plants. This indicates that the wax coverage in N. alata pitchers is unable to regenerate.

  14. The insect-trapping rim of Nepenthes pitchers: surface structure and function.

    Science.gov (United States)

    Bauer, Ulrike; Federle, Walter

    2009-11-01

    Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface chemistry, surface roughness and the presence of hygroscopic nectar. Insect foot attachment could be prevented by the delayed drainage of the thin water film between the adhesive pad and the surface. Drainage should be faster for insects with a hairy adhesive system; however, they slip equally on the wet peristome. Therefore the stability of the water film against dewetting appears to be the key factor for aquaplaning. New experimental techniques may help to clarify the detailed function of the pitcher plant peristome and to explore its potential for biomimetic applications.

  15. Plant Species Sensitivity Distributions for ozone exposure

    International Nuclear Information System (INIS)

    Goethem, T.M.W.J. van; Azevedo, L.B.; Zelm, R. van; Hayes, F.; Ashmore, M.R.; Huijbregts, M.A.J.

    2013-01-01

    This study derived Species Sensitivity Distributions (SSD), representing a cumulative stressor-response distribution based on single-species sensitivity data, for ozone exposure on natural vegetation. SSDs were constructed for three species groups, i.e. trees, annual grassland and perennial grassland species, using species-specific exposure–response data. The SSDs were applied in two ways. First, critical levels were calculated for each species group and compared to current critical levels for ozone exposure. Second, spatially explicit estimates of the potentially affected fraction of plant species in Northwestern Europe were calculated, based on ambient ozone concentrations. We found that the SSD-based critical levels were lower than for the current critical levels for ozone exposure, with conventional critical levels for ozone relating to 8–20% affected plant species. Our study shows that the SSD concept can be successfully applied to both derive critical ozone levels and estimate the potentially affected species fraction of plant communities along specific ozone gradients. -- Highlights: ► Plant Species Sensitivity Distributions were derived for ozone exposure. ► Annual grassland species, as a species assemblage, tend to be most sensitive to ozone. ► Conventional critical levels for ozone relate to 8–20% affected plant species. ► The affected fraction of plant species for current ozone exposure in Northwestern Europe is estimated. -- Species Sensitivity Distributions offer opportunities in ozone risk assessment to both derive critical levels and estimate the affected fraction of a plant community

  16. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  17. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  18. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  19. Biomechanical differences between left- and right-handed baseball pitchers.

    Science.gov (United States)

    Solomito, Matthew J; Ferreira, Joel V; Nissen, Carl W

    2017-06-01

    Left-handed baseball pitchers are thought to have a number of theoretical advantages compared to right-handed pitchers; however, there is limited scientific research detailing differences in the pitching mechanics of right- and left-handed pitchers. Therefore, this study sought to understand whether any kinematic and kinetic differences existed between right- and left-handed baseball pitchers. A total of 52 collegiate pitchers were included in this study; 26 left-handed pitchers were compared to 26 age-, height-, weight- and ball velocity-matched right-handed pitchers. Demographic information, passive shoulder range of motion and kinematic and kinetic data were obtained for each pitcher participating in the study. Results indicated that left-handed pitchers did not have a glenohumeral internal rotation deficit as compared to right-handed pitchers. Kinematic analysis indicated that elbow flexion, horizontal glenohumeral abduction and wrist coronal plane motion were significantly different between the two study cohorts. It was also noted that left-handed pitchers had increased elbow varus moments. The findings of this study suggest that pitching coaches should be aware that there are biomechanical differences between left- and right-handed pitchers.

  20. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  1. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  2. Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis.

    Science.gov (United States)

    Buch, Franziska; Pauchet, Yannick; Rott, Matthias; Mithöfer, Axel

    2014-04-01

    Carnivorous plants capture and digest prey to obtain additional nutrients. Therefore, different trapping mechanisms were developed in different species. Plants of the genus Nepenthes possess pitfall-traps filled with a digestive fluid, which is secreted by the plants themselves. This pitcher fluid is composed of various enzymes to digest the captured prey. Besides hydrolytic enzymes, defense-related proteins have been identified in the fluid. The present study describes the identification and heterologous expression of a pathogenesis-related protein, NmPR-1, from pitchers of Nepenthes mirabilis with features that are unusual for PR-1 proteins. In particular, it was proven to be highly glycosylated and, furthermore, it exhibited antibacterial instead of antifungal activities. These properties are probably due to the specific environment of the pitcher fluid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species?

    Science.gov (United States)

    Thomson, Fiona J; Letten, Andrew D; Tamme, Riin; Edwards, Will; Moles, Angela T

    2018-01-01

    Tall plant species disperse further distances than do short species, within and across dispersal syndromes, yet the driver underpinning this relationship is unclear. The ability of taller plants to invest more in dispersal structures may explain the positive relationship between plant height and dispersal distance. Here, we quantify the cross-species relationships between presence of dispersal structures, dispersal investment plant height and dispersal distance. Plant height, dispersal syndrome and dispersal investment data were collated for 1613 species from the literature, with dispersal distance data collated for 114 species. We find that species with high dispersal investment disperse further than do species with low dispersal investment. Tall species have a greater probability of having dispersal structures on their seeds compared with short species. For species with dispersal structures on their seeds, plant height is very weakly related to dispersal investment. Our results provide the first global confirmation of the dispersal investment-distance hypothesis, and show dispersal investment can be used for predicting species dispersal distances. However, our results and those of previous studies indicate plant height is still the best proxy for estimating species dispersal distances due to it being such a readily available plant trait. © 2017 Landcare Research. New Phytologist © 2017 New Phytologist Trust.

  4. Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants.

    Science.gov (United States)

    Bonhomme, Vincent; Pelloux-Prayer, Hervé; Jousselin, Emmanuelle; Forterre, Yoël; Labat, Jean-Jacques; Gaume, Laurence

    2011-07-01

    The pitcher-shaped leaves of Nepenthes carnivorous plants have been considered as pitfall traps that essentially rely on slippery surfaces to capture insects. But a recent study of Nepenthes rafflesiana has shown that the viscoelasticity of the digestive fluid inside the pitchers plays a key role. Here, we investigated whether Nepenthes species exhibit diverse trapping strategies. We measured the amount of slippery wax on the pitcher walls of 23 taxa and the viscoelasticity of their digestive liquid and compared their retention efficiency on ants and flies. The amount of wax was shown to vary greatly between species. Most mountain species exhibited viscoelastic digestive fluids while water-like fluids were predominant in lowland species. Both characteristics contributed to insect trapping but wax was more efficient at trapping ants while viscoelasticity was key in trapping insects and was even more efficient than wax on flies. Trap waxiness and fluid viscoelasticity were inversely related, suggesting the possibility of an investment trade-off for the plants. Therefore Nepenthes pitcher plants do not solely employ slippery devices to trap insects but often employ a viscoelastic strategy. The entomofauna specific to the plant's habitat may exert selective pressures, favouring one trapping strategy at the expense of the other. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. The myth of plant species saturation

    Science.gov (United States)

    Stohlgren, Thomas J.; Barnett, David T.; Jarnevich, Catherine S.; Flather, Curtis; Kartesz, John

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed ‘saturated’ when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA where colonization (i.e. invasion by exotic species) exceeds extirpation by roughly a 24 to 1 margin. We report an alarming temporal trend in plant invasions in the Pacific Northwest over the past 100 years whereby counties highest in native species richness appear increasingly invaded over time. Despite the possibility of some increased awareness and reporting of native and exotic plant species in recent decades, historical records show a significant, consistent long-term increase in exotic species (number and frequency) at county, state and regional scales in the Pacific Northwest. Here, as in other regions of the country, colonization rates by exotic species are high and extirpation rates are negligible. The rates of species accumulation in space in multi-scale vegetation plots may provide some clues to the mechanisms of the invasion process from local to national scales.

  6. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment?

    Science.gov (United States)

    Bradshaw, W E; Quebodeaux, M C; Holzapfel, C M

    2003-05-01

    Many plants and animals use the length of day or photoperiod to cue their seasonal patterns of development, reproduction, dormancy, and migration. Among temperate arthropods, the median or critical photoperiod increases with latitude or altitude. Concomitantly, in beetles, moths, mites, flies, and mosquitoes, there is a declining expression of a rhythmic, presumably circadian-based, component of photoperiodic response. It has been proposed that the long summer days in the north select for a reduced response to light by the circadian clock, which results in this declining rhythmic expression and, consequently, longer northern critical photoperiods. However, these patterns might also be due to direct, seasonal selection on the critical photoperiod itself, which results in a correlated reduction in the rhythmic component as a result of internal physiological constraints within the organism. Using standard light duration and selection experiments, we show that evolution of photoperiodic time measurement in the mosquito, Wyeomyia smithii, results from the direct response of critical photoperiod to seasonal selection and a correlated response of the rhythmic component of photoperiodic time measurement. We conclude that expression of the circadian clock is necessary neither for the central mechanism of photoperiodic time measurement nor for the adaptive modification of critical photoperiod.

  7. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    Directory of Open Access Journals (Sweden)

    Franziska Buch

    Full Text Available Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep. Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  8. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    Science.gov (United States)

    Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  9. Spectrum of shoulder injuries in the baseball pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Sheah, Kenneth; Torriani, Martin [Massachusetts General Hospital, Boston, Massachusetts (United States); Labis, John [Methodist Hospital, Houston, Texas (United States)

    2008-06-15

    This review describes a range of shoulder injuries experienced by baseball pitchers. It is estimated that more than 57% of pitchers suffer some form of shoulder injury during a playing season. Knowledge of the overhead throwing cycle is crucial for our understanding of these shoulder injuries. Baseball pitchers are prone to rotator cuff tears from tensile overload and impingement. Glenoid labrum degeneration or tears are also common, due to overuse syndrome (micro-instability), internal impingement and microtrauma. An understanding of the lesions involved in overhead throwing is crucial in baseball pitchers, as long-term disability can result from these injuries, sometimes with severe financial consequences to the player. (orig.)

  10. Spectrum of shoulder injuries in the baseball pitcher

    International Nuclear Information System (INIS)

    Ouellette, Hugue; Bredella, Miriam; Palmer, William E.; Sheah, Kenneth; Torriani, Martin; Labis, John

    2008-01-01

    This review describes a range of shoulder injuries experienced by baseball pitchers. It is estimated that more than 57% of pitchers suffer some form of shoulder injury during a playing season. Knowledge of the overhead throwing cycle is crucial for our understanding of these shoulder injuries. Baseball pitchers are prone to rotator cuff tears from tensile overload and impingement. Glenoid labrum degeneration or tears are also common, due to overuse syndrome (micro-instability), internal impingement and microtrauma. An understanding of the lesions involved in overhead throwing is crucial in baseball pitchers, as long-term disability can result from these injuries, sometimes with severe financial consequences to the player. (orig.)

  11. Ensemble habitat mapping of invasive plant species

    Science.gov (United States)

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  12. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  13. Plant species descriptions show signs of disease.

    Science.gov (United States)

    Hood, Michael E; Antonovics, Janis

    2003-11-07

    It is well known that diseases can greatly influence the morphology of plants, but often the incidence of disease is either too rare or the symptoms too obvious for the 'abnormalities' to cause confusion in systematics. However, we have recently come across several misinterpretations of disease-induced traits that may have been perpetuated into modern species inventories. Anther-smut disease (caused by the fungus Microbotryum violaceum) is common in many members of the Caryophyllaceae and related plant families. This disease causes anthers of infected plants to be filled with dark-violet fungal spores rather than pollen. Otherwise, their vegetative morphology is within the normal range of healthy plants. Here, we present the results of a herbarium survey showing that a number of type specimens (on which the species name and original description are based) in the genus Silene from Asia are diseased with anther smut. The primary visible disease symptom, namely the dark-violet anthers, is incorporated into the original species descriptions and some of these descriptions have persisted unchanged into modern floras. This raises the question of whether diseased type specimens have erroneously been given unique species names.

  14. Fluorescent prey traps in carnivorous plants.

    Science.gov (United States)

    Kurup, R; Johnson, A J; Sankar, S; Hussain, A A; Sathish Kumar, C; Sabulal, B

    2013-05-01

    Carnivorous plants acquire most of their nutrients by capturing ants, insects and other arthropods through their leaf-evolved biological traps. So far, the best-known attractants in carnivorous prey traps are nectar, colour and olfactory cues. Here, fresh prey traps of 14 Nepenthes, five Sarracenia, five Drosera, two Pinguicula species/hybrids, Dionaea muscipula and Utricularia stellaris were scanned at UV 366 nm. Fluorescence emissions of major isolates of fresh Nepenthes khasiana pitcher peristomes were recorded at an excitation wavelength of 366 nm. N. khasiana field pitcher peristomes were masked by its slippery zone extract, and prey capture rates were compared with control pitchers. We found the existence of distinct blue fluorescence emissions at the capture spots of Nepenthes, Sarracenia and Dionaea prey traps at UV 366 nm. These alluring blue emissions gradually developed with the growth of the prey traps and diminished towards their death. On excitation at 366 nm, N. khasiana peristome 3:1 CHCl3–MeOH extract and its two major blue bands showed strong fluorescence emissions at 430–480 nm. Masking of blue emissions on peristomes drastically reduced prey capture in N. khasiana pitchers. We propose these molecular emissions as a critical factor attracting arthropods and other visitors to these carnivorous traps. Drosera, Pinguicula and Utricularia prey traps showed only red chlorophyll emissions at 366 nm.

  15. Plant species evaluated for new crop potential

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acer ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.

  16. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  17. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  18. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  19. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  20. Functional hip characteristics of baseball pitchers and position players.

    Science.gov (United States)

    Laudner, Kevin G; Moore, Stephanie D; Sipes, Robert C; Meister, Keith

    2010-02-01

    During the throwing motion, the lower extremity is responsible for creating power that is transmitted through the core to the upper extremity. Research has shown that good hip range of motion and strength in throwing athletes results in greater performance and decreased stress placed on the upper extremity. Although research has investigated bilateral differences in hip characteristics among baseball pitchers, little is known about differences between pitchers and position players. Pitchers will have decreased passive hip rotation range of motion and gluteus medius strength compared with position players. Cross-sectional study; Level of evidence, 3. Forty professional baseball pitchers and 40 position players with no recent history of lower extremity injury participated. Bilateral hip external and internal rotation range of motion, total arc of motion, and gluteus medius strength were measured with a digital inclinometer and handheld dynamometer. Results A Hotelling T(2) multivariate analysis of variance showed position players to have significantly more hip internal rotation range of motion (3.1 masculine, P = .01, effect size = .53) and abduction strength (3.5 kg, P =.04, effect size = .53) in the trail leg compared with the pitchers. There were no significant differences for any other hip characteristics between groups (P > .07). The results of this study indicate that baseball pitchers have significantly smaller amounts of hip internal rotation range of motion and abduction strength of the trail leg compared with position players. However, these differences may not be clinically significant. Position players may be able to develop more energy in the lower extremity, while pitchers may rely more on energy created in the core and upper extremity, potentially placing pitchers at an increased risk for upper extremity injury. These descriptive hip characteristics may help clinicians detect inadequacies and provide appropriate prevention, diagnostic, and treatment

  1. Four New Species of Nepenthes L. (Nepenthaceae) from the Central Mountains of Mindanao, Philippines.

    Science.gov (United States)

    Gronemeyer, Thomas; Coritico, Fulgent; Wistuba, Andreas; Marwinski, David; Gieray, Tobias; Micheler, Marius; Mey, François Sockhom; Amoroso, Victor

    2014-06-06

    Together with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia), the Philippines are the main center of diversity for carnivorous pitcher plants of the genus, Nepenthes L. Nepenthes are the largest of all carnivorous plants, and the species with the biggest pitchers are capable of trapping and digesting small amphibians and even mammals. The central cordillera of Mindanao Island in the south of the Philippines is mostly covered with old, primary forest and is the largest remaining cohesive, untouched area of wilderness in the Philippines. In a recent field exploration of two areas of the central cordillera, namely Mount Sumagaya and a section of the Pantaron range, four new taxa of Nepenthes were discovered. These four remarkable new species, N. pantaronensis, N. cornuta, N. talaandig and N. amabilis, are described, illustrated and assessed.

  2. Four New Species of Nepenthes L. (Nepenthaceae from the Central Mountains of Mindanao, Philippines

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    2014-06-01

    Full Text Available Together with the islands of Sumatra (Indonesia and Borneo (Indonesia, Malaysia, the Philippines are the main center of diversity for carnivorous pitcher plants of the genus, Nepenthes L. Nepenthes are the largest of all carnivorous plants, and the species with the biggest pitchers are capable of trapping and digesting small amphibians and even mammals. The central cordillera of Mindanao Island in the south of the Philippines is mostly covered with old, primary forest and is the largest remaining cohesive, untouched area of wilderness in the Philippines. In a recent field exploration of two areas of the central cordillera, namely Mount Sumagaya and a section of the Pantaron range, four new taxa of Nepenthes were discovered. These four remarkable new species, N. pantaronensis, N. cornuta, N. talaandig and N. amabilis, are described, illustrated and assessed.

  3. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    Science.gov (United States)

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

  4. Effects of a non-native biocontrol weevil, Larinus planus, and other emerging threats on populations of the federally threatened Pitcher's thistle, Cirsium pitcheri

    Science.gov (United States)

    Havens, Kayri; Jolls, Claudia L.; Marik, Julie E.; Vitt, Pati; McEachern, A. Kathryn; Kind, Darcy

    2012-01-01

    Larinus planus Frabicius (Curculionidae), is a seed-eating weevil that was inadvertently introduced into the US and was subsequently distributed in the US and Canada for the control of noxious thistle species of rangelands. It has been detected recently in the federally threatened Pitcher's thistle (Cirsium pitcheri). We assayed weevil damage in a natural population of Pitcher's thistle at Whitefish Dunes State Park, Door County, WI and quantified the impact on fecundity. We then estimated the impact of this introduced weevil and other emerging threats on two natural, uninvaded populations of Pitcher's thistle for which we have long-term demographic data for 16 yr (Wilderness State Park, Emmet County, MI) and 23 yr (Miller High Dunes, Indiana Dunes National Lakeshore, Porter County, IN). We used transition matrices to determine growth rates and project the potential effects of weevil damage, inbreeding, goldfinch predation, and vegetative succession on Pitcher's thistle population viability. Based on our models, weevil seed predation reduced population growth rate by 10–12%, but this reduction was enough to reduce time to extinction from 24 yr to 13 yr and 8 yr to 5 yr in the MI and IN population, respectively. This impact is particularly severe, given most populations of Pitcher's thistle throughout its range hover near or below replacement. This is the first report of unanticipated ecological impacts from a biocontrol agent on natural populations of Cirsium pitcheri.

  5. Teaching the Species Concept Using Hybrid Plants and Habitats.

    Science.gov (United States)

    Wilson, C. M.; Oldham, J. H.

    1984-01-01

    Describes a field exercise which links ecology and taxonomy in the teaching of the species concept. Two common hedgerow plants (red and white campions) are used as a pair of "species" that are normally distinct. Plants of intermediate character can be encountered, and the status of these plants is investigated. (Author/JN)

  6. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; Boer, de W.; Putten, van der W.H.

    2012-01-01

    Soil organisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soil organisms may promote plant species of characteristic habitats, and suppress plant species of disturbed habitats. We

  7. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  8. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  9. Phytophthora species, new threats to the plant health in Korea.

    Science.gov (United States)

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  10. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  11. What determines plant species diversity in Central Africa?

    NARCIS (Netherlands)

    Proosdij, van Andreas S.J.

    2017-01-01

    Planet Earth hosts an incredible biological diversity. Estimated numbers of species occurring on Earth range from 5 to 11 million eukaryotic species including 400,000-450,000 species of plants. Much of this biodiversity remains poorly known and many species have not yet been named or even been

  12. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  13. Construction costs and physico-chemical properties of the assimilatory organs of Nepenthes species in Northern Borneo.

    Science.gov (United States)

    Osunkoya, Olusegun O; Daud, Siti Dayanawati; Di-Giusto, Bruno; Wimmer, Franz L; Holige, Thippeswamy M

    2007-05-01

    Species of the Nepenthaceae family are under-represented in studies of leaf traits and the consequent view of mineral nutrition and limitation in carnivorous plants. This study is aimed to complement existing data on leaf traits of carnivorous plants. Physico-chemical properties, including construction costs (CC), of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, Northern Borneo were determined. Stoichiometry analyses indicate that Nepenthes species are nitrogen limited. Most traits vary appreciably across species, but greater variations exist between the assimilatory organs. Organ mass per unit area, dry matter tissue concentration (density), nitrogen (N), phosphorus (P), carbon, heat of combustion (H(c)) and CC values were higher in the leaf relative to the pitcher, while organ thickness, potassium (K) and ash showed the opposite trend. Cross-species correlations indicate that joint rather than individual consideration of the leaf and the pitcher give better predictive relationships between variables, signalling tight coupling and functional interdependence of the two assimilatory organs. Across species, mass-based CC did not vary with N or P, but increases significantly with tissue density, carbon and H(c), and decreases with K and ash contents. Area-based CC gave the same trends (though weaker in strength) in addition to a significant positive correlation with tissue mass per unit area. The lower CC value for the pitcher is in agreement with the concept of low marginal cost for carnivory relative to conventional autotrophy. The poor explanatory power of N, P or N : P ratio with CC suggests that factors other than production of expensive photosynthetic machinery (which calls for a high N input), including concentrations of lignin, wax/lipids or osmoregulatory ions like K(+), may give a better explanation of the CC variation across Nepenthes species.

  14. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  15. Research Note Herbaceous plant species richness and composition ...

    African Journals Online (AJOL)

    This study investigated the relationship between grazing veld condition and herbaceous plant species richness in the moist Midlands Mistbelt Grassland in KwaZulu-Natal. The observed herbaceous plant species richness and composition of 12 sample plots (50 m x 50 m) was determined in three study sites using quadrat ...

  16. Evaluation of allelopathic potential of selected plant species on ...

    African Journals Online (AJOL)

    The phytotoxicity of shoot leachates of selected plant species was assessed on germination, and on shootcut and seedling bioassays of Parthenium hysterophorus. Shoot leachates of selected plant species were effective in inhibiting germination of Parthenium seeds, with Azardirachta indica the most effective.

  17. The descriptive capacity of ecological plant species groups

    NARCIS (Netherlands)

    Witte, J.P.M.

    2002-01-01

    In this article we question whether ecological species groups are appropriate for describing the plant cover of the Netherlands with the aid of a national database containing distribution data of indigenous plant species on a kilometre square basis. To answer the question, a comparison is made with

  18. Kinematics and Kinetics of Youth Baseball Catchers and Pitchers

    Directory of Open Access Journals (Sweden)

    Gretchen Oliver

    2015-09-01

    Full Text Available The purpose of this study was to compare the throwing kinematics and kinetics of youth catchers and pitchers. It was hypothesized that catchers and pitchers would exhibit differences throughout the throwing motion. Descriptive statistics were used to investigate kinematics during the four events of throwing: foot contact (FC, maximum shoulder external rotation (MER, ball release (BR and maximum shoulder internal rotation (MIR. Additionally, kinetics were investigated within phases of the events: Phase 1 (cocking; FC to MER, Phase 2 (acceleration; MER to BR and Phase 3 (deceleration; BR to MIR. Results revealed significant difference in torso flexion, lateral flexion, pelvis lateral flexion and segment velocities between the catchers and pitchers. Based on data from the current study, it appears that the youth catchers execute their throw as they have been instructed. It is unclear if the throwing mechanics displayed by these youth are efficient for a catcher, thus further investigation is needed to determine long-term injury susceptibility.

  19. Characterization anatomical leaf blade five species Nepenthes from Kerinci Seblat National Park, Kerinci regency, Jambi Province

    Science.gov (United States)

    Al Farishy, D. D.; Nisyawati, Metusala, D.

    2017-07-01

    Nepenthes is one of carnivorous plant genera which have key characters on leaf and pitcher as the modification. However, wide varieties of morphological features on pitcher intraspecies and between species could be tough for identification process. The objective was to provide alternative characters for identification process by anatomical features. Kerinci Seblat National Park was chosen because lack of update data on wild type of species there. Whole five species were collected at Lingkat Lake and Gunung Tujuh Lake as representative lowland and highland species. Leaves collected fresh, flawless, and has grown pitcher. Each leaf was separated into the paradermal and transversal section, dehydrated by series alcohol, and stained by safranin and fast green. Sections observed by light microscope. Result show there were specific differences between species that could be potential to be key characters. That features are stomatal density, stomatal length, sessile glands surface shaped, sessile glands density, trichome distribution, adaxial cuticle thickness, adaxial hypodermic thickness, and the number of layers of adaxial hypodermis

  20. Fuel breaks affect nonnative species abundance in Californian plant communities

    Science.gov (United States)

    Kyle E Merriam; Jon E. Keeley; Jan L. Beyers

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment...

  1. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  2. Clonal growth and plant species abundance

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Nováková, Z.; Klimešová, Jitka

    2014-01-01

    Roč. 114, č. 2 (2014), s. 377-388 ISSN 0305-7364 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : clonal plants * frequency * plant communities of Central Europe Subject RIV: EF - Botanics Impact factor: 3.654, year: 2014

  3. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  4. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous Nepenthes plants

    NARCIS (Netherlands)

    Buch, F.; Kaman, W.E.; Bikker, F.J.; Yilamujiang, A.; Mithöfer, A.

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants

  5. Forest fires are a risk factor for plant species

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2014-01-01

    Full Text Available The growth, development and the prevalence area of plant species are determined by a variety of influences. Plants are increasingly exposed to the different stress factors. Fires in nature can completely destroy the whole forest complex habitats with great biological diversity of many species in a short period of time. This study deals with the effects of a fire, such as heat, to the plants. After the fire, the environment is being changed and some species in areas affected by the fire will appear only after the fire, some species that had existed before the fire, will be developed in accordance with the new conditions, and some species will disappear after the fire. The aim of the study was to assess the sustainability of the natural vegetation in fire conditions, which is important for natural regeneration and nursery production. Fire temperatures cause irreparable damage of the plant functions or of the plant organs. In the analysis of the plant species the frequency of the fire is often more important than the type and intensity of the fire. Regarding possible long fire season in Serbia, as well as the presented statistics data about the number of fires and burnt areas, it can be concluded that there is an evident risk of plant species of fire, which are more common in this region.

  6. Differences in hip range of motion among collegiate pitchers when compared to youth and professional baseball pitcher data

    OpenAIRE

    Cheatham, Scott W.; Shimamura, Kathryn Kumagai; Kolber, Morey J.

    2016-01-01

    The purpose of this study was to measure passive hip internal (IR) and external rotation (ER) range of motion (ROM) in collegiate baseball pitchers and compare to published youth and professional values. Measures were taken on the bilateral hips of 29 participants (mean age 20.0±1.4, range 18–22 years). Results identified no significant differences between the stance and stride hip in collegiate right handed pitchers for IR (p= 0.22, ES 0.23) and ER (p=.08, ES= 0.25). There was no significant...

  7. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  8. RNA-seq analysis for plant carnivory gene discovery in Nepenthes × ventrata.

    Science.gov (United States)

    Wan Zakaria, Wan Nor Adibah; Loke, Kok-Keong; Goh, Hoe-Han; Mohd Noor, Normah

    2016-03-01

    Carnivorous plants have the ability to capture and digest insects for nutrients, which allows them to survive in land deprived of nitrogenous nutrients. Nepenthes spp. are one of the carnivorous plants, which uniquely produce pitcher from the tip of an elongated leaf. This study provides the first transcriptome resource from pitcher of a Nepenthes ventricosa × Nepenthes alata hybrid, Nepenthes × ventrata to understand carnivory mechanism in Nepenthes spp., as well as in other carnivorous species. Raw reads and the transcriptome assembly project have been deposited to SRA database with the accession numbers SRX1389337 (day 0 control), SRX1389392 (day 3 longevity), and SRX1389395 (day 3 chitin-treated).

  9. RNA-seq analysis for plant carnivory gene discovery in Nepenthes × ventrata

    Directory of Open Access Journals (Sweden)

    Wan Nor Adibah Wan Zakaria

    2016-03-01

    Full Text Available Carnivorous plants have the ability to capture and digest insects for nutrients, which allows them to survive in land deprived of nitrogenous nutrients. Nepenthes spp. are one of the carnivorous plants, which uniquely produce pitcher from the tip of an elongated leaf. This study provides the first transcriptome resource from pitcher of a Nepenthes ventricosa × Nepenthes alata hybrid, Nepenthes × ventrata to understand carnivory mechanism in Nepenthes spp., as well as in other carnivorous species. Raw reads and the transcriptome assembly project have been deposited to SRA database with the accession numbers SRX1389337 (day 0 control, SRX1389392 (day 3 longevity, and SRX1389395 (day 3 chitin-treated.

  10. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  11. Species richness and trophic diversity increase decomposition in a co-evolved food web.

    Directory of Open Access Journals (Sweden)

    Benjamin Baiser

    Full Text Available Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.

  12. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  13. Antibacterial activity of leaves and pitchers extract of Nepenthes ...

    African Journals Online (AJOL)

    This present study was to evaluate the potential of ethanolic extract of leaf and pitcher of Nepenthes gracilis in antibacterial activity. The antibacterial activity was determined by using agar disk diffusion method against Bacillus subtilis and Escherichia coli. The leaf showed inhibitory activity with the zone of inhibition ranging ...

  14. Medial supracondylar stress fracture in an adolescent pitcher

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, CA (United States); University of California, San Diego Medical Center, San Diego, CA (United States); Fronek, Jan [Scripps Healthcare, La Jolla, CA (United States)

    2014-01-15

    We report the occurrence of a medial supracondylar stress fracture in an adolescent pitcher. To our knowledge, this fracture has not been described in the literature, and awareness of this entity allows initiation of therapy and precludes further unnecessary work-up. The radiographic, computed tomography, and magnetic resonance imaging appearances are reviewed and the mechanism of injury is discussed. (orig.)

  15. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  16. Larvicidal activity of six Nigerian plant species against Anopheles ...

    African Journals Online (AJOL)

    This study evaluated the larvicidal activity of extracts from six Nigerian plant species (Zanthoxylum zanthoxyloides, Piper guineense, Nicotianat abacum, Erythrophleum suaveoleus, Jatropha curcas and Petiveria alliacea) against laboratory-bred Anopheles gambiae and Aedes aegypti larvae. Zanthoxylum zanthoxyloides ...

  17. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Bheema

    objective of this work was to study the vegetation structure, composition and Natural ... Vegetation classification was performed using PC - ORD for windows version 5.0. Five communities were recognized. Results showed that a total of 157 plant ..... Vegetation types and forest fire management in Ethiopia In: MOA & GTZ.

  18. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  19. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  20. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  1. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  2. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches?

    Science.gov (United States)

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald

    2014-01-01

    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  3. Nitric oxide and reactive oxygen species in plant biotic interactions.

    Science.gov (United States)

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Differences in hip range of motion among collegiate pitchers when compared to youth and professional baseball pitcher data.

    Science.gov (United States)

    Cheatham, Scott W; Shimamura, Kathryn Kumagai; Kolber, Morey J

    2016-09-01

    The purpose of this study was to measure passive hip internal (IR) and external rotation (ER) range of motion (ROM) in collegiate baseball pitchers and compare to published youth and professional values. Measures were taken on the bilateral hips of 29 participants (mean age 20.0±1.4, range 18-22 years). Results identified no significant differences between the stance and stride hip in collegiate right handed pitchers for IR (p= 0.22, ES 0.23) and ER (p=.08, ES= 0.25). There was no significant difference in left handed pitchers for IR (p= 0.80, ES= 0.11) and ER (p= 0.56, ES= 0.15). When comparing youth to collegiate, IR increased in the stance (2º) and stride (5º) hip and an increase in the stance (5º) and stride (5º) hip were present for ER as well. From collegiate to professional, IR increased in the stance (4º) and stride (3º) hip whereas a decrease in the stance (9º) and stride (12º) hip was present for ER. The data suggests an increase in passive ROM from youth to collegiate and a decrease from collegiate to professional. Understanding passive hip ROM values among the different levels of pitchers may assist clinicians in developing time dependent interventions to prevent future injury and enhance performance.

  5. Plant Species Recovery on a Compacted Skid Road

    Directory of Open Access Journals (Sweden)

    Beyza Sat Gungor

    2008-05-01

    Full Text Available This study was executed to determine the plant species of herbaceous cover in a skid road subjected to soil compaction due to timber skidding in a beech (Fagus orientalis Lipsky. stand. Our previous studies have shown that ground based timber skidding destroys the soils extremely, and degradations on ecosystem because of the timber skidding limit recovery and growth of plant cover on skid roads. However, some plant species show healthy habitat, recovery and they can survive after the extreme degradation in study area. We evaluated composition of these plant species and their cover-abundance scales in 100 m x 3 m transect. 15 plant species were determined belongs to 12 plant families and Liliaceae was the highest representative plant family. Smilax aspera L., Epimedium pubigerum (DC. Moren et Decaisne, Carex distachya Desf. var. distachya Desf., Pteridium aquilinum (L. Kuhn., Trachystemon orientalis (L. G. Don, Hedera helix L. have the highest coverabundance scale overall of determined species on compacted skid road.

  6. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  7. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  8. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  9. Antimicrobial activity of some endemic plant species from Turkey ...

    African Journals Online (AJOL)

    Six plant extracts obtained from different parts such as the leaves, flowers and seeds of four species of the endemic plants in Turkey were tested on a total of 14 microorganisms, 10 of which were bacterial strains and 4 yeast strains. Verbascum eriocarpum (flower) extract was found to be effective against Staphylococcus ...

  10. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Plant species responses to oil degradation and toxicity reduction in soil. ... Abstract. A field project located at the Botanical garden of the University of Port Harcourt was designed to evaluate changes in contaminants concentration and toxicity during phytoremediation. Vegetated plots were established by planting different ...

  11. ecotaxonomic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    Admin

    representative plant species of important ethnobotanical values were recorded on the vegetation study of the site. This corroborate with the fact that ethnobotany is increasingly becoming an important aspect of plant research emanating from the global drive towards the documentation of customary use, the need for.

  12. Assessing The Ecological Status Of Woody Plant Species At Eroded ...

    African Journals Online (AJOL)

    Woody plant species up to 0.10 m and above in height growing in and within 0.5 m from the edges of ten gully erosion areas of Abia and Imo states of Nigeria were enumerated in January and July 2000 through July 2003. Questionnaires were served to find the causal factors of each gully. The plants were enumerated and ...

  13. Spatial heterogeneity influences native and nonnative plant species richness.

    Science.gov (United States)

    Kumar, Sunil; Stohlgren, Thomas J; Chong, Geneva W

    2006-12-01

    Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for

  14. Intraspecific genetic variation and species coexistence in plant communities.

    Science.gov (United States)

    Ehlers, Bodil K; Damgaard, Christian F; Laroche, Fabien

    2016-01-01

    Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant-plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence. Intraspecific variation in chemical and architectural traits promotes species coexistence, by both increasing habitat heterogeneity and altering competitive hierarchies. Decomposing species interactions into interactions between genotypes shows that genotype × genotype interactions are often intransitive. The outcome of plant-plant interactions varies with local adaptation to the environment and with dominant neighbour genotypes, and some plants can recognize the genetic identity of neighbour plants if they have a common history of coexistence. Taken together, this reveals a very dynamic nature of coexistence. We outline how more traits mediating plant-plant interactions may be identified, and how future studies could use population genetic surveys of genotype distribution in nature and methods from trait-based ecology to better quantify the impact of intraspecific genetic variation on plant coexistence. © 2016 The Author(s).

  15. Factors determining plant species richness in Alaskan artic tundra

    NARCIS (Netherlands)

    Welle, van der M.E.W.; Vermeulen, P.J.; Shaver, G.R.; Berendse, F.

    2003-01-01

    We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above-ground biomass, species richness and composition. The N:P ratio of the vegetation

  16. Season and plant species influence foraging efficiency of Nguni ...

    African Journals Online (AJOL)

    This study investigated the seasonal and plant species patterns of short-term intake rate (STIR) by Nguni goats fed six common browse species in subhumid subtropical savannas. Six 2-year-old castrated Nguni goats weighing an average of 26 kg each were penned individually and maintained on a basal diet of ram, lamb ...

  17. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous Nepenthes plants

    NARCIS (Netherlands)

    Buch, F. (Franziska); W.E. Kaman (Wendy); F.J. Bikker (Floris); Yilamujiang, A. (Ayufu); Mithöfer, A. (Axel)

    2015-01-01

    textabstractCarnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the

  18. Mycorrhizal status helps explain invasion success of alien plant species.

    Science.gov (United States)

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies. © 2016 by the Ecological Society of America.

  19. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  20. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  1. Micropreparation of single secretory glands from the carnivorous plant Nepenthes.

    Science.gov (United States)

    Rottloff, Sandy; Müller, Ute; Kilper, Roland; Mithöfer, Axel

    2009-11-01

    A rapid mechanical micropreparation technique has been developed to isolate multicellular glands, here from Nepenthes pitchers, based on a microdissection platform. The method is an alternative to laser capture dissection because fresh plant tissue can be used directly without previous fixation. Subsequent experiments, such as polymerase chain reaction (PCR)-based detection of an individual gene encoding a thaumatin-like protein and RNA extraction for gene expression analysis, have been successfully added to prove the quality of the prepared biological material. The procedure described is adaptable to a broad range of plant species and should find wide application in the preparation of multicellular glands or other tissues.

  2. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  3. Metalaxyl toxicity, uptake, and distribution in several ornamental plant species.

    Science.gov (United States)

    Wilson, P C; Whitwell, T; Klaine, S J

    2001-01-01

    Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.

  4. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  5. Comparative cross-species alternative splicing in plants.

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.

  6. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    Science.gov (United States)

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  7. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  8. Mineral composition of the plant species of the Hypercum family

    International Nuclear Information System (INIS)

    Marichkova, L.; K ostarova, O.

    1985-01-01

    Using the neutron activation analysis totally 18 macro and microelements in the epigeous parts of some species of the Hypercum family as well as their 10% water extracts were determined. The elements Mn, Ni, Sr were analyzed in epigeous parts of the plants by X-ray fluorescence analysis. The quantities found out in the extracts were in the order lower than that in the epigeous parts of the plants exept iron where the concentration in the extracts is two order lower than that in epigeous. The elements Ce, Cd, Se and Sb were not found in 10% water plant extracts. Toxic elements such as As and Hg were not found in the epigeous parts of the plants in the examined species

  9. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate.

    Science.gov (United States)

    Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Nandula, Vijay K

    2008-03-26

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.

  10. Invasive vascular plant species of limnocrenic karst springs in Poland

    Science.gov (United States)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  11. Extraction and antioxidant activities of two species Origanum plant ...

    African Journals Online (AJOL)

    The antioxidant of ethanolic extract of two species of Origanum and essential oil of plant Origanum vulgare were investigated and also the total phenolic and flavonoid content measured. The radical scavenging activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Total phenolic and flavonoid ...

  12. Plant species diversity in a changing agricultural landscape: the ...

    African Journals Online (AJOL)

    Makerere University, P.O. Box 7062 Kampala, Uganda. Abstract. Plant diversity in Kaweri Coffee Plantation was inventoried in January 2002. The aim was to document the species in the area before establishment of a coffee plantation and to create a database for monitoring changes in the ecosystem. International Forestry ...

  13. The effect of plant species on soil nitrogen mineralization

    NARCIS (Netherlands)

    Krift, van der A.J.; Berendse, F.

    2001-01-01

    1. To ascertain the influence of different plant species on nitrogen (N) cycling, we performed a long-term garden experiment with six grasses and five dicots with different potential growth rates, that are adapted to habitats with different nutrient supplies. We measured in situ N mineralization and

  14. Widespread plant species: natives versus aliens in our changing world

    Czech Academy of Sciences Publication Activity Database

    Stohlgren, T. J.; Pyšek, Petr; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D. M.; Wilson, J. R. U.; Murray, B. R.; Phillips, M. L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Roč. 13, č. 9 (2011), s. 1931-1944 ISSN 1387-3547 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species distribution * Old and New World Subject RIV: EF - Botanics Impact factor: 2.896, year: 2011

  15. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  16. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  17. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  18. Seasonal nutrient fluctuation in selected plant species in the Kalahari

    African Journals Online (AJOL)

    The Ca:P ratio of the plant species that were sampled in the present study fell outside the range that is considered to be healthy for ruminants in all instances, with calcium in excess. Keywords: calcium, Kalahari, nitrogen content, nutritional value, phosphorus, seasonal variation. African Journal of Range & Forage Science ...

  19. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    Abstract. The occupation of natural environments by invasive alien plant species (IAPs) are a growing threat to ecosystems. This has resulted in the creation of government-based initiatives to mitigate invasion, however, there has been little progress towards assessing these initiatives. Remote sensing is a commonly used ...

  20. Status and Woody Plant Species Diversity in Tara Gedam Forest ...

    African Journals Online (AJOL)

    The result revealed that a total of forty one different species of woody plants were identified in Tara Gedam forest. Olea europaea was the dominant one with recorded value of 598. Allophylus abyssinicus and Albizia schimperiana ranked the second and third in dominance with 556 and 474 numbers respectively. Acanthus ...

  1. Sparse Distribution Pattern Of Some Plant Species In Two ...

    African Journals Online (AJOL)

    Mountain forests play major roles in biodiversity; containing many endemics and species of conservation concern. The diversity and distribution patterns of plants in mountain ecosystems are influenced by various environmental and anthropogenic factors that exhibit heterogeneity over space and time. This study analysed ...

  2. Ecotaxonmic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    The survey of the flora composition of an ecosystem is important in several environmental baseline studies. An ecotaxonomic assessment was carried out in Ase-Ndoni proposed Rivgas Refinery project site in other to find out the plant species of medicinal and other economic values. The investigation was carried out to ...

  3. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    The occupation of natural environments by invasive alien plant species (IAPs) are a growing threat to ecosystems. This has resulted in the creation of government-based initiatives to mitigate invasion, however, there has been little progress towards assessing these initiatives. Remote sensing is a commonly used tool in the ...

  4. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    Science.gov (United States)

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  5. Plant roots and spectroscopic methods - analyzing species, biomass and vitality.

    Science.gov (United States)

    Rewald, Boris; Meinen, Catharina

    2013-01-01

    In order to understand plant functioning, plant community composition, and terrestrial biogeochemistry, it is decisive to study standing root biomass, (fine) root dynamics, and interactions belowground. While most plant taxa can be identified by visual criteria aboveground, roots show less distinctive features. Furthermore, root systems of neighboring plants are rarely spatially segregated; thus, most soil horizons and samples hold roots of more than one species necessitating root sorting according to taxa. In the last decades, various approaches, ranging from anatomical and morphological analyses to differences in chemical composition and DNA sequencing were applied to discern species' identity and biomass belowground. Among those methods, a variety of spectroscopic methods was used to detect differences in the chemical composition of roots. In this review, spectroscopic methods used to study root systems of herbaceous and woody species in excised samples or in situ will be discussed. In detail, techniques will be reviewed according to their usability to discern root taxa, to determine root vitality, and to quantify root biomass non-destructively or in soil cores holding mixtures of plant roots. In addition, spectroscopic methods which may be able to play an increasing role in future studies on root biomass and related traits are highlighted.

  6. Plant-soil feedback of native and range-expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Veenendaal, E.M.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  7. Plant-soil feedback of native and range expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Veenendaal, E.M.; Bezemer, T.M.; Putten, van der W.H.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  8. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  9. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  10. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  11. Systemic movement of Agrobacterium tumefaciens in several plant species.

    Science.gov (United States)

    Cubero, J; Lastra, B; Salcedo, C I; Piquer, J; López, M M

    2006-08-01

    The systemic movement of Agrobacterium spp. inside plants of different species was studied to determine the most valuable diagnostic methodology for their detection. Pathogenic agrobacteria were detected by isolation and PCR in tissue away from primary tumours in tomato plants grown in the presence of Agrobacterium spp. Moreover, this bacterium was also able to induce secondary tumours beyond the inoculation site. In addition, the capacity of agrobacteria to translocate and induce secondary tumours was analysed in rose, grapevine, chrysanthemum, cherry and peach x almond hybrid GF677. No differences among strains of Agrobacterium spp. were detected in secondary tumour development, although some of them induced a significantly higher number of primary tumours in some species. Movement of inoculated pathogenic cells of four strains was also demonstrated in symptomless portions of the plant stems by isolation and PCR. Finally, pathogenic agrobacteria were detected in root, crown and stem portions of naturally infected walnuts. In all assays, PCR was the most efficient technique for detecting the movement of Agrobacterium spp. within the plants. Migration of agrobacteria inside plants is a complex phenomenon and more extensive than previously reported. Therefore, efficient and sensitive detection methods such as PCR must be used to select clean plants to avoid latent infections of Agrobacterium spp. The results show that migration of Agrobacterium spp. could be relatively frequent in several cultivated fruit trees, and systemic infections should be taken into account when designing strategies for controlling crown gall disease.

  12. Reduced plant-soil feedback of plant species expanding their range as compared to natives

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Tamis, W.L.M.; Berendse, F.; Veenendaal, E.M.

    2007-01-01

    1. As a result of global warming, species may spread into previously cool regions. Species that disperse faster than their natural enemies may become released from top-down control. We investigated whether plants originating from southern Europe and recently established in north-western Europe

  13. Alien Plant Species Mountain Endemic Tree Species in Gunung Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Budi Utomo

    2012-09-01

    Full Text Available 800x600 Up to now, montane rain forest of Gunung Gede-Pangrango National Park, faces problem in the form of invasion of exotic plant species into the area.  Location of the area that borders with various land uses, such as Botanical Garden and agricultural land, make it very susceptible toward invasion of plant species from outside the area.  The collapse of large trees which normally constitute a mechanism of natural regeneration, was in fact stimulating the development of exotic species, particularly those which were invasive, inside the area. The objective of this research was to test the competitive ability of endemic species, which in this case was represented by Cleystocalyx operculata and Mischocarpus pentapetalus, toward exotic plant species, represented by Austroeupatoriun inulaefolium and Passiflora ligularis, during 5 months of study.  Growth rate of exotic plant species, as well as the dry weight biomass, were larger than those of endemic species.  Indirect estimation of competitive ability showed that competitive ability (β of endemic species were 4-5 times less, namely 0.0274 (for C. operculata and 0.0251 (for M. pentapetalus; as compared with those of exotic species, namely 0.125 (for P. ligularis and 0.1104 (for A. inulaefolium.  Direct test also proved that competitive ability (β of endemic species was lower than that of exotic species, as shown by relative crowding value   Estimation of future competitive ability, using diagram of input/ output ratio, showed also the disability of endemic species to compete with exotic species, where position of input/output ratio points were parallel with equilibrium line y=x. Considering those facts, there is urgent need for controlling these invasive exotic species inside the National Park area to maintain the sustainability of biodiversity and regeneration of endemic species in montane rain forest of Gunung Gede–Pangrango National Park.    Keywords: endemic, exotic, invasion

  14. Description of Pristina armata n. sp. (Clitellata: Naididae: Pristininae) from a carnivorous plant (Nepenthes sp.) in Borneo, Indonesia.

    Science.gov (United States)

    Schenková, Jana; Čermák, Václav

    2013-01-01

    A new clitellate species of Pristininae (Naididae), Pristina armata n. sp., found in the pitcher of the carnivorous plant Nepenthes sp., is reported from East Kalimantan, Indonesia. P. armata n. sp. is a very small clitellate, less than 1 mm long in fixed state, and without proboscis on the prostomium. Signs of reproduction by paratomy were observed, but the generic placement remains preliminary because sexually mature individuals were not found. P. armata n. sp. is characterized by giant hook-like dorsal chaetae at IV. The description of P. armata n. sp. was based on six fixed specimens of different size and stage of development. Noteworthy is the habitat of P. armata n. sp. in Nepenthes pitchers, this being the first clitellate species described from such a habitat. P. armata n. sp. may be a member of the nepenthebionts' community, realizing its life cycle inside the digestive fluid of the Nepenthes pitcher, or it belongs to nepenthephiles, species that commonly occur in this habitat but do not specialize on it.

  15. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  16. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  17. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... and tested on a total of 10,413 images containing 22 weed and crop species at early growth stages. These images originate from six different data sets, which have variations with respect to lighting, resolution, and soil type. This includes images taken under controlled conditions with regard to camera...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  18. Networks of plants: how to measure similarity in vegetable species

    Science.gov (United States)

    Vivaldo, Gianna; Masi, Elisa; Pandolfi, Camilla; Mancuso, Stefano; Caldarelli, Guido

    2016-06-01

    Despite the common misconception of nearly static organisms, plants do interact continuously with the environment and with each other. It is fair to assume that during their evolution they developed particular features to overcome similar problems and to exploit possibilities from environment. In this paper we introduce various quantitative measures based on recent advancements in complex network theory that allow to measure the effective similarities of various species. By using this approach on the similarity in fruit-typology ecological traits we obtain a clear plant classification in a way similar to traditional taxonomic classification. This result is not trivial, since a similar analysis done on the basis of diaspore morphological properties do not provide any clear parameter to classify plants species. Complex network theory can then be used in order to determine which feature amongst many can be used to distinguish scope and possibly evolution of plants. Future uses of this approach range from functional classification to quantitative determination of plant communities in nature.

  19. Nepenthes Vogelii (Nepenthaceae): a new species from Sarawak

    NARCIS (Netherlands)

    Schuiteman, A.; Vogel, de E.F.

    2002-01-01

    Nepenthes vogelii Schuit. & de Vogel is described as a new species from Sarawak. It is compared with N. fusca Danser, from which it differs e.g. in the much smaller pitchers, of which the lid lacks appendages.

  20. Seed longevity and germination characteristics of six fen plant species.

    Science.gov (United States)

    Tatár, S

    2010-01-01

    Fens are among the most threatened habitats in Europe as their area has decreased considerably in the last centuries. For successful management and restoration conservationists need detailed knowledge about seed bank formation and seed longevity of plants, as these features are closely related to successional and vegetation dynamical processes. I analysed seed longevity and the germination characteristics of six fen plant species by seed burial experiments. Based on seed weight, seed bank was expected for long-term persistent for the light-seeded Schoenus nigricans, Carex appropinquata, C. pseudocyperus, C. davalliana and Peucedanum palustre and also that for the medium-seeded Cicuta virosa. It was proved that, the latter two species have short-term persistent seed banks, while Carex pseudocyperus has a transient seed bank, therefore these species may only have a limited role in restoration from seed banks. It was found that Schoenus nigricans, Carex appropinquata and C. davalliana have persistent seed banks, because some of their four-year-old seeds have emerged. Fresh seeds had low germination rate in all studied species and majority of seeds emerged after winter, except for Carex pseudocyperus. After the germination peak in spring, the majority of the ungerminated seeds of Schoenus nigricans, Peucedanum palustre, Carex appropinquata, C. davalliana and Cicuta virosa entered a secondary dormancy phase that was broken in autumn. I found the seasonal emergence of the latter three species highly similar.

  1. Gluteus medius and scapula muscle activations in youth baseball pitchers.

    Science.gov (United States)

    Oliver, Gretchen D; Weimar, Wendi H; Plummer, Hillary A

    2015-06-01

    The baseball pitching motion is a total kinetic chain activity that must efficiently use both the upper and lower extremity. Of particular importance is the scapular motion, which is critical for humeral positioning and proper alignment of shoulder musculature. It was hypothesized that scapular stability is enhanced by pelvic girdle stability. Therefore, it was the purpose of this study to determine the muscle activations of selected pelvic and scapular stabilizing muscles during a fastball pitch in youth baseball pitchers. Twenty youth baseball pitchers (age: 11.3 + 1.0 years; height: 152.4 + 9.0 cm; weight: 47.5 + 11.3 kg) were recorded throwing 4-seam fastballs for strikes. Data revealed moderate (20-39% maximum voluntary isometric contraction [MVIC]) to moderately strong (>40% MVIC) activation of the ipsilateral (throwing arm side) gluteus medius, upper trapezius, and serratus anterior throughout phases 2 (maximum shoulder external rotation to ball release) and 3 (ball release to maximum shoulder internal rotation). Moderately strong activation (>40% MVIC) of the upper trapezius and serratus anterior was noted during phases 2 and 3 of the pitching motion. Pearson's product-moment correlation revealed significant relationships between bilateral gluteus medius and the force couples about the scapula during all 3 phases of the pitching motion. The results of this study provide important data that improve the understanding of the muscular relationship between the pelvic and scapular stabilizers during the fastball pitch. Training and rehabilitation programs should consider focusing on lumbopelvic-hip and scapular muscle strengthening as well as coordinated strengthening of the pelvic and scapular stabilizers, in baseball pitchers.

  2. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  3. Coprophagous features in carnivorous Nepenthes plants: a task for ureases.

    Science.gov (United States)

    Yilamujiang, Ayufu; Zhu, Anting; Ligabue-Braun, Rodrigo; Bartram, Stefan; Witte, Claus-Peter; Hedrich, Rainer; Hasabe, Mitsuyasu; Schöner, Caroline R; Schöner, Michael G; Kerth, Gerald; Carlini, Célia R; Mithöfer, Axel

    2017-09-14

    Most terrestrial carnivorous plants are specialized on insect prey digestion to obtain additional nutrients. Few species of the genus Nepenthes developed mutualistic relationships with mammals for nitrogen supplementation. Whether dietary changes require certain enzymatic composition to utilize new sources of nutrients has rarely been tested. Here, we investigated the role of urease for Nepenthes hemsleyana that gains nitrogen from the bat Kerivoula hardwickii while it roosts inside the pitchers. We hypothesized that N. hemsleyana is able to use urea from the bats' excrements. In fact, we demonstrate that 15 N-enriched urea provided to Nepenthes pitchers is metabolized and its nitrogen is distributed within the plant. As ureases are necessary to degrade urea, these hydrolytic enzymes should be involved. We proved the presence and enzymatic activity of a urease for Nepenthes plant tissues. The corresponding urease cDNA from N. hemsleyana was isolated and functionally expressed. A comprehensive phylogenetic analysis for eukaryotic ureases, including Nepenthes and five other carnivorous plants' taxa, identified them as canonical ureases and reflects the plant phylogeny. Hence, this study reveals ureases as an emblematic example for an efficient, low-cost but high adaptive plasticity in plants while developing a further specialized lifestyle from carnivory to coprophagy.

  4. Kinematic and kinetic differences between left-and right-handed professional baseball pitchers.

    Science.gov (United States)

    Diffendaffer, Alek Z; Fleisig, Glenn S; Ivey, Brett; Aune, Kyle T

    2018-03-21

    While 10% of the general population is left-handed, 27% of professional baseball pitchers are left-handed. Biomechanical differences between left- and right-handed college pitchers have been previously reported, but these differences have yet to be examined at the professional level. Therefore, the purpose of this study was to compare pitching biomechanics between left- and right-handed professional pitchers. It was hypothesised that there would be significant kinematic and kinetic differences between these two groups. Pitching biomechanics were collected on 96 left-handed pitchers and a group of 96 right-handed pitchers matched for age, height, mass and ball velocity. Student t-tests were used to identify kinematic and kinetic differences (p handed pitchers. The magnitude of the statistical differences found were small and not consistent with differences in the two previous, smaller studies. Thus, the differences found may be of minimal practical significance and mechanics can be taught the same to all pitchers, regardless of throwing hand.

  5. Drivers of vegetative dormancy across herbaceous perennial plant species.

    Science.gov (United States)

    Shefferson, Richard P; Kull, Tiiu; Hutchings, Michael J; Selosse, Marc-André; Jacquemyn, Hans; Kellett, Kimberly M; Menges, Eric S; Primack, Richard B; Tuomi, Juha; Alahuhta, Kirsi; Hurskainen, Sonja; Alexander, Helen M; Anderson, Derek S; Brys, Rein; Brzosko, Emilia; Dostálik, Slavomir; Gregg, Katharine; Ipser, Zdeněk; Jäkäläniemi, Anne; Jersáková, Jana; Dean Kettle, W; McCormick, Melissa K; Mendoza, Ana; Miller, Michael T; Moen, Asbjørn; Øien, Dag-Inge; Püttsepp, Ülle; Roy, Mélanie; Sather, Nancy; Sletvold, Nina; Štípková, Zuzana; Tali, Kadri; Warren, Robert J; Whigham, Dennis F

    2018-03-25

    Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes. © 2018 John Wiley & Sons Ltd/CNRS.

  6. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  7. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  8. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  9. Dipteran larvae and microbes facilitate nutrient sequestration in theNepenthes gracilispitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  10. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  11. Invasive plant species: Inventory, mapping, and monitoring - A national strategy

    Science.gov (United States)

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  12. Hydroperiod regime controls the organization of plant species in wetlands.

    Science.gov (United States)

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands.

  13. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  14. Planting intensity, residence time, and species traits determine invasion success of alien woody species

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Křivánek, Martin; Jarošík, Vojtěch

    2009-01-01

    Roč. 90, č. 10 (2009), s. 2734-2744 ISSN 0012-9658 R&D Projects: GA ČR GA206/05/0323; GA MŠk LC06073 Grant - others:Evropská komise(XE) GOCE-CT-2003-506675 ALARM Institutional research plan: CEZ:AV0Z60050516 Keywords : woody species * invasion * planting Subject RIV: EF - Botanics Impact factor: 4.411, year: 2009

  15. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P.

    2003-01-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 μg m -3 in 1982 and 15.6 μg m -3 in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants

  16. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  17. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  18. Stochastic species turnover and stable coexistence in a species-rich, fire-prone plant community.

    Directory of Open Access Journals (Sweden)

    Wilfried Thuiller

    2007-09-01

    Full Text Available Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a "neutral-like" pattern maintained by niche-differentiation.

  19. Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species.

    Science.gov (United States)

    Osunkoya, Olusegun O; Daud, Siti Dayanawati; Wimmer, Franz L

    2008-11-01

    This study examined level of causal relationships amongst functional traits in leaves and conjoint pitcher cups of the carnivorous Nepenthes species. Physico-chemical properties, especially lignin content, construction costs, and longevity of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, northern Borneo were determined. Longevity of these assimilatory organs was linked significantly to construction cost, lignin content and structural trait of tissue density, but these effects are non-additive. Nitrogen and phosphorus contents (indicators of Rubisco and other photosynthetic proteins), were poor predictors of organ longevity and construction cost, suggesting that a substantial allocation of biomass of the assimilatory organs in Nepenthes is to structural material optimized for prey capture, rigidity and escape from biotic and abiotic stresses rather than to light interception. Leaf payback time - a measure of net carbon revenue - was estimated to be 48-60 d. This is in line with the onset of substantial mortality by 2-3 months of tagged leaves in many of the Nepenthes species examined. However, this is a high ratio (i.e. a longer minimum payback time) compared with what is known for terrestrial, non-carnivorous plants in general (5-30 d). It is concluded that the leaf trait bivariate relationships within the Nepenthes genus, as in other carnivorous species (e.g. Sarraceniaceae), is substantially different from the global relationship documented in the Global Plant Trait Network.

  20. Fatal attraction: carnivorous plants roll out the red carpet to lure insects.

    Science.gov (United States)

    Schaefer, H Martin; Ruxton, Graeme D

    2008-04-23

    We provide the first experimental test of the hypothesis that the coloration of carnivorous plants can act as a signal to lure insects and thus enhance capture rates. An experimental approach was needed to separate effects of the visual appearance of plants from those of traits that may correlate with appearance and also affect capture rates. We compared insect capture rates of pitcher plants with artificially coloured red and green pitchers in a paired design, and found that plants with red pitchers captured significantly more flying insects. Thus, we present the first experimental evidence of visual signalling in carnivorous plants. Further, it has previously been suggested that carnivorous plants use contrasting stripes or UV marks on their pitchers to lure insects; our results emphasize that insect traps do not need to sport contrasting colours to be attractive; it might be sufficient to be different from the background.

  1. Discriminant WSRC for Large-Scale Plant Species Recognition

    Directory of Open Access Journals (Sweden)

    Shanwen Zhang

    2017-01-01

    Full Text Available In sparse representation based classification (SRC and weighted SRC (WSRC, it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  2. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  4. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers.

    Science.gov (United States)

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Porterfield, Ronald; Simpson, Charles D; Harker, Paul; Paparesta, Nick; Andrews, James R

    2011-02-01

    Glenohumeral internal rotation deficit (GIRD) indicates a 20° or greater loss of internal rotation of the throwing shoulder compared with the nondominant shoulder. To determine whether GIRD and a deficit in total rotational motion (external rotation + internal rotation) compared with the nonthrowing shoulder correlate with shoulder injuries in professional baseball pitchers. Case series; Level of evidence, 4. Over 3 competitive seasons (2005 to 2007), passive range of motion measurements were evaluated on the dominant and nondominant shoulders for 170 pitcher-seasons. This included 122 professional pitchers during the 3 seasons of data collection, in which some pitchers were measured during multiple seasons. Ranges of motion were measured with a bubble goniometer during the preseason, by the same examiner each year. External and internal rotation of the glenohumeral joint was assessed with the participant supine and the arm abducted 90° in the plane of the scapula, with the scapula stabilized anteriorly at the coracoid process. The reproducibility of the test methods had an intraclass correlation coefficient of .81. Days in which the player was unable to participate because of injury or surgery were recorded during the season by the medical staff of the team and defined as an injury. Pitchers with GIRD (n = 40) were nearly twice as likely to be injured as those without but without statistical significance (P = .17). Pitchers with total rotational motion deficit greater than 5° had a higher rate of injury. Minor league pitchers were more likely than major league pitchers to be injured. However, when players were injured, major league pitchers missed a significantly greater number of games than minor league pitchers. Compared with pitchers without GIRD, pitchers with GIRD appear to be at a higher risk for injury and shoulder surgery.

  5. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  6. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  7. Historic land use influences contemporary establishment of invasive plant species.

    Science.gov (United States)

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.

  8. Plant species used in traditional smallholder dairy processing in East Shoa, Ethiopia.

    Science.gov (United States)

    Mekonnen, Hailemariam; Lemma, A

    2011-04-01

    Plant species used in traditional dairy processing were studied in three districts (Bosset, Ada, and Gimbichu) in Eastern Shoa, Ethiopia, from October 2007 to March 2008. A total of 300 smallholders were interviewed using semi-structured questionnaires, and three focus group discussions were conducted, followed by plants specimen collection and identification. A total of 36 plant species, falling under 24 plant families, were identified. Nearly half of the identified plant species had more than one use types. Eleven plant species were/are used for washing (scrubbing) dairy utensils, ten plant species for smoking dairy utensils, 12 plant species in butter making, 15 plant species in ghee making, and five plant species for packaging (wrapping) butter and cheese. The plant species that had the highest overall citations from each use category were Ocimum hardiense, Olea europaea subspecies africana, Trachyspermum copticum, Curcuma longa, and Croton macrostachyus. The plant species used in the three study districts, representing different agro ecologies, showed some similarities, but levels of uses differed significantly (P < 0.05). Higher informant citations might indicate their better efficacy, however need to be further investigated to determine their effects on milk and milk product quality and to make sure that they are innocuous to human and animal health. Finally, as the present study tried to document natural products used in traditional dairy processing, it could be considered as part of the global efforts aimed at promoting organic food production.

  9. Species composition of alien plants in the built-up area of Beijing

    OpenAIRE

    Juanjuan Zhao; Zhiyun Ouyang; Hua Zheng; Weihua Xu; Xiaoke Wang; Yongming Ni

    2010-01-01

    The widely-used practice of planting alien plant species has become a major concern in Chinese urban management. It is imperative to investigate the composition of alien plant species in urban areas forplant diversity protection and green space management. In this study, we investigated 1050 tree plots, 797 shrub plots and 2,228 herbaceous plots based on stratified random selection, within the fifth ring road area of Beijing. The results revealed the following: (1) There were 324 plant specie...

  10. Pollen production in selected species of anemophilous plants

    Directory of Open Access Journals (Sweden)

    Krystyna Piotrowska

    2012-12-01

    Full Text Available In the study, structural features of flowers of the following allergenic plant species were analysed: Betula verrucosa, Secale cereale, Rumex acetosella, Plantago major and Artemisia vulgaris. Pollen production was established by calculating the number of pollen grains produced by the stamen, flower and inflorescence. The dates of occurrence and pollen grains concentration in the air of Lublin were determined. A positive correlation was found between the length of anthers and the number of pollen grains produced. The largest number of pollen grains per anther is produced by Secale cereale (22 360, whereas the smallest one by Plantago major (5 870. The other species produced intermediate numbers of pollen grains in the anther: Betula verrucosa - 11 160, Rumex acetosella - 10 850, Artemisia vulgaris - 9 580. The birch pollen season in Lublin lasts about a month, and pollen of this taxon reaches the highest airborne concentrations among the studied taxa. Low values of pollen concentrations are characteristic for rye and plantain, whereas slightly higher values are recorded for sorrel pollen. Mugwort pollen reaches high concentrations which are noted at the beginning of August.

  11. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  12. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  13. Insects as a Nitrogen Source for Plants

    Science.gov (United States)

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  14. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  15. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  16. A new Legionella species, Legionella feeleii species nova, causes Pontiac fever in an automobile plant.

    Science.gov (United States)

    Herwaldt, L A; Gorman, G W; McGrath, T; Toma, S; Brake, B; Hightower, A W; Jones, J; Reingold, A L; Boxer, P A; Tang, P W

    1984-03-01

    From 15 to 21 August 1981, Pontiac fever affected 317 automobile assembly plant workers. Results of serologic tests were negative for Mycoplasma, Chlamydia, respiratory tract viruses, and previously described legionellae. A gram-negative, rod-shaped organism (WO-44C) that did not grow on blood agar, required L-cysteine for growth, and contained large amounts of branched-chain fatty acids was isolated from a water-based coolant. The organism did not react with antisera against other legionellae, and on DNA hybridization the organism was less than 10% related to other Legionella species. Geometric mean titers found by indirect fluorescent antibody testing to WO-44C were significantly higher in ill employees than in controls (p = 0.0001). Attack rates by department decreased linearly with the department's distance from the implicated coolant system. The etiologic agent apparently was a new Legionella species; we propose the name Legionella feeleii species nova (AATC 35072). This is the first outbreak of nonpneumonic legionellosis in which the etiologic agent is not L. pneumophila, serogroup 1.

  17. Project Lifescape-:-11 Hunter Plants

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/008/03/0064-0070. Keywords. Insectivorous plants; biodiversity; pitcher plants; conservation. sundew; ethnomedicine. Author Affiliations. Dipanjan Ghosh1. Centre of Advanced Study Department of Botany Calcutta University 35, Ballygunge Circular Road Calcutta 700019, India.

  18. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  19. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  20. Contrasting structures of plant-mite networks compounded by phytophagous and predatory mite species.

    Science.gov (United States)

    de Araújo, Walter Santos; Daud, Rodrigo Damasco

    2018-04-01

    Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant-mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant-mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant-mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant-mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.

  1. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  2. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Science.gov (United States)

    Eisenhauer, Nico; Migunova, Varvara D; Ackermann, Michael; Ruess, Liliane; Scheu, Stefan

    2011-01-01

    Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices. We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years. The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  3. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  4. The relationship between the push off ground reaction force and ball speed in high school baseball pitchers.

    Science.gov (United States)

    Oyama, Sakiko; Myers, Joseph B

    2017-05-05

    Baseball pitching is a sequential movement that requires transfer of momentum from the lower extremity to the throwing arm. Therefore, the ground reaction force (GRF) during push off is suggested to play a roll in production of ball speed. The purpose of this study was to investigate the correlation between GRF characteristics during push off and ball speed in high school baseball pitchers. A total of 52 pitchers performed fast pitches from an indoor pitching mound. A force plate embedded in an indoor mound was used to capture the push off GRF. The GRF characteristics (peak anterior, vertical, and resultant forces, vertical and resultant forces at the time of peak anterior GRF, and impulse produced by the anterior GRF) from the three fastest strike pitches from each pitcher were used for analyses. Spearman's rank correlation coefficients were used to describe the relationships between ball speed and the GRF characteristics. Ball speed was only weakly correlated with peak resultant force (ρ=.32, p=.02), and vertical (ρ=.45, pball speed was not correlated with other variables. The correlation between ball speed and push off force in high school pitchers was weak, especially when compared to what was reported for adult pitchers in other studies. Unlike for adult pitchers, higher push off force is only weakly correlated with ball velocity in high school pitchers, which suggests that training to better utilize body momentum may help high school pitchers improve ball speed.

  5. Increased plant carbon translocation linked to overyielding in grassland species mixtures.

    Directory of Open Access Journals (Sweden)

    Gerlinde B De Deyn

    Full Text Available Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C- translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a (13C-CO(2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived (13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts of the recently assimilated (13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of (13C enrichment in 6-species mixtures, while (13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of (13C in the respired CO(2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of (13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased

  6. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  7. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; Dijk, van Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  8. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  9. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...... explained variation is in general small. The results show that the species area relationships are different for native and endemic species. This is discussed in relation to classical island biogeographical models, and the concepts of radiative speciation....

  10. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves.

    Science.gov (United States)

    Wang, Chunjing; Liu, Chengzhu; Wan, Jizhong; Zhang, Zhixiang

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves.

  11. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves

    Science.gov (United States)

    Wan, Jizhong

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves. PMID:27326373

  12. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  13. Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia

    NARCIS (Netherlands)

    Scott, P.M.; Burgess, T.I.; Barber, P.A.; Shearer, B.L.; Stukely, M.J.C.; Hardy, G.E.St.J.; Jung, T.

    2009-01-01

    A new Phytophthora species, isolated from rhizosphere soil of declining or dead trees of Eucalyptus gomphocephala, E. marginata, Agonis flexuosa, and another 13 plant species, and from fine roots of E. marginata and collar lesions of Banksia attenuata in Western Australia, is described as

  14. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    Yomi

    2011-12-19

    Dec 19, 2011 ... wood and 41 species belonging to 25 families were utilized as timber. Three tree species; Quercus incana, Cedrus deodara and Taxus wallichiana was found endangered. There is a dire need to conserve these species. Key words: Ethnobotany, fuel wood, timber species, Kaghan valleys, Khyber Pakhtoon ...

  15. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  16. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... plants. In the early stages of reforestation, herbs dominated the plant community in most plots, and woody plants became more important with time after reforestation. Preliminary ... Given the importance of colonization on forest stand composition ..... if the former was in full sunlight than if overtopped by the.

  17. Invasive plant species and the Joint Fire Science Program.

    Science.gov (United States)

    Heather E. Erickson; Rachel White

    2007-01-01

    Invasive nonnative plants may be responsible for serious, long-term ecological impacts, including altering fire behavior and fire regimes. Therefore, knowing how to successfully manage invasive plants and their impacts on natural resources is crucial. We present a summary of research on invasive plants and fire that has been generated through the Joint Fire Science...

  18. Unusual stress fracture in an adolescent baseball pitcher affecting the trochlear groove of the olecranon

    International Nuclear Information System (INIS)

    Blake, Joseph J.; Block, John J.; Kan, J.H.; Hannah, Gene A.

    2008-01-01

    Stress fractures of the proximal ulna are known to occur in throwing athletes. Most cases extend to involve the olecranon, and cases limited to the trochlear groove are rare. In this report we present a 17-year-old elite baseball pitcher with a stress fracture of the trochlear groove of the proximal ulna. Diagnosis was made by demonstration of characteristic signal changes on MRI of the elbow. The fracture occurred at the cortical notch, also known as the pseudodefect of the trochlear groove. This case suggests that the cortical notch serves as an area of weakness predisposing pitchers to development of a stress fracture. (orig.)

  19. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  20. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Nielsen, K. K.

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...

  1. Impact of mine dumps on transport the invasive plant species to Upper Silesia

    Science.gov (United States)

    Sotkova, N.; Lokajickova, B.; Mec, J.; Svehlakova, H.; Stalmachova, B.

    2017-10-01

    Human activities significantly change the species composition in the area. The main factor of change was the mining industry, which changed the natural conditions on Upper Silesia. The anthropogenic relief of mine dumps are the main centre of alien plant in an industrial landscape. The poster deals with the state of the invasive plant species by the phyto-sociological surveys on Upper Silesia.

  2. Determining a charge for the clearing of invasive alien plant species ...

    African Journals Online (AJOL)

    South Africa is running out of water supply options. One option, however, is to control invasive alien plant species (IAPs) within water catchment areas and in riparian zones. The National Water Act and subsequent documentation provide a guide for the use of economic instruments to manage invasive alien plant species at ...

  3. The effects of fire-breaks on plant diversity and species composition ...

    African Journals Online (AJOL)

    There is a dearth of knowledge on the effects of annual burning of fire-breaks on species composition, plant diversity and soil properties. Whittaker's plant diversity technique was used to gather data on species composition and diversity in four grassland communities on the Loskop Dam Nature Reserve (LDNR). The study ...

  4. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    -history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life-history traits and their interactions using linear mixed models. Results We found that the negative effect......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  5. Seed longevity of dominant plant species from degraded savanna in ...

    African Journals Online (AJOL)

    The low decay constant of some species is an indication of their abilities to form persistent seed banks. The intermittent and extended germination of seeds of the same species from the same batch shown by some species may be regarded as an ecological adaptation to prevent synchronous germination in unpredictable ...

  6. Research Note Impacts of mine dump pollution on plant species ...

    African Journals Online (AJOL)

    Species composition and structure of vegetation close to the mine dump significantly changed, possibly due to negative impacts of heavy metals on recruitment as pollution-sensitive species died off, whereas tolerant species invaded the vacated ecological niches. Ordination analyses confirmed a strong pollution gradient, ...

  7. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  8. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired......-interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased...

  9. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  10. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    Directory of Open Access Journals (Sweden)

    Isabel Díaz-Reviriego

    2016-03-01

    Full Text Available Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  11. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Food-web models predict species abundances in response to habitat change.

    Directory of Open Access Journals (Sweden)

    Nicholas J Gotelli

    2006-10-01

    Full Text Available Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  13. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  14. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  15. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA

    OpenAIRE

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Background: Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasi...

  16. KEY TO THE POWDERY MILDEW SPECIES ON THE BASIS OF THE HOST PLANT FAMILIES AND GENERA

    Directory of Open Access Journals (Sweden)

    E. V. Rakhimova

    2015-05-01

    Full Text Available Key on the basis of the host plant taxonomy, symptoms of the infected plants and microscopic features of fungi was composed for identification of powdery mildews of the Kazakhstan. Features, which were used for identification of fungus, were the number of asci in cleistothecium, the number of ascospores in ascus and the type of appendages of cleistothecium. Key was composed for 81 species and 25 variations of Erysiphales fungi, infecting 739 species of host plants, which belong to 305 genera.

  17. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; de Vos, R.C.H.; Jansen, J.J.; Van der Putten, W.H.; Van Dam, N.M.

    2014-01-01

    t is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native

  18. Collection and Domestication of Rangeland Plant Species with Emphasis on Mongolia and China

    Science.gov (United States)

    Changing economic and social conditions are threatening plant diversity on rangelands in Mongolia and China. Teams of collaborating scientists from the U.S.A., Mongolia, and China collected seed of rangeland plant species in Mongolia and Inner Mongolia, China, to preserve plant biodiversity from th...

  19. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native

  20. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  1. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  2. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change

    OpenAIRE

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Gu?zou, Anne; Cabrera, Fredy; L?tters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoi...

  3. Variation in habitat suitability does not always relate to variation in species' plant functional traits

    OpenAIRE

    Thuiller, Wilfried; Albert, Cécile H.; Dubuis, Anne; Randin, Christophe; Guisan, Antoine

    2009-01-01

    Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tigh...

  4. 75 FR 28636 - Endangered and Threatened Wildlife and Plants; Initiation of 5-Year Reviews of 34 Species in...

    Science.gov (United States)

    2010-05-21

    ... Endangered and Threatened Wildlife and Plants at 50 CFR 17.11 (for animals) and 17.12 (for plants) (List). We... following reasons: (1) The species is considered extinct; (2) the species is considered to be recovered; and... Animal Species and 18 Plant Species in California and Nevada Common name Scientific name Status Where...

  5. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  6. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  7. Species identification and sex determination of the genus Nepenthes (Nepenthaceae).

    Science.gov (United States)

    Mokkamul, Piya; Chaveerach, Arunrat; Sudmoon, Runglawan; Tanee, Tawatchai

    2007-02-15

    Nepenthes species are well known for their ornamentally attractive pitchers. The species diversity was randomly surveyed in some conservation areas of Thailand and three species were found, namely N. gracilis Korth., N. mirabilis Druce. and N. smilesii Hemsl. Young plants as unknown species from Chatuchak market were added in plant sampled set. Thirty two Inter Simple Sequence Repeat (ISSR) primers were screened and 13 successful primers were used to produce DNA banding patterns for constructing a dendrogram. The dendrogram is potentially power tool to identify unknown species from Chatuchak market, differentiate species population, population by geographical areas and sex determination. The geographical area of N. mirabilis was specified to Southern and Northeastern regions and finally, subdivided into exact areas according to province. Male and female plants of N. gracilis at Phu Wua Wildlife Sanctuary and N. mirabilis at Bung Khonglong non-hunting area were determined. Two unknown species from Chatuchak market were analyzed to be N. mirabilis with the genetic similarities (S) 77.2 to 84.7. Be more sex specific in all sample studied, 37 Random Amplified Polymorphic DNA (RAPD) primers were investigated. The result shows that only one RAPD primer show high resolution results at about 750 bp specific male-related marker.

  8. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  9. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  10. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  11. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  12. Rejoinder to Harrison (2008): The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; Curtis Flather; Catherine S. Jarnevich; David T. Barnett; John Kartesz

    2008-01-01

    We find ourselves in general agreement with many of Harrison's remarks especially since we both find our data present a ' strong case that at county to state scales, exotic plant invasions have led to few native plant extinctions' (emphasis added, Harrison 2007: 000). Where we differ appears related to the breadth of scales to which our conclusions may...

  13. Hemicryptophytes plant species as indicator of grassland state in ...

    African Journals Online (AJOL)

    Plots of 10 m X 10 m were installed along a land use gradient (from communal lands to the protected area via the buffer zone) in three vegetation types for plant biomass harvesting and hemicryptophytes traits measurement. The hemicryptophyte density, biovolume, tussock size, contact frequency, contribution to total plant ...

  14. Antimicrobial activity of some endemic plant species from Turkey

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... Antibacterial and antifungal activity of Heracleum sphondylium subsp. arvinense. Afr. J. Biotechnol. 5: 1087-1089. Ertürk Ö (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia. 61: 275-278. Fazly Bazzaz BS, Haririzadeh G (2003). Screening of Iranian plants for.

  15. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  16. The new flora of the northeastern USA: quantifying introduced plant species occupancy in forest ecosystems

    Science.gov (United States)

    Bethany K. Schulz; Andrew N. Gray

    2013-01-01

    Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment...

  17. The role of cattle in maintaining plant species diversity in wet dune valleys

    NARCIS (Netherlands)

    Aptroot, A.; van Dobben, H. F.; Slim, P. A.; Olff, H.

    The succession of species-rich wetland vegetation in dune valleys into species-poor dwarf shrub vegetation was followed by means of permanent vegetation plots, in which the cover of vascular plant, moss and lichen species were recorded over a period of up to 33 years. Low density cattle grazing is

  18. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  19. Phytochemicals of selected plant species of the Apocynaceae and Asclepiadaceae from Western Ghats, Tamil Nadu, India

    Science.gov (United States)

    A concern about the declining supply of petroleum products has led to a renewed interest in evaluating plant species as potential alternate sources of energy. Five species of the Apocynaceae and three species of the Asclepiadaceae from the Western Ghats were evaluated as alternative sources of energ...

  20. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    Science.gov (United States)

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thébault, Aurélie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).

  1. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers.

    Science.gov (United States)

    Gorb, Elena V; Purtov, Julia; Gorb, Stanislav N

    2014-06-03

    The wax coverage of the waxy zone in Nepenthes alata pitchers consists of two clearly distinguishable layers, designated the upper and lower wax layers. Since these layers were reported to reduce insect attachment, they were considered to have anti-adhesive properties. However, no reliable adhesion tests have been performed with these wax layers. In this study, pull-off force measurements were carried out on both wax layers of the N. alata pitcher and on two reference polymer surfaces using deformable polydimethylsiloxane half-spheres as probes. To explain the results obtained, roughness measurements were performed on test surfaces. Micro-morphology of both surface samples and probes tested was examined before and after experiments. Pull-off forces measured on the upper wax layer were the lowest among surfaces tested. Here, contamination of probes by wax crystals detached from the pitcher surface was found. This suggests that low insect attachment on the upper wax layer is caused primarily by the breaking off of wax crystals from the upper wax layer, which acts as a separation layer between the insect pad and the pitcher surface. High adhesion forces obtained on the lower wax layer are explained by the high deformability of probes and the particular roughness of the substrate.

  2. Allelochemical Control of Non-Indigenous Invasive Plant Species Affecting Military Testing and Training Activities

    Science.gov (United States)

    2010-10-01

    crude root exudates and water phase were applied directly to the liquid media in which the plants were growing . The chloroform and ethyl acetate... plant neighbors in the introduced range. We partially tested this hypothesis by growing seven competing native European plant species either with... bamboo ) in natural Indian soil in a single pulse, but soil concentrations at the time of planting seeds were either undetectable or very low

  3. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Science.gov (United States)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  4. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  5. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  6. Exotic species and the structure of a plant-galling network

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araujo

    2017-06-01

    Full Text Available Gall-inducing insects are highly specialized herbivores and is expected that networks composed by gall-inducing insects and their host plants are also very specialized. However, presence of exotic species might reduce the interaction number for native species, which would lead to changes in the specialization of plant-galling networks. In this study, we use network metrics to describe, for the first time, the structure of a network of gall-inducing insects associated to ornamental host plants. We found that the plant-galling network has a low-connected structure and is more modular than expected by chance. Native insect herbivores were significantly more frequent on native host plant species, while exotic herbivores occurred mostly on exotic host plant species. On the other hand, the number of interactions between insect herbivores and native or exotic plant species did not vary. Our findings show that plant-galling networks are very specialized and structured independently of exotic species presence.

  7. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation.

    Science.gov (United States)

    Vieira, Denise R P; Amaral, Flavia MaM; Maciel, Márcia C G; Nascimento, Flávia R F; Libério, Silvana A; Rodrigues, Vandílson P

    2014-09-29

    Ethnopharmacological surveys show that several plant species are used empirically by the population, in oral diseases. However, it is necessary to check the properties of these plant species. To evaluate in vitro antimicrobial activity against Streptococcus mutans from plant species selected in a previous ethnopharmacology study. An ethnopharmacological survey was conducted with users of a dental clinic school services, located in Sao Luis, Maranhão, Brazil, aiming to identify plant species used in oral diseases treatment. From the ethnopharmacological survey, species were selected for in vitro antimicrobial activity evaluation against Streptococcus mutans, by agar diffusion method and determination of Minimum Inhibitory Concentration (MIC). Two hundred and seventy one people participated in the research: 55.7% reported the use of plants for medicinal purposes, 29.5% of which have knowledge and/or use plants for some type of oral disease. Thirty four species belonging to 24 (twenty four) botanical families were reported, being Aloe vera L., Anacardium occidentale L., Schinus terebinthifolius Raddi, Chenopodium ambrosioides L. and Punica granatum L. the most cited. The most commonly reported indications were healing after tooth extraction, followed by toothache, inflammation and bleeding gums., The determination of Minimum Inhibitory Concentration (MIC) demonstrated that Punica granatum L., Psidium guajava L. and Schinus terebinthifolius Raddi showed similar activity to 0.12% chlorhexidine, used as positive control. That result is important to follow up the study of these species in the search for new anticariogenic agents originated by plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  9. Plant species dynamics in the Southern Tall Grassveld under ...

    African Journals Online (AJOL)

    An analysis of temporal changes in botanical composition in a long-term grazing trial indicates that species dynamics in the Southern Tall Grassveld of Natal are determined by the specific combination of grazing, mowing and fire impacts. Species composition of a grazing systems trial was recorded at intervals during 16 ...

  10. Systematic Experimental Designs For Mixed-species Plantings

    Science.gov (United States)

    Jeffery C. Goelz

    2001-01-01

    Systematic experimental designs provide splendid demonstration areas for scientists and land managers to observe the effects of a gradient of species composition. Systematic designs are based on large plots where species composition varies gradually. Systematic designs save considerable space and require many fewer seedlings than conventional mixture designs. One basic...

  11. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    Yomi

    2011-12-19

    Dec 19, 2011 ... 3Department of Botany, Post Graduate College Abbottabad, Pakistan. Accepted 17 March, 2011. A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration.

  12. seed longevity of dominant plant species from degraded savanna

    African Journals Online (AJOL)

    Mgina

    groups: (1) non-dormant seeds (2) seeds with enforced dormancy and (3) seeds with seed coat imposed dormancy. The low decay constant of some species is an indication of their abilities to form persistent seed banks. The intermittent and extended germination of seeds of the same species from the same batch shown by ...

  13. Ethical perception of cross-species gene transfer in plant

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... the ethical acceptance of cross-species gene transfers in developing country. Key words: Ethical perception, genetically modified (GM) rice, cross-species gene transfer, Malaysia. INTRODUCTION. Rice is a staple food in much of Asia countries including. Malaysia, and by 2025 about 60% more rice must ...

  14. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration. A questionnaire was used as a survey instrument to obtain desired data. For this study, 10 villages were randomly ...

  15. Exotic and indigenous problem plants species used, by the Bapedi ...

    African Journals Online (AJOL)

    EB

    Tel: +27 152683126. Email: Sebuasemenya@gmail.com. Introduction. Exotic species are widespread in South Africa, both in cultivated and communal areas. At least 161 species have been declared as exotics, and cause serious ..... Edeoga HO, Osuagwu GGE, Omosun G,. Mbaebie BO, Osuagwu AN. Pharmaceutical and.

  16. The exploration of plant species in nature reserve of Mount Mutis East Nusa Tenggara Province

    Directory of Open Access Journals (Sweden)

    Solikin Solikin

    2016-04-01

    Full Text Available This research was aimed to explore and inventory the plant diversity, especially medicinal plants in Nature Reserve of Mount Mutis. Data were collected in Fatumnasi Village, Fatumnasi District of South Central Timor Regency in Octo-ber 2011 through plant exploration and interview the local people. Plants inventory was conducted along the tracks during exploration. Herbs vegetation analysis was conducted among the tree stands of Eucalyptus urophylla. In addi-tion, orchid vegetation analysis was only conducted to orchids that have been found attaching to Eucalyptus urophylla trees. Results showed that there were about 52 family, 78 genera and 84 species of plants in the observed area. Tree species was dominated by 'ampupu' (Eucalyptus urophylla, while orchid species was dominated by Eria retusa. Herbaceous plant communities were dominated by Centella asiatica, Cyperus sp. and Cynodon dactylon. There were about eight plant species of medicinal plants and one food plant species found in the forestthat have been known by local people. Keywords: exploration, inventory, Mount Mutis, nature reserve

  17. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  18. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  19. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; De Boer, W.; Van der Putten, W.H.

    2012-01-01

    Soilorganisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soilorganisms may promote plantspecies of characteristic habitats, and suppress plantspecies of disturbed habitats. We

  20. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  1. Trends in Revision Elbow Ulnar Collateral Ligament Reconstruction in Professional Baseball Pitchers.

    Science.gov (United States)

    Wilson, Alexander T; Pidgeon, Tyler S; Morrell, Nathan T; DaSilva, Manuel F

    2015-11-01

    To determine the frequency of revision elbow ulnar collateral ligament (UCL) reconstruction in professional baseball pitchers. Data were collected on 271 professional baseball pitchers who underwent primary UCL reconstruction. Each player was evaluated retrospectively for occurrence of revision UCL reconstructive surgery to treat failed primary reconstruction. Data on players who underwent revision UCL reconstruction were compiled to determine total surgical revision incidence and revision rate by year. The incidence of early revision was analyzed for trends. Average career length after primary UCL reconstruction was calculated and compared with that of players who underwent revision surgery. Logistic regression analysis was performed to assess risk factors for revision including handedness, pitching role, and age at the time of primary reconstruction. Between 1974 and 2014, the annual incidence of primary UCL reconstructions among professional pitchers increased, while the proportion of cases being revised per year decreased. Of the 271 pitchers included in the study, 40 (15%) required at least 1 revision procedure during their playing career. Three cases required a second UCL revision reconstruction. The average time from primary surgery to revision was 5.2 ± 3.2 years (range, 1-13 years). The average length of career following primary reconstruction for all players was 4.9 ± 4.3 years (range, 0-22 years). The average length of career following revision UCL reconstruction was 2.5 ± 2.4 years (range, 0-8 years). No risk factors for needing revision UCL reconstruction were identified. The incidence of primary UCL reconstructions among professional pitchers is increasing; however, the rate of primary reconstructions requiring revision is decreasing. Explanations for the decreased revision rate may include improved surgical technique and improved rehabilitation protocols. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by

  2. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  3. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  4. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...... production in bicultures in general, while a positive net effect was found in the P. perfoliatus and P. filiformis biculture. Despite the absence of significant results for other treatments and plant variables, a trend of positive complementarity and negative selection effects were present. Plant diversity...

  5. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  6. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Science.gov (United States)

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.

  7. New approaches for sampling and modeling native and exotic plant species richness

    Science.gov (United States)

    Chong, G.W.; Reich, R.M.; Kalkhan, M.A.; Stohlgren, T.J.

    2001-01-01

    We demonstrate new multi-phase, multi-scale approaches for sampling and modeling native and exotic plant species to predict the spread of invasive species and aid in control efforts. Our test site is a 54,000-ha portion of Rocky Mountain National Park, Colorado, USA. This work is based on previous research wherein we developed vegetation sampling techniques to identify hot spots of diversity, important rare habitats, and locations of invasive plant species. Here we demonstrate statistical modeling tools to rapidly assess current patterns of native and exotic plant species to determine which habitats are most vulnerable to invasion by exotic species. We use stepwise multiple regression and modified residual kriging to estimate numbers of native species and exotic species, as well as probability of observing an exotic species in 30 × 30-m cells. Final models accounted for 62% of the variability observed in number of native species, 51% of the variability observed in number of exotic species, and 47% of the variability associated with observing an exotic species. Important independent variables used in developing the models include geographical location, elevation, slope, aspect, and Landsat TM bands 1-7. These models can direct resource managers to areas in need of further inventory, monitoring, and exotic species control efforts.

  8. Landscape genomics of tropical high altitude plant species

    OpenAIRE

    Mastretta-Yanes, Alicia

    2014-01-01

    Changes to species distributions involve demographic processes that occur over generations and affect allele frequencies within populations, leading to patterns of genetic restructuring. The specific genetic structuring patterns that will be observed as a consequence depend on explicit geographical features, such as topography and latitude. Over the first decades of phylogeography, the effect of climate history and geography on species genomes was examined at low resolution with DNA sequenc...

  9. Plant species with extremely small populations (PSESP in China: A seed and spore biology perspective

    Directory of Open Access Journals (Sweden)

    Ellie Merrett Wade

    2016-10-01

    Full Text Available Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP. Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination of at-risk species? We have used China's PSESP (the first group listing as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP, storage characteristics are only known for 8% of PSESP (10 species. Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.

  10. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  11. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  12. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.

    Science.gov (United States)

    Jambhulkar, Hemlata P; Juwarkar, Asha A

    2009-05-01

    A field experiment was conducted on a 10-hectare area on fly ash dump at Khaperkheda Thermal Power Plant, Nagpur, India, where different ecologically and economically important plant species were planted using bioremediation technology. The technology involves the use of organic amendment and selection of suitable plant species along with site-specific nitrogen-fixing strains of biofertilizers. The study was conducted to find out the metal accumulation potential of different plant species. The total heavy metal contents in fly ash were determined and their relative abundance was found in the order of Fe>Mn>Zn>Cu>Ni>Cr>Pb>Cd. Fly ash samples had acidic pH, low electrical conductivity, low level of organic carbon and trace amounts of N and P. Plantation of divergent species was done on fly ash dump using the bioremediation technique. After 3 years of plantation, luxuriant growth of these species was found covering almost the entire fly ash dump. The results of the metal analysis of these species indicated that iron accumulated to the greatest extent in vegetation followed by Mn, Ni, Zn, Cu, Cr and Pb. Cassia siamea was found to accumulate all metals at higher concentrations compared to other species. The experimental study revealed that C. siamea could be used as a hyper-accumulator plant for bioremediation of fly ash dump.

  13. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  14. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.

    Science.gov (United States)

    Yi, Tao; Fan, Lan-Lan; Chen, Hong-Li; Zhu, Guo-Yuan; Suen, Hau-Man; Tang, Yi-Na; Zhu, Lin; Chu, Chu; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-08-09

    Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method.The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting.

  15. Padus serotina (Rosaceae, a new host plant for some species of parasitic microfungi

    Directory of Open Access Journals (Sweden)

    Nałgorzata Ruszkiewicz-Michalska

    2014-08-01

    Full Text Available Four species of parasitic microfungi were collected recenUy on Padus serotina (Ehrh. Borkh. (Rosaceae in Poland. Three species, Phyllactina guttata (Wallr. ex Fr. Lév. (Erysiphales, Monilia linhartiana Sacc. (Hyphomycetes, and Microsphaeropsis olivacea (Bonord. Höhn. (Coelomycetes, have not been reported before on thc plant, and Padus serotina is a new host for them. Monnilia linhartiana Sacc. is a new species for Poland. The fourth species, Podosphaera tridactyla (Wallr. de Baly var. tridactyla (Erysiphales, is known only from three localities in Europe, and has been collected on the host plant in Poland for the first time.

  16. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  17. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.

    Science.gov (United States)

    Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie

    2015-07-15

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.

  18. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana; Šurinová, Mária

    2015-01-01

    Roč. 6, č. 11 (2015), s. 1-16 ISSN 2150-8925 R&D Projects: GA ČR(CZ) GA15-11635S Institutional support: RVO:67985939 Keywords : phylogenetic relationships * species traits * plant- soil feedback Subject RIV: EF - Botanics Impact factor: 2.287, year: 2015

  19. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  20. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  1. Using habitat suitability models to target invasive plant species surveys.

    Science.gov (United States)

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P habitat suitability models can be highly useful tools for guiding invasive species monitoring

  2. Threatened plant species in the river ports of Central Europe: a potential for nature conservation

    Czech Academy of Sciences Publication Activity Database

    Jehlík, V.; Dostálek, J.; Frantík, Tomáš

    2016-01-01

    Roč. 19, č. 2 (2016), s. 999-1012 ISSN 1083-8155 Institutional support: RVO:67985939 Keywords : Central Europe * plant species richness * waterway Subject RIV: EH - Ecology, Behaviour Impact factor: 1.970, year: 2016

  3. Predicting invasive species impacts on hydrological processes: the consequences of plant physiology for landscape processes

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2004-01-01

    Full Text Available attention, despite growing evidence of their significance. The wide range in plant growth forms and physiology among invading species suggests that estimation of the hydrological impacts could be difficult. The concept of limits to evaporation was developed...

  4. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...... to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.......Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...

  5. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  6. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  7. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    An effective in vitro regeneration protocol was developed from nodal segment of Pluchea lanceolata (DC.) Oliver. & Hiern, a medicinally important plant used in ayurvedic system of medicine for curing diseases similar to rheumatoid arthritis. Nodal segments were cultured in MS medium supplemented with auxin and ...

  8. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... An effective in vitro regeneration protocol was developed from nodal segment of Pluchea lanceolata. (DC.) Oliver. & Hiern, a medicinally important plant used in ayurvedic system of medicine for curing diseases similar to rheumatoid arthritis. Nodal segments were cultured in MS medium supplemented.

  9. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  10. In vitro susceptibility testing of Yersinia species to eight plant ...

    African Journals Online (AJOL)

    AJL

    2012-05-24

    May 24, 2012 ... V. amygdalina Del against Y. enterocolitica 0:03 to 17.7 mm for Citrus aurantifolia (christim) Swingle .... The inhibitory effect of neat ethanolic plant extracts and some natural antimicrobials against Yersinia sp. .... Susceptibility pattern of Yersinia sp. to the various antimicrobial agents (ethanolic extracts).

  11. Conservation status of vascular plant species from the QMM / Rio ...

    African Journals Online (AJOL)

    A botanical inventory of the Mandena littoral forest, completed in 1991 as part of an environmental impact assessment study for a titanium oxide mining project being developed by QMM / Rio Tinto in the Tolagnaro (Fort Dauphin) region of southeastern Madagascar, identified 29 plant taxa as priorities for conservation, ...

  12. Biodiversity and ethnobotanical potentials of plant species of ...

    African Journals Online (AJOL)

    Plant biodiversity and ethnobotanical potentials of University of Agriculture Makurdi (UAM) Wildlife Park and Ikwe Games Reserve, Benue State, Nigeria, were investigated in this study. Floristic survey was conducted in the two reserves using stratified sampling technique based on the three identified microhabitats in each of ...

  13. an assessment of seed propagation of oilferous plant species with

    African Journals Online (AJOL)

    nb

    Hewitt (1998) observed the same and reported that that large seeds may enable early development of an enlarged resource gathering system (root or photosynthetic tissue) to produce a fast growing plant. Ekta and Singh (2000) stated that seedling from large seeds survived long term extreme water stress than those from ...

  14. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Corinna Wallinger

    Full Text Available Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae, the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  15. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    OpenAIRE

    Chanyarat Paungfoo-Lonhienne; Thierry G. A. Lonhienne; Yun Kit Yeoh; Bogdan C. Donose; Richard I. Webb; Jeremy Parsons; Webber Liao; Evgeny Sagulenko; Prakash Lakshmanan; Philip Hugenholtz; Susanne Schmidt; Mark A. Ragan

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically t...

  16. Strong Response of an Invasive Plant Species (Centaurea solstitialis L.) to Global Environmental Changes.

    OpenAIRE

    Dukes, Jeffrey; Chiariello, Nona R; Loarie, Scott R; Field, Christopher B

    2011-01-01

    Global environmental changes are altering interactions among plant species, sometimes favoring invasive species. Here, we examine how a suite of five environmental factors, singly and in combination, can affect the success of a highly invasive plant. We introduced Centaurea solstitialis L. (yellow starthistle), which is considered by many to be California’s most troublesome wildland weed, to grassland plots in the San Francisco Bay Area. These plots experienced ambient or elevated levels of wa...

  17. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  18. A simple and efficient method for isolating small RNAs from different plant species

    OpenAIRE

    Rosas-Cárdenas, Flor de Fátima; Durán-Figueroa, Noé; Vielle-Calzada, Jean-Philippe; Cruz-Hernández, Andrés; Marsch-Martínez, Nayelli; de Folter, Stefan

    2011-01-01

    Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate sma...

  19. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats

  20. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  1. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  2. Variation in habitat suitability does not always relate to variation in species' plant functional traits.

    Science.gov (United States)

    Thuiller, Wilfried; Albert, Cécile H; Dubuis, Anne; Randin, Christophe; Guisan, Antoine

    2010-02-23

    Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.

  3. Location of plant species in Norway gathered as a part of a survey vegetation mapping programme

    Science.gov (United States)

    Bryn, Anders; Kristoffersen, Hans-Petter; Angeloff, Michael; Nystuen, Ingvild; Aune-Lundberg, Linda; Endresen, Dag; Svindseth, Christian; Rekdal, Yngve

    2015-01-01

    Georeferenced species data have a wide range of applications and are increasingly used for e.g. distribution modelling and climate change studies. As an integrated part of an on-going survey programme for vegetation mapping, plant species have been recorded. The data described in this paper contains 18.521 registrations of plants from 1190 different circular plots throughout Norway. All species localities are georeferenced, the spatial uncertainty is provided, and additional ecological information is reported. The published data has been gathered from 1991 until 2015. The entries contain all higher vascular plants and pteridophytes, and some cryptogams. Other ecological information is also provided for the species locations, such as the vegetation type, the cover of the species and slope. The entire material is stored and available for download through the GBIF server. PMID:26958614

  4. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  5. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  6. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  7. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  8. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    Science.gov (United States)

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  9. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    Yusuf Adama, Njoya S Ngetara, Syd Ramdhanib a School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Howard ... Shaanker, 2013). These species affect human health, agriculture, forestry and biodiversity .... 2.2 Field data collection and image processing. Field data for the classification of ...

  10. Growth responses to ozone in plant species from wetlands

    NARCIS (Netherlands)

    Franzaring, J.H.; Tonneijck, A.E.G.; Kooijman, A.W.N.; Dueck, Th.A.

    2000-01-01

    Ten wet grassland species were fumigated with four concentrations of ozone (charcoal-filtered air, non-filtered air and non-filtered air plus 25 or 50 nl 1-1 ozone) in open-top chambers during one growing season to investigate the long-term effect of this air pollutant on various growth variables.

  11. Integrative modelling reveals mechanisms linking productivity and plant species richness

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Pärtel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.

    2016-01-01

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a

  12. Ecological modules and roles of species in heathland plant-insect flower visitor networks.

    Science.gov (United States)

    Dupont, Yoko L; Olesen, Jens M

    2009-03-01

    1. Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2. Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three heathland sites in Denmark, separated by >or= 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3. Qualitative (presence-absence) interaction networks were tested for modularity. Modules were identified, and species classified into topological roles (peripherals, connectors, or hubs) using 'functional cartography by simulated annealing', a method recently developed by Guimerà & Amaral (2005a). 4. All networks were significantly modular. Each module consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5. Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each module was dominated by one or few insect groups. This pattern was consistent across sites. 6. Our study adds support to the conclusion that certain plant species and flower-visitor groups are nonrandomly and repeatedly associated. Within a network, these strongly interacting subgroups of species may exert reciprocal selection pressures on each other. Thus, modules may be candidates for the long-sought key units of co-evolution.

  13. Public reaction to invasive plant species in a disturbed Colorado landscape

    Science.gov (United States)

    Michael T. Daab; Courtney G. Flint

    2010-01-01

    Invasive plant species degrade ecosystems in many ways. Controlling invasive plants is costly for government agencies, businesses, and individuals. North central Colorado is currently experiencing large-scale disturbance, and millions of acres are vulnerable to invasion because of natural and socioeconomic processes. Mountain pine beetles typically endemic to this...

  14. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  15. Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants

    NARCIS (Netherlands)

    Leeggangers, H.A.C.F.; Moreno Pachón, N.M.; Gude, H.; Immink, G.H.

    2013-01-01

    The extensive characterization of plant genes and genome sequences summed to the continuous development of biotechnology tools, has played a major role in understanding biological processes in plant model species. The challenge for the near future is to generate methods and pipelines for an

  16. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  17. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Olsrud, Maria; Michelsen, Anders

    2010-01-01

    the fungal composition in roots of co-existing ericaceous plants is scarce. In the present paper, the fungal community in roots of four ericaceous plant species, Empetrum hermaphroditum, Andromeda polifolia, Vaccinium uliginosum and Vaccinium vitis-idaea which often dominate subarctic heaths and mires...

  18. Phytotherapy of Polish migrants in Misiones, Argentina: legacy and acquired plant species.

    Science.gov (United States)

    Kujawska, Monika; Hilgert, Norma I

    2014-05-14

    Analyzing how and why phytotherapeutical practices survive a migratory process is important for understanding migrant health seeking behaviour and health demand. Contrary to most studies, which focus on migrants from warm climates who settle in European and American cities, this study explores continuations in the herbal pharmacopoeia of Eastern European peasants who settled down in rural subtropical areas of Argentina. The study also explores the pharmacopoeia among the descendants of the first generation born in Argentina. Primary and secondary sources were employed in the study. Data were collected during over 200 interviews (semi-structured, free lists and in-depth) with 94 study participants. Voucher specimens of species mentioned were gathered and identified. Illnesses were reported according to local ethnomedical terminology and classification. Only reports from informants' own experience were included in the analysis. The unit of analysis was a plant use report (plant species × plant part × ailment × informant). The frequency of mentions was calculated for plant parts used and modes of preparation and administration of herbal medicines, and the Informant Diversity Value was also estimated. Secondary information was obtained from ethnobotanical and ethnomedical literature concerning the whole of Poland. A list was made of medicinal plant species known from Poland available in the study area. Then, the similarity between the available species and those used by Polish migrants was evaluated by applying the Simpson index. An exhaustive list of 129 plant species used by the Polish community in Misiones, Argentina, was obtained. Among 37 species known form Poland and available in Misiones, 19 were used by the community. There was low consensus on the treatment of health conditions with legacy plants between Polish migrants and the Polish folk pharmacopoeia. The reasons for the relatively low use of legacy species are explained. More continuation has been

  19. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  20. Mycorrhizal status helps explain invasion success of alien plant species

    Czech Academy of Sciences Publication Activity Database

    Menzel, A.; Hempel, S.; Klotz, S.; Moora, M.; Pyšek, Petr; Rillig, M. C.; Zobel, M.; Kühn, I.

    2017-01-01

    Roč. 98, č. 1 (2017), s. 92-102 ISSN 0012-9658 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : plant invasion * mycorrhiza * naturalization Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.809, year: 2016

  1. Determination of Leaf Dust Accumulation on Certain Plant Species Grown Alongside National Highway- 22, India

    OpenAIRE

    Navjot Singh Kaler; S. K. Bhardwaj; K. S. Pant; T. S. Rai

    2016-01-01

    Vehicular traffic is one of the major contributors to accumulate dust on plants grown alongside roads. Plants intercept tons of dust, absorb noise and serve as acoustic screens on busy highways. Vegetation contributes in reducing dust concentration in environment by acting as a sink for air pollutants. Taking this into account, the present study was conducted on National highway- 22 from Parwanoo to Solan, falling in Solan district of Himachal Pradesh, India. Specifically, four plant species...

  2. World-wide every fifth vascular plant species is or was used as medicinal or aromatic plant

    OpenAIRE

    Wittig, Rüdiger; Dingermann, Theo; Sieglstetter, Robert; Xie, Yingzhong; Thiombiano, Adjima; Hahn, Karen

    2015-01-01

    It is common knowledge that plants have been the world-wide most important source of medicines and that they still play this role in developing countries. However, up to now, complete lists of medicinal and aromatic plants (MAP) exist for comparatively few countries. A review of all lists know to the authors reveals the following results: A total of 20.7 % of the plant species analyzed by either publications or own research are or were used as MAP. However, regarding single countries, the dif...

  3. Factors determining the plant species diversity and species composition in a suburban landscape

    Czech Academy of Sciences Publication Activity Database

    Čepelová, B.; Münzbergová, Zuzana

    2012-01-01

    Roč. 106, č. 4 (2012), s. 336-346 ISSN 0169-2046 R&D Projects: GA ČR GAP505/10/0593; GA ČR GD206/08/H049 Institutional support: RVO:67985939 Keywords : suburban landscape * species diversity * species composition Subject RIV: EF - Botanics Impact factor: 2.314, year: 2012

  4. Performance Metrics in Professional Baseball Pitchers before and after Surgical Treatment for Neurogenic Thoracic Outlet Syndrome.

    Science.gov (United States)

    Thompson, Robert W; Dawkins, Corey; Vemuri, Chandu; Mulholland, Michael W; Hadzinsky, Tyler D; Pearl, Gregory J

    2017-02-01

    High-performance throwing athletes may be susceptible to the development of neurogenic thoracic outlet syndrome (NTOS). This condition can be career-threatening but the outcomes of treatment for NTOS in elite athletes have not been well characterized. The purpose of this study was to utilize objective performance metrics to evaluate the impact of surgical treatment for NTOS in Major League Baseball (MLB) pitchers. Thirteen established MLB pitchers underwent operations for NTOS between July 2001 and July 2014. For those returning to MLB, traditional and advanced (PitchF/x) MLB performance metrics were acquired from public databases for various time-period scenarios before and after surgery, with comparisons made using paired t-tests, Wilcoxon matched-pair signed-rank tests, and Kruskal-Wallis analysis of variance. Ten of 13 pitchers (77%) achieved a sustained return to MLB, with a mean age of 30.2 ± 1.4 years at the time of surgery and 10.8 ± 1.5 months of postoperative rehabilitation before the return to MLB. Pre- and postoperative career data revealed no significant differences for 15 traditional pitching metrics, including earned run average (ERA), fielding independent pitching, walks plus hits per inning pitched (WHIP), walks per 9 innings, and strikeouts to walk ratio (SO/BB). There were also no significant differences between the 3 years before and the 3 years after surgical treatment. Using PitchF/x data for 72 advanced metrics and 25 different time-period scenarios, the highest number of significant relationships (n = 18) was observed for the 8 weeks before/12 weeks after scenario. In this analysis, 54 (75%) measures were unchanged (including ERA, WHIP, and SO/BB) and 14 (19%) were significantly improved, while only 4 (6%) were significantly decreased (including hard pitch maximal velocity 93.1 ± 1.0 vs. 92.5 ± 0.9 miles/hr, P = 0.047). Six pitchers remained active in MLB during the study period, while the other 4 had retired due to

  5. 76 FR 44564 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Listed Species

    Science.gov (United States)

    2011-07-26

    ... Endangered Species Act of 1973, as amended (Act), of seven animal and plant species. We conduct these reviews... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... following reasons (50 CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered...

  6. 77 FR 38762 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Listed Species

    Science.gov (United States)

    2012-06-29

    ... reviews under the Endangered Species Act of 1973, as amended (Act), of seven animal and plant species. We... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered to be recovered...

  7. 76 FR 30377 - Endangered and Threatened Wildlife and Plants; 5-Year Reviews of Species in California, Nevada...

    Science.gov (United States)

    2011-05-25

    ... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered to be recovered... Information, 22 Animal Species and 31 Plant Species in California and Nevada Common name Scientific name...

  8. 75 FR 55820 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species

    Science.gov (United States)

    2010-09-14

    ... Species Act of 1973, as amended (Act), of seven animal and plant species. We conduct these reviews to... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered to be recovered...

  9. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Science.gov (United States)

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  10. Students' Perception of Plant and Animal Species: A Case Study from Rural Argentina

    Science.gov (United States)

    Nates, Juliana; Campos, Claudia; Lindemann-Matthies, Petra

    2010-01-01

    Exotic species seriously affect local biodiversity in Argentina. This article investigates how students in San Juan province perceive native and exotic species. With the help of a written questionnaire, 865 students (9-17 years old) were asked to name the plant and animal they liked most, disliked most, and perceived as most useful, and to name…

  11. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  12. Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change.

    Science.gov (United States)

    Yu, Qiang; Wilcox, Kevin; La Pierre, Kimberly; Knapp, Alan K; Han, Xingguo; Smith, Melinda D

    2015-09-01

    Why some species are consistently more abundant than others, and predicting how species will respond to global change, are fundamental questions in ecology. Long-term observations indicate that plant species with high stoichiometric homeostasis for nitrogen (HN), i.e., the ability to decouple foliar N levels from variation in soil N availability, were more common and stable through time than low-HN species in a central U.S. grassland. However, with nine years of nitrogen addition, species with high H(N) decreased in abundance, while those with low H(N) increased in abundance. In contrast, in climate change experiments simulating a range of forecast hydrologic changes, e.g., extreme drought (two years), increased rainfall variability (14 years), and chronic increases in rainfall (21 years), plant species with the highest H(N) were least responsive to changes in soil water availability. These results suggest that H(N) may be predictive of plant species success and stability, and how plant species and ecosystems will respond to global-change-driven alterations in resource availability.

  13. Seed and root endophytic fungi in a range expanding and a related plant species

    NARCIS (Netherlands)

    Geisen, Stefan; Kostenko, Olga; Cnossen, Mark C.; ten Hooven, Freddy C.; Vreš, Branko; van Der Putten, Wim H.

    2017-01-01

    Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic

  14. Seed and root endophytic fungi in a range expanding and a related plant species

    NARCIS (Netherlands)

    Geisen, Stefan; Kostenko, Olga; Cnossen, Mark C.; Hooven, ten Freddy C.; Vreš, Branko; Putten, van der Wim H.

    2017-01-01

    Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne

  15. Palyonological studies of the semi-desert plant species from Pakistan

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... The detailed palynological description of 40 angiospermic plant species, belonging to 22 families and 38 genera were made. Out of the 22 families, 3 families were monocotyledonous and 19 dicotyledonous. The. Brassicaceae and Papilionaceae were the largest families regarding number of species ...

  16. Regional distribution of introduced plant species in the forests of the Northeastern United States

    Science.gov (United States)

    Beth Schulz; W. Keith Moser; Cassandra Olson; Katherine Johnson

    2013-01-01

    Many plant species have been introduced to the United States by humans since European settlement, sometimes deliberately and sometimes inadvertently, such as in contaminated crop seed or soil. Some species have successfully escaped cultivation and become invasive, spreading and establishing new populations distant from original population centers. Indeed, introduced...

  17. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  18. Savanna Land Use and its Effect on Woody Plant Species Diversity ...

    African Journals Online (AJOL)

    A total of 22 quadrats (20 m x 20 m) were used for woody vegetation sampling and the height and diameter at breast height (DBH) data were collected for each species. Vegetation data were analyzed using PC-ORD, CANOCO and SPSS software. A total of 24 woody plant species representing 18 genera in 14 families were ...

  19. Effects of sediment type and water level on biomass production of wetland plant species

    NARCIS (Netherlands)

    Lenssen, J.P.M.; Menting, F.B.J.; Van der Putten, W.H.; Blom, C.W.P.M.

    1999-01-01

    We investigated how water level and different sediment types affect the growth of wetland plant species. Twelve different species were grown in drained and waterlogged sediments, which represented types normally encountered in wetlands: a mineral sediment from exposed sites, a sediment from a

  20. Effects of salinity on growth of plant species from terrestrializing fens

    NARCIS (Netherlands)

    Stofberg, S.F.; Klimkovska, A.; Paulissen, M.P.C.P.; Witte, J.Ph.M.; Zee, van der S.E.A.T.M.

    2015-01-01

    Terrestrializing lowland fens may be temporarily exposed to elevated surface water salinity, which may have serious consequences for nature conservation. We investigated the response of five fresh water fen plant species to elevated salinity. In a controlled greenhouse experiment, these species were

  1. Checklist of Major Plant Species in Ashley County, Arkansas Noted by General Land Office Surveyors

    Science.gov (United States)

    Don C. Bragg

    2002-01-01

    The original General Land Office (GLO) survey notes for the Ashley County, Arkansas, area were examined to determine the plant taxa mentioned during the 1818 to 1855 surveys. While some challenges in identifying species were encountered, at least 39 families and approximately 100 species were identified with reasonable certainty. Most references were for trees used to...

  2. The effect of flooding on the recruitment of reed marsh and tall forb plant species

    NARCIS (Netherlands)

    Lenssen, J.P.M.; Ten Dolle, G.E.; Blom, C.W.P.M.

    1998-01-01

    Recruitment of plant species in wetlands dominated by Phragmites australis often results in a zonation of two vegetation types. A development of reed marshes takes place in the shallow flooded parts where the dominant P. australis becomes accompanied by interstitial marsh species. The vegetation on

  3. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  4. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions.

    Science.gov (United States)

    Dehling, D Matthias; Jordano, Pedro; Schaefer, H Martin; Böhning-Gaese, Katrin; Schleuning, Matthias

    2016-01-27

    Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology. © 2016 The Author(s).

  5. Ecological implications of reduced pollen deposition in alpine plants: a case study using a dominant cushion plant species.

    Science.gov (United States)

    Reid, Anya; Hooper, Robyn; Molenda, Olivia; Lortie, Christopher J

    2014-01-01

    The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae), we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination). The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species.

  6. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  7. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  8. Rarity, Species Richness, and the Threat of Extinction—Are Plants the Same as Animals?

    OpenAIRE

    Knapp, Sandra

    2011-01-01

    Assessment of conservation status is done both for areas or habitats and for species (or taxa). IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely followi...

  9. Richness of Ancient Forest Plant Species Indicates Suitable Habitats for Macrofungi

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, J.; Hošek, J.; Brabec, Marek; Dvořák, D.; Beran, M.; Deckerová, H.; Burel, J.; Kříž, M.; Borovička, Jan; Běťák, J.; Vašutová, Martina

    2014-01-01

    Roč. 23, č. 8 (2014), s. 2015-2031 ISSN 0960-3115 Grant - others:GA MŽP(CZ) SP/2D1/146/08 Institutional support: RVO:67985807 ; RVO:67985831 ; RVO:67179843 Keywords : diversity * forest continuity * forest management * Herb-layer plant species * red-listed species * species richness * surrogacy Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (GLU-S); EH - Ecology, Behaviour (UEK-B) Impact factor: 2.365, year: 2014

  10. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Diurnal Lhc gene expression is present in many but not all species of the plant kingdom.

    Science.gov (United States)

    Oberschmidt, O; Hücking, C; Piechulla, B

    1995-01-01

    The diurnal and circadian expression of light-harvesting genes (Lhc) is well documented for many plant species of the 'Angiospermae' division. Here we present the diurnal mRNA levels of species of the Gymnospermae, Pteridophyta, Bryophyta and Phycophyta divisions. Except for four Coniferophytina species, diurnal Lhc mRNA accumulation is detected in fern, moss and algae, supporting the idea that the concept of 'ciracadian clock'-controlled gene expression is an ancient process. Possible reasons why plants need the 'circadian clock' control mechanism are discussed.

  12. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  13. A simple and efficient method for isolating small RNAs from different plant species.

    Science.gov (United States)

    Rosas-Cárdenas, Flor de Fátima; Durán-Figueroa, Noé; Vielle-Calzada, Jean-Philippe; Cruz-Hernández, Andrés; Marsch-Martínez, Nayelli; de Folter, Stefan

    2011-02-24

    Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  14. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  15. Soil seed banks in plant invasions: promoting species invasiveness and long-term impakt on plant community dynamics

    Czech Academy of Sciences Publication Activity Database

    Gioria, M.; Pyšek, Petr; Moravcová, Lenka

    2012-01-01

    Roč. 84, č. 2 (2012), s. 327-350 ISSN 0032-7786 R&D Projects: GA ČR GA206/09/0563 Institutional support: RVO:67985939 Keywords : soil seed bank * plant invasions * species invasive ness Subject RIV: EF - Botanics Impact factor: 2.833, year: 2012

  16. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau.

    Science.gov (United States)

    Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun

    2012-07-01

    • Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species

    Science.gov (United States)

    Pérez-Méndez, Néstor; Rodríguez, Airam; Nogales, Manuel

    2018-01-01

    The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.

  18. Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai - Egypt.

    Science.gov (United States)

    El-Shatoury, Sahar A; El-Kraly, Omnia A; Trujillo, Martha E; El-Kazzaz, Waleed M; El-Din, El-Sayeda Gamal; Dewedar, Ahmed

    2013-09-01

    The diversity of culturable endophytic actinomycetes associated with wild Compositae plants is scantily explored. In this study, one hundred and thirty one endophytic actinobacteria were isolated from ten Compositae plant species collected from South Sinai in Egypt. Microscopic and chemotaxonomic investigation of the isolates indicated fourteen genera. Rare genera, such as Microtetraspora, and Intrasporangium, which have never been previously reported to be endophytic, were identified. Each plant species accommodated between three to eight genera of actinobacteria and unidentified strains were recovered from seven plant species. The generic diversity analysis of endophytic assemblages grouped the plant species into three main clusters, representing high, moderate and low endophytic diversity. The endophytes showed high functional diversity, based on forty four catabolic and plant growth promotion traits; providing some evidence that such traits could represent key criteria for successful residence of endophytes in the endosphere. Stress-tolerance traits were more predictive measure of functional diversity differences between the endophyte assemblages (Shannon's index, p = 0.01). The results indicate a potential prominent role of endophytes for their hosts and emphasize the potency of plant endosphere as a habitat for actinobacteria with promising future applications. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Transfer of elements relevant to radioactive waste from soil to five boreal plant species.

    Science.gov (United States)

    Roivainen, Päivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2011-04-01

    In long-term safety assessment models for radioactive waste disposal, uptake of radionuclides by plants is an important process with possible adverse effects in ecosystems. Cobalt-60, (59,63)Ni, (93)Mo, and (210)Pb are examples of long-living radionuclides present in nuclear waste. The soil-to-plant transfer of stable cobalt, nickel, molybdenum and lead and their distribution across plant parts were investigated in blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies) at two boreal forest sites in Eastern Finland. The concentrations of all of the studied elements were higher in roots than in above-ground plant parts showing that different concentration ratios (CR values) are needed for modelling the transfer to roots and stems/leaves. Some significant differences in CR values were found in comparisons of different plant species and of the same species grown at different sites. However, large within-species variation suggests that it is not justified to use different CR values for modelling soil-to-plant transfer of these elements in the different boreal forest plant species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    Directory of Open Access Journals (Sweden)

    Florence Tardy

    Full Text Available Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i with large diameter roots that explore a large soil zone; (ii with small diameter roots and a high specific length that explore a smaller soil zone; and (iii with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of

  1. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    Science.gov (United States)

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study

  2. Stimulation of flower nectar replenishment by removal: A survey of eleven animal-pollinated plant species

    Directory of Open Access Journals (Sweden)

    Elaine Y Luo

    2014-02-01

    Full Text Available Understanding the interaction between reward-seeking flower feeding animals and plants requires consideration of the dynamic nature of nectar secretion. Studies on several plants suggest that nectar secretion may increase in response to its removal, but it is not clear whether the phenomenon is widespread. We determined whether 11 species of Colorado mountain wildflowers showed removal-enhanced nectar replenishment (RENR. We measured floral phenology, nectar volumes, rate of replenishment, and compared the cumulative nectar produced following five hourly removals with that accumulated after five hours. Nectar replenishment occurred rapidly, within minutes; statistically significant RENR was observed in 9 of our 11 study species, with the strongest effects in bee-pollinated species. We discuss the implications of RENR in plant species on the measurement of nectar, the adaptive advantage of RENR, and the energetic costs of RENR.

  3. Drag forces of common plant species in temperate streams: consequences of morphology, velocity and biomass

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand

    2008-01-01

    a variety of environmental conditions and plant traits influences distribution. Drag on the trailing canopy usually increased 15- to 35-fold for a 100-fold increase of biomass suggesting that an even distribution of plants at low density across the stream bed offers greater resistance to downstream flow......Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distribution...... of drag with velocity did not differ systematically among inherently streamlined or non-streamlined species while increase of drag with biomass was smallest among non-streamlined shoots which provide greater mutual shelter. At low shoot density, inherently streamlined species usually experienced...

  4. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  5. Using worldwide edaphic data to model plant species niches: An assessment at a continental extent

    Science.gov (United States)

    Galvão, Franklin; Villalobos, Fabricio; De Marco Júnior, Paulo

    2017-01-01

    Ecological niche modeling (ENM) is a broadly used tool in different fields of plant ecology. Despite the importance of edaphic conditions in determining the niche of terrestrial plant species, edaphic data have rarely been included in ENMs of plant species perhaps because such data are not available for many regions. Recently, edaphic data has been made available at a global scale allowing its potential inclusion and evaluation on ENM performance for plant species. Here, we take advantage of such data and address the following main questions: What is the influence of distinct predictor variables (e.g. climatic vs edaphic) on different ENM algorithms? and what is the relationship between the performance of different predictors and geographic characteristics of species? We used 125 plant species distributed over the Neotropical region to explore the effect on ENMs of using edaphic data available from the SoilGrids database and its combination with climatic data from the CHELSA database. In addition, we related these different predictor variables to geographic characteristics of the target species and different ENM algorithms. The use of different predictors (climatic, edaphic, and both) significantly affected model performance and spatial complexity of the predictions. We showed that the use of global edaphic plus climatic variables generates ENMs with similar or better accuracy compared to those constructed only with climate variables. Moreover, the performance of models considering these different predictors, separately or jointly, was related to geographic properties of species records, such as number and distribution range. The large geographic extent, the variability of environments and the different species’ geographical characteristics considered here allowed us to demonstrate that global edaphic data adds useful information for plant ENMs. This is particularly valuable for studies of species that are distributed in regions where more detailed information on

  6. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dubchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intraradices in 134 Cs isotope by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phyto remediation of radioactively contaminated areas is analyzed. It is found that colonization pf plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  7. Influence of arbuscular mycorrhizal fungus Glomus intra-radices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dudchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intra-radices in 134 Cs isotope uptake by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed.It is found that colonization of plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocaesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  8. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  9. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  10. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  11. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types.

    Science.gov (United States)

    Jing, Panpan; Wang, Dan; Zhu, Chunwu; Chen, Jiquan

    2016-01-01

    Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C 3 , C 4 , and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for

  12. Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types

    Directory of Open Access Journals (Sweden)

    Panpan Jing

    2016-11-01

    Full Text Available Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT and low night temperature (LNT on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4 and CAM, growth forms (herbaceous, woody, and economic purposes (crop, non-crop. We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are

  13. The phosphatidylinositol species of suspension cultured plant cells

    International Nuclear Information System (INIS)

    Heim, S.; Wagner, K.G.

    1987-01-01

    Suspension cultured Nicotiana tabacum and Catharanthus roseus cells were labeled with [ 3 H]inositol, the phospholipid fraction extracted and separated by thin layer chromatography. Three different solvent systems and reference compounds were used to assign the different 3 H-labeled species by autoradiography. The ratio of [ 3 H]inositol incorporation into PI, PIP and PIP 2 was found to be 95:4:1; with some preparations a lyso-PI band was obtained which incorporated about a tenth of the label of the PIP band. With Catharanthus roseus cells a very faint band between PI and lyso-PI was detected which could not be assigned to a reference compound. (orig.)

  14. Bacterial Communities of Two Parthenogenetic Aphid Species Cocolonizing Two Host Plants across the Hawaiian Islands ▿

    Science.gov (United States)

    Jones, Ryan T.; Bressan, Alberto; Greenwell, April M.; Fierer, Noah

    2011-01-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  15. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    Science.gov (United States)

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants.

  16. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  17. Dynamics of gaps, vegetation, and plant species with and without fire.

    Science.gov (United States)

    Menges, Eric S; Crate, Sarah J H; Quintana-Ascencio, Pedro F

    2017-12-01

    Areas lacking dominant plants, or gaps, can support high diversity and specialist species. Previous chronosequence research in Florida rosemary scrub showed indistinct gap area patterns with fire and the dependence of certain species on gaps. We hypothesized that fire and gap size would affect extinction, colonization, diversity, and vegetation composition. In 2011-12, we revisited gaps first sampled in 2003, recording vascular plant and ground lichen occurrence by species, gap area, and burn history. We analyzed gap, vegetation, and species dynamics using linear mixed models, with Florida rosemary scrub patch as a random factor. Gap areas declined quickly during the first 10 yr postfire and then stabilized. Between 2003 and 2011-12, unburned gaps usually remained extant or split, whereas burned gaps usually merged. Unburned gaps tended to shrink, whereas burned gaps became larger. Species richness was positively related to gap area, fire, and their interaction. Over time, richness declined in unburned gaps and increased in burned gaps. Local extinction and colonization of individual species were related to fire between 2003 and 2011-12. In burned gaps, ground lichens disappeared, but many herbaceous species, including those killed by fire, increased occupancy. Colonization of most species was favored by burning, large gaps, or both. In Florida rosemary scrub, fire and increasing gap size increased species richness and many individual species occurrences, reduced local extinctions, and increased colonizations. Therefore, land management activities that encourage the creation and maintenance of large gaps will promote biodiversity in this system. © 2017 Botanical Society of America.

  18. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  19. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    Science.gov (United States)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  20. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  1. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  2. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities.

    Science.gov (United States)

    Barbosa Lima, Amanda; Cannavan, Fabiana Souza; Navarrete, Acacio Aparecido; Teixeira, Wenceslau Geraldes; Kuramae, Eiko Eurya; Tsai, Siu Mui

    2015-05-01

    Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes.

  3. Species Structure of Plants in the Báb Forest Clearcuts

    Directory of Open Access Journals (Sweden)

    Pilková Ivana

    2014-12-01

    Full Text Available In the paper we have summarized the results of a research which was realized in the Báb forest (Veľký Báb, Nitra upland. The target of the research is the evaluation of species composition in the clearcuts in 2012. In the Báb forest, during spring records there were 80 and during summer records 102 taxa of taxons recorded. The woody plants of spring and summer reports were mainly represented by typical forest species. Moreover, these are woody plants of forest open parts and there are also two invasive woody Ailanthus altissima, Robinia pseudoacacia plants documented. During the summer reports, three new woody plants Clematis vitalba, Lonicera caprifolium, Ulmus minor appeared in the herb layer. Herbs are represented during the spring reports by typical spring ephemeroids, geophytes and forest herbs presenting the spring synusia. During the summer reports, ephemeroids are absent and there were new species, mainly Alliaria petiolata, Convallaria majalis, Lithospermum purpurocaeruleum, Melica nutans of forest herbs reported. In the clearcut areas also clearcut, synanthropic, mainly Cirsium vulgare, Lamium purpureum, Sambucus ebulus, Serratula tinctoria, Torilis japonica and invasive species Aster lanceolatus, A. novi-belgii agg., Erigeron annuus ssp. annuus, Impatiens parviflora occurred. Generally, we can state that the diversity of clearcut plant taxa is high. Taxa are represented by forest woody plants, woody plants of clearcuts, forest open parts and forest edges. Within clearcut herbs, there are typical forest species of oak-hornbeam forests represented, species of clearcuts and human-influenced posts and there are also invasive taxa found

  4. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  5. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  6. Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia.

    Science.gov (United States)

    Scott, P M; Burgess, T I; Barber, P A; Shearer, B L; Stukely, M J C; Hardy, G E St J; Jung, T

    2009-06-01

    A new Phytophthora species, isolated from rhizosphere soil of declining or dead trees of Eucalyptus gomphocephala, E. marginata, Agonis flexuosa, and another 13 plant species, and from fine roots of E. marginata and collar lesions of Banksia attenuata in Western Australia, is described as Phytophthora multivora sp. nov. It is homothallic and produces semipapillate sporangia, smooth-walled oogonia containing thick-walled oospores, and paragynous antheridia. Although morphologically similar to P. citricola, phylogenetic analyses of the ITS and cox1 gene regions demonstrate that P. multivora is unique. Phytophthora multivora is pathogenic to bark and cambium of E. gomphocephala and E. marginata and is believed to be involved in the decline syndrome of both eucalypt species within the tuart woodland in south-west Western Australia.

  7. Rapeseed (Brassica napus L. as a protein plant species

    Directory of Open Access Journals (Sweden)

    Marinković Radovan

    2010-01-01

    Full Text Available Proteins of plant origin have a profound impact on human and animal lives. It is impossible to solve worldwide nutrition problem without taking into concern needs for proteins. Inadequate nutrition can only be improved by providing adequate proteins. Humans need c. 120g proteins daily, a third of which should come from meat and milk. Certain population categories, such as the sick, children, pregnant women and sportspeople are more sensitive to lack of protein. Oil crops synthesise oil, which is the basic reserve material in seed, but they also synthesise high levels of protein and can serve as protein source for human and animal nutrition. Generally speaking, protein content in seed of rapeseed at site R. Šančevi was from 19.60% (NS-L-74 to 25.93% JR-NS-36, and at site Sombor from 19.26% (NS-L-74 to 24.06% and 24.09% (NS-L-46 and cultivar Mira. Genotype NS-L-74 had the lowest protein content at both testing sites. Higher protein content was evident with spring genotypes than with winter gentypes. .

  8. Screening Brazilian plant species for in vitro inhibition of 5-lipoxygenase.

    Science.gov (United States)

    Braga, F C; Wagner, H; Lombardi, J A; de Oliveira, A B

    2000-01-01

    Plants from the Brazilian flora were evaluated for the inhibition of 5-lipoxygenase. The species were selected based on their traditional use and on a chemosystematic approach. In total, 19 species belonging to 13 families have been investigated. Hedychium coronarium J. Koenig (Zingiberaceae), Xylopia frutescens Aubl. (Annonaceae) and Hymenaea courbaril L. (Leguminosae) presented a high 5-lipoxygenase inhibitory activity. Some hypothesis about the nature of the active compounds are discussed, based on reports of the chemical constitution of these species or other species from the same botanical family.

  9. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    Science.gov (United States)

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  10. Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity

    Science.gov (United States)

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

    2013-01-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  11. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    Directory of Open Access Journals (Sweden)

    Diego Ellis-Soto

    Full Text Available Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava and passion fruit (Passiflora edulis occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.. Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  12. Patch size effects on plant species decline in an experimentally fragmented landscape.

    Science.gov (United States)

    Collins, Cathy D; Holt, Robert D; Foster, Bryan L

    2009-09-01

    Understanding local and global extinction is a fundamental objective of both basic and applied ecology. Island biogeography theory (IBT) and succession theory provide frameworks for understanding extinction in changing landscapes. We explore the relative contribution of fragment size vs. succession on species' declines by examining distributions of abundances for 18 plant species declining over time in an experimentally fragmented landscape in northeast Kansas, U.S.A. If patch size effects dominate, early-successional species should persist longer on large patches, but if successional processes dominate, the reverse should hold, because in our system woody plant colonization is accelerated on large patches. To compare the patterns in abundance among patch sizes, we characterize joint shifts in local abundance and occupancy with a new metric: rank occupancy-abundance profiles (ROAPs). As succession progressed, statistically significant patch size effects emerged for 11 of 18 species. More early-successional species persisted longer on large patches, despite the fact that woody encroachment (succession) progressed faster in these patches. Clonal perennial species persisted longer on large patches compared to small patches. All species that persisted longer on small patches were annuals that recruit from the seed bank each year. The degree to which species declined in occupancy vs. abundance varied dramatically among species: some species declined first in occupancy, others remained widespread or even expanded their distribution, even as they declined in local abundance. Consequently, species exhibited various types of rarity as succession progressed. Understanding the effect of fragmentation on extinction trajectories requires a species-by-species approach encompassing both occupancy and local abundance. We propose that ROAPs provide a useful tool for comparing the distribution of local abundances among landscape types, years, and species.

  13. Comparative Cross-Species Alternative Splicing in Plants1[W][OA

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-01-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS. PMID:17496110

  14. [Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin].

    Science.gov (United States)

    Xu, Jing-Jing; Ci, Hua-Cong; He, Xing-Dong; Xue, Ping-Ping; Zhao, Xue-Lai; Guo, Jian-Tan; Gao, Yu-Bao

    2012-05-01

    Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.

  15. Infection of Melanoplus sanguinipes Grasshoppers following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus▿

    Science.gov (United States)

    Drolet, Barbara S.; Stuart, Melissa A.; Derner, Justin D.

    2009-01-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV. PMID:19286779

  16. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.

    Science.gov (United States)

    Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D

    2009-05-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.

  17. Simulating Species Richness Using Agents with Evolving Niches, with an Example of Galápagos Plants

    Directory of Open Access Journals (Sweden)

    Randall B. Boone

    2010-01-01

    Full Text Available I sought to evolve plant species richness patterns on 22 Galápagos Islands, Ecuador, as an exploration of the utility of evolutionary computation and an agent-based approach in biogeography research. The simulation was spatially explicit, where agents were plant monocultures defined by three niche dimensions, lava (yes or no, elevation, and slope. Niches were represented as standard normal curves subjected to selection pressure, where neighboring plants bred if their niches overlapped sufficiently, and were considered the same species, otherwise they were different species. Plants that bred produced seeds with mutated niches. Seeds dispersed locally and longer distances, and established if the habitat was appropriate given the seed's niche. From a single species colonizing a random location, hundreds of species evolved to fill the islands. Evolved plant species richness agreed very well with observed plant species richness. I review potential uses of an agent-based representation of evolving niches in biogeography research.

  18. Biochemical characterization of selected plant species from Brazilian Savannas

    Directory of Open Access Journals (Sweden)

    Samantha Salomão Caramori

    2004-06-01

    Full Text Available The aim of this work was to analyze and quantify the presence of antinutritional compounds such as lectins and trypsin-like inhibitors, polyphenols and tannins, and enzymatic activity of peroxidases and proteases in the seeds of Annona crassiflora Mart. (araticum, Hymenaea courbaril L. var. courbaril (jatobá, Plathymenia reticulata Benth. (vinhático, Zanthoxylum rhoifolium Lam. (maminha de porca, Apeiba tibourbou Aubl. (pau jangada, Salacia crassiflora Mart G. Don. (bacupari, and Sclerolobium paniculatum Vog. (carvoeiro. The results suggested that these plants could be used as new source of food.O Cerrado é constituído por inúmeras espécies vegetais com potencial econômico, as quais são utilizadas para os mais variados fins, como medicinal e nutricional. O objetivo deste trabalho foi analisar e quantificar a presença de atividade enzimática de peroxidases e proteases e fatores antinutricionais, como lectinas e inibidores de proteases, além de polifenóis e taninos em algumas espécies nativas do Cerrado. O material vegetal utilizado foram sementes de Annona crassiflora Mart. (araticum, Hymenaea courbaril L. var. courbaril (jatobá, Plathymenia reticulata Benth. (vinhático, Zanthoxylum rhoifolium Lam. (maminha de porca, Apeiba tibourbou Aubl. (pau jangada, Salacia crassiflora (Mart. G. Don. (bacupari e Sclerolobium paniculatum Vog. (carvoeiro, coletadas na cidade de Goiânia e municípios de Jataí e Caldas Novas, estado de Goiás. O uso potencial destas plantas e suas enzimas na indústria de alimentos, poderia resultar em aplicações ao aparecimento de novos produtos a partir das matérias-primas tradicionais, além do uso de novas fontes de alimentos.

  19. An assessment of invasive plant species monitored by the Northern Research Station Forest Inventory and Analysis Program, 2005 through 2010

    Science.gov (United States)

    Cassandra M. Kurtz

    2013-01-01

    Invasive plant species are a worldwide concern due to the high ecological and economic costs associated with their presence. This document describes the plant characteristics and regional distribution of the 50 invasive plant species monitored from 2005 through 2010 on forested Phase 2 (P2) Forest Inventory and Analysis (FIA) plots in the 24 states of the Northern...

  20. Native mycorrhizal fungi replace introduced fungal species on Virginia pine and American chestnut planted on reclaimed mine sites of Ohio

    Science.gov (United States)

    Shivanand Hiremath; Kirsten Lehtoma; Jenise M. Bauman

    2014-01-01

    Plant-microbe community dynamics influence the natural succession of plant species where pioneer vegetation facilitates the establishment of a distantly related, later successional plant species. This has been observed in the case of restoration of the American chestnut (Castanea dentata) on abandoned mine land where Virginia pine (Pinus...