WorldWideScience

Sample records for pitch dynamics

  1. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  2. Bat Dynamics of Female Fast Pitch Softball Batters.

    Science.gov (United States)

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  3. Close-loop Dynamic Stall Control on a Pitching Airfoil

    Science.gov (United States)

    Giles, Ian; Corke, Thomas

    2017-11-01

    A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.

  4. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  5. Servo-Elastic Dynamics of a Hydraulic Actuator Pitching a Blade with Large Deflections

    International Nuclear Information System (INIS)

    Hansen, M H; Kallesoee, B S

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based on the Ziegler-Nichols method. Computed transfer functions from reference to actual pitch angles indicate that the actuator can be approximated as a low-pass filter with some appropriate limitations on pitching speed and acceleration. The structural blade model includes the geometrical coupling of edgewise bending and torsion for large flapwise deflections. This coupling is shown to introduce edgewise bending response for pitch reference oscillations around the natural frequency of the edgewise bending mode, in which frequency range the transfer function from reference to actual pitch angle cannot be modeled as a simple low-pass filter. The pitch bearing is assumed to be frictionless as a first approximation

  6. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping...... if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based...

  7. Experimental analysis and simulation of the dynamic response of a propeller pitch change actuator

    OpenAIRE

    LECLERCQ, Maxime; MALBURET, François; VERON, Philippe

    2012-01-01

    This paper focuses specifically on the control of the propeller pitch change mechanisms and their associated dynamics. The subject of this article is restricted to the mechanisms using a hydraulic single acting actuator. They function asymmetrically and are subject to important varying external loads under the full flight envelope. This phenomenon has an impact on their dynamic response.The question of the dynamics of these systems is rarely dealt with because, usually for aircraft applicatio...

  8. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    Science.gov (United States)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  9. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation

    Science.gov (United States)

    Kim, Ji Chul

    2017-01-01

    Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework. PMID:28522983

  10. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation.

    Science.gov (United States)

    Kim, Ji Chul

    2017-01-01

    Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.

  11. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation

    Directory of Open Access Journals (Sweden)

    Ji Chul Kim

    2017-05-01

    Full Text Available Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.

  12. Influences of Dynamic Level and Pitch Register on the Vibrato Rates and Widths of Violin and Viola Players

    Science.gov (United States)

    MacLeod, Rebecca B.

    2008-01-01

    The purpose of this study was to investigate possible influences of pitch register and dynamic level on vibrato rates and widths of university and high school violin and viola players. Analysis showed that pitch register significantly affected the vibrato rates and widths of the performers. Musicians vibrated 0.32 Hz faster and approximately 26…

  13. The auditory dynamic attending theory revisited: A closer look at the pitch comparison task.

    Science.gov (United States)

    Bauer, Anna-Katharina R; Jaeger, Manuela; Thorne, Jeremy D; Bendixen, Alexandra; Debener, Stefan

    2015-11-11

    The dynamic attending theory as originally proposed by Jones, 1976. Psychol. Rev. 83(5), 323-355 posits that tone sequences presented at a regular rhythm entrain attentional oscillations and thereby facilitate the processing of sounds presented in phase with this rhythm. The increased interest in neural correlates of dynamic attending requires robust behavioral indicators of the phenomenon. Here we aimed to replicate and complement the most prominent experimental implementation of dynamic attending (Jones et al., 2002. Psychol. Sci. 13(4), 313-319). The paradigm uses a pitch comparison task in which two tones, the initial and the last of a longer series, have to be compared. In-between the two, distractor tones with variable pitch are presented, at a regular pace. A comparison tone presented in phase with the entrained rhythm is hypothesized to lead to better behavioral performance. Aiming for a conceptual replication, four different variations of the original paradigm were created which were followed by an exact replication attempt. Across all five experiments, only 40 of the 140 tested participants showed the hypothesized pattern of an inverted U-shaped profile in task accuracy, and the group average effects did not replicate the pattern reported by Jones et al., 2002. Psychol. Sci. 13(4), 313-319 in any of the five experiments. However, clear evidence for a relationship between musicality and overall behavioral performance was found. This study casts doubt on the suitability of the pitch comparison task for demonstrating auditory dynamic attending. We discuss alternative tasks that have been shown to support dynamic attending theory, thus lending themselves more readily to studying its neural correlates. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    Directory of Open Access Journals (Sweden)

    Noel C. Perkins

    2012-08-01

    Full Text Available Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher’s hand. While radar guns and video-based motion capture (mocap resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball’s velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  15. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    Science.gov (United States)

    McGinnis, Ryan S.; Perkins, Noel C.

    2012-01-01

    Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  16. Modeling of Ship Roll Dynamics and Its Coupling with Heave and Pitch

    Directory of Open Access Journals (Sweden)

    R. A. Ibrahim

    2010-01-01

    Full Text Available In order to study the dynamic behavior of ships navigating in severe environmental conditions it is imperative to develop their governing equations of motion taking into account the inherent nonlinearity of large-amplitude ship motion. The purpose of this paper is to present the coupled nonlinear equations of motion in heave, roll, and pitch based on physical grounds. The ingredients of the formulation are comprised of three main components. These are the inertia forces and moments, restoring forces and moments, and damping forces and moments with an emphasis to the roll damping moment. In the formulation of the restoring forces and moments, the influence of large-amplitude ship motions will be considered together with ocean wave loads. The special cases of coupled roll-pitch and purely roll equations of motion are obtained from the general formulation. The paper includes an assessment of roll stochastic stability and probabilistic approaches used to estimate the probability of capsizing and parameter identification.

  17. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    Science.gov (United States)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  18. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    Science.gov (United States)

    Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-12-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  19. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.

    2017-01-01

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  20. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    Science.gov (United States)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  1. Decoding the dynamic representation of musical pitch from human brain activity.

    Science.gov (United States)

    Sankaran, N; Thompson, W F; Carlile, S; Carlson, T A

    2018-01-16

    In music, the perception of pitch is governed largely by its tonal function given the preceding harmonic structure of the music. While behavioral research has advanced our understanding of the perceptual representation of musical pitch, relatively little is known about its representational structure in the brain. Using Magnetoencephalography (MEG), we recorded evoked neural responses to different tones presented within a tonal context. Multivariate Pattern Analysis (MVPA) was applied to "decode" the stimulus that listeners heard based on the underlying neural activity. We then characterized the structure of the brain's representation using decoding accuracy as a proxy for representational distance, and compared this structure to several well established perceptual and acoustic models. The observed neural representation was best accounted for by a model based on the Standard Tonal Hierarchy, whereby differences in the neural encoding of musical pitches correspond to their differences in perceived stability. By confirming that perceptual differences honor those in the underlying neuronal population coding, our results provide a crucial link in understanding the cognitive foundations of musical pitch across psychological and neural domains.

  2. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    International Nuclear Information System (INIS)

    Mendoza, Victor; Goude, Anders; Bachant, Peter; Wosnik, Martin

    2016-01-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion. (paper)

  3. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    Science.gov (United States)

    Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders

    2016-09-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.

  4. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx

    DEFF Research Database (Denmark)

    Düring, Daniel N; Knörlein, Benjamin J; Elemans, Coen P H

    2017-01-01

    , forces and torques exerted on, and motion of the syringeal skeleton during song. Here, we present a novel marker-based 3D stereoscopic imaging technique to reconstruct 3D motion of servo-controlled actuation of syringeal muscle insertions sites in vitro and focus on two muscles controlling sound pitch...... to musculus syringealis ventralis (VS) shortening is intrinsically constraint at maximally 12% strain. Using these values we predict sound pitch to range from 350-800 Hz by VS modulation, corresponding well to previous observations. The presented methodology allows for quantification of syringeal skeleton...... motion and forces, acoustic effects of muscle recruitment, and calibration of computational birdsong models, enabling experimental access to the entire neuromechanical control loop of vocal motor control....

  5. New insights into the short pitch corrugation development enigma based on 3D-FE dynamic vehicle-track coupled modelling in frictional rolling contact

    NARCIS (Netherlands)

    Li, S.; Li, Z.; Nunez Vicencio, Alfredo; Dollevoet, R.P.B.J.

    2017-01-01

    A three-dimensional (3D) finite element (FE) dynamic frictional rolling contact model is presented for the study of short pitch corrugation that considers direct and instantaneous coupling between the contact mechanics and the structural dynamics in a vehicle-track system. In this study, we examine

  6. Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion

    Directory of Open Access Journals (Sweden)

    Thanhtoan Tran

    2014-08-01

    Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.

  7. Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom

    Science.gov (United States)

    Vasconcellos, Rui; Abdelkefi, Abdessattar

    2015-01-01

    The effects of a multi-segmented nonlinearity in the pitch degree of freedom on the behavior of a two-degree of freedom aeroelastic system are investigated. The aeroelastic system is free to plunge and pitch and is supported by linear translational and nonlinear torsional springs and is subjected to an incoming flow. The unsteady representation based on the Duhamel formulation is used to model the aerodynamic loads. Using modern method of nonlinear dynamics, a nonlinear characterization is performed to identify the system's response when increasing the wind speed. It is demonstrated that four sudden transitions take place with a change in the system's response. It is shown that, in the first transition, the system's response changes from simply periodic (only main oscillating frequency) to two periods (having the main oscillating frequency and its superharmonic of order 2). In the second transition, the response of the system changes from two periods (having the main oscillating frequency and its superharmonic of order 2) to a period-1. The results also show that the third transition is accompanied by a change in the system's response from simply periodic to two periods (having the main oscillating frequency and its superharmonic of order 3). After this transition, chaotic responses take place and then the fourth transition is accompanied by a sudden change in the system's response from chaotic to two periods (having the main oscillating frequency and its superharmonic of order 3). The results show that these transitions are caused by the tangential contact between the trajectory and the multi-segmented nonlinearity boundaries and with a zero-pitch speed incidence. This observation is associated with the definition of grazing bifurcation.

  8. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx

    DEFF Research Database (Denmark)

    Düring, Daniel N; Knörlein, Benjamin J; Elemans, Coen P H

    2017-01-01

    , forces and torques exerted on, and motion of the syringeal skeleton during song. Here, we present a novel marker-based 3D stereoscopic imaging technique to reconstruct 3D motion of servo-controlled actuation of syringeal muscle insertions sites in vitro and focus on two muscles controlling sound pitch......The biomechanics of sound production forms an integral part of the neuromechanical control loop of avian vocal motor control. However, we critically lack quantification of basic biomechanical parameters describing the vocal organ, the syrinx, such as material properties of syringeal elements...... motion and forces, acoustic effects of muscle recruitment, and calibration of computational birdsong models, enabling experimental access to the entire neuromechanical control loop of vocal motor control....

  9. Control of unsteady separated flow associated with the dynamic pitching of airfoils

    Science.gov (United States)

    Ahmed, Sajeer

    1991-01-01

    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  10. Pitch Fork

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using this materials natural acoustic p...... properties as a control signal for aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output signal is carried out with Pure Data Extended....

  11. Design and dynamic simulation of a fixed pitch 56 kW wind turbine drive train with a continuously variable transmission

    Science.gov (United States)

    Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.

    1986-01-01

    The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.

  12. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    Science.gov (United States)

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  13. Numerical modeling of a pitch oscillating S809 airfoil dynamic stall in 2D with application to a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group

    2010-07-01

    Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.

  14. Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel

    Science.gov (United States)

    King, Justin T.; Kumar, Rajeev; Green, Melissa A.

    2018-03-01

    The effects of changing Strouhal number on the three-dimensional wake produced by a rigid, bioinspired trapezoidal pitching panel are analyzed through the use of stereoscopic particle image velocimetry over a Strouhal number range of 0.17-0.56. The results show that for all cases, at least some section of the wake comprises an alternating series of interacting vortex rings. The behavior of the flows induced by these vortex rings is consistent with the wake phenomena of spanwise compression and transverse expansion. Increases in Strouhal number correspond to an increased rate of spanwise compression, a greater amount of transverse expansion, and the movement of the location of wake breakdown onset upstream.

  15. Pitching Airfoil Boundary Layer Investigations

    OpenAIRE

    Raffel, Markus; Richard, Hugues; Richter, Kai; Bosbach, Johannes; Geißler, Wolfgang

    2006-01-01

    The present paper describes an experiment performed in a transonic wind tunnel facility where a new test section has been developed especially for the investigation of the unsteady flow above oscillating airfoils under dynamic stall conditions. Dynamic stall is characterized by the development, movement and shedding of one or more concentrated vortices on the airfoils upper surface. The hysteresis loops of lift-, drag- and pitching moment are highly influenced by these vortices. To understand...

  16. Softball Pitching and Injury.

    Science.gov (United States)

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries.

  17. Ideomotor effects of pitch on continuation tapping.

    Science.gov (United States)

    Ammirante, Paolo; Thompson, William F; Russo, Frank A

    2011-02-01

    The ideomotor principle predicts that perception will modulate action where overlap exists between perceptual and motor representations of action. This effect is demonstrated with auditory stimuli. Previous perceptual evidence suggests that pitch contour and pitch distance in tone sequences may elicit tonal motion effects consistent with listeners' implicit awareness of the lawful dynamics of locomotive bodies. To examine modulating effects of perception on action, participants in a continuation tapping task produced a steady tempo. Auditory tones were triggered by each tap. Pitch contour randomly and persistently varied within trials. Pitch distance between successive tones varied between trials. Although participants were instructed to ignore them, tones systematically affected finger dynamics and timing. Where pitch contour implied positive acceleration, the following tap and the intertap interval (ITI) that it completed were faster. Where pitch contour implied negative acceleration, the following tap and the ITI that it completed were slower. Tempo was faster with greater pitch distance. Musical training did not predict the magnitude of these effects. There were no generalized effects on timing variability. Pitch contour findings demonstrate how tonal motion may elicit the spontaneous production of accents found in expressive music performance.

  18. Experimental Analysis of the Vorticity and Turbulent Flow Dynamics of a Pitching Airfoil at Realistic Flight Conditions

    National Research Council Canada - National Science Library

    Bowersox, Rodney D; Sahoo, Dipankar

    2007-01-01

    The primary objective of this research proposal was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions...

  19. Experimental Analysis of the Vorticity and Turbulent Flow Dynamics of a Pitching Airfoil at Realistic Flight Conditions

    Science.gov (United States)

    2007-08-31

    Element type Hex, independent meshing, Linear 3D stress Hex, independent meshing, Linear 3D stress 1 English Units were used in ABAQUS The NACA...Flow Freestream Condition Instrumentation Test section conditions were measured using a Druck DPI 203 digital pressure gage and an Omega Model 199...temperature gage. The Druck pressure gage measures the set dynamic pressure within 0.08%± of full scale, and the Omega thermometer is accurate to

  20. High coking value pitch

    Science.gov (United States)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  1. Perfect pitch reconsidered.

    Science.gov (United States)

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  2. Factors affecting relative pitch perception

    OpenAIRE

    McClaskey, Carolyn Marie

    2016-01-01

    Sounds that evoke a sense of pitch are ubiquitous in our environment and important for speech, music, and auditory scene analysis. The frequencies of these sounds rarely remain constant, however, and the direction and extent of pitch change is often more important than the exact pitches themselves. This dissertation examines the mechanisms underlying how we perceive relative pitch distance, focusing on two types of stimuli: continuous pitch changes and discrete pitch changes. In a series of e...

  3. The Role of Pickup Ion Dynamics Outside of the Heliopause in the Limit of Weak Pitch Angle Scattering: Implications for the Source of the IBEX Ribbon

    Science.gov (United States)

    Zirnstein, E. J.; Heerikhuisen, J.; Dayeh, M. A.

    2018-03-01

    We present a new model of the Interstellar Boundary Explorer (IBEX) ribbon based on the secondary energetic neutral atom (ENA) mechanism, under the assumption that there is negligible pitch angle scattering of pickup ions (PUIs) outside the heliopause. Using the results of an MHD-plasma/kinetic-neutral simulation of the heliosphere, we generate PUIs in the outer heliosheath, solve their transport using guiding center theory, and compute ribbon ENA fluxes at 1 au. We implement several aspects of the PUI dynamics, including (1) parallel motion along the local interstellar magnetic field (ISMF), (2) advective transport with the interstellar plasma, (3) the mirror force acting on PUIs propagating along the ISMF, and (4) betatron acceleration of PUIs as they are advected within an increasing magnetic field toward the heliopause. We find that ENA fluxes at 1 au are reduced when PUIs are allowed to move along the ISMF, and ENA fluxes are reduced even more by the inclusion of the mirror force, which pushes particles away from IBEX lines of sight. Inclusion of advection and betatron acceleration do not result in any significant change in the ribbon. Interestingly, the mirror force reduces the ENA fluxes from the inner edge of the ribbon more than those from its outer edge, effectively reducing the ribbon’s width by ∼6° and increasing its radius projected on the sky. This is caused by the asymmetric draping of the ISMF around the heliopause, such that ENAs from the ribbon’s inner edge originate closer to the heliopause, where the mirror force is strongest.

  4. Switching between pitch surfaces

    DEFF Research Database (Denmark)

    Rago, Vincenzo; Silva, João R; Brito, João

    2018-01-01

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch...... surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising...... on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations...

  5. Consonance and pitch.

    Science.gov (United States)

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Unsteady force characteristics on foils undergoing pitching motion

    International Nuclear Information System (INIS)

    Yang, Chang Jo

    2006-01-01

    In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack

  7. Vortex Dynamics around Pitching Plates

    Science.gov (United States)

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  8. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  9. Pitch memory and exposure effects.

    Science.gov (United States)

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-02-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory, long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch," is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well-established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in long-term memory, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no absolute pitch, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2, participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  11. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  12. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG....

  13. Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex.

    Science.gov (United States)

    Lelo-de-Larrea-Mancera, E Sebastian; Rodríguez-Agudelo, Yaneth; Solís-Vivanco, Rodolfo

    2017-06-01

    Music represents a complex form of human cognition. To what extent our auditory system is attuned to music is yet to be clearly understood. Our principal aim was to determine whether the neurophysiological operations underlying pre-attentive auditory change detection (N1 enhancement (N1e)/Mismatch Negativity (MMN)) and the subsequent involuntary attentional reallocation (P3a) towards infrequent sound omissions, are influenced by differences in musical content. Specifically, we intended to explore any interaction effects that rhythmic and pitch dimensions of musical organization may have over these processes. Results showed that both the N1e and MMN amplitudes were differentially influenced by rhythm and pitch dimensions. MMN latencies were shorter for musical structures containing both features. This suggests some neurocognitive independence between pitch and rhythm domains, but also calls for further address on possible interactions between both of them at the level of early, automatic auditory detection. Furthermore, results demonstrate that the N1e reflects basic sensory memory processes. Lastly, we show that the involuntary switch of attention associated with the P3a reflects a general-purpose mechanism not modulated by musical features. Altogether, the N1e/MMN/P3a complex elicited by infrequent sound omissions revealed evidence of musical influence over early stages of auditory perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Language experience enhances early cortical pitch-dependent responses

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  15. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  16. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  17. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  18. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  19. Lower extremity muscle activation during baseball pitching.

    Science.gov (United States)

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  20. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Pitch memory and exposure effects.

    OpenAIRE

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-01-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly-discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well establishe...

  2. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  3. Fast pitch softball injuries.

    Science.gov (United States)

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  4. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...

  5. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  6. Development of a Mechanical Passive Pitch System for a 500W Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Poryzala, Tomek; Mikkelsen, Robert Flemming; Kim, Taeseong

    2017-01-01

    The goal of this paper is to design, analyze, manufacture, and test a mechanical passive pitch mechanism for a small horizontal axis wind turbine. Several pitching concepts were investigated in the wind industry and related fields before ultimately deciding on a centrifugal governor design concept...... in a pitch-to-stall configuration. Inertial and aerodynamic models were developed in order to predict steady-state performance and an optimization routine was created to optimize the pitch mechanism configuration subject to manufacturing constraints. Dynamic modeling in HAWC2 validated the steady......-state design code, aeroelastic simulations were performed in turbulent wind conditions to simulate the pitch system dynamics. Physical testing of the full turbine was not completed, however the hub sub-assembly was tested on its own to validate the passive pitch characteristics and showed good agreement...

  7. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  8. VLSI implementation of an AMDF pitch detector

    OpenAIRE

    Smith, Tony; Gittel, Falko; Schwarzbacher, Andreas; Hilt, E.; Timoney, Joseph

    2003-01-01

    Pitch detectors are used in a variety of speech processing applications such as speech recognition systems where the pitch of the speaker is used as one parameter for identification purposes. Furthermore, pitch detectors are also sued with adaptive filters to achieve high quality adaptive noise cancellation of speech signals. In voice conversion systems, pitch detection is an essential step since the pitch of the modified signal is altered to model the target voice. This paper describes a ...

  9. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  10. Tinnitus pitch and acoustic trauma

    Energy Technology Data Exchange (ETDEWEB)

    Cahani, M; Paul, G; Shahar, A

    1983-01-01

    Fifty-six subjects complaining of tinnitus underwent an audiometric test and a test for identifying the analogous pitch of their tinnitus. All of the subjects reported that they had been exposed to noise in the past. The subjects were divided into two groups on the basis of their audiometric test results. Group P was composed of subjects who showed a sensorineural hearing loss typical of acoustic trauma. Group N was composed of subjects whose hearing was within normal limits. The pitch of the tinnitus in group P was concentrated in the high-frequency range, whereas in group N tinnitus pitch values were distributed over the low and mid-audiometric frequency spectrum. It was deduced that different processes are involved in the generation of tinnitus in the two groups.

  11. Disorders of pitch production in tone deafness

    Directory of Open Access Journals (Sweden)

    Simone eDalla Bella

    2011-07-01

    Full Text Available Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15% are inaccurate singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as tone deafness, has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that pitch production (or imitation is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory on poor-pitch singing suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  12. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    OpenAIRE

    Jiang, Cunmei; Lim, Vanessa K.; Wang, Hang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to crea...

  13. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems accou...

  14. Investigation on pitch system loads by means of an integral multi body simulation approach

    Science.gov (United States)

    Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.

    2016-09-01

    In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.

  15. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  16. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  17. Pitch perception prior to cortical maturation

    Science.gov (United States)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  18. Variable Pitch Darrieus Water Turbines

    Science.gov (United States)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  19. Absolute pitch: a case study.

    Science.gov (United States)

    Vernon, P E

    1977-11-01

    The auditory skill known as 'absolute pitch' is discussed, and it is shown that this differs greatly in accuracy of identification or reproduction of musical tones from ordinary discrimination of 'tonal height' which is to some extent trainable. The present writer possessed absolute pitch for almost any tone or chord over the normal musical range, from about the age of 17 to 52. He then started to hear all music one semitone too high, and now at the age of 71 it is heard a full tone above the true pitch. Tests were carried out under controlled conditions, in which 68 to 95 per cent of notes were identified as one semitone or one tone higher than they should be. Changes with ageing seem more likely to occur in the elasticity of the basilar membrane mechanisms than in the long-term memory which is used for aural analysis of complex sounds. Thus this experience supports the view that some resolution of complex sounds takes place at the peripheral sense organ, and this provides information which can be incorrect, for interpretation by the cortical centres.

  20. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  1. Perceiving pitch absolutely: Comparing absolute and relative pitch possessors in a pitch memory task

    Directory of Open Access Journals (Sweden)

    Schlaug Gottfried

    2009-08-01

    Full Text Available Abstract Background The perceptual-cognitive mechanisms and neural correlates of Absolute Pitch (AP are not fully understood. The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do not. Results We found a common activation pattern for both groups that included the superior temporal gyrus (STG extending into the adjacent superior temporal sulcus (STS, the inferior parietal lobule (IPL extending into the adjacent intraparietal sulcus (IPS, the posterior part of the inferior frontal gyrus (IFG, the pre-supplementary motor area (pre-SMA, and superior lateral cerebellar regions. Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians and in the right superior parietal lobule (SPL/intraparietal sulcus (IPS during the early perceptual phase (ITP 0–3 and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians. Non-significant between-group trends were seen in the posterior IFG (more in AP musicians and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group. Conclusion Since the increased activation of the left STS in AP musicians was observed during the early perceptual encoding phase and since the STS has been shown to be involved in categorization tasks, its activation might suggest that AP musicians involve categorization regions in tonal tasks. The increased activation of the right SPL/IPS in non-AP musicians indicates either an increased use of regions that are part of a tonal working memory (WM network, or the use of a multimodal encoding strategy such as the utilization of a visual-spatial mapping scheme (i.e., imagining notes on a staff or using a spatial coding for their relative pitch height for pitch

  2. Disorders of pitch production in tone deafness.

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as "tone deafness," has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  3. Tone language fluency impairs pitch discrimination

    Directory of Open Access Journals (Sweden)

    Isabelle ePeretz

    2011-07-01

    Full Text Available Here we present evidence that native speakers of a tone language, in which pitch contributes to word meaning, are impaired in the discrimination of falling pitches in tone sequences, as compared to speakers of a non-tone language. Both groups were presented with monotonic and isochronous sequences of five tones (i.e., constant pitch and intertone interval. They were required to detect when the fourth tone was displaced in pitch or time. While speakers of a tone language performed more poorly in the detection of downward pitch changes, they did not differ from non-tone language speakers in their perception of upward pitch changes or in their perception of subtle time changes. Moreover, this impairment cannot be attributed to low musical aptitude since the impairment remains unchanged when individual differences in musical pitch-based processing is taken into account. Thus, the impairment appears highly specific and may reflect the influence of statistical regularities of tone languages.

  4. Disorders of Pitch Production in Tone Deafness

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10–15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as “tone deafness,” has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language. PMID:21811479

  5. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    Science.gov (United States)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  6. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  7. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  8. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  9. Individual Pitch Control Using LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2012-01-01

    In this work the problem of individual pitch control of a variable-speed variable-pitch wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. However as the plant is nonlinear and time varying, a new approach is proposed to simplify......-of-plane blade root bending moments and a better transient response compared to a benchmark PI individual pitch controller....

  10. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    OpenAIRE

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P.; Alamdari, Houshang

    2016-01-01

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then use...

  11. Pitch Motion Stabilization by Propeller Speed Control Using Statistical Controller Design

    DEFF Research Database (Denmark)

    Nakatani, Toshihiko; Blanke, Mogens; Galeazzi, Roberto

    2006-01-01

    This paper describes dynamics analysis of a small training boat and a possibility of ship pitch stabilization by control of propeller speed. After upgrading the navigational system of an actual small training boat, in order to identify the model of the ship, the real data collected by sea trials...... were used for statistical analysis and system identification. This analysis shows that the pitching motion is indeed influenced by engine speed and it is suggested that there exists a possibility of reducing the pitching motion by properly controlling the engine throttle. Based on this observation...

  12. Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed...

  13. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    Science.gov (United States)

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing. © 2013 Elsevier Ltd. All rights reserved.

  14. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    Science.gov (United States)

    Adams, Zachary Howard

    to achieve optimum performance. A novel inverse method was developed implementing a new semi-empirical curvilinear flow blade aerodynamic coefficient model to predict optimum cycloturbine blade pitch waveforms from the ideal fluid deceleration. These improved blade pitch waveforms were evaluated on a 1.37m diameter by 1.37m span cycloturbine to definitively characterize their improvement over existing blade pitch motions and demonstrate the practicality of a variable blade pitch system. The Fluxline Optimal pitching kinematics outperformed sinusoidal and fixed pitching kinematics. The turbine achieved a mean gross aerodynamic power coefficient of 0.44 (95% confidence interval: [0.388,0.490]) and 0.52 (95% confidence interval: [0.426,0.614]) at tip speed ratios (TSRs) of 1.5 and 2.25 respectively which exceeds all other low TSR vertical axis wind turbines. Two-dimensional incompressible Reynolds-averaged Navier-Stokes computational fluid dynamic simulations were used to characterize higher order effects of the blade interaction with the fluid. These simulations suggest Fluxline Optimal pitch kinematics achieve high power coefficients by evenly extracting energy from the flow without blade stall or detached turbine wakes. Fluxline Theory was adapted to inform the design of high efficiency cyclorotors by incorporating the concept of rotor angle of attack as well as a power and drag loss model for blade support structure. A blade element version of this theory predicts rotor performance. For hovering, a simplified variation of the theory instructs that cyclorotors will achieve the greatest power loading at low disk loadings with high solidity blades pitched to maximum lift coefficient. Increasing lift coefficients in the upstream portion of the rotor disproportionately increases performance compared to magnifying lift in the downstream portion. This suggests airfoil sections that counter curvilinear flow effects could improve hovering efficiency. Additionally, the

  15. Anomalous capillary flow of coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Saint Romain, J.L.; Lahaye, J.; Ehrburger, P.; Couderc, P.

    1986-06-01

    Capillary flow of liquid coal tar pitch into a coke bed was studied. Anomalies in the flow could not be attributed to a plugging effect for mesophase content lower than 20 wt%. The flow behaviour of small pitch droplets can be correlated with the change in physicochemical properties, as measured by the glass transition temperature, on penetration into the coke bed. 4 references.

  16. Characterization of pitches by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ehrburger, P.; Martin, C.; Lahaye, J.; Saint-Romain, J.L.; Couderc, P.

    1988-12-01

    Pitch materials have generally a very complex composition with molecular mass ranging from a few hundred to several thousands units. In order to characterize these materials their properties related to the glassy transformation, in particular to enthalpy relaxation, have been investigated. Solvent soluble fractions have been characterized by differential scanning calorimetry (DSC). As with polymeric materials, enthalpy relaxation can provide information about pitches and the interactions occurring between the different types of molecules present in the pitch: mean molecular size, structural factor, molecular-size distribution. The determination of glass transition properties provides a useful means for the characterization of pitch and of their solvent extracts. It also permits insight into the complex reactions which occur when pitch materials are heat-treated. 7 refs., 2 figs., 3 tabs.

  17. Memory for vocal tempo and pitch.

    Science.gov (United States)

    Boltz, Marilyn G

    2017-11-01

    Two experiments examined the ability to remember the vocal tempo and pitch of different individuals, and the way this information is encoded into the cognitive system. In both studies, participants engaged in an initial familiarisation phase while attending was systematically directed towards different aspects of speakers' voices. Afterwards, they received a tempo or pitch recognition task. Experiment 1 showed that tempo and pitch are both incidentally encoded into memory at levels comparable to intentional learning, and no performance deficit occurs with divided attending. Experiment 2 examined the ability to recognise pitch or tempo when the two dimensions co-varied and found that the presence of one influenced the other: performance was best when both dimensions were positively correlated with one another. As a set, these findings indicate that pitch and tempo are automatically processed in a holistic, integral fashion [Garner, W. R. (1974). The processing of information and structure. Potomac, MD: Erlbaum.] which has a number of cognitive implications.

  18. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    Directory of Open Access Journals (Sweden)

    Behzad Majidi

    2016-05-01

    Full Text Available Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  19. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures.

    Science.gov (United States)

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P; Alamdari, Houshang

    2016-05-04

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  20. A Neuronal Network Model for Pitch Selectivity and Representation

    OpenAIRE

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among c...

  1. Pitch memory, labelling and disembedding in autism.

    Science.gov (United States)

    Heaton, Pamela

    2003-05-01

    Autistic musical savants invariably possess absolute pitch ability and are able to disembed individual musical tones from chords. Enhanced pitch discrimination and memory has been found in non-savant individuals with autism who also show superior performance on visual disembedding tasks. These experiments investigate the extent that enhanced disembedding ability will be found within the musical domain in autism. High-functioning children with autism, together with age- and intelligence-matched controls, participated in three experiments testing pitch memory, labelling and chord disembedding. The findings from experiment 1 showed enhanced pitch memory and labelling in the autism group. In experiment 2, when subjects were pre-exposed to labelled individual tones, superior chord segmentation was also found. However, in experiment 3, when disembedding performance was less reliant on pitch memory, no group differences emerged and the children with autism, like controls, perceived musical chords holistically. These findings indicate that pitch memory and labelling is superior in autism and can facilitate performance on musical disembedding tasks. However, when task performance does not rely on long-term pitch memory, autistic children, like controls, succumb to the Gestalt qualities of chords.

  2. 2D URANS simulation of aerodynamic loads on a pitching airfoil: Impact of computational parameters

    NARCIS (Netherlands)

    Geng, F.; Kalkman, I.M.; Suiker, A.S.J.; Blocken, B.J.E.

    2017-01-01

    A numerical study of aerodynamic loads on pitching airfoils using Computational Fluid Dynamics (CFD) is challenging due complicated airfoil-vortex interactions and the possible occurrence of dynamic stall. In the latter case the combination of boundary layer transitions and airfoil oscillations

  3. The intensity-pitch relation revisited: monopolar versus bipolar cochlear stimulation.

    Science.gov (United States)

    Arnoldner, Christoph; Riss, Dominik; Kaider, Alexandra; Mair, Alois; Wagenblast, Jens; Baumgartner, Wolf-Dieter; Gstöttner, Wolfgang; Hamzavi, Jafar-Sasan

    2008-09-01

    The very high speech perception scores now being achieved with cochlear implants have led to demands for similar levels of achievement in music perception and perception in noisy environments. One of the crucial factors in these fields is pitch perception. The aim of the present study was to investigate the extent to which pitch perception is influenced by the intensity of the stimulus, through the use of different stimulation modes (monopolar, bipolar) and different electrodes (lateral and perimodiolar). Sixteen postlingually deafened patients with an average implant use of 3.1 years were included in this study. All patients were using a Cochlear (CI24M, CI24R, CI24RE) cochlear implant. Subjects were asked to compare the pitch of an intensity-constant reference tone with the pitch of a test tone of varying intensity. The test was repeated for apical, mediocochlear, and basal channel locations, and also for monopolar and bipolar stimulation. It was found that in monopolar stimulation 87.5% and in bipolar stimulation 85.7% of the patients perceived a clear pitch change with changing intensity of the stimulus (Spearman correlation coefficients r 0.3, respectively). A total of 73.1% of these patients perceived lower pitches with increasing intensity, 26.9% reported the opposite effect. No statistically significant difference in the intensity-pitch correlation could be found between mono- and bipolar stimulation. Neither the mean dynamic range nor the type of electrode used was found to be related to the correlation coefficient. Although the majority of today's cochlear implant recipients perform well and the intensity-pitch relation in cochlear implant recipients is still poorly understood, rising demands on speech-coding strategies may soon make a compensation of the pitch shifts desirable. Although the results of our study tend to argue against a peripheral mechanism, the exact origin of this phenomenon remains unclear.

  4. Timing matters: the processing of pitch relations

    Science.gov (United States)

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  5. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  6. Pitch-to-Pitch Correlation in Location, Velocity, and Movement ant Its Role in Predicting Strikeout Rate

    OpenAIRE

    Zhao, Shiyuan

    2015-01-01

    We evaluate a model for pitch sequencing in baseball that is defined by pitch-to-pitch correlation in location, velocity, and movement. The correlations quantify the average similarity of consecutive pitches and provide a measure of the batter's ability to predict the properties of the upcoming pitch. We examine the characteristics of the model for a set of major league pitchers using PITCHf/x data for nearly three million pitches thrown over seven major league seasons. After partitioning the...

  7. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    Science.gov (United States)

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  8. Pitch modelling for the Nguni languages

    CSIR Research Space (South Africa)

    Govender, N

    2007-06-01

    Full Text Available Govender ngovender@csir.co.za, Etienne Barnard ebarnard@csir.co.za, Marelie Davel mdavel@csir.co.za by varying the levels of pitch, intensity and duration in the voice. An overview of intonation as observed in a variety of languages is provided in [1... nature of laryngograph data in voiced speech) and thus either could be used as the basis for the experiments. The pitch values extracted by Yin for all the laryngograph databases was consequently used as the basis for our comparisons. Pitch...

  9. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  10. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  11. Lateralization of the Huggins pitch

    Science.gov (United States)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  12. Methods for the characterization of impregnating pitches

    Energy Technology Data Exchange (ETDEWEB)

    Compin, S.; Ben Aim, R.; Couderc, P.; Saint-Romain, J.L.

    1987-11-01

    This paper discusses modification of the impregnation performance of various pitches. The filtration ability, which expresses the impregnation performance, was studied using gel permeation chromatography and scanning electron microscopy. 16 refs., 5 figs., 2 tabs.

  13. Pitch Synchronous Segmentation of Speech Signals

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pitch Synchronous Segmentation (PSS) that accelerates speech without changing its fundamental frequency method could be applied and evaluated for use at NASA....

  14. Coal tar pitch. Interrelations between properties and utilization of coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G; Koehler, H [Ruetgerswerke A.G., Duisburg (Germany, F.R.)

    1977-06-01

    Coal tar pitch is won as a highly aromatic, thermoplastic residue by destillating coal tar. In this paper the structure as well as the chemical and physical data of this pitch are introduced. In addition to this the actual as well as possible applications are indicated. For example, the pitch can be used for the production of binders, e.g. for electrodes and road construction as well as in combination with plastics for the production of insulating material and corrosion protection material.

  15. Major League Baseball pitch velocity and pitch type associated with risk of ulnar collateral ligament injury.

    Science.gov (United States)

    Keller, Robert A; Marshall, Nathan E; Guest, John-Michael; Okoroha, Kelechi R; Jung, Edward K; Moutzouros, Vasilios

    2016-04-01

    The number of Major League Baseball (MLB) pitchers requiring ulnar collateral ligament (UCL) reconstructions is increasing. Recent literature has attempted to correlate specific stresses placed on the throwing arm to risk for UCL injury, with limited results. Eighty-three MLB pitchers who underwent primary UCL reconstruction were evaluated. Pitching velocity and percent of pitch type thrown (fastball, curve ball, slider, and change-up) were evaluated 2 years before and after surgery. Data were compared with control pitchers matched for age, position, size, innings pitched, and experience. The evaluation of pitch velocity compared with matched controls found no differences in pre-UCL reconstruction pitch velocities for fastballs (91.5 vs. 91.2 miles per hour [mph], P = .69), curveballs (78.2 vs. 77.9 mph, P = .92), sliders (83.3 vs. 83.5 mph, P = .88), or change-ups (83.9 vs. 83.8 mph, P = .96). When the percentage of pitches thrown was evaluated, UCL reconstructed pitchers pitch significantly more fastballs than controls (46.7% vs. 39.4%, P = .035). This correlated to a 2% increase in risk for UCL injury for every 1% increase in fastballs thrown. Pitching more than 48% fastballs was a significant predictor of UCL injury, because pitchers over this threshold required reconstruction (P = .006). MLB pitchers requiring UCL reconstruction do not pitch at higher velocities than matched controls, and pitch velocity does not appear to be a risk factor for UCL reconstruction. However, MLB pitchers who pitch a high percentage of fastballs may be at increased risk for UCL injury because pitching a higher percent of fastballs appears to be a risk factor for UCL reconstruction. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Effects of culture on musical pitch perception.

    Directory of Open Access Journals (Sweden)

    Patrick C M Wong

    Full Text Available The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively. Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages. This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population, we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of

  17. Effects of Culture on Musical Pitch Perception

    Science.gov (United States)

    Wong, Patrick C. M.; Ciocca, Valter; Chan, Alice H. D.; Ha, Louisa Y. Y.; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association—the influence of linguistic background on music pitch processing and disorders—remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means ‘teacher’ and ‘to try’ when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  18. Effects of culture on musical pitch perception.

    Science.gov (United States)

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  19. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech

    Science.gov (United States)

    Yang, Wu-xia; Feng, Jie; Huang, Wan-ting; Zhang, Cheng-xiang; Nan, Yun

    2014-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent. PMID:24474944

  20. Perceptual Pitch Deficits Coexist with Pitch Production Difficulties in Music but Not Mandarin Speech

    Directory of Open Access Journals (Sweden)

    Wu-xia eYang

    2014-01-01

    Full Text Available Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics. To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, 8 amusics, 8 tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  1. The Impact of Roof Pitch and Ceiling Insulation on Cooling Load of Naturally-Ventilated Attics

    Directory of Open Access Journals (Sweden)

    Linxia Gu

    2012-07-01

    Full Text Available A 2D unsteady computational fluid dynamics (CFD model is employed to simulate buoyancy-driven turbulent ventilation in attics with different pitch values and ceiling insulation levels under summer conditions. The impacts of roof pitch and ceiling insulation on the cooling load of gable-roof residential buildings are investigated based on the simulation of turbulent air flow and natural convection heat transfer in attic spaces with roof pitches from 3/12 to 18/12 combined with ceiling insulation levels from R-1.2 to R-40. The modeling results show that the air flows in the attics are steady and exhibit a general streamline pattern that is qualitatively insensitive to the investigated variations of roof pitch and ceiling insulation. Furthermore, it is predicted that the ceiling insulation plays a control role on the attic cooling load and that an increase of roof pitch from 3/12 to 8/12 results in a decrease in the cooling load by around 9% in the investigated cases. The results suggest that the increase of roof pitch alone, without changing other design parameters, has limited impact on attics cooling load and airflow pattern. The research results also suggest both the predicted ventilating mass flow rate and attic cooling load can be satisfactorily correlated by simple relationships in terms of appropriately defined Rayleigh and Nusselt numbers.

  2. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  3. Physicochemical characterization of pitches by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, J.; Ehrburger, P.; Saint-Romain, J.L.; Couderc, P.

    1987-11-01

    The glass transition characterization of pitches has been studied by differential scanning calorimetry (d.s.c.). Experimental results and theoretical considerations indicate that: (1) the average molecular mass of pitches can be characterized by the apparent activation energy of the relaxation phenomenon of pitch molecules; (2) the molecular polydispersity is correlated with the width of the glass transition. Characterization of pitch by d.s.c. is well adapted to follow pitch transformation during heat treatment. 6 refs., 6 figs., 4 tabs.

  4. Sensorimotor Mismapping in Poor-pitch Singing.

    Science.gov (United States)

    He, Hao; Zhang, Wei-Dong

    2017-09-01

    This study proposes that there are two types of sensorimotor mismapping in poor-pitch singing: erroneous mapping and no mapping. We created operational definitions for the two types of mismapping based on the precision of pitch-matching and predicted that in the two types of mismapping, phonation differs in terms of accuracy and the dependence on the articulation consistency between the target and the intended vocal action. The study aimed to test this hypothesis by examining the reliability and criterion-related validity of the operational definitions. A within-subject design was used in this study. Thirty-two participants identified as poor-pitch singers were instructed to vocally imitate pure tones and to imitate their own vocal recordings with the same articulation as self-targets and with different articulation from self-targets. Definitions of the types of mismapping were demonstrated to be reliable with the split-half approach and to have good criterion-related validity with findings that pitch-matching with no mapping was less accurate and more dependent on the articulation consistency between the target and the intended vocal action than pitch-matching with erroneous mapping was. Furthermore, the precision of pitch-matching was positively associated with its accuracy and its dependence on articulation consistency when mismapping was analyzed on a continuum. Additionally, the data indicated that the self-imitation advantage was a function of articulation consistency. Types of sensorimotor mismapping lead to pitch-matching that differs in accuracy and its dependence on the articulation consistency between the target and the intended vocal action. Additionally, articulation consistency produces the self-advantage. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Bifurcation and chaos analysis for aeroelastic airfoil with freeplay structural nonlinearity in pitch

    International Nuclear Information System (INIS)

    De-Min, Zhao; Qi-Chang, Zhang

    2010-01-01

    The dynamics character of a two degree-of-freedom aeroelastic airfoil with combined freeplay and cubic stiffness nonlinearities in pitch submitted to supersonic and hypersonic flow has been gaining significant attention. The Poincaré mapping method and Floquet theory are adopted to analyse the limit cycle oscillation flutter and chaotic motion of this system. The result shows that the limit cycle oscillation flutter can be accurately predicted by the Floquet multiplier. The phase trajectories of both the pitch and plunge motion are obtained and the results show that the plunge motion is much more complex than the pitch motion. It is also proved that initial conditions have important influences on the dynamics character of the airfoil system. In a certain range of airspeed and with the same system parameters, the stable limit cycle oscillation, chaotic and multi-periodic motions can be detected under different initial conditions. The figure of the Poincaré section also approves the previous conclusion

  6. A Neuronal Network Model for Pitch Selectivity and Representation.

    Science.gov (United States)

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions.

  7. Pitch-verticality and pitch-size cross-modal interactions

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2017-01-01

    Two studies were conducted on cross-modal matching between pitch and sound source localization on the vertical axis, and pitch and size. In the first study 100 Hz, 200 Hz, 600 Hz, and 800 Hz tones were emitted by a loudspeaker positioned 60 cm above or below to the participant’s ear level. Using...

  8. Measurement of pitch in speech : an implementation of Goldstein's theory of pitch perception

    NARCIS (Netherlands)

    Duifhuis, H.; Willems, L.F.; Sluyter, R.J.

    1982-01-01

    Recent developments in hearing theory have resulted in the rather general acceptance of the idea that the perception of pitch of complex sounds is the result of the psychological pattern recognition process. The pitch is supposedly mediated by the fundamental of the harmonic spectrum which fits the

  9. Experimental analysis and simulation of the dynamix response of a propeller pitch change actuator

    OpenAIRE

    LECLERCQ, Maxime; MALBURET, François; VERON, Philippe

    2012-01-01

    This paper focuses specifically on the control of the propeller pitch change mechanisms and their associated dynamics. The subject of this article is restricted to the mechanisms using a hydraulic single acting actuator. They function asymmetrically and are subject to important varying external loads under the full flight envelope. This phenomenon has an impact on their dynamic response. The question of the dynamics of these systems is rarely dealt with because, usually for aircraft applic...

  10. Method of producing pitch (distillation residue)

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, M.A.; Belkina, T.V.; Krysin, V.P.

    1979-08-15

    A method is proposed for producing pitch by mixing hard coal pitch with anthracene fraction and thermal treatment of the mixture. The method is distinguished in that in order to increase the quality of the pitch, the anthracene fraction is subjected to thermal treatment at 250-300/sup 0/ for 10-13 hours in the presence of air. This duration of heat treatment allows one to build up in the anthracene fraction up to 20-24% of material which is not soluble and toluene, without the formation of products which are not soluble in quinoline. The fraction prepared in this manner is inserted into the initial pitch in the ratio 1:2 up to 1:9, the mixture is subject to heat treatment at temperature 360-380/sup 0/ and air consumption 7-91/kgX hours until the production of pitch with softening temperature of 85-90/sup 0/. As the initial raw material we used pitch with softening temperature of 60/sup 0/, content of substances which are not soluble in quinoline, 2.0% which are not soluble and toluene 20.6% and coking residue of 49.2%. Example. 80 grams of anthracene fraction is added to 320 grams of pitch. The anthracene fraction is subjected previously to heat treatment at 300/sup 0/ for 13 hours in the presence of air, supplied in the amount of 9 liters per hour. As a result of the heat treatment of the content of materials which are not soluble in toluence in the anthracene fraction is 24.0%, in quinoline it is 0.1%. The ratio of a pitch and thermally treated anthracene fraction in the mixture was 4:l. The produced mixture was subjected to heat treatment at 360/sup 0/ for 1.5 hours with air supply in the amount of 7 liters/ kilograms/hours. Pitch is produced with the following characteristics: softening temperature 88/sup 0/, content of substances which are not soluble in toluene 32.5%, in quinilone, 6.0%, coking residue, 56.7%. The invention can be used in the chemical coking and petrochemical industry.

  11. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch

    Energy Technology Data Exchange (ETDEWEB)

    Kirke, B.K. [Sustainable Energy Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia); Lazauskas, L. [Cyberiad, 25/65 King William Street, Adelaide, SA 5000 (Australia)

    2011-03-15

    Small Darrieus hydrokinetic turbines with fixed pitch blades typically suffer from poor starting torque, low efficiency and shaking due to large fluctuations in both radial and tangential force with azimuth angle. Efficiency improves as size increases, since adequate blade chord Reynolds numbers can be maintained with low solidity. Shaking can be eliminated by using helical blades, or reduced by using multiple blades. Starting torque can be marginally improved by the use of cambered blade profiles but may still be inadequate to overcome drive train friction for self-starting. Variable pitch can generate high starting torque, high efficiency and reduced shaking but active pitch control systems add considerably to complexity and cost, while passive systems must have effective pitch control to achieve higher efficiency than fixed pitch systems. (author)

  12. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    Science.gov (United States)

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  13. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... that could be used to quantify the internal noise and provide strong constraints for physiologically inspired models of pitch perception....

  14. Analysis of Pitch Gear Deterioration using Indicators

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    This work concerns a case study in the context of risk-based operation and maintenance of offshore wind turbines. For wind turbines with electrical pitch systems, deterioration can generally be observed at the pitch gear teeth; especially at the point where the blades are located during normal...... of the damage, and can be used for Bayesian updating of a damage model used for risk-based decision making. For this decision problem, the risk of failure should be compared to the cost of preventive maintenance. The hypothesis that the maximum pitch motor torque is an indicator of the damage size is supported...... changes in the temperature are the primary cause of the decrease. A model is established to remove the effect of the explained variation, and it is investigated if deterioration can be detected as changes in the peak torque. A small increase could be detected after the maintenance, but before...

  15. Multi-pitch Estimation using Semidefinite Programming

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Vandenberghe, Lieven

    2017-01-01

    assuming a Nyquist sampled signal by adding an additional semidefinite constraint. We show that the proposed estimator has superior performance compared to state- of-the-art methods for separating two closely spaced fundamentals and approximately achieves the asymptotic Cramér-Rao lower bound.......Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via...... a semidefinite programming representation of an atomic decomposition over a continuous dictionary of complex exponentials and extend this to real-valued data via a real semidefinite pro-ram with the same dimensions (i.e. half the size). We further impose a continuous frequency constraint naturally occurring from...

  16. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)], E-mail: manuel.inarrea@unirioja.es

    2009-05-30

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  17. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    International Nuclear Information System (INIS)

    Inarrea, Manuel

    2009-01-01

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  18. DIAGNOSIS OF PITCH AND LOAD DEFECTS

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system.......The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system....

  19. Effect of Tempo on Pitch Perception.

    Science.gov (United States)

    Duke, Robert A.; And Others

    1988-01-01

    Presents a study which investigated the perception of music majors and nonmusic majors concerning their ability to discriminate the way in which altered musical excerpts differed in pitch or tempo (or both) from preceding presentations. Concludes that both groups responded similarly across conditions and replications, and that tempo changes were…

  20. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  1. Pitch and timbre : definition, meaning and use

    NARCIS (Netherlands)

    Houtsma, A.J.M.

    1997-01-01

    Pitch and timbre are terms frequently used in studies on sound perception. Despite the existence of formal definitions, these terms are often used ambiguously in the literature. This paper is intended as a review of the ANSI definitions and their shortcomings, of modern ways to define the concepts

  2. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  3. Silvical characteristics of pitch pine (Pinus rigida)

    Science.gov (United States)

    S. Little

    1959-01-01

    Pitch pine (Pinus rigida Mill.) grows over a wide geographical range - from central Maine to New York and extreme southeastern Ontario, south to Virginia and southern Ohio, and in the mountains to eastern Tennessee, northern Georgia, and western South Carolina. Because it grows mostly on the poorer soils, its distribution is spotty.

  4. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  5. Establishment of expanded and streamlined pipeline of PITCh knock-in – a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368

  6. Does restriction of pitch variation affect the perception of vocal emotions in Mandarin Chinese?

    Science.gov (United States)

    Wang, Ting; Lee, Yong-Cheol

    2015-01-01

    This study reports a finding about vocal expressions of emotion in Mandarin Chinese. Production and perception experiments used the same tone and mixed tone sequences to test whether pitch variation is restricted due to the presence of lexical tones. Results showed that the restriction of pitch variation occurred in all high level tone sequences (tone 1 group) with the expression of happiness but did not happen for other dynamic tone groups. However, perception analysis revealed that all the emotions in every tone group received high identification rates; this indicates that listeners used other cues for encoding happiness in the tone 1 group. This study demonstrates that the restriction of pitch variation does not affect the perception of vocal emotions.

  7. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  8. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  9. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    in listeners with SNHL, it is likely that HI listeners rely on the enhanced envelope cues to retrieve the pitch of unresolved harmonics. Hence, the relative importance of pitch cues may be altered in HI listeners, whereby envelope cues may be used instead of TFS cues to obtain a similar performance in pitch......Understanding how the human auditory system processes the physical properties of an acoustical stimulus to give rise to a pitch percept is a fascinating aspect of hearing research. Since most natural sounds are harmonic complex tones, this work focused on the nature of pitch-relevant cues...... that are necessary for the auditory system to retrieve the pitch of complex sounds. The existence of different pitch-coding mechanisms for low-numbered (spectrally resolved) and high-numbered (unresolved) harmonics was investigated by comparing pitch-discrimination performance across different cohorts of listeners...

  10. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  11. The shoulder in baseball pitching: biomechanics and related injuries-part 1.

    Science.gov (United States)

    Park, Samuel S; Loebenberg, Mark L; Rokito, Andrew S; Zuckerman, Joseph D

    The extreme range of motion at the shoulder, the high angular velocities and torques, and the repetitious nature of the pitching motion combine to make the shoulder vulnerable to injury during the baseball pitch. An understanding of the biomechanics that contribute to shoulder injuries during each phase of the pitching motion can facilitate the athlete's diagnosis, treatment, and rehabilitation. Common injuries that occur during the late cocking and acceleration phases of the pitch include anterior instability and impingement, bicipital tendinitis, and subacromial impingement. Nonoperative treatment consisting of an initial period of rest and NSAIDS, followed by physical therapy and a gradual return to activity, is usually successful. When this approach fails, surgical intervention, either arthroscopic or open, may be necessary. Physical therapy and rehabilitation are directed toward restoring the integrity and strength of the dynamic and static stabilizers of the shoulder joint, yet preserving the range of motion necessary for performance. Through rehabilitation, the dedicated athlete can often return to the pitching mound at his previous level of performance.

  12. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Directory of Open Access Journals (Sweden)

    Mao Wei Chen

    Full Text Available In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane. This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  13. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Science.gov (United States)

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  14. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  15. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  16. Thermosetting behavior of pitch-resin from heavy residue

    Energy Technology Data Exchange (ETDEWEB)

    Qingfang, Z.; Yansheng, G.; Baohua, H.; Yuzhen, Z. [China Univ. of Petroleum, Dongying, Shandong (China). State Key LAboratory of Heavy Oil Processing, Heavy Oil Research Inst.

    2006-07-01

    Thermosetting resins are widely employed as a basic matrix for c/c composites in carbon materials production. A new type of synthesized thermosetting resin is called pitch resin. Pitch resin is a cheaper resin and possesses a potential opportunity for future use. However, the thermosetting behavior of pitch resin is not very clear. The hardening process and conditions for thermosetting are very important for future use of pitch resin. B-stage pitch resin is a soluble and meltable inter-media condensed polymer, which is not fully reacted and is of a low molecular weight. The insoluble and unmelted pitch resin can only be obtained from synthesized B-stage resin after a hardening stage. This paper presented an experiment that synthesized B-stage pitch resin with a link agent (PXG) under catalyst action from fluid catalytic cracking (FCC) of the slurry's aromatic enriched component (FCCDF). The paper discussed the experiment, including the synthesis of pitch resin and thermosetting of pitch resin. Two kinds of thermosetting procedures were used in the study called one-step thermosetting and two-step thermosetting. It was concluded that the B-stage pitch resin could be hardened after a thermosetting procedure by heat treatment. The thermosetting pitch resin from 2-step thermosetting possesses was found to have better thermal resistant properties than that of the 1-step thermosetting pitch resin. 13 refs., 2 tabs., 6 figs.

  17. Relating binaural pitch perception to the individual listener's auditory profile.

    Science.gov (United States)

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  18. Attending to pitch information inhibits processing of pitch information: the curious case of amusia.

    Science.gov (United States)

    Zendel, Benjamin Rich; Lagrois, Marie-Élaine; Robitaille, Nicolas; Peretz, Isabelle

    2015-03-04

    In normal listeners, the tonal rules of music guide musical expectancy. In a minority of individuals, known as amusics, the processing of tonality is disordered, which results in severe musical deficits. It has been shown that the tonal rules of music are neurally encoded, but not consciously available in amusics. Previous neurophysiological studies have not explicitly controlled the level of attention in tasks where participants ignored the tonal structure of the stimuli. Here, we test whether access to tonal knowledge can be demonstrated in congenital amusia when attention is controlled. Electric brain responses were recorded while asking participants to detect an individually adjusted near-threshold click in a melody. In half the melodies, a note was inserted that violated the tonal rules of music. In a second task, participants were presented with the same melodies but were required to detect the tonal deviation. Both tasks required sustained attention, thus conscious access to the rules of tonality was manipulated. In the click-detection task, the pitch deviants evoked an early right anterior negativity (ERAN) in both groups. In the pitch-detection task, the pitch deviants evoked an ERAN and P600 in controls but not in amusics. These results indicate that pitch regularities are represented in the cortex of amusics, but are not consciously available. Moreover, performing a pitch-judgment task eliminated the ERAN in amusics, suggesting that attending to pitch information interferes with perception of pitch. We propose that an impaired top-down frontotemporal projection is responsible for this disorder. Copyright © 2015 the authors 0270-6474/15/353815-10$15.00/0.

  19. Single organic microtwist with tunable pitch.

    Science.gov (United States)

    Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian

    2009-05-19

    A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.

  20. Voice pitch influences perceptions of sexual infidelity.

    Science.gov (United States)

    O'Connor, Jillian J M; Re, Daniel E; Feinberg, David R

    2011-02-28

    Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  1. Voice Pitch Influences Perceptions of Sexual Infidelity

    Directory of Open Access Journals (Sweden)

    Jillian J.M. O'Connor

    2011-01-01

    Full Text Available Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  2. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  3. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  4. Auditory processing in absolute pitch possessors

    Science.gov (United States)

    McKetton, Larissa; Schneider, Keith A.

    2018-05-01

    Absolute pitch (AP) is a rare ability in classifying a musical pitch without a reference standard. It has been of great interest to researchers studying auditory processing and music cognition since it is seldom expressed and sheds light on influences pertaining to neurodevelopmental biological predispositions and the onset of musical training. We investigated the smallest frequency that could be detected or just noticeable difference (JND) between two pitches. Here, we report significant differences in JND thresholds in AP musicians and non-AP musicians compared to non-musician control groups at both 1000 Hz and 987.76 Hz testing frequencies. Although the AP-musicians did better than non-AP musicians, the difference was not significant. In addition, we looked at neuro-anatomical correlates of musicianship and AP using structural MRI. We report increased cortical thickness of the left Heschl's Gyrus (HG) and decreased cortical thickness of the inferior frontal opercular gyrus (IFO) and circular insular sulcus volume (CIS) in AP compared to non-AP musicians and controls. These structures may therefore be optimally enhanced and reduced to form the most efficient network for AP to emerge.

  5. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  6. A fundamental residue pitch perception bias for tone language speakers

    Science.gov (United States)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  7. Pitch Counts in Youth Baseball and Softball: A Historical Review.

    Science.gov (United States)

    Feeley, Brian T; Schisel, Jessica; Agel, Julie

    2018-07-01

    Pitching injuries are getting increased attention in the mass media. Many references are made to pitch counts and the role they play in injury prevention. The original purpose of regulating the pitch count in youth baseball was to reduce injury and fatigue to pitchers. This article reviews the history and development of the pitch count limit in baseball, the effect it has had on injury, and the evidence regarding injury rates on softball windmill pitching. Literature search through PubMed, mass media, and organizational Web sites through June 2015. Pitch count limits and rest recommendations were introduced in 1996 after a survey of 28 orthopedic surgeons and baseball coaches showed injuries to baseball pitchers' arms were believed to be from the number of pitches thrown. Follow-up research led to revised recommendations with more detailed guidelines in 2006. Since that time, data show a relationship between innings pitched and upper extremity injury, but pitch type has not clearly been shown to affect injury rates. Current surveys of coaches and players show that coaches, parents, and athletes often do not adhere to these guidelines. There are no pitch count guidelines currently available in softball. The increase in participation in youth baseball and softball with an emphasis on early sport specialization in youth sports activities suggests that there will continue to be a rise in injury rates to young throwers. The published pitch counts are likely to positively affect injury rates but must be adhered to by athletes, coaches, and parents.

  8. A perceptual pitch boundary in a non-human primate

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-09-01

    Full Text Available Pitch is an auditory percept critical to the perception of music and speech, and for these harmonic sounds, pitch is closely related to the repetition rate of the acoustic wave. This paper reports a test of the assumption that non-human primates and especially rhesus monkeys perceive the pitch of these harmonic sounds much as humans do. A new procedure was developed to train macaques to discriminate the pitch of harmonic sounds and thereby demonstrate that the lower limit for pitch perception in macaques is close to 30 Hz, as it is in humans. Moreover, when the phases of successive harmonics are alternated to cause a pseudo-doubling of the repetition rate, the lower pitch boundary in macaques decreases substantially, as it does in humans. The results suggest that both species use neural firing times to discriminate pitch, at least for sounds with relatively low repetition rates.

  9. Fire resistance of single pitched-roof steel portal frame

    Directory of Open Access Journals (Sweden)

    J. J. Ferrán Gozálvez

    2017-03-01

    Full Text Available The standard procedure of structural fire design is based on the simplified analysis of single members. This method leads to conservative results in the case of structures able to redistribution of forces. The failure mechanism affecting both life safety and fire propagation is unknown. This work proposes a methodology for the advanced fire calculation of single pitched-roof portal frame for an agroindustrial building according to the Spanish Specifications with the structural software SAP2000. A non-linear dynamic and plastic, geometric (P-Delta and large-displacements calculation method has been developed. The different failure mechanisms and their influence are studied in terms of fire time resistance, human hazard and good safety. Also, parametric analyses were conducted: load level, rotational stiffness of the base and finally, support fire protection.

  10. Kinematic and Kinetic Profiles of Trunk and Lower Limbs during Baseball Pitching in Collegiate Pitchers

    Directory of Open Access Journals (Sweden)

    Masahiro Kageyama, Takashi Sugiyama, Yohei Takai, Hiroaki Kanehisa, Akira Maeda

    2014-12-01

    Full Text Available The purpose of this study was to clarify differences in the kinematic and kinetic profiles of the trunk and lower extremities during baseball pitching in collegiate baseball pitchers, in relation to differences in the pitched ball velocity. The subjects were 30 collegiate baseball pitchers aged 18 to 22 yrs, who were assigned to high- (HG, 37.4 ± 0.8 m·s-1 and low-pitched-ball-velocity groups (LG, 33.3 ± 0.8 m·s-1. Three-dimensional motion analysis with a comprehensive lower-extremity model was used to evaluate kinematic and kinetic parameters during baseball pitching. The ground-reaction forces (GRF of the pivot and stride legs during pitching were determined using two multicomponent force plates. The joint torques of hip, knee, and ankle were calculated using inverse-dynamics computation of a musculoskeletal human model. To eliminate any effect of variation in body size, kinetic and GRF data were normalized by dividing them by body mass. The maxima and minima of GRF (Fy, Fz, and resultant forces on the pivot and stride leg were significantly greater in the HG than in the LG (p < 0.05. Furthermore, Fy, Fz, and resultant forces on the stride leg at maximum shoulder external rotation and ball release were significantly greater in the HG than in the LG (p < 0.05. The hip abduction, hip internal rotation and knee extension torques of the pivot leg and the hip adduction torque of the stride leg when it contacted the ground were significantly greater in the HG than in the LG (p < 0.05. These results indicate that, compared with low-ball-velocity pitchers, high-ball-velocity pitchers can generate greater momentum of the lower limbs during baseball pitching.

  11. Vowel identity between note labels confuses pitch identification in non-absolute pitch possessors.

    Directory of Open Access Journals (Sweden)

    Alfredo Brancucci

    Full Text Available The simplest and likeliest assumption concerning the cognitive bases of absolute pitch (AP is that at its origin there is a particularly skilled function which matches the height of the perceived pitch to the verbal label of the musical tone. Since there is no difference in sound frequency resolution between AP and non-AP (NAP musicians, the hypothesis of the present study is that the failure of NAP musicians in pitch identification relies mainly in an inability to retrieve the correct verbal label to be assigned to the perceived musical note. The primary hypothesis is that, when asked to identify tones, NAP musicians confuse the verbal labels to be attached to the stimulus on the basis of their phonetic content. Data from two AP tests are reported, in which subjects had to respond in the presence or in the absence of visually presented verbal note labels (fixed Do solmization. Results show that NAP musicians confuse more frequently notes having a similar vowel in the note label. They tend to confuse e.g. a 261 Hz tone (Do more often with Sol than, e.g., with La. As a second goal, we wondered whether this effect is lateralized, i.e. whether one hemisphere is more responsible than the other in the confusion of notes with similar labels. This question was addressed by observing pitch identification during dichotic listening. Results showed that there is a right hemispheric disadvantage, in NAP but not AP musicians, in the retrieval of the verbal label to be assigned to the perceived pitch. The present results indicate that absolute pitch has strong verbal bases, at least from a cognitive point of view.

  12. [Factors influencing the pitch and loudness of tinnitus].

    Science.gov (United States)

    Ueda, S; Asoh, S; Watanabe, Y

    1992-11-01

    Pitch match and loudness balance tests were given to 397 cases with tinnitus. The factors which influenced tinnitus pitch and loudness were analyzed statistically from the clinical point of view. The results obtained were as follows: 1) Onomatopoeia of tinnitus, either [Keeeen] or [Jeeeen], were observed in a majority of cases. 2) Significantly sharp sounding onomatopoeia such as [Keeeen] or [Meeeen] had high pitches, over 4kHz, and dull sounds like [Gooooh] or [Buuuun] had low pitches, below 500Hz. 3) Acute stage tinnitus, within one month of onset, had a significantly depressed pitch and walked loudness, above 6dB. 4) The pitches observed in cases with Meniere's disease and chronic otitis media were distributed evenly from low frequencies to high. In other cases, especially presbyacusis and noise deafness, high pitch tinnitus (above 4kHz) was frequently noted. The loudness of tinnitus without hearing loss was significantly greater than in other diseases. 5) As a rule the more deteriorated the hearing level was, the lower the frequency of the pitch, and the smaller the loudness in tinnitus. 6) A high pitch of tinnitus nearly corresponded with hearing type, that is, the pitch of tinnitus was also in accordance with the disturbed frequency in the hearing threshold.

  13. Enhancement of micro-grid performance during islanding mode using storage batteries and new fuzzy logic pitch angle controller

    International Nuclear Information System (INIS)

    Kamel, Rashad M.; Chaouachi, A.; Nagasaka, Ken

    2011-01-01

    Research highlights: → Novel fuzzy pitch angle controller is proposed for smoothing wind fluctuation. → Storage batteries are used for performance improve of MG in islanding mode. → Those new techniques are compared with conventional PI pitch angle controller. -- Abstract: Power system deregulation, shortage of transmission capacities and needing to reduce green house gas have led to increase interesting in distributed generations (DGs) especially renewable sources. This study developed a complete model able to analysis and simulates in details the transient dynamic performance of the Micro-Grid (MG) during and subsequent islanding process. Wind speed fluctuations cause high fluctuations in output power of wind turbine which lead to fluctuations of frequency and voltages of the MG during the islanding mode. In this paper a new fuzzy logic pitch angle controller is proposed to smooth the output power of wind turbine to reduce MG frequency and voltage fluctuations during the islanding mode. The proposed fuzzy logic pitch controller is compared with the conventional PI pitch angle controller which usually used for wind turbine power control. Results proved the effectiveness of the proposed fuzzy controller in improvement of the MG performance. Also, this paper proposed using storage batteries technique to reduce the frequency deviation and fluctuations originated from wind power solar power fluctuations. Results indicate that the storage batteries technique is superior than fuzzy logic pitch controller in reducing frequency deviation, but with more expensive than the fuzzy controller. All models and controllers are built using Matlab (registered) Simulink (registered) environment.

  14. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  15. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  16. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  17. Processing of Binaural Pitch Stimuli in Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2009-01-01

    Binaural pitch is a tonal sensation produced by introducing a frequency-dependent interaural phase shift in binaurally presented white noise. As no spectral cues are present in the physical stimulus, binaural pitch perception is assumed to rely on accurate temporal fine structure coding and intact...... binaural integration mechanisms. This study investigated to what extent basic auditory measures of binaural processing as well as cognitive abilities are correlated with the ability of hearing-impaired listeners to perceive binaural pitch. Subjects from three groups (1: normal-hearing; 2: cochlear...... hearingloss; 3: retro-cochlear impairment) were asked to identify the pitch contour of series of five notes of equal duration, ranging from 523 to 784 Hz, played either with Huggins’ binaural pitch stimuli (BP) or perceptually similar, but monaurally detectable, pitches (MP). All subjects from groups 1 and 2...

  18. Illusory conjunctions of pitch and duration in unfamiliar tone sequences.

    Science.gov (United States)

    Thompson, W F; Hall, M D; Pressing, J

    2001-02-01

    In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.

  19. Effect of longitudinal pitch on the convection heat transfer from the tube banks in crossflow

    International Nuclear Information System (INIS)

    Kim, Tae-Wan; Hwang, Dae-Hyun; Lee, Chung-Chan; Kim, Keung-Ku

    2006-01-01

    When the tube banks in the heat exchanger are compactly designed, it is known that the average heat transfer coefficient is reduced compared with that of widely-designed tube banks. Thus, the heat transfer rate calculated by the usual heat transfer correlation will be over-estimated more than the actual one and the heat exchanger with such a design will have insufficient heat transfer capacity. Therefore, it is necessary to evaluate the effect of longitudinal and transverse pitches on the heat transfer, quantitatively. Zukauskas correlated various experimental data for aligned and staggered arrangements of tube banks as a function of Reynolds number and Prandtl number. In addition, Grimison suggested the heat transfer correlation for tube banks whose coefficients are determined by geometrical characteristics. However, Zukauskas correlation does not consider the effect of longitudinal and transverse pitches in the case of the aligned arrangement and Grimison correlation can only be used for specific geometrical arrangement such as 1.25X1.25, 1.50X1.50, and so on. Therefore, additional correlation for a heat transfer coefficient which covers a wide range of a pitch is required to predict the heat transfer rate appropriately. In this study, as a first step, the effect of a longitudinal pitch on the heat transfer is investigated for aligned tube banks by using CFD (Computational Fluid Dynamics) code

  20. Numerical methods and transition investigation of transient flows around a pitching hydrofoil

    International Nuclear Information System (INIS)

    Wu, Q; Wang, G Y; Huang, B

    2013-01-01

    The numerical simulations for a NACA66 hydrofoil are performed by using the standard k-ω SST turbulence model and revised γ-Re θ transition model respectively. The simulation results are compared with the experimental results, and the hydrodynamic property and the fluid structure during the pitching process is studied. It is revealed that, compared with the standard k-ω SST turbulence model, the revised γ-Re θ transition model is able to present the hydrodynamic property and the fluid structure of the transient flow around a pitching hydrofoil more accurately, and better predict the separation and transition process in the boundary layer. The transient flow process around a pitching hydrofoil can be divided into 5 parts. At small angle of attack, transition is observed at the leading edge of the foil, resulting in the inflection of dynamic property curves. As the angle of attack increases, a clockwise trailing edge vortex expands toward the leading edge of the foil. At high angles of attack, large-scale load fluctuations are observed due to the stall caused by separation of the leading edge vortex. The flow transitions back to laminar during the downward pitching process

  1. Aerodynamic tricks for pitching oscillation and visual stabilization in a hovering bird

    Science.gov (United States)

    Su, Jian-Yuan; Ting, Shang-Chieh; Yang, Jing-Tang

    2010-11-01

    We experimentally investigate how small birds attain a stabilized vision and body posture during hovering. Wing-beats of finches and passerines executing asymmetrical hovering provide lift merely during the downstroke. The downstroke lift is significantly greater than the bird weight, thereby causing a pitch-up swing of the bird body. A hovering bird skillfully and unceasingly tunes the position and orientation of lift force to stabilize its vision, so that the eye displacement is approximately one-tenth less than the tail, causing an illusion that the bird body is rotating about the eye. The hovering birds also spread and fold periodically their tail with an evident phase relationship with respect to the beating wings. We found that hovering birds use their tail to intercept the strong downward air-flow induced by the downstroking wings, and sophisticatedly spread their tail upon the arrival of the downward air-flow, rendering a pitch-up moment that effectively counteracts the pitch-down body rotation. Hence during hovering the bird essentially undergoes a dynamically-stable pitching oscillation, and concurrently attains a stabilized vision.

  2. Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method

    Science.gov (United States)

    Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.

    2017-12-01

    The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.

  3. Large eddy simulation of a pitched blade impeller mixed vessel - Comparison with LDA measurements

    Czech Academy of Sciences Publication Activity Database

    Vlček, P.; Kysela, Bohuš; Jirout, T.; Fořt, I.

    2016-01-01

    Roč. 108, April (2016), s. 42-48 ISSN 0263-8762. [15th European Conference on Mixing. St. Petersburg, 28.06.2016-03.07.2016] Institutional support: RVO:67985874 Keywords : CFD * LES * mixed vessel * pitched six-blade impeller * ensemble averaged mean velocity * flow rate Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.538, year: 2016 http://www.sciencedirect.com/science/article/pii/S0263876216000836

  4. Shoulder and Scapular Kinematics during the Windmill Softball Pitch

    OpenAIRE

    Backus, Sherry I.; Kraszewski, Andrew; Kontaxis, Andreas; Gibbons, Mandi; Bido, Jennifer; Graziano, Jessica; Hafer, Jocelyn; Jones, Kristofer J.; Hillstrom, Howard; Fealy, Stephen

    2013-01-01

    Objectives: Pitch count has been studied extensively in the overhand throwing athlete. However, pitch count and fatigue have not been systematically evaluated in the female windmill (underhand) throwing athlete. Direct kinematic measurements of the glenohumeral and scapulo-thoracic joint have not to be correlated and determined. The purpose is to measure scapular kinematics for the high school female windmill softball pitcher and identify kinematic adaptions and changes in pitching performanc...

  5. Kinematics changes in technique of a softball pitch

    OpenAIRE

    Tomášek, Petr

    2007-01-01

    Headline: Kinematic changes in technique of a softball pitch. Aims of thesis: I will compare the pitches ofprofessinal european softball wonam pitchers and then I will compare their technique with professional czech woman pitcher. Methods: Results: Key words: For examination of different techniques, I choosed thease professinal european softball wonam pitchers 3 Italians and 2 Greeks. Videotape was taken on European championship 2005 in Prague. For description of softball pitch I used a metho...

  6. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  7. Absolute Pitch: Effects of Timbre on Note-Naming Ability

    OpenAIRE

    Vanzella, Patr?cia; Schellenberg, E. Glenn

    2010-01-01

    Background Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP poss...

  8. Pitch Correlogram Clustering for Fast Speaker Identification

    Directory of Open Access Journals (Sweden)

    Nitin Jhanwar

    2004-12-01

    Full Text Available Gaussian mixture models (GMMs are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.

  9. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  10. Impaired short-term memory for pitch in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Statistically Efficient Methods for Pitch and DOA Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    , it was recently considered to estimate the DOA and pitch jointly. In this paper, we propose two novel methods for DOA and pitch estimation. They both yield maximum-likelihood estimates in white Gaussian noise scenar- ios, where the SNR may be different across channels, as opposed to state-of-the-art methods......Traditionally, direction-of-arrival (DOA) and pitch estimation of multichannel, periodic sources have been considered as two separate problems. Separate estimation may render the task of resolving sources with similar DOA or pitch impossible, and it may decrease the estimation accuracy. Therefore...

  12. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia.

    Science.gov (United States)

    Sun, Yanan; Lu, Xuejing; Ho, Hao Tam; Thompson, William Forde

    2017-03-13

    Research suggests that musical skills are associated with phonological abilities. To further investigate this association, we examined whether phonological impairments are evident in individuals with poor music abilities. Twenty individuals with congenital amusia and 20 matched controls were assessed on a pure-tone pitch discrimination task, a rhythm discrimination task, and four phonological tests. Amusic participants showed deficits in discriminating pitch and discriminating rhythmic patterns that involve a regular beat. At a group level, these individuals performed similarly to controls on all phonological tests. However, eight amusics with severe pitch impairment, as identified by the pitch discrimination task, exhibited significantly worse performance than all other participants in phonological awareness. A hierarchical regression analysis indicated that pitch discrimination thresholds predicted phonological awareness beyond that predicted by phonological short-term memory and rhythm discrimination. In contrast, our rhythm discrimination task did not predict phonological awareness beyond that predicted by pitch discrimination thresholds. These findings suggest that accurate pitch discrimination is critical for phonological processing. We propose that deficits in early-stage pitch discrimination may be associated with impaired phonological awareness and we discuss the shared role of pitch discrimination for processing music and speech.

  13. Perception of words and pitch patterns in song and speech

    Directory of Open Access Journals (Sweden)

    Julia eMerrill

    2012-03-01

    Full Text Available This fMRI study examines shared and distinct cortical areas involved in the auditory perception of song and speech at the level of their underlying constituents: words, pitch and rhythm. Univariate and multivariate analyses were performed on the brain activity patterns of six conditions, arranged in a subtractive hierarchy: sung sentences including words, pitch and rhythm; hummed speech prosody and song melody containing only pitch patterns and rhythm; as well as the pure musical or speech rhythm.Systematic contrasts between these balanced conditions following their hierarchical organization showed a great overlap between song and speech at all levels in the bilateral temporal lobe, but suggested a differential role of the inferior frontal gyrus (IFG and intraparietal sulcus (IPS in processing song and speech. The left IFG was involved in word- and pitch-related processing in speech, the right IFG in processing pitch in song.Furthermore, the IPS showed sensitivity to discrete pitch relations in song as opposed to the gliding pitch in speech. Finally, the superior temporal gyrus and premotor cortex coded for general differences between words and pitch patterns, irrespective of whether they were sung or spoken. Thus, song and speech share many features which are reflected in a fundamental similarity of brain areas involved in their perception. However, fine-grained acoustic differences on word and pitch level are reflected in the activity of IFG and IPS.

  14. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  15. Auditory deficits in amusia extend beyond poor pitch perception.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2017-05-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500Hz and 2000Hz) and high (8000Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500Hz at slow (f m =4Hz) and fast (f m =20Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits in both coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessment of rail long-pitch corrugation

    Science.gov (United States)

    Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto

    2017-09-01

    The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.

  17. Analysis of pitch system data for condition monitoring

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; van de Pieterman, René P.; Sørensen, John Dalsgaard

    2014-01-01

    with a theoretical model based on aeroelastic simulations. The blade moment is found to have only minor influence on the friction in the blade bearing. The main factors affecting the static friction are the temperature and time after the latest pitch movement. Pitch motor current and torque are proportional...

  18. Pitch Systems and Curwen Hand Signs: A Review of Literature

    Science.gov (United States)

    Frey-Clark, Marta

    2017-01-01

    Learning to sing from notation is a complex task, and accurately performing pitches without an external reference can be particularly challenging. As such, the use of mnemonic devices to reinforce tonal relationships is a long-standing practice among musicians. Chief among these mnemonic devices are pitch syllable systems and Curwen hand signs.…

  19. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

    Science.gov (United States)

    Stewart, Mary E.; Griffiths, Timothy D.; Grube, Manon

    2018-01-01

    Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient…

  20. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    Science.gov (United States)

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  1. Pointed and plateau-shaped pitch accents in North Frisian

    DEFF Research Database (Denmark)

    Niebuhr, Oliver; Hoekstra, Jarich

    2015-01-01

    for language documentation and conservation purposes. We selected a small part of this corpus – interviews of 10 elderly speakers – and conducted multiparametric F0 and duration measurements, focusing on nuclear rising-falling pitch accent patterns. We found strong evidence for a phonological pitch...

  2. The Association Between Pitch Conditions and the Incidence of ...

    African Journals Online (AJOL)

    shown to influence incidence of rugby injuries. Harsh weather conditions and detrimental effect on poor Kenyan rugby pitches create a unique environment for injury exposure. We conducted a whole population prospective cohort study to determine the association of pitch conditions with injury incidence and severity.

  3. Sparse Multi-Pitch and Panning Estimation of Stereophonic Signals

    DEFF Research Database (Denmark)

    Kronvall, Ted; Jakobsson, Andreas; Hansen, Martin Weiss

    2016-01-01

    In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present in the mix...

  4. Pitch identification and discrimination for complex tones with many harmonics

    NARCIS (Netherlands)

    Houtsma, A.J.M.; Smurzyński, J.

    1990-01-01

    Four experiments are reported that deal with pitch perception of harmonic complex tones containing up to 11 successive harmonics. In particular, the question is raised whether the pitch percept of the missing fundamental is mediated only by low-order resolvable harmonics, or whether it can also be

  5. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  6. Estimates of pitch strength for musicians and nonmusicians

    Science.gov (United States)

    Clarkson, Marsha G.; Zettler, Cynthia M.; Follmer, Michelle J.; Faulk, Margaret; Takagi, Michael J.

    2003-04-01

    To measure the strength of the pitch of iterated rippled noise (IRN), 19 adults were tested in an operant conditioning procedure. Seven adults had music training and currently played an instrument; 12 adults had no training and did not currently play an instrument. To generate IRN, a 500-ms Gaussian noise stimulus was delayed by 5 or 6 ms (pitches of 200 or 166 Hz) and added to the original for 16 iterations. IRN stimuli having one delay were presented repeatedly. On signal trials the delay changed for 6 s. Stimulus level roved from 63-67 dBA (background of 28 dBA). Adults learned to press a button when the stimulus changed. Testing started with IRN stimuli having 0-dB attenuation (i.e., maximal pitch strength). Stimuli having weaker pitches (i.e., progressively greater attenuation applied to the delayed noise) followed. Strength of pitch was quantified as the maximum attenuation for which pitch was discerned. For each subject, threshold attenuation for pitch strength was extrapolated as the 71% point on a psychometric function depicting percent correct performance as a function of attenuation. Mean thresholds revealed that the pitch percept was similar for both nonmusically trained (18.70 dB) and musically trained adults (18.73 dB).

  7. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  8. Shoulder joint velocity during fastball pitching in baseball

    NARCIS (Netherlands)

    Gasparutto, X.; van der Graaff, E; van der Helm, F.C.T.; Veeger, H.E.J.; Colloud, F.; Domalain, M.; Monnet, T.

    2015-01-01

    The purpose of this study was to assess the rotation and translation velocity of the shoulder complex during fastball pitching in baseball. 8 pitchers from the Dutch AAA team performed each 3 fastball pitches. Their motion was recorded by an opto-electronic device. Kinematic computation was

  9. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  10. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  11. Perception and Modeling of Affective Qualities of Musical Instrument Sounds across Pitch Registers.

    Science.gov (United States)

    McAdams, Stephen; Douglas, Chelsea; Vempala, Naresh N

    2017-01-01

    Composers often pick specific instruments to convey a given emotional tone in their music, partly due to their expressive possibilities, but also due to their timbres in specific registers and at given dynamic markings. Of interest to both music psychology and music informatics from a computational point of view is the relation between the acoustic properties that give rise to the timbre at a given pitch and the perceived emotional quality of the tone. Musician and nonmusician listeners were presented with 137 tones produced at a fixed dynamic marking (forte) playing tones at pitch class D# across each instrument's entire pitch range and with different playing techniques for standard orchestral instruments drawn from the brass, woodwind, string, and pitched percussion families. They rated each tone on six analogical-categorical scales in terms of emotional valence (positive/negative and pleasant/unpleasant), energy arousal (awake/tired), tension arousal (excited/calm), preference (like/dislike), and familiarity. Linear mixed models revealed interactive effects of musical training, instrument family, and pitch register, with non-linear relations between pitch register and several dependent variables. Twenty-three audio descriptors from the Timbre Toolbox were computed for each sound and analyzed in two ways: linear partial least squares regression (PLSR) and nonlinear artificial neural net modeling. These two analyses converged in terms of the importance of various spectral, temporal, and spectrotemporal audio descriptors in explaining the emotion ratings, but some differences also emerged. Different combinations of audio descriptors make major contributions to the three emotion dimensions, suggesting that they are carried by distinct acoustic properties. Valence is more positive with lower spectral slopes, a greater emergence of strong partials, and an amplitude envelope with a sharper attack and earlier decay. Higher tension arousal is carried by brighter sounds

  12. Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet

    International Nuclear Information System (INIS)

    Gray, P.C.; Lee, L.C.

    1982-01-01

    In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)

  13. Principles of a simulation model for a variable-speed pitch-regulated wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Camblong, H.; Vidal, M.R.; Puiggali, J.R.

    2004-07-01

    This paper considers the basic principles for establishing a simulation- model of a variable speed, pitch regulated, wind turbine. This model is used to test various control algorithms designed with the aim of maximising energetic yield and robustness and minimising flicker emission and dynamic drive train loads. One of the most complex elements of such a system is the interaction between wind and turbine. First, a detailed and didactic analysis of this interaction is given. This is used to understand some complicated phenomena, and to help design a simpler and more efficient (in terms of processing time) mathematical model. Additional submodels are given for the mechanical coupling, the pitch system and the electrical power system, before the entire model is validated by comparison with filed measurements on a 180 kW turbine. The complete simulation model is flexible, efficient and allows easy evaluation of different control algorithms. (author)

  14. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  15. Optimal Tuning of Multivariable Disturbance-Observer-Based Control for Flicker Mitigation Using Individual Pitch Control of Wind Turbine

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2017-01-01

    Multivariable disturbance accommodated observer based control (DOBC) scheme is presented to mitigate loads generated due to wind shear and tower shadow using individual blade pitch for above-rated wind speed condition of wind turbine. Wind shear and tower shadow add flickers as 1p, 3p, 6p and so on......, (p is the rotor rotational frequency) for three-bladed wind turbine. Novel DOBC with individual pitch control (IPC) to mitigate the flickers is presented and linear state-space model of wind turbine with tower dynamics is developed. The proposed controller is tuned using optimal control theory...... density of generator speed, drive-train torsion and tower fore-aft moment shows better mitigation to the flickers by proposed controller as compared with proportional–integral (PI) and disturbance accommodation control (DAC) with collective pitch control. Furthermore, it shows less degradation...

  16. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increas...

  17. Long-term memory for pitch in six-month-old infants.

    Science.gov (United States)

    Plantinga, Judy; Trainor, Laurel J

    2003-11-01

    We examined 6-month-old infants' long-term memory representations for the pitch of familiar melodies. Infants remembered the relative pitch of the melodies, but the absolute pitch was either not remembered or not a particularly salient attribute.

  18. Tune That Beer! Listening for the Pitch of Beer

    Directory of Open Access Journals (Sweden)

    Felipe Reinoso Carvalho

    2016-11-01

    Full Text Available We report two experiments designed to assess the key sensory drivers underlying people’s association of a specific auditory pitch with Belgian beer. In particular, we assessed if people would rely mostly on the differences between beers in terms of their relative alcohol strength, or on the contrast between the most salient taste attributes of the different beers. In Experiment 1, the participants rated three bitter beers (differing in alcohol content, using a narrow range of pitch choices (50–500 Hz. The results revealed that the beers were all rated around the same pitch (Mean = 232 Hz, SD = 136 Hz. In Experiment 2, a wider range of pitch choices (50–1500 Hz, along with the addition of a much sweeter beer, revealed that people mostly tend to match beers with bitter-range profiles at significantly lower pitch ranges when compared to the average pitch of a much sweeter beer. These results therefore demonstrate that clear differences in taste attributes lead to distinctly different matches in terms of pitch. Having demonstrated the robustness of the basic crossmodal matching, future research should aim to uncover the basis for such matches and better understand the perceptual effects of matching/non-matching tones on the multisensory drinking experience.

  19. Discriminating male and female voices: differentiating pitch and gender.

    Science.gov (United States)

    Latinus, Marianne; Taylor, Margot J

    2012-04-01

    Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial-temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27-63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

  20. Kinematics and kinetics of elite windmill softball pitching.

    Science.gov (United States)

    Werner, Sherry L; Jones, Deryk G; Guido, John A; Brunet, Michael E

    2006-04-01

    A significant number of time-loss injuries to the upper extremity in elite windmill softball pitchers has been documented. The number of outings and pitches thrown in 1 week for a softball pitcher is typically far in excess of those seen in baseball pitchers. Shoulder stress in professional baseball pitching has been reported to be high and has been linked to pitching injuries. Shoulder distraction has not been studied in an elite softball pitching population. The stresses on the throwing shoulder of elite windmill pitchers are similar to those found for professional baseball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (120 Hz) video data were collected on rise balls from 24 elite softball pitchers during the 1996 Olympic Games. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing shoulder were calculated. Multiple linear regression analysis was used to relate shoulder stress and pitching mechanics. Shoulder distraction stress averaged 80% of body weight for the Olympic pitchers. Sixty-nine percent of the variability in shoulder distraction can be explained by a combination of 7 parameters related to pitching mechanics. Excessive distraction stress at the throwing shoulder is similar to that found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper extremity kinematics and kinetics for elite softball pitchers has been established.

  1. Effects of aging on neuromagnetic mismatch responses to pitch changes.

    Science.gov (United States)

    Cheng, Chia-Hsiung; Baillet, Sylvain; Hsiao, Fu-Jung; Lin, Yung-Yang

    2013-06-07

    Although aging-related alterations in the auditory sensory memory and involuntary change discrimination have been widely studied, it remains controversial whether the mismatch negativity (MMN) or its magnetic counterpart (MMNm) is modulated by physiological aging. This study aimed to examine the effects of aging on mismatch activity to pitch deviants by using a whole-head magnetoencephalography (MEG) together with distributed source modeling analysis. The neuromagnetic responses to oddball paradigms consisting of standards (1000 Hz, p=0.85) and deviants (1100 Hz, p=0.15) were recorded in healthy young (n=20) and aged (n=18) male adults. We used minimum norm estimate of source reconstruction to characterize the spatiotemporal neural dynamics of MMNm responses. Distributed activations to MMNm were identified in the bilateral fronto-temporo-parietal areas. Compared to younger participants, the elderly exhibited a significant reduction of cortical activation in bilateral superior temporal guri, superior temporal sulci, inferior fontal gyri, orbitofrontal cortices and right inferior parietal lobules. In conclusion, our results suggest an aging-related decline in auditory sensory memory and automatic change detection as indexed by MMNm. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  3. Pitch Angle Control for Variable Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mouna Ben Smida

    2015-08-01

    Full Text Available Abstract.Pitch control is a practical technique for power regulation above the rated wind speed it is considered as the most efficient and popular power control method. As conventional pitch control usually use PI controller, the mathematical model of the system should be known well.This paper deals with the operation and the control of the direct driven permanent magnet synchronous generator (PMSG.Different conventional strategies of pitch angle control are described and validated through simulation results under Matlab\\Simulink.

  4. Half pitch lower sound perception caused by carbamazepine.

    Science.gov (United States)

    Konno, Shyu; Yamazaki, Etsuko; Kudoh, Masako; Abe, Takashi; Tohgi, Hideo

    2003-09-01

    We report a 16-year-old woman with secondary generalization of partial seizure, who complained of an auditory disturbance after carbamazepine (CBZ) administration. She had been taking sodium valproate (VPA) from the age of 15. However, her seizures remained poorly controlled. We changed her antiepileptic drug from VPA to CBZ. At 1 week after CBZ administration, she noticed that electone musical performances were heard as a semitone lower. When oral administration of CBZ was stopped, her pitch perception returned to normal. If she had not been able to discern absolute pitch, she might have been unable to recognize her lowered pitch perception. Auditory disturbance caused by CBZ is reversible and very rare.

  5. Risk-based Comparative Study of Fluid Power Pitch Concepts

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2017-01-01

    Proper functioning of the pitch system is essential to both normal operation and safety critical shut down of modern multi megawatt wind turbines. Several studies on field failure rates for such turbines show that pitch systems are a major contributor to failures which entails an increased risk....... Thus, more reliable and safe concepts are needed. A review of patents and patent applications covering fluid power pitch concepts, reveals that many propose closed-type hydraulic systems. This paper proposes a closed-type concept with a bootstrap reservoir. In contrary to a conventional system where...

  6. Polyphonic pitch detection and instrument separation

    Science.gov (United States)

    Bay, Mert; Beauchamp, James W.

    2005-09-01

    An algorithm for polyphonic pitch detection and musical instrument separation is presented. Each instrument is represented as a time-varying harmonic series. Spectral information is obtained from a monaural input signal using a spectral peak tracking method. Fundamental frequencies (F0s) for each time frame are estimated from the spectral data using an Expectation Maximization (EM) algorithm with a Gaussian mixture model representing the harmonic series. The method first estimates the most predominant F0, suppresses its series in the input, and then the EM algorithm is run iteratively to estimate each next F0. Collisions between instrument harmonics, which frequently occur, are predicted from the estimated F0s, and the resulting corrupted harmonics are ignored. The amplitudes of these corrupted harmonics are replaced by harmonics taken from a library of spectral envelopes for different instruments, where the spectrum which most closely matches the important characteristics of each extracted spectrum is chosen. Finally, each voice is separately resynthesized by additive synthesis. This algorithm is demonstrated for a trio piece that consists of 3 different instruments.

  7. Self-propulsion of a pitching foil

    Science.gov (United States)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  8. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  9. Tail-assisted pitch control in lizards, robots and dinosaurs.

    Science.gov (United States)

    Libby, Thomas; Moore, Talia Y; Chang-Siu, Evan; Li, Deborah; Cohen, Daniel J; Jusufi, Ardian; Full, Robert J

    2012-01-04

    In 1969, a palaeontologist proposed that theropod dinosaurs used their tails as dynamic stabilizers during rapid or irregular movements, contributing to their depiction as active and agile predators. Since then the inertia of swinging appendages has been implicated in stabilizing human walking, aiding acrobatic manoeuvres by primates and rodents, and enabling cats to balance on branches. Recent studies on geckos suggest that active tail stabilization occurs during climbing, righting and gliding. By contrast, studies on the effect of lizard tail loss show evidence of a decrease, an increase or no change in performance. Application of a control-theoretic framework could advance our general understanding of inertial appendage use in locomotion. Here we report that lizards control the swing of their tails in a measured manner to redirect angular momentum from their bodies to their tails, stabilizing body attitude in the sagittal plane. We video-recorded Red-Headed Agama lizards (Agama agama) leaping towards a vertical surface by first vaulting onto an obstacle with variable traction to induce a range of perturbations in body angular momentum. To examine a known controlled tail response, we built a lizard-sized robot with an active tail that used sensory feedback to stabilize pitch as it drove off a ramp. Our dynamics model revealed that a body swinging its tail experienced less rotation than a body with a rigid tail, a passively compliant tail or no tail. To compare a range of tails, we calculated tail effectiveness as the amount of tailless body rotation a tail could stabilize. A model Velociraptor mongoliensis supported the initial tail stabilization hypothesis, showing as it did a greater tail effectiveness than the Agama lizards. Leaping lizards show that inertial control of body attitude can advance our understanding of appendage evolution and provide biological inspiration for the next generation of manoeuvrable search-and-rescue robots.

  10. A theoretical analysis of pitch stability during gliding in flying snakes

    International Nuclear Information System (INIS)

    Jafari, Farid; Ross, Shane D; Socha, John J; Vlachos, Pavlos P

    2014-01-01

    Flying snakes use their entire body as a continuously morphing ‘wing’ to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake’s body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake’s real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework. (papers)

  11. A theoretical analysis of pitch stability during gliding in flying snakes.

    Science.gov (United States)

    Jafari, Farid; Ross, Shane D; Vlachos, Pavlos P; Socha, John J

    2014-06-01

    Flying snakes use their entire body as a continuously morphing 'wing' to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake's body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake's real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework.

  12. Efficiency enhancement of a self-propelled pitching profile using non-sinusoidal trajectories

    Science.gov (United States)

    Mekadem, M.; Chihani, E.; Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2017-11-01

    A symmetrical profile is subjected to non-sinusoidal pitching motion. The airfoil has a chord length c = 0.006 m and a semi-circular leading edge with a diameter of D = 0.001 m. The extrados and intrados are two straight lines that intersect at a tapered trailing edge, and the pitching pivot point is positioned at the leading edge. The pitching frequency is in the range of 1 based upon the maximum profile thickness D varies in the range of 35 <= Re <= 210 , which matches insect's Reynolds numbers. The foil movement is executed using the dynamic mesh technique and a user defined function (UDF). The adopted mesh has 70,445 nodes with 5,1960 quadrilateral cells. The results are in good agreement with prior experiments, and, compared to sinusoidal oscillations, show that non-sinusoidal flapping trajectories lead to advancing velocity increase of 550%. Additionally, if improved propulsive efficiency is sought, non-sinusoidal flapping lead to better thrust.

  13. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  14. Investors prefer entrepreneurial ventures pitched by attractive men.

    Science.gov (United States)

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.

  15. Joint Pitch and DOA Estimation Using the ESPRIT method

    DEFF Research Database (Denmark)

    Wu, Yuntao; Amir, Leshem; Jensen, Jesper Rindom

    2015-01-01

    In this paper, the problem of joint multi-pitch and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signals is considered. A spatio-temporal matrix signal model for a uniform linear array is defined, and then the ESPRIT method based on subspace techniques that exploits...... the invariance property in the time domain is first used to estimate the multi pitch frequencies of multiple harmonic signals. Followed by the estimated pitch frequencies, the DOA estimations based on the ESPRIT method are also presented by using the shift invariance structure in the spatial domain. Compared...... to the existing stateof-the-art algorithms, the proposed method based on ESPRIT without 2-D searching is computationally more efficient but performs similarly. An asymptotic performance analysis of the DOA and pitch estimation of the proposed method are also presented. Finally, the effectiveness of the proposed...

  16. Human vertical eye movement responses to earth horizontal pitch

    Science.gov (United States)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  17. Meet you in the elevator! Pitching yourself and your research

    NARCIS (Netherlands)

    Scheffel, Maren; Börner, Dirk

    2013-01-01

    Scheffel, M., & Börner, D. (2013, 31 May). Meet you in the elevator! Pitching yourself and your research. Workshop presentation at the 9th Joint European Summer School on Technology Enhanced Learning, Limassol, Cyprus.

  18. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  19. A Computationally Efficient Method for Polyphonic Pitch Estimation

    Directory of Open Access Journals (Sweden)

    Ruohua Zhou

    2009-01-01

    Full Text Available This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  20. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  1. Development in children's interpretation of pitch cues to emotions.

    Science.gov (United States)

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to emotions in interactive tasks. Only 4- to 5-year-olds consistently interpreted exaggerated, stereotypically happy or sad pitch contours as evidence that a puppet had succeeded or failed to find his toy (Experiment 1) or was happy or sad (Experiments 2, 3). Two- and 3-year-olds exploited facial and body-language cues in the same task. The authors discuss the implications of this late-developing use of pitch cues to emotions, relating them to other functions of pitch. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  2. Thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    Derivatogrphy is used to investigate the character of thermal transformations of hard coal pitch in compositions with thermoanthracite. It was shown that losses in mass during thermal transformations of hard coal pitch in the temperature interval 200-1000 C occur in two stages, at a varying rate in the 200-600 C range and at a constant rate in the 600-1000 C range. The rate of loss in the 200-600 C range is determined primarily by the rate of diffusion of volatile components and products of pitch conversion and in the 600-1000 C range mainly by the rate of the elemental chemical event. The thermal transformation is essentially unchanged in the presence of thermoanthracite. Silica intensifies the synthesis and increases the solid residue yield. Increasing the rate of heating of the pitch-thermoanthracite brings about incomplete separation of volatile products and a corresponding increase in the solid residue yield. (9 refs.)

  3. An Approximate Method for Pitch-Damping Prediction

    National Research Council Canada - National Science Library

    Danberg, James

    2003-01-01

    ...) method for predicting the pitch-damping coefficients has been employed. The CFD method provides important details necessary to derive the correlation functions that are unavailable from the current experimental database...

  4. Determination of pitch rotation in a spherical birefringent microparticle

    Science.gov (United States)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  5. Stimulating Thinking at the Design Pitch: Storytelling Approach and Impact

    OpenAIRE

    Parkinson, David; Warwick, Laura

    2017-01-01

    This paper presents findings from doctoral research to propose that next, we should look to understand storytelling at the design pitch in terms of the relationship between approaches taken and their impacts. A review of literature highlighted the following as desirable impacts for a design pitch: ‘Delivering Understanding’, ‘Demonstrating Value’, ‘Stimulating Critique’, and ‘Encouraging more Holistic Thinking’. These impacts were used to focus a series of semi-structured interviews conducted...

  6. A kinetic study of pyrolysis in pitch impregnated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kocaefe, D.; Charette, A.; Ferland, J.; Couderc, P.; Saint-Romain, J.L. (Universite du Quebec a Chicoutini, Chicoutini, PQ (Canada))

    1990-12-01

    A study was conducted on carbon electrodes which were impregnated with three different pitches. The focus of the study was to investigate the pyrolysis of pitch impregnated electrodes. For the purposes of the research an experimental technique and calculation procedure were developed. A kinetic model was used to interpret the data, comparison of model predictions and experimental data showed good agreement. 17 refs., 10 figs., 2 tabs.

  7. Pitch range variations improve cognitive processing of audio messages

    OpenAIRE

    Rodero Antón, Emma; Potter, Rob F.; Prieto Vives, Pilar, 1965-

    2017-01-01

    This study explores the effect of different speaker intonation strategies in audio messages on attention, autonomic arousal, and memory. An experiment was conducted in which participants listened to 16 radio commercials produced to vary in pitch range across sentences. Dependent variables were self-reported effectiveness and adequacy, psychophysiological arousal and attention, immediate word recall and recognition of information. Results showed that messages conveyed with pitch variations ach...

  8. A Method for Low-Delay Pitch Tracking and Smoothing

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    . In the second step, a Kalman filter is used to smooth the estimates and separate the pitch into a slowly varying component and a rapidly varying component. The former represents the mean pitch while the latter represents vibrato, slides and other fast changes. The method is intended for use in applica- tions...... that require fast and sample-by-sample estimates, like tuners for musical instruments, transcription tasks requiring details like vi- brato, and real-time tracking of voiced speech....

  9. Jet meandering by a foil pitching in quiescent fluid

    Science.gov (United States)

    Shinde, Sachin Y.; Arakeri, Jaywant H.

    2013-04-01

    The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.

  10. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  11. Petrographic characterization of the solid products of coal- pitch coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.; Kybett, B.D.; McDougall, W.J.; Nambudiri, E.M.V.; Rahimi, P.; Price, J.T.

    1986-06-01

    Petrographic studies were conducted on four solid residues resulting from the hydrogenation process of 1) Forestburg sub- bituminous coal alone, 2) the coal with a non-coking solvent (anthracene oil), 3) pitch (Cold Lake vacuum-bottom deposits), and 4) a mixture of coal and pitch. The purpose was to determine the amounts of coal and pitch-derived solids in the residues. All the residues were produced under identical severe conditions of liquefaction to promote the formation of solids. The coal processed with anthracene oil gives a residue consisting mainly of isotropic huminitic solids. If the coal is hydrogenated under similar conditions but without a solvent, the predominant residual solids are anisotropic semicokes displaying coarse mosaic textures, which form from vitroplast. The residual products from the hydrogenated Cold Lake vacuum- bottom deposits are also dominantly anisotropic semicokes; these display coarse mosaics and flow textures, and form by the growth and coalescence of mesophase spherules. Both coal- and pitch-derived solids are identified in a residue produced by coprocessing the Forestburg coal with the pitch from the Cold Lake vacuum-bottom deposits. It is concluded that the huminite macerals in the coal generate the fine-grained, mosaic-textured semicokes, whereas the pitch produces the coarse mosaics and flow-textured semicokes.

  12. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  13. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten; Poelmans, Hanne

    2010-01-01

    found that a majority of dyslexic subjects were unable to hear binaural pitch, the latter obtained a clear response of dyslexic listeners to Huggins’ pitch (HP) (Cramer and Huggins, 1958). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch...

  14. Efficiency of application of special exercises and exercises with the use of baseball pitching machine

    Directory of Open Access Journals (Sweden)

    Agapov D.V.

    2012-01-01

    Full Text Available Efficiency of the approach on making up coordination capabilities and technical tactical performances in baseball is confirmed. 100 boys (age 12-14 years take part in experiment. Relative analysis of a level of development of coordination capabilities and technical tactical readiness of baseball players is carried out. The level of development of technical readiness after experiment under the program «pitch, hit and run» is taped. The frame of special exercises with usage of colour balls is featured. Dynamics of hits for baseball players on a flying ball is presented. The approach in modelling of requirements of competitive activity is developed.

  15. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    Science.gov (United States)

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  16. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  17. Influence of Pitch Height on the Perception of Submissiveness and Threat in Musical Passages

    Directory of Open Access Journals (Sweden)

    David Huron

    2006-09-01

    Full Text Available Bolinger, Ohala, Morton and others have established that vocal pitch height is perceived to be associated with social signals of dominance and submissiveness: higher vocal pitch is associated with submissiveness, whereas lower vocal pitch is associated with social dominance. An experiment was carried out to test this relationship in the perception of non-vocal melodies. Results show a parallel situation in music: higher-pitched melodies sound more submissive (less threatening than lower-pitched melodies.

  18. The effect of pitch in multislice spiral/helical CT

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    2000-01-01

    The purpose of this study is to understand the effect of pitch on raw data interpolation in multislice spiral/helical computed tomography (CT) and provide guidelines for scanner design and protocol optimization. Multislice spiral CT is mainly characterized by the three parameters: the number of detector arrays, the detector collimation, and the table increment per x-ray source rotation. The pitch in multislice spiral CT is defined as the ratio of the table increment over the detector collimation in this study. In parallel to the current framework for studying longitudinal image resolution, the central fan-beam rays of direct and opposite directions are considered, assuming a narrow cone-beam angle. Generally speaking, sampling in the Radon domain by the direct and opposite central rays is nonuniform along the longitudinal axis. Using a recently developed methodology for quantifying the sensibility of signal reconstruction from non-uniformly sampled finite points, the effect of pitch on raw data interpolation is analyzed in multislice spiral CT. Unlike single-slice spiral CT, in which image quality decreases monotonically as the pitch increases, the sensibility of raw data interpolation in multislice spiral CT increases, suggesting that image quality does not decrease monotonically in this case. The most favorable pitch can be found from the sensitivity-slice spiral CT is provided. The study on the effect of pitch using the sensitivity analysis approach reveals the fundamental characteristics of raw data interpolation in multislice spiral CT, and gives insights into interaction between pitch and image quality. These results may be valuable for design of multislice spiral CT scanners and imaging protocol optimization in clinical applications. (authors)

  19. Learning for pitch and melody discrimination in congenital amusia.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2018-03-23

    Congenital amusia is currently thought to be a life-long neurogenetic disorder in music perception, impervious to training in pitch or melody discrimination. This study provides an explicit test of whether amusic deficits can be reduced with training. Twenty amusics and 20 matched controls participated in four sessions of psychophysical training involving either pure-tone (500 Hz) pitch discrimination or a control task of lateralization (interaural level differences for bandpass white noise). Pure-tone pitch discrimination at low, medium, and high frequencies (500, 2000, and 8000 Hz) was measured before and after training (pretest and posttest) to determine the specificity of learning. Melody discrimination was also assessed before and after training using the full Montreal Battery of Evaluation of Amusia, the most widely used standardized test to diagnose amusia. Amusics performed more poorly than controls in pitch but not localization discrimination, but both groups improved with practice on the trained stimuli. Learning was broad, occurring across all three frequencies and melody discrimination for all groups, including those who trained on the non-pitch control task. Following training, 11 of 20 amusics no longer met the global diagnostic criteria for amusia. A separate group of untrained controls (n = 20), who also completed melody discrimination and pretest, improved by an equal amount as trained controls on all measures, suggesting that the bulk of learning for the control group occurred very rapidly from the pretest. Thirty-one trained participants (13 amusics) returned one year later to assess long-term maintenance of pitch and melody discrimination. On average, there was no change in performance between posttest and one-year follow-up, demonstrating that improvements on pitch- and melody-related tasks in amusics and controls can be maintained. The findings indicate that amusia is not always a life-long deficit when using the current standard

  20. Faster decline of pitch memory over time in congenital amusia.

    Science.gov (United States)

    Williamson, Victoria J; McDonald, Claire; Deutsch, Diana; Griffiths, Timothy D; Stewart, Lauren

    2010-04-26

    Congenital amusia (amusia, hereafter) is a developmental disorder that impacts negatively on the perception of music. Psychophysical testing suggests that individuals with amusia have above average thresholds for detection of pitch change and pitch direction discrimination; however, a low-level auditory perceptual problem cannot completely explain the disorder, since discrimination of melodies is also impaired when the constituent intervals are suprathreshold for perception. The aim of the present study was to test pitch memory as a function of (a) time and (b) tonal interference, in order to determine whether pitch traces are inherently weaker in amusic individuals. Memory for the pitch of single tones was compared using two versions of a paradigm developed by Deutsch (1970a). In both tasks, participants compared the pitch of a standard (S) versus a comparison (C) tone. In the time task, the S and C tones were presented, separated in time by 0, 1, 5, 10, and 15 s (blocked presentation). In the interference task, the S and C tones were presented with a fixed time interval (5 s) but with a variable number of irrelevant tones in between 0, 2, 4, 6, and 8 tones (blocked presentation). In the time task, control performance remained high for all time intervals, but amusics showed a performance decrement over time. In the interference task, controls and amusics showed a similar performance decrement with increasing number of irrelevant tones. Overall, the results suggest that the pitch representations of amusic individuals are less stable and more prone to decay than those of matched non-amusic individuals.

  1. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  2. 12 -μ m -Pitch Electromechanical Resonator for Thermal Sensing

    Science.gov (United States)

    Laurent, Ludovic; Yon, Jean-Jacques; Moulet, Jean-Sébastien; Roukes, Michael; Duraffourg, Laurent

    2018-02-01

    We provide here a demonstration of 12 -μ m -pitch nanoelectromechanical resonant infrared sensors with fully integrated capacitive transduction. A low-temperature fabrication process is used to manufacture torsional resonator arrays. An H -shaped pixel with 9 -μ m -long nanorods and (250 ×30 )-nm2 cross section is designed to provide high thermal response whose experimental measurements reach up to 1024 Hz /nW . A mechanical dynamic range of over 113 dB is obtained, which leads to an Allan deviation of σA=3 ×10-7 at room temperature and 50-Hz noise bandwidth (σA=1.5 ×10-7 over 10 Hz). These features allow us to reach a sensitivity of (8 - 12 )-μ m radiation of 27 pW / √{Hz } leading to a noise-equivalent temperature difference (NETD) of 2 K for a 50-Hz noise bandwidth (NETD =1.5 K at 10 Hz). We demonstrate that the resolution is no more set by the phonon noise but by the anomalous phase noise already encountered in flexural nanoresonators. By both improving the temperature coefficient of frequency of a factor 10 and using a readout electronics at the pixel level, these resonators will lead to a breakthrough for uncooled infrared detectors. We expect that the NETD will rapidly drop to 180 mK with electronics close to the pixel. As a result of the features of our torsional resonators, an alternative readout scheme of pixels is suggested.

  3. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    Science.gov (United States)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  4. Effect of Pitching Consecutive Days in Youth Fast-Pitch Softball Tournaments on Objective Shoulder Strength and Subjective Shoulder Symptoms.

    Science.gov (United States)

    Skillington, S Andrew; Brophy, Robert H; Wright, Rick W; Smith, Matthew V

    2017-05-01

    The windmill pitching motion has been associated with risk for shoulder injury. Because there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Over the course of 2- and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Cross-sectional study; Level of evidence, 3. Fourteen female fast-pitch softball pitchers between the ages of 14 and 18 years were evaluated for strength and fatigue changes across 2- and 3-day tournaments. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a handheld dynamometer. Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS scores for shoulder fatigue (median, 2.0; 95% CI, 1.3-3.0) and pain (median, 1.3; 95% CI, 0.5-2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (median, 3.5; 95% CI, 1.5-5.5), VAS shoulder pain (median, 2.5; 95% CI, 1.0-4.5), and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the

  5. Control design for a pitch-regulated, variable speed wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.; Hansen, A.; Larsen, T.J.; Oeye, S.; Soerensen, P.; Fuglsang, P.

    2005-01-01

    The three different controller designs presented herein are similar and all based on PI-regulation of rotor speed and power through the collective blade pitch angle and generator moment. The aeroelastic and electrical modelling used for the time-domain analysis of these controllers are however different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: 1) Very similar step responses in rotor speed, pitch angle, and power are seen for simulations with steps in wind speed. 2) All controllers show a peak in power for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. 3) Responses of rotor speed, pitch angle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage of tuning the parameters of the frequency converter to obtain a more constant power output. The dynamic modelling of the power controller is an important result for the inclusion of generator dynamics in the aeroelastic modelling of wind turbines. A reduced dynamic model of the relation between generator torque and generator speed variations is presented; where the integral term of the inner PI-regulator of rotor current is removed be-cause the time constant is very small compared to the important aeroelastic frequencies. It is shown how the parameters of the transfer function for the remaining control system with the outer PI-regulator of power can be derived from the generator data sheet. The main results of the numerical optimisation of the control parameters in the pitch PI-regulator performed in Chapter 6 are the following: 1) Numerical optimization can be used to tune controller parameters, especially when the optimization is used as refinement of a qualified initial guess. 2) The design model used to calculate the initial value parameters, as described in Chapter 3

  6. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  7. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  8. A Novel Degradation Identification Method for Wind Turbine Pitch System

    Science.gov (United States)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  9. Pitch Gestures in Generative Modeling of Music

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2011-01-01

    Generative models of music are in need of performance and gesture additions, i.e. inclusions of subtle temporal and dynamic alterations, and gestures so as to render the music musical. While much of the research regarding music generation is based on music theory, the work presented here is based...

  10. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  11. Microstructure and properties of lignite tar and pitch. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Walther, H

    1954-01-01

    Photomicrographs reveal the presence of crystalline wax which affects the working properties in lignite tars and pitch. The crystals are large needles after slow cooling and small after rapid cooling. The crystals are paraffinic in character. All samples were nonhomogeneous. Thus the properties of lignite tar and pitch are varied by the source of the lignite and history of the specimen, neither softening point nor dropping point seems to satisfactorily characterize these tars. The samples exhibit thixotropic behavior characteristic of a structural viscosity and show hysteresis loops on varying the working rate. The variations have hindered use of lignite tars and pitches except where solubility in a solvent such as coal tar oil can be used to advantage.

  12. Tonal Scales and Minimal Simple Pitch Class Cycles

    DEFF Research Database (Denmark)

    Meredith, David

    2011-01-01

    Numerous studies have explored the special mathematical properties of the diatonic set. However, much less attention has been paid to the sets associated with the other scales that play an important rôle in Western tonal music, such as the harmonic minor scale and ascending melodic minor scale....... This paper focuses on the special properties of the class, T, of sets associated with the major and minor scales (including the harmonic major scale). It is observed that T is the set of pitch class sets associated with the shortest simple pitch class cycles in which every interval between consecutive pitch...... classes is either a major or a minor third, and at least one of each type of third appears in the cycle. Employing Rothenberg’s definition of stability and propriety, T is also the union of the three most stable inversional equivalence classes of proper 7-note sets. Following Clough and Douthett’s concept...

  13. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat

    2014-01-01

    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  14. Pitch Channel Control of a REMUS AUV with Input Saturation and Coupling Disturbances

    Directory of Open Access Journals (Sweden)

    Nailong Wu

    2018-02-01

    Full Text Available The motion of an underwater vehicle is prone to be affected by time-varying model parameters and the actuator limitation in control practice. Adaptive control is an effective method to deal with the general system dynamic uncertainties and disturbances. However, the effect of disturbances control on transient dynamics is not prominent. In this paper, we redesign the L 1 adaptive control architecture (L1AC with anti-windup (AW compensator to guarantee robust and fast adaption of the underwater vehicle with input saturation and coupling disturbances. To reduce the fluctuation of vehicle states, the Riccati-based AW compensator is utilized to compensate the output signal from L1AC controller via taking proper modification. The proposed method is applied to the pitch channel of REMUS vehicle’s six Degrees Of Freedom (DOF model with strong nonlinearities and compared with L1AC baseline controller. Simulations show the effectiveness of the proposed control strategy compared to the original L1AC. Besides, the fluctuation in roll channel coupled with pitch channel is suppressed according to the performances of control tests.

  15. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate

  16. Frogs Call at a Higher Pitch in Traffic Noise

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Male frogs call to attract females for mating and to defend territories from rival males. Female frogs of some species prefer lower-pitched calls, which indicate larger, more experienced males. Acoustic interference occurs when background noise reduces the active distance or the distance over which an acoustic signal can be detected. Birds are known to call at a higher pitch or frequency in urban noise, decreasing acoustic interference from low-frequency noise. Using Bayesian linear regression, we investigated the effect of traffic noise on the pitch of advertisement calls in two species of frogs, the southern brown tree frog (Litoria ewingii and the common eastern froglet (Crinia signifera. We found evidence that L. ewingii calls at a higher pitch in traffic noise, with an average increase in dominant frequency of 4.1 Hz/dB of traffic noise, and a total effect size of 123 Hz. This frequency shift is smaller than that observed in birds, but is still large enough to be detected by conspecific frogs and confer a significant benefit to the caller. Mathematical modelling predicted a 24% increase in the active distance of a L. ewingii call in traffic noise with a frequency shift of this size. Crinia signifera may also call at a higher pitch in traffic noise, but more data are required to be confident of this effect. Because frog calls are innate rather than learned, the frequency shift demonstrated by L. ewingii may represent an evolutionary adaptation to noisy conditions. The phenomenon of frogs calling at a higher pitch in traffic noise could therefore constitute an intriguing trade-off between audibility and attractiveness to potential mates.

  17. An advanced pitch change mechanism incorporating a hybrid traction drive

    Science.gov (United States)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  18. Automatic pitch detection for a computer game interface

    International Nuclear Information System (INIS)

    Fonseca Solis, Juan M.

    2015-01-01

    A software able to recognize notes played by musical instruments is created through automatic pitch recognition. A pitch recognition algorithm is embedded into a software project, using the C implementation of SWIPEP. A memory game is chosen for project. A sequence of notes is listened and played by user to the computer, using a soprano recorder flute. The basic concepts to understand the acoustic phenomena involved are explained. The paper is aimed for all students with basic programming knowledge and want to incorporate sound processing to their projects. (author) [es

  19. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    Many natural signals, such as voiced speech and some musical instruments, are approximately periodic over short intervals. These signals are often described in mathematics by the sum of sinusoids (harmonics) with frequencies that are proportional to the fundamental frequency, or pitch. In sensor...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...

  20. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    Science.gov (United States)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  1. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  2. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  3. The Effects of Lexical Pitch Accent on Infant Word Recognition in Japanese

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Ota

    2018-01-01

    Full Text Available Learners of lexical tone languages (e.g., Mandarin develop sensitivity to tonal contrasts and recognize pitch-matched, but not pitch-mismatched, familiar words by 11 months. Learners of non-tone languages (e.g., English also show a tendency to treat pitch patterns as lexically contrastive up to about 18 months. In this study, we examined if this early-developing capacity to lexically encode pitch variations enables infants to acquire a pitch accent system, in which pitch-based lexical contrasts are obscured by the interaction of lexical and non-lexical (i.e., intonational features. Eighteen 17-month-olds learning Tokyo Japanese were tested on their recognition of familiar words with the expected pitch or the lexically opposite pitch pattern. In early trials, infants were faster in shifting their eyegaze from the distractor object to the target object than in shifting from the target to distractor in the pitch-matched condition. In later trials, however, infants showed faster distractor-to-target than target-to-distractor shifts in both the pitch-matched and pitch-mismatched conditions. We interpret these results to mean that, in a pitch-accent system, the ability to use pitch variations to recognize words is still in a nascent state at 17 months.

  4. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  5. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaoperate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying

  6. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    Science.gov (United States)

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch

  7. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    Science.gov (United States)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  8. Pitch and tonality in contemporary African music: Nigerian gospel ...

    African Journals Online (AJOL)

    Like melody, language and rhythm, pitch and tonality are major indicators of African identity in music. In traditional African musical forms, these elements are obvious, but in contemporary African musical expressions which are influenced by several external factors, it is necessary to know the extent to which the elements ...

  9. Distraction by novel and pitch-deviant sounds in children

    Directory of Open Access Journals (Sweden)

    Nicole Wetzel

    2016-12-01

    Full Text Available The control of attention is an important part of our executive functions and enables us to focus on relevant information and to ignore irrelevant information. The ability to shield against distraction by task-irrelevant sounds is suggested to mature during school age. The present study investigated the developmental time course of distraction in three groups of children aged 7 – 10 years. Two different types of distractor sounds that have been frequently used in auditory attention research – novel environmental and pitch-deviant sounds – were presented within an oddball paradigm while children performed a visual categorization task. Reaction time measurements revealed decreasing distractor-related impairment with age. Novel environmental sounds impaired performance in the categorization task more than pitch-deviant sounds. The youngest children showed a pronounced decline of novel-related distraction effects throughout the experimental session. Such a significant decline as a result of practice was not observed in the pitch-deviant condition and not in older children. We observed no correlation between cross-modal distraction effects and performance in standardized tests of concentration and visual distraction. Results of the cross-modal distraction paradigm indicate that separate mechanisms underlying the processing of novel environmental and pitch-deviant sounds develop with different time courses and that these mechanisms develop considerably within a few years in middle childhood.

  10. Embedded pitch adapters for the ATLAS Tracker Upgrade

    International Nuclear Information System (INIS)

    Ullan, Miguel; Benitez, Victor; Pellegrini, Giulio; Fleta, Celeste; Lozano, Manuel; Lacasta, Carlos; Soldevila, Urmila; Garcia, Carmen

    2013-01-01

    In the current ATLAS tracker modules, sensor bonding pads are placed on their corresponding strips and oriented along the strips. This creates a difference in pitch and orientation between sensor bond pads and readout electronics bond pads. Therefore, a pitch adapter (PA), or “fan-in”, is needed. The purpose of these PA is the electrical interconnection of every channel from the detector bonding pads to the read-out chips, adapting the different pad pitch. Our new approach is to build those PAs inside the sensor; this is what we call Embedded Pitch Adapters. The idea is to use an additional metal layer in order to define a new group of pads, connected to the strips via tracks with the second metal. The embedded PAs have been fabricated on 4-in. prototype sensors for the ATLAS-Upgrade Endcap Tracker to test their performance and suitability. The tests confirm proper fabrication of the second metal tracks, and no effects on detector performance. No indication of cross-talk between first and second metal channels has been observed. A small indication of possible signal pick-up from the bulk has been observed in a few channels, which needs to be further investigated

  11. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  12. Pitch perception in children with autistic spectrum disorders

    NARCIS (Netherlands)

    Altgassen, A.M.; Kliegel, M.; Williams, T.I.

    2005-01-01

    This study investigated the accuracy of musical pitch detection in children with autistic spectrum disorders as compared with typically developing children. Seventeen children on the autistic spectrum (Mage=9.34, SDage=1.12) and 13 typically developing, chronological age-matched children (Mage=9.13,

  13. Relating binaural pitch perception to the individual listener's auditory profile

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization. (C) 2012 Acoustical Society of America. [http...

  14. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    However, some departure from square pixel shape and pitch may result due to the manufacturing constraints and environmental changes like temperature or mechanical stresses. To our knowledge, we did not come across any detailed studies to accurately measure these variations (if any) in the available literature. We find ...

  15. Pitch perception and retention: two cumulative benefits of selective attention.

    Science.gov (United States)

    Demany, Laurent; Montandon, Gaspard; Semal, Catherine

    2004-05-01

    By presenting, before a "chord" of three pure tones with remote frequencies, a tone relatively close in frequency to one component (T1) of the chord, one can direct the listener's attention onto T1 within the chord. In the first part of the present study, it was found that this increases the accuracy with which the pitch of T1 is perceived. The attentional cue improved the discrimination between the frequency of T1 and that of another tone (T2) presented immediately after the chord or very shortly (300 msec) after it. No improvement was found when T1 was presented alone instead of within a chord. A subsequent experiment, in which the chord and T2 were separated by either 300 msec or 4 sec, indicated that the attentional cue improved not only the perception, but also the memorization of the pitch of T1 (especially when T1 was the intermediate component of the chord). It is argued that the positive effect of attention on memory took place when the pitch percept was encoded into memory, rather than after the formation of the pitch memory trace.

  16. The Relationship between Pitch and Space in Congenital Amusia

    Science.gov (United States)

    Williamson, Victoria J.; Cocchini, Gianna; Stewart, Lauren

    2011-01-01

    Congenital amusia manifests as a lifelong difficulty in making sense of musical sound. The extent to which this disorder is accompanied by deficits in visuo-spatial processing is an important question, bearing on the issue of whether pitch processing draws on supramodal spatial representations. The present study assessed different aspects of…

  17. Pitch and Loudness Tinnitus in Individuals with Presbycusis.

    Science.gov (United States)

    Seimetz, Bruna Macangnin; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Flores, Leticia Sousa; Pappen, Carlos Henrique; Dall'igna, Celso

    2016-10-01

    Introduction  Tinnitus is a symptom that is often associated with presbycusis. Objective  This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods  Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results  The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance ( p  = 0.862) was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance ( p  = 0.115) was found. Conclusion  There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  18. Pitch and Loudness Tinnitus in Individuals with Presbycusis

    Directory of Open Access Journals (Sweden)

    Seimetz, Bruna Macangnin

    2016-02-01

    Full Text Available Introduction Tinnitus is a symptom that is often associated with presbycusis. Objective This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance (p = 0.862 was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance (p = 0.115 was found. Conclusion There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  19. The thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Krysin, V.P.; Ulanovskii, M.L.

    1983-01-01

    The loss of mass in the thermal transformations of a hard-coal pitch and its compositions with thermoanthracite in the temperature interval of 200-1000/sup 0/C takes place in two main stages: with a variable rate in the 200-600/sup 0/C interval and at a constant rate in the 600-1000/sup 0/C interval. The rate of the mass loss process in the 200-600/sup 0/C interval is determined mainly by the rate of diffusion of the volatile components and also of the light products of the thermal transformations of the pitch from the bulk to the phase separation boundary, and in the 600-1000/sup 0/C interval predominantly by the rate of the actual elementary chemical reaction. In the presence of thermoanthracite, the nature of the thermal transformations of the pitch does not change appreciably, while in the presence of silica synthetic reactions are intensified, which leads to an increase in the yield of solid residue by approximately 4 mass %. (A rise in the rate of heating of pitch-thermoanthracite compositions leads to the incomplete elimination of volatile products in the first stage, which has a favorable action on the increase in the yield of solid residue.)

  20. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  1. Influence of musical and psychoacoustical training on pitch discrimination.

    Science.gov (United States)

    Micheyl, Christophe; Delhommeau, Karine; Perrot, Xavier; Oxenham, Andrew J

    2006-09-01

    This study compared the influence of musical and psychoacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance.

  2. Multilingual evaluation of voice disability index using pitch rate

    Directory of Open Access Journals (Sweden)

    Shuji Shinohara

    2017-06-01

    Full Text Available We propose the use of the pitch rate of free-form speech recorded by smartphones as an index of voice disability. This research compares the effectiveness of pitch rate, jitter, shimmer, and harmonic-to-noise ratio (HNR as indices of voice disability in English, German, and Japanese. Normally, the evaluation of these indices is performed using long-vowel sounds; however, this study included the recitation of a set passage, which is more similar to free-form speech. The results showed that for English, the jitter, shimmer, and HNR were very effective indices for long-vowel sounds, but the shimmer and HNR for read speech were considerably worse. Although the effectiveness of jitter as an index was maintained for read speech, the pitch rate was better in distinguishing between healthy individuals and patients with illnesses affecting their voice. The read speech results in German, Japanese, and English were similar, and the pitch rate showed the greatest efficiency for identification. Nevertheless, compared to English, the identification efficiency for the other two languages was lower.

  3. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    ... condition for the generation of thrust. The vortex strength is found to be invariant of the pitching frequency. Certain differences from the reported results are noted, which may be because of difference in the airfoil shape. These results can help improve understanding of the flow behavior as the low Reynolds number range ...

  4. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  5. Singing Video Games May Help Improve Pitch-Matching Accuracy

    Science.gov (United States)

    Paney, Andrew S.

    2015-01-01

    The purpose of this study was to investigate the effect of singing video games on the pitch-matching skills of undergraduate students. Popular games like "Rock Band" and "Karaoke Revolutions" rate players' singing based on the correctness of the frequency of their sung response. Players are motivated to improve their…

  6. Development of a Pitch Discrimination Screening Test for Preschool Children.

    Science.gov (United States)

    Abramson, Maria Kulick; Lloyd, Peter J

    2016-04-01

    There is a critical need for tests of auditory discrimination for young children as this skill plays a fundamental role in the development of speaking, prereading, reading, language, and more complex auditory processes. Frequency discrimination is important with regard to basic sensory processing affecting phonological processing, dyslexia, measurements of intelligence, auditory memory, Asperger syndrome, and specific language impairment. This study was performed to determine the clinical feasibility of the Pitch Discrimination Test (PDT) to screen the preschool child's ability to discriminate some of the acoustic demands of speech perception, primarily pitch discrimination, without linguistic content. The PDT used brief speech frequency tones to gather normative data from preschool children aged 3 to 5 yrs. A cross-sectional study was used to gather data regarding the pitch discrimination abilities of a sample of typically developing preschool children, between 3 and 5 yrs of age. The PDT consists of ten trials using two pure tones of 100-msec duration each, and was administered in an AA or AB forced-choice response format. Data from 90 typically developing preschool children between the ages of 3 and 5 yrs were used to provide normative data. Nonparametric Mann-Whitney U-testing was used to examine the effects of age as a continuous variable on pitch discrimination. The Kruskal-Wallis test was used to determine the significance of age on performance on the PDT. Spearman rank was used to determine the correlation of age and performance on the PDT. Pitch discrimination of brief tones improved significantly from age 3 yrs to age 4 yrs, as well as from age 3 yrs to the age 4- and 5-yrs group. Results indicated that between ages 3 and 4 yrs, children's auditory discrimination of pitch improved on the PDT. The data showed that children can be screened for auditory discrimination of pitch beginning with age 4 yrs. The PDT proved to be a time efficient, feasible tool for

  7. Pitch, roll, and yaw variations in patient positioning

    International Nuclear Information System (INIS)

    Kaiser, Adeel; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.; Smith, David D.; Han, Chunhui; Vora, Nayana L.; Pezner, Richard D.; Chen Yijen; Radany, Eric H.

    2006-01-01

    Purpose: To use pretreatment megavoltage-computed tomography (MVCT) scans to evaluate positioning variations in pitch, roll, and yaw for patients treated with helical tomotherapy. Methods and Materials: Twenty prostate and 15 head-and-neck cancer patients were selected. Pretreatment MVCT scans were performed before every treatment fraction and automatically registered to planning kilovoltage CT (KVCT) scans by bony landmarks. Image registration data were used to adjust patient setups before treatment. Corrections for pitch, roll, and yaw were recorded after bone registration, and data from fractions 1-5 and 16-20 were used to analyze mean rotational corrections. Results: For prostate patients, the means and standard deviations (in degrees) for pitch, roll, and yaw corrections were -0.60 ± 1.42, 0.66 ± 1.22, and -0.33 ± 0.83. In head-and-neck patients, the means and standard deviations (in degrees) were -0.24 ± 1.19, -0.12 ± 1.53, and 0.25 ± 1.42 for pitch, roll, and yaw, respectively. No significant difference in rotational variations was observed between Weeks 1 and 4 of treatment. Head-and-neck patients had significantly smaller pitch variation, but significantly larger yaw variation, than prostate patients. No difference was found in roll corrections between the two groups. Overall, 96.6% of the rotational corrections were less than 4 deg. Conclusions: The initial rotational setup errors for prostate and head-and-neck patients were all small in magnitude, statistically significant, but did not vary considerably during the course of radiotherapy. The data are relevant to couch hardware design for correcting rotational setup variations. There should be no theoretical difference between these data and data collected using cone beam KVCT on conventional linacs

  8. Biomimetic propulsion under random heaving conditions, using active pitch control

    Science.gov (United States)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  9. Absolute pitch: effects of timbre on note-naming ability.

    Science.gov (United States)

    Vanzella, Patrícia; Schellenberg, E Glenn

    2010-11-11

    Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  10. Absolute pitch: effects of timbre on note-naming ability.

    Directory of Open Access Journals (Sweden)

    Patrícia Vanzella

    2010-11-01

    Full Text Available Absolute pitch (AP is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names, it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP.A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones than for vocal (natural and synthesized voices test tones. This difference could not be attributed solely to vibrato (pitch variation, which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age.Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  11. Theoretical analysis of Sloshing effect on Pitch Angel to optimize quick dive on litoral submarine 22 M

    Science.gov (United States)

    Sinaga, L. T. P.

    2016-11-01

    This study considers the analytic theoretical model. The Submarine was considered to be rigid body are free sailing model with various angle of attack to be quick dive as pitching motion. By using Floating Body Mechanism supported by analytic model to describe the theoretical model analisys test. For the case of fluid level on 30% of the front balast tank and various angle of pitch. The paper describes a study on Analytic theoretical and modeling in CFD (Computational Fluid Dynamics). For Analyzing at special care of sloshing on free surce ballast tank after peak and fore peak were taken into consideration. In general, both methods (analytic model and CFD model) demonstrated such a good agreement, particularly in the consistent trend of RAO.

  12. 179 Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Meyer

    Several extractions of coal-tar pitch were performed using supercritical fluid ..... pressure and temperature, unlike exhaustive extraction, which involves a change in ... mechanism that is operative on extracting coal-tar pitch components with.

  13. Relating the absence of binaural pitch percept to retro-cochlear impairment

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    Binaural pitch stimuli, created by introducing an interaural phase difference over a narrow band of otherwise diotic white noise, produce an immediate tonal sensation with a pitch close to the centre of the phase-shifted band. In Santurette and Dau [Hear. Res. 223(1-2):29-47, 2007], it was shown...... that the salience of binaural pitch was affected by hearing impairment. Specifically, for subjects with a sensorineural impairment, binaural pitch perception was weaker than the normal-hearing average but the pitch sensation was immediately present. In contrast, no binaural pitch sensation at all was found...... for the (only) two subjects with damage at central stages. The aim of the present study is to clarify whether such a sharp distinction between levels of impairment can be made using binaural pitch stimuli. A pitch detection test was performed by three groups of subjects with: 1) normal hearing; 2) a cochlear...

  14. Facial Expression and Vocal Pitch Height: Evidence of an Intermodal Association

    Directory of Open Access Journals (Sweden)

    David Huron

    2009-11-01

    Full Text Available Forty-four participants were asked to sing moderate, high, and low pitches while their faces were photographed. In a two-alternative forced choice task, independent judges selected the high-pitch faces as more friendly than the low-pitch faces. When photographs were cropped to show only the eye region, judges still rated the high-pitch faces friendlier than the low-pitch faces. These results are consistent with prior research showing that vocal pitch height is used to signal aggression (low pitch or appeasement (high pitch. An analysis of the facial features shows a strong correlation between eyebrow position and sung pitch—consistent with the role of eyebrows in signaling aggression and appeasement. Overall, the results are consistent with an inter-modal linkage between vocal and facial expressions.

  15. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    Science.gov (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pitch Tracking and Voiced/Unvoiced Detection in Noisy Environment using Optimat Sequence Estimation

    OpenAIRE

    Wasserblat, Moshe; Gainza, Mikel; Dorran, David; Domb, Yuval

    2008-01-01

    This paper addresses the problem of pitch tracking and voiced/unvoiced detection in noisy speech environments. An algorithm is presented which uses a number of variable thresholds to track pitch contour with minimal error. This is achieved by modeling the pitch tracking problem in such a way that allows the use of optimal estimation methods, such MLSE. The performance of the algorithm is evaluated using the Keele pitch detection database with realistic background noise. Results show best perf...

  17. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  18. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-08-01

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  19. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-07-29

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  20. Local and global pitch perception in L1 and L2 readers of Dutch

    NARCIS (Netherlands)

    de Jong, Chiara; Postma, Marie; Mos, Maria; Vedder, Kayleigh; Hendriks, Danielle; Maggiore, G.

    2017-01-01

    Prior research showed a relationship between reading skills and pitch perception, however the exact nature remained unclear. By means of reading tests and a pitch perception test, we examined the relation between reading abilities and local and global pitch perception for 92 native Dutch children

  1. Pitch and Time Processing in Speech and Tones: The Effects of Musical Training and Attention

    Science.gov (United States)

    Sares, Anastasia G.; Foster, Nicholas E. V.; Allen, Kachina; Hyde, Krista L.

    2018-01-01

    Purpose: Musical training is often linked to enhanced auditory discrimination, but the relative roles of pitch and time in music and speech are unclear. Moreover, it is unclear whether pitch and time processing are correlated across individuals and how they may be affected by attention. This study aimed to examine pitch and time processing in…

  2. Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism

    International Nuclear Information System (INIS)

    Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta

    2016-01-01

    Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.

  3. Congenital Amusia in linguistic and non-linguistic pitch perception - What behavior and reaction times reveal

    NARCIS (Netherlands)

    Pfeifer, J.; Hamann, S.; Exter, M.; Campbell, N.; Gibbon, D.; Hirst, D.

    2014-01-01

    Congenital Amusia is a developmental disorder that has a negative influence on pitch perception. While it used to be described as a disorder of musical pitch perception, recent studies indicate that congenital amusics also show deficits in linguistic pitch perception. This study investigates the

  4. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Poelmans, Hanne; Luts, Heleen

    2010-01-01

    of dyslexic listeners to Huggins' pitch (HP). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch contour identification test, performed in 31 dyslexic listeners and 31 matched controls, clearly showed that dyslexics perceived HP as well...

  5. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  6. Pitch and Time, Tonality and Meter: How Do Musical Dimensions Combine?

    Science.gov (United States)

    Prince, Jon B.; Thompson, William F.; Schmuckler, Mark A.

    2009-01-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger…

  7. Major League pitching workload after primary ulnar collateral ligament reconstruction and risk for revision surgery.

    Science.gov (United States)

    Keller, Robert A; Mehran, Nima; Marshall, Nathan E; Okoroha, Kelechi R; Khalil, Lafi; Tibone, James E; Moutzouros, Vasilios

    2017-02-01

    Literature has attempted to correlate pitching workload with risk of ulnar collateral ligament (UCL) injury; however, limited data are available in evaluating workload and its relationship with the need for revision reconstruction in Major League Baseball (MLB) pitchers. We identified 29 MLB pitchers who underwent primary UCL reconstruction surgery and subsequently required revision reconstruction and compared them with 121 MLB pitchers who underwent primary reconstruction but did not later require revision surgery. Games pitched, pitch counts, and innings pitched were evaluated and compared for the seasons after returning from primary reconstruction and for the last season pitched before undergoing revision surgery. The difference in workload between pitchers who did and did not require revision reconstruction was not statistically significant in games pitched, innings pitched, and MLB-only pitch counts. The one significant difference in workload was in total pitch counts (combined MLB and minor league), with the pitchers who required revision surgery pitching less than those who did not (primary: 1413.6 pitches vs. revision: 959.0 pitches, P = .04). In addition, pitchers who required revision surgery underwent primary reconstruction at an early age (22.9 years vs. 27.3 years, P risk for injury after primary UCL reconstruction. However, correlations of risk may be younger age and less MLB experience at the time of the primary reconstruction. Copyright © 2017. Published by Elsevier Inc.

  8. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  9. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  10. Speech emotion recognition based on statistical pitch model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHAO Li; ZOU Cairong

    2006-01-01

    A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.

  11. New SOFRADIR 10μm pixel pitch infrared products

    Science.gov (United States)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  12. Amusia for pitch caused by right middle cerebral artery infarct.

    Science.gov (United States)

    Hochman, M Seth; Abrams, Kevin J

    2014-01-01

    A 61-year-old right-handed man with hypertension and dyslipidemia noted that he was singing along to classic rock songs on his car radio, but his voice was off pitch. Six days later, a magnetic resonance imaging scan of his brain revealed a cerebral infarct of the right temporal parietal cortex and insula. Case reports of the precise anatomic correlates of disordered pitch musical processing have been few and fragmentary. The anatomic involvement of our case coincides with the areas of involvement in 3 previously reported cases. Increased awareness of amusia as a rare clinical presentation of stroke should lead to earlier stroke intervention. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Congenital amusia: a disorder of fine-grained pitch discrimination.

    Science.gov (United States)

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  14. Binaural pitch perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Dau, Torsten; Santurette, Sébastien; Strelcyk, Olaf

    2007-01-01

    When two white noises differing only in phase in a particular frequency range are presented simultaneously each to one of our ears, a pitch sensation may be perceived inside the head. This phenomenon, called ’binaural pitch’ or ’dichotic pitch’, can be produced by frequency-dependent interaural...... phasedifference patterns. The evaluation of these interaural phase differences depends on the functionality of the binaural auditory system and the spectro-temporal information at its input. A melody recognition task was performed in the present study using pure-tone stimuli and six different types of noises...... that can generate a binaural pitch sensation. Normal-hearing listeners and hearing-impaired listeners with different kinds of hearing impairment participated in the experiment....

  15. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  16. Pitch adaptors of the ATLAS-SCT Endcap detector modules

    International Nuclear Information System (INIS)

    Ullan, M; Lozano, M; Campabadal, F; Fleta, C; Pellegrini, G; Garcia, C; Gonzalez, F

    2007-01-01

    Interconnection between detectors and electronics in modern High Energy Physics has become an issue of difficult solution due to the need to integrate both parts in the same module and the need for a low mass, simple connection. The Endcap section of the Semiconductor Tracker (SCT) of the ATLAS experiment at CERN has adopted the solution of using interface devices called pitch adaptors or fan-ins that, mounted on the modules, and using automatic wire bonding, connect the detector's multiple channels to the front-end electronics, adapting their different designs (pad pitch, dimensions, position). This paper describes the characteristics of these devices, the qualification tests that they have been submitted to, and the final results of their fabrication including quality assurance procedures

  17. Binaural fusion and the representation of virtual pitch in the human auditory cortex.

    Science.gov (United States)

    Pantev, C; Elbert, T; Ross, B; Eulitz, C; Terhardt, E

    1996-10-01

    The auditory system derives the pitch of complex tones from the tone's harmonics. Research in psychoacoustics predicted that binaural fusion was an important feature of pitch processing. Based on neuromagnetic human data, the first neurophysiological confirmation of binaural fusion in hearing is presented. The centre of activation within the cortical tonotopic map corresponds to the location of the perceived pitch and not to the locations that are activated when the single frequency constituents are presented. This is also true when the different harmonics of a complex tone are presented dichotically. We conclude that the pitch processor includes binaural fusion to determine the particular pitch location which is activated in the auditory cortex.

  18. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  19. Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech

    OpenAIRE

    劉, 麗清

    2015-01-01

    Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...

  20. Buds enable pitch and shortleaf pines to recover from injury

    Science.gov (United States)

    S. Little; H. A. Somes

    1956-01-01

    Pitch and shortleaf pines often survive severe damage by fires, cutting, rabbits, or deer. Deer may take all but 2 inches of the 6- to 8-inch shoots of seedlings, and still these seedlings may live and develop new shoots. Fires may kill all the foliage and terminal shoots on sapling or pole-size stems, but still these trees may green up and develop new leaders. Many of...

  1. Context effects on pitch perception in musicians and nonmusicians

    DEFF Research Database (Denmark)

    Brattico, E; Naatanen, R; Tervaniemi, M

    2001-01-01

    concentrating on reading a book, were presented with sound stimuli that had an infrequent (p = 15 %) pitch shift of 144 Hz. In the familiar condition, the infrequent third-position deviant changed the mode (major vs. minor) of the five-tone pattern. In the unfamiliar condition, patterns were formed from five...... to sequential structured sound events, the auditory system reacts faster in musicians than in nonmusicians. Received December 8, 1999, accepted July 14, 2001....

  2. Pitch Fork: A Novel tactile Digital Musical Instrument

    OpenAIRE

    Williams, Peter; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using material computation to control aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output sig...

  3. Spatial Rack Drives Pitch Configurations: Essence and Content

    Science.gov (United States)

    Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro

    2018-03-01

    The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.

  4. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball

    Directory of Open Access Journals (Sweden)

    Arik eCheshin

    2016-02-01

    Full Text Available Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from MLB World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing when faced with a pitcher perceived as happy and to avoid (no swing when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  5. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  6. Examination of statistical noise in SPECT image and sampling pitch

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Watanabe, Hiroyuki; Murakami, Tomonori; Kawakami, Kazunori; Teraoka, Satomi; Kojima, Akihiro; Matsumoto, Masanori

    2008-01-01

    Statistical noise in single photon emission computed tomography (SPECT) image was examined for its relation with total count and with sampling pitch by simulation and phantom experiment to obtain their projection data under defined conditions. The former SPECT simulation was performed on assumption of a virtual, homogeneous water column (20 cm diameter) as an absorbing mass. In the latter, used were 3D-Hoffman brain phantom (Data Spectrum Corp.) filled with 370 MBq of 99m Tc-pertechnetate solution and a facing 2-detector SPECT machine with a low-energy/high-resolution collimator, E-CAM (Siemens). Projected data by the two methods were reconstructed through the filtered back projection to make each transaxial image. The noise was evaluated by vision, by their root mean square uncertainty calculated from average count and standard deviation (SD) in the region of interest (ROI) defined in reconstructed images and by normalized mean squares calculated from the difference between the reference image obtained with common sampling pitch to and all of obtained slices of, the simulation and phantom. As a conclusion, the pitch was recommended to be set in the machine as to approximating the value calculated by the sampling theorem, though the projection counts per one angular direction were smaller with the same total time of data acquisition. (R.T.)

  7. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball.

    Science.gov (United States)

    Cheshin, Arik; Heerdink, Marc W; Kossakowski, Jolanda J; Van Kleef, Gerben A

    2016-01-01

    Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  8. An investigation of spatial representation of pitch in individuals with congenital amusia.

    Science.gov (United States)

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  9. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  10. A Fröhlich effect and representational gravity in memory for auditory pitch.

    Science.gov (United States)

    Hubbard, Timothy L; Ruppel, Susan E

    2013-08-01

    Memory for the initial pitch of an auditory target that increased or decreased in auditory frequency was examined. Memory was displaced forward in the direction of pitch motion, and this is consistent with the Fröhlich effect previously observed for visual targets moving in visual physical space. The Fröhlich effect for pitch increased with faster target velocity and decreased if an auditory cue with the same pitch as the initial pitch of the target was presented before the target was presented. The Fröhlich effect was larger for descending pitch motion than for ascending pitch motion, and this is consistent with an influence of representational gravity. The data suggest that representation of auditory frequency space exhibits some of the same biases as representation of visual physical space, and implications for theories of attention in displacement and for crossmodal and multisensory representation of space are discussed. 2013 APA, all rights reserved

  11. Fine-grained pitch processing of music and speech in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Rusconi, Elena; Traube, Caroline; Butterworth, Brian; Umiltà, Carlo; Peretz, Isabelle

    2011-12-01

    Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events. © 2011 Acoustical Society of America

  12. Binaural pitch perception in normal-hearing and hearing-impaired listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2007-01-01

    The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural...... pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality...... compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural...

  13. Pitch and time, tonality and meter: how do musical dimensions combine?

    Science.gov (United States)

    Prince, Jon B; Thompson, William F; Schmuckler, Mark A

    2009-10-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  14. An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion

    Science.gov (United States)

    Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo

    2017-11-01

    Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.

  15. Relationship of radiation dose and spiral pitch for multi-slice CT system

    International Nuclear Information System (INIS)

    Song Shaojuan; Wang Wei; Liu Chuanya

    2006-01-01

    Objective: To study the relations of radiation dose and spiral pitch for multi-slice CT system. Methods: 16 mm dose phantom with solidose 300/400 pen-style ion chamber inserted into each of five holes in turn was scanned with different spiral pitch by LightSpeed 16-slice CT and Sensation 16-slice and 64-slice CT and radiation dose. Results: CTDI vol of axial scan and spiral scan for the three types of CT system are: (1) LightSpeed 16-slice CT: 28.9 (axial), 51.4 (pitch 0.562), 30.8 (pitch 0.938) and 16.5 ( pitch 1.75 ); (2) Sensation 16-slice CT: 41.2(axial) and 40.3(pitch 0.5) ,41.5(pitch 1) and 43.2(pitch 1.5); (3) Sensation 64- slice CT: 41.2(axial) and 40.3(pitch 0.5),41.5(pitch 1),43.2(pitch 1.5). Conclusions: For LightSpeed 16-slice CT, the measured radiation dose decreased with the increase of spiral pitch, the image quality could keep constant only if we increase mAs. While for Sensation 16-slice and 64-slice CT system, the measured radiation dose was identical for different pitch, and the image quality was identical because of the use of mAs auto control technique The mAs should be adjusted in different way according to the type of CT system when the pitch is changed in daily operation. (authors)

  16. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  17. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  18. Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods

    National Research Council Canada - National Science Library

    DeSpirito, James; Silton, Sidra I; Weinacht, Paul

    2008-01-01

    The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...

  19. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2011-01-01

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.

  20. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2011-04-15

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (author)

  1. Selective attention to sound location or pitch studied with fMRI.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Salmi, Juha; Salonen, Oili; Alho, Kimmo

    2006-03-10

    We used 3-T functional magnetic resonance imaging to compare the brain mechanisms underlying selective attention to sound location and pitch. In different tasks, the subjects (N = 10) attended to a designated sound location or pitch or to pictures presented on the screen. In the Attend Location conditions, the sound location varied randomly (left or right), while the pitch was kept constant (high or low). In the Attend Pitch conditions, sounds of randomly varying pitch (high or low) were presented at a constant location (left or right). Both attention to location and attention to pitch produced enhanced activity (in comparison with activation caused by the same sounds when attention was focused on the pictures) in widespread areas of the superior temporal cortex. Attention to either sound feature also activated prefrontal and inferior parietal cortical regions. These activations were stronger during attention to location than during attention to pitch. Attention to location but not to pitch produced a significant increase of activation in the premotor/supplementary motor cortices of both hemispheres and in the right prefrontal cortex, while no area showed activity specifically related to attention to pitch. The present results suggest some differences in the attentional selection of sounds on the basis of their location and pitch consistent with the suggested auditory "what" and "where" processing streams.

  2. Prediction of HS Soderberg plant PAH emissions from a laboratory evaluation of a pitch

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, L.; Mirtchi, A. A.; Proulx, A. L.; Savard, G.; Simard, E.; Steward, N.; Tremblay, C. [Alcan International Ltd., Arvida Research and Development Centre, Jonquiere, PQ (Canada)

    1998-12-31

    The presence of certain polycyclic aromatic hydrocarbons (PAHs) in coal tar pitch has been identified as a possible limit to the long-term viability of horizontal stud (HS) Soderberg technology, a technology of importance in the aluminum industry. This paper presents the results of a comparative study of pitch PAH content and HS Soderberg cell emissions. Laboratory results are compared with plant emissions for two regular and low PAH pitches with the same softening points. The results indicate the existence of a correlation between pitch PAH content and cell emission, which is valid for regular tar pitches, low tar pitches, as well as for hybrid pitches. These findings make it possible to predict the quantity and distribution of HS Soderberg cell PAH emissions from the analysis of PAHs in the pitch. The results also justify the conclusion that the emission of genotoxic compounds from pitch in the HS Soderberg technology can be decreased by using a pitch with low PAH content. 4 refs., 5 tabs., 5 figs.

  3. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  4. Number 13 / Part I. Music. 7. Grounds of Absolute Pitch Development in Yamaha Music School

    Directory of Open Access Journals (Sweden)

    Iușcă Dorina

    2017-03-01

    Full Text Available Absolute pitch is defined as the ability to identify the pitch class of a certain given sound without the aid of an external reference pitch (Takeuchi & Hulse, 1993; Deutsch, 2002. The incidence of absolute pitch is extremely rare among the general population, respectively 1 in 10.000 people and it depends on testing conditions such as the number of identified sounds, pitch Chroma, pitch height, timbre, register or requested reaction time, and also on subjects musical training commencing and Eastern-Asian origins. The way absolute pitch develops is described by three models: the tone language theory, the early training theory and the genetic theory. The early training theory states that absolute pitch appears due to the beginning of musical lessons during a critical development period situated before the age of 6. The educational implications of this theory are revealed in the principles and activities of Yamaha Music School which employs didactic strategies that naturally develop absolute pitch. Yamaha Music School is the largest private music education system from Japan, established by Torakusu Yamaha in 1954. Up to this day it has extended in 40 countries from Europe, Asia and the American continents, as it has about 710 million students and 30.000 teachers. The present study aims to illustrate a detailed analysis of the way the learning experiences offered by Yamaha School lead to the development of absolute pitch.

  5. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    Science.gov (United States)

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; plean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  6. Effects of Game Pitch Count and Body Mass Index on Pitching Biomechanics in 9- to 10-Year-Old Baseball Athletes.

    Science.gov (United States)

    Darke, Jim D; Dandekar, Eshan M; Aguinaldo, Arnel L; Hazelwood, Scott J; Klisch, Stephen M

    2018-04-01

    Pitching while fatigued and body composition may increase the injury risk in youth and adult pitchers. However, the relationships between game pitch count, biomechanics, and body composition have not been reported for a study group restricted to 9- to 10-year-old athletes. During a simulated game with 9- to 10-year-old athletes, (1) participants will experience biomechanical signs of fatigue, and (2) shoulder and elbow kinetics will correlate with body mass index (BMI). Descriptive laboratory study. Thirteen 9- to 10-year-old youth baseball players pitched a simulated game (75 pitches). Range of motion and muscular output tests were conducted before and after the simulated game to quantify fatigue. Kinematic parameters at foot contact, maximum external rotation, and maximum internal rotation velocity (MIRV), as well as maximum shoulder and elbow kinetics between foot contact and MIRV were compared at pitches 1-5, 34-38, and 71-75. Multivariate analyses of variance were used to test the first hypothesis, and linear regressions were used to test the second hypothesis. MIRV increased from pitches 1-5 to 71-75 ( P = .007), and head flexion at MIRV decreased from pitches 1-5 to 34-38 ( P = .022). Maximum shoulder horizontal adduction, external rotation, and internal rotation torques increased from pitches 34-38 to 71-75 ( P = .031, .023, and .021, respectively). Shoulder compression force increased from pitches 1-5 to 71-75 ( P = .011). Correlations of joint torque/force with BMI were found at every pitch period: for example, shoulder internal rotation ( R 2 = 0.93, P biomechanics for 9- to 10-year-old baseball pitchers and may be used in future studies to improve evidence-based injury prevention guidelines.

  7. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers-An Observational Study.

    Science.gov (United States)

    Zaremski, Jason L; Zeppieri, Giorgio; Jones, Deborah L; Tripp, Brady L; Bruner, Michelle; Vincent, Heather K; Horodyski, MaryBeth

    2018-04-01

    Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Cross-sectional study; Level of evidence, 3. Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury.

  8. Advances in dual-tone development for pitch frequency doubling

    Science.gov (United States)

    Fonseca, Carlos; Somervell, Mark; Scheer, Steven; Kuwahara, Yuhei; Nafus, Kathleen; Gronheid, Roel; Tarutani, Shinji; Enomoto, Yuuichiro

    2010-04-01

    Dual-tone development (DTD) has been previously proposed as a potential cost-effective double patterning technique1. DTD was reported as early as in the late 1990's2. The basic principle of dual-tone imaging involves processing exposed resist latent images in both positive tone (aqueous base) and negative tone (organic solvent) developers. Conceptually, DTD has attractive cost benefits since it enables pitch doubling without the need for multiple etch steps of patterned resist layers. While the concept for DTD technique is simple to understand, there are many challenges that must be overcome and understood in order to make it a manufacturing solution. Previous work by the authors demonstrated feasibility of DTD imaging for 50nm half-pitch features at 0.80NA (k1 = 0.21) and discussed challenges lying ahead for printing sub-40nm half-pitch features with DTD. While previous experimental results suggested that clever processing on the wafer track can be used to enable DTD beyond 50nm halfpitch, it also suggest that identifying suitable resist materials or chemistries is essential for achieving successful imaging results with novel resist processing methods on the wafer track. In this work, we present recent advances in the search for resist materials that work in conjunction with novel resist processing methods on the wafer track to enable DTD. Recent experimental results with new resist chemistries, specifically designed for DTD, are presented in this work. We also present simulation studies that help and support identifying resist properties that could enable DTD imaging, which ultimately lead to producing viable DTD resist materials.

  9. The Neuromagnetic Dynamics of Time Perception

    OpenAIRE

    Carver, Frederick W.; Elvevåg, Brita; Altamura, Mario; Weinberger, Daniel R.; Coppola, Richard

    2012-01-01

    Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13-30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral ...

  10. The speech signal segmentation algorithm using pitch synchronous analysis

    Directory of Open Access Journals (Sweden)

    Amirgaliyev Yedilkhan

    2017-03-01

    Full Text Available Parameterization of the speech signal using the algorithms of analysis synchronized with the pitch frequency is discussed. Speech parameterization is performed by the average number of zero transitions function and the signal energy function. Parameterization results are used to segment the speech signal and to isolate the segments with stable spectral characteristics. Segmentation results can be used to generate a digital voice pattern of a person or be applied in the automatic speech recognition. Stages needed for continuous speech segmentation are described.

  11. Crackle and fizz essential communication and pitching skills for scientists

    CERN Document Server

    Van den Brul, Caroline

    2014-01-01

    This is a book for scientists and other experts who need to explain the significance and potential of their work to colleagues, committees, funding bodies or the general public. It details how to harness story-telling principles to make complex or technical content easier to communicate and fulfilling for audiences. Eight narrative ingredients, Audience, Change and Affect, Lure, World, Character, Big Hook, Plot and Structure, are illustrated with examples and exercises to demonstrate how to build a presentation, how to pitch for funds or resources, how to make a persuasive argument, or simply how to explain ideas so they CRACKLE and FIZZ for the Audience.

  12. Impact of imaging quality of change pitch on coronary CTA with 64-detector row CT

    International Nuclear Information System (INIS)

    Li Xiang; Jin Chaolin; Zhang Shutong

    2009-01-01

    Objective: To investigate the impact of imaging quality of pitch on coronary CT angiography (CTA) with 64-detector row CT. Methods: 566 patients were divided into four groups according to heart rate (≤ 50, 51 ∼ 70, 71 ∼ 80 and ≥ 80 bpm). Three dimensional reconstructions were used such as volume rendering (VR), maximum intensity projection(MIP) and curved planar reformation (CPR). Each group was divided into control group and experimential group randomly, using normal pitch and revised pitch respectively, and the imaging quality and influencing factors were analyzed among the four groups. Results: There was significant difference in imaging quality among the four groups (P < 0.05). Each group had difference in imaging quality with normal pitch and revised pitch. Conclusions: The revised pitch helps to improve the imaging quality and meet the demand of diagnosis. (authors)

  13. Congenital amusics use a secondary pitch mechanism to identify lexical tones.

    Science.gov (United States)

    Bones, Oliver; Wong, Patrick C M

    2017-09-01

    Amusia is a pitch perception disorder associated with deficits in processing and production of both musical and lexical tones, which previous reports have suggested may be constrained to fine-grained pitch judgements. In the present study speakers of tone-languages, in which lexical tones are used to convey meaning, identified words present in chimera stimuli containing conflicting pitch-cues in the temporal fine-structure and temporal envelope, and which therefore conveyed two distinct utterances. Amusics were found to be more likely than controls to judge the word according to the envelope pitch-cues. This demonstrates that amusia is not associated with fine-grained pitch judgements alone, and is consistent with there being two distinct pitch mechanisms and with amusics having an atypical reliance on a secondary mechanism based upon envelope cues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    Science.gov (United States)

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor

  15. Extending wind turbine operational conditions; a comparison of set point adaptation and LQG individual pitch control for highly turbulent wind

    International Nuclear Information System (INIS)

    Engels, W P; Subhani, S; Zafar, H; Savenije, F

    2014-01-01

    Extreme wind conditions can cause excessive loading on the turbine. This not only results in higher design loads, but when these conditions occur in practice, will also result in higher maintenance cost. Although there are already effective methods of dealing with gusts, other extreme conditions should also be examined. More specifically, extreme turbulence conditions (e.g. those specified by design load case 1.3 in IEC61400-1 ed. 3) require special attention as they can lead to design-driving extreme loads on blades, tower and other wind turbine components. This paper examines two methods to deal with extreme loads in a case of extreme turbulent wind. One method is derating the turbine, the other method is an individual pitch control (IPC) algorithm. Derating of the turbine can be achieved in two ways, one is changing the rated torque, the other is changing the rated rotor speed. The effect of these methods on fatigue loads and extreme loads is examined. Non-linear aero-elastic simulations using Phatas, show that reducing the rated rotor speed is far more effective at reducing the loads than reducing torque. Then, the IPC algorithm is proposed. This algorithm is a linear quadratic Gaussian (LQG) controller based on a time invariant model, defined in the fixed reference frame that includes the first tower and blade modes. Because this method takes the dynamics of the system into account more than conventional IPC control, it is expected that these loads dealt with more effectively, when they are particularly relevant. It is expected that in extreme turbulent the blade and tower dynamics are indeed more relevant. The effect of this algorithm on fatigue loads and pitch effort is examined and compared with the fatigue loads and pitch effort of reference IPC. Finally, the methods are compared in non-linear aero-elastic simulations with extreme turbulent wind

  16. Voltage harmonic variation in three-phase induction motors with different coil pitches

    International Nuclear Information System (INIS)

    Deshmukh, Ram; Moses, Anthony John; Anayi, Fatih

    2006-01-01

    A pulse-width modulation (PWM) inverter feeding four different chorded three-phase induction motors was tested for low-order odd harmonic voltage component and efficiency at different loads. Total harmonic distortion (THD) due to 3rd, 5th and 9th harmonics was less in a motor with 160 o coil pitch. Particular harmonic order for each coil pitch was suppressed and the efficiency of a 120 o coil pitch motor was increased by 7.5%

  17. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    OpenAIRE

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patient...

  18. THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089 (Mexico); Fuentes-Carrera, Isaura, E-mail: ericmartinez@inaoep.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07730 México, D.F. (Mexico)

    2014-09-20

    Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

  19. Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages

    OpenAIRE

    Tillmann, Barbara; Burnham, Denis; Nguyen, Sebastien; Grimault, Nicolas; Gosselin, Nathalie; Peretz, Isabelle

    2011-01-01

    Congenital amusia is a neurogenetic disorder that affects music processing and that is ascribed to a deficit in pitch processing. We investigated whether this deficit extended to pitch processing in speech, notably the pitch changes used to contrast lexical tones in tonal languages. Congenital amusics and matched controls, all non-tonal language speakers, were tested for lexical tone discrimination in Mandarin Chinese (Experiment 1) and in Thai (Experiment 2). Tones were presented in pairs an...

  20. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers

    OpenAIRE

    Liu, Fang; Chan, Alice H. D.; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C. M.

    2016-01-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by ...

  1. Integrating cues of social interest and voice pitch in men's preferences for women's voices

    OpenAIRE

    Jones, Benedict C; Feinberg, David R; DeBruine, Lisa M; Little, Anthony C; Vukovic, Jovana

    2008-01-01

    Most previous studies of vocal attractiveness have focused on preferences for physical characteristics of voices such as pitch. Here we examine the content of vocalizations in interaction with such physical traits, finding that vocal cues of social interest modulate the strength of men's preferences for raised pitch in women's voices. Men showed stronger preferences for raised pitch when judging the voices of women who appeared interested in the listener than when judging the voices of women ...

  2. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    -sections on the blade as well as fully resolved rotor simulations, and finally simulations coupling HAWC2 with EllipSys3D, investigating the behaviors of the rotor at standstill, has been performed. For the WP3, the state-of-the art aeroelastic analysis tool, HAWC2, has been updated in order to consider the partial......This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...

  3. The Neural Basis of Vocal Pitch Imitation in Humans.

    Science.gov (United States)

    Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven

    2016-04-01

    Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.

  4. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  5. A nonmusical paradigm for identifying absolute pitch possessors

    Science.gov (United States)

    Ross, David A.; Olson, Ingrid R.; Marks, Lawrence E.; Gore, John C.

    2004-09-01

    The ability to identify and reproduce sounds of specific frequencies is remarkable and uncommon. The etiology and defining characteristics of this skill, absolute pitch (AP), have been very controversial. One theory suggests that AP requires a specific type of early musical training and that the ability to encode and remember tones depends on these learned musical associations. An alternate theory argues that AP may be strongly dependent on hereditary factors and relatively independent of musical experience. To date, it has been difficult to test these hypotheses because all previous paradigms for identifying AP have required subjects to employ knowledge of musical nomenclature. As such, these tests are insensitive to the possibility of discovering AP in either nonmusicians or musicians of non-Western training. Based on previous literature in pitch memory, a paradigm is presented that is intended to distinguish between AP possessors and nonpossessors independent of the subjects' musical experience. The efficacy of this method is then tested with 20 classically defined AP possessors and 22 nonpossessors. Data from these groups strongly support the validity of the paradigm. The use of a nonmusical paradigm to identify AP may facilitate research into many aspects of this phenomenon.

  6. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  7. Singing with yourself: evidence for an inverse modeling account of poor-pitch singing.

    Science.gov (United States)

    Pfordresher, Peter Q; Mantell, James T

    2014-05-01

    Singing is a ubiquitous and culturally significant activity that humans engage in from an early age. Nevertheless, some individuals - termed poor-pitch singers - are unable to match target pitches within a musical semitone while singing. In the experiments reported here, we tested whether poor-pitch singing deficits would be reduced when individuals imitate recordings of themselves as opposed to recordings of other individuals. This prediction was based on the hypothesis that poor-pitch singers have not developed an abstract "inverse model" of the auditory-vocal system and instead must rely on sensorimotor associations that they have experienced directly, which is true for sequences an individual has already produced. In three experiments, participants, both accurate and poor-pitch singers, were better able to imitate sung recordings of themselves than sung recordings of other singers. However, this self-advantage was enhanced for poor-pitch singers. These effects were not a byproduct of self-recognition (Experiment 1), vocal timbre (Experiment 2), or the absolute pitch of target recordings (i.e., the advantage remains when recordings are transposed, Experiment 3). Results support the conceptualization of poor-pitch singing as an imitative deficit resulting from a deficient inverse model of the auditory-vocal system with respect to pitch. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Singing ability is rooted in vocal-motor control of pitch.

    Science.gov (United States)

    Hutchins, Sean; Larrouy-Maestri, Pauline; Peretz, Isabelle

    2014-11-01

    The inability to vocally match a pitch can be caused by poor pitch perception or by poor vocal-motor control. Although previous studies have tried to examine the relationship between pitch perception and vocal production, they have failed to control for the timbre of the target to be matched. In the present study, we compare pitch-matching accuracy with an unfamiliar instrument (the slider) and with the voice, designed such that the slider plays back recordings of the participant's own voice. We also measured pitch accuracy in singing a familiar melody ("Happy Birthday") to assess the relationship between single-pitch-matching tasks and melodic singing. Our results showed that participants (all nonmusicians) were significantly better at matching recordings of their own voices with the slider than with their voice, indicating that vocal-motor control is an important limiting factor on singing ability. We also found significant correlations between the ability to sing a melody in tune and vocal pitch matching, but not pitch matching on the slider. Better melodic singers also tended to have higher quality voices (as measured by acoustic variables). These results provide important evidence about the role of vocal-motor control in poor singing ability and demonstrate that single-pitch-matching tasks can be useful in measuring general singing abilities.

  9. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    International Nuclear Information System (INIS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque

  10. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    Science.gov (United States)

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparison of individual pitch and smart rotor control strategies for load reduction

    Science.gov (United States)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  12. Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans

    Science.gov (United States)

    Ludwig, Vera U.; Adachi, Ikuma; Matsuzawa, Tetsuro

    2011-01-01

    Humans share implicit preferences for certain cross-sensory combinations; for example, they consistently associate higher-pitched sounds with lighter colors, smaller size, and spikier shapes. In the condition of synesthesia, people may experience such cross-modal correspondences to a perceptual degree (e.g., literally seeing sounds). So far, no study has addressed the question whether nonhuman animals share cross-modal correspondences as well. To establish the evolutionary origins of cross-modal mappings, we tested whether chimpanzees (Pan troglodytes) also associate higher pitch with higher luminance. Thirty-three humans and six chimpanzees were required to classify black and white squares according to their color while hearing irrelevant background sounds that were either high-pitched or low-pitched. Both species performed better when the background sound was congruent (high-pitched for white, low-pitched for black) than when it was incongruent (low-pitched for white, high-pitched for black). An inherent tendency to pair high pitch with high luminance hence evolved before the human lineage split from that of chimpanzees. Rather than being a culturally learned or a linguistic phenomenon, this mapping constitutes a basic feature of the primate sensory system. PMID:22143791

  13. Calculation and characteristics analysis of blade pitch loads for large scale wind turbines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the electric pitch system of large scale horizontal-axis wind turbines,the blade pitch loads coming mainly from centrifugal force,aerodynamic force and gravity are analyzed,and the calculation models for them are established in this paper.For illustration,a 1.2 MW wind turbine is introduced as a practical sample,and its blade pitch loads from centrifugal force,aerodynamic force and gravity are calculated and analyzed separately and synthetically.The research results showed that in the process of rotor rotating 360o,the fluctuation of blade pitch loads is similar to cosine curve when the rotor rotational speed,in-flow wind speed and pitch angle are constant.Furthermore,the amplitude of blade pitch load presents quite a difference at a different pitch angle.The ways of calculation for blade pitch loads are of the universality,and are helpful for further research of the individual pitch control system.

  14. Comparison of individual pitch and smart rotor control strategies for load reduction

    International Nuclear Information System (INIS)

    Plumley, C; Leithead, W; Jamieson, P; Bossanyi, E; Graham, M

    2014-01-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies

  15. Children’s identification of familiar songs from pitch and timing cues

    Directory of Open Access Journals (Sweden)

    Anna eVolkova

    2014-08-01

    Full Text Available The goal of the present study was to ascertain whether children with normal hearing and prelingually deaf children with cochlear implants could use pitch or timing cues alone or in combination to identify familiar songs. Children 4-7 years of age were required to identify the theme songs of familiar TV shows in a simple task with excerpts that preserved (1 the relative pitch and timing cues of the melody but not the original instrumentation, (2 the timing cues only (rhythm, meter, and tempo, and (3 the relative pitch cues only (pitch contour and intervals. Children with normal hearing performed at high levels and comparably across the three conditions. The performance of child implant users was well above chance levels when both pitch and timing cues were available, marginally above chance with timing cues only, and at chance with pitch cues only. This is the first demonstration that children can identify familiar songs from monotonic versions—timing cues but no pitch cues—and from isochronous versions—pitch cues but no timing cues. The study also indicates that, in the context of a very simple task, young implant users readily identify songs from melodic versions that preserve pitch and timing cues.

  16. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers.

    Science.gov (United States)

    Liu, Fang; Chan, Alice H D; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C M

    2016-07-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production.

  17. Effects of Music and Tonal Language Experience on Relative Pitch Performance.

    Science.gov (United States)

    Ngo, Mary Kim; Vu, Kim-Phuong L; Strybel, Thomas Z

    2016-01-01

    We examined the interaction between music and tone language experience as related to relative pitch processing by having participants judge the direction and magnitude of pitch changes in a relative pitch task. Participants' performance on this relative pitch task was assessed using the Cochran-Weiss-Shanteau (CWS) index of expertise, based on a ratio of discrimination over consistency in participants' relative pitch judgments. Testing took place in 2 separate sessions on different days to assess the effects of practice on participants' performance. Participants also completed the Montreal Battery of Evaluation of Amusia (MBEA), an existing measure comprising subtests aimed at evaluating relative pitch processing abilities. Musicians outperformed nonmusicians on both the relative pitch task, as measured by the CWS index, and the MBEA, but tonal language speakers outperformed non-tonal language speakers only on the MBEA. A closer look at the discrimination and consistency component scores of the CWS index revealed that musicians were better at discriminating different pitches and more consistent in their assessments of the direction and magnitude of relative pitch change.

  18. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  19. Detection of pitch failures in wind turbines using environmental noise recognition techniques

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun S.; Gomez, Robert

    2015-01-01

    Modern wind turbines employ pitch regulated control strategies in order to optimise the yielded power production. Pitch systems can be subjected to various failure modes related to cylinders, bearings and loose mounting, leading to poor pitching and aerodynamic imbalance. Early stage pitch....... The proposed method is built upon the following three processes. Firstly, the impacts are identified using envelope analysis, followed by the extraction of 12 features, such as energy, crest factor and peak to peak amplitude and finally the classification of the events based on the above features. Eighty nine...

  20. arXiv Signal coupling to embedded pitch adapters in silicon sensors

    CERN Document Server

    Artuso, M.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  1. Differential recognition of pitch patterns in discrete and gliding stimuli in congenital amusia: evidence from Mandarin speakers.

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D; Francart, Tom; Jiang, Cunmei

    2012-08-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete or gliding pitches in the syllable /ma/ or its complex tone analog, from nineteen amusics and nineteen controls, all healthy university students with Mandarin Chinese as their native language. Amusics, unlike controls, had more difficulty recognizing pitch direction in discrete than in gliding pitches, for both speech and non-speech stimuli. Also, amusic thresholds were not significantly affected by stimulus types (speech versus non-speech), whereas controls showed lower thresholds for tones than for speech. These findings help explain why amusics have greater difficulty with discrete musical pitch perception than with speech perception, in which continuously changing pitch movements are prevalent. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Science.gov (United States)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  3. Kalman Filtering and Smoothing of the Van Allen Probes Observations to Estimate the Radial, Energy and Pitch Angle Diffusion Rates

    Science.gov (United States)

    Podladchikova, T.; Shprits, Y.; Kellerman, A. C.

    2015-12-01

    The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.

  4. Full field image reconstruction is suitable for high-pitch dual-source computed tomography.

    Science.gov (United States)

    Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas

    2012-11-01

    The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.

  5. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients.

    Science.gov (United States)

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  6. Meta-analytic evidence for the non-modularity of pitch processing in congenital amusia.

    Science.gov (United States)

    Vuvan, Dominique T; Nunes-Silva, Marilia; Peretz, Isabelle

    2015-08-01

    A major theme driving research in congenital amusia is related to the modularity of this musical disorder, with two possible sources of the amusic pitch perception deficit. The first possibility is that the amusic deficit is due to a broad disorder of acoustic pitch processing that has the effect of disrupting downstream musical pitch processing, and the second is that amusia is specific to a musical pitch processing module. To interrogate these hypotheses, we performed a meta-analysis on two types of effect sizes contained within 42 studies in the amusia literature: the performance gap between amusics and controls on tasks of pitch discrimination, broadly defined, and the correlation between specifically acoustic pitch perception and musical pitch perception. To augment the correlation database, we also calculated this correlation using data from 106 participants tested by our own research group. We found strong evidence for the acoustic account of amusia. The magnitude of the performance gap was moderated by the size of pitch change, but not by whether the stimuli were composed of tones or speech. Furthermore, there was a significant correlation between an individual's acoustic and musical pitch perception. However, individual cases show a double dissociation between acoustic and musical processing, which suggests that although most amusic cases are probably explainable by an acoustic deficit, there is heterogeneity within the disorder. Finally, we found that tonal language fluency does not influence the performance gap between amusics and controls, and that there was no evidence that amusics fare worse with pitch direction tasks than pitch discrimination tasks. These results constitute a quantitative review of the current literature of congenital amusia, and suggest several new directions for research, including the experimental induction of amusic behaviour through transcranial magnetic stimulation (TMS) and the systematic exploration of the developmental

  7. The Effects of Head-Up Display (HUD) Pitch Ladder Articulation, Pitch Number Location and Horizon Line Length on Unusual Attitude Recoveries for the F-16

    Science.gov (United States)

    1990-07-01

    No comment . ’D. No comment . E. The best display was the partially articulated HUD. F. Only pitch bars below the horizon should be articulated. G. Fully articulated pitch bars were the best. H. Fully articulated configuration was easiest to quickly determine which direction to the horizon. I. No comment . J. Fully articulated HUD gave instant feedback on which way to pull to the horizon, K. No comment . L. Definite difference using the full articulation. 2. The following zomments are

  8. A Cultural Paradigm--Learning by Observing and Pitching In.

    Science.gov (United States)

    Rogoff, Barbara; Mejía-Arauz, Rebeca; Correa-Chávez, Maricela

    2015-01-01

    We discuss Learning by Observing and Pitching In (LOPI) as a cultural paradigm that provides an interesting alternative to Assembly-Line Instruction for supporting children's learning. Although LOPI may occur in all communities, it appears to be especially prevalent in many Indigenous and Indigenous-heritage communities of the Americas. We explain key features of this paradigm, previewing the chapters of this volume, which examine LOPI as it occurs in the lives of families and communities. In this introductory chapter, we focus especially on one feature of the paradigm that plays an important role in its uptake and maintenance in families, institutions, and communities-the nature of assessment. We consider the power of the dominant paradigm and the challenges in making paradigm shifts. © 2015 Elsevier Inc. All rights reserved.

  9. Effects of musical training and hearing loss on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Bianchi, Federica; Dau, Torsten

    2018-01-01

    content of the sound and whether the harmonics are resolved by the auditory frequency analysis operated by cochlear processing. F0DLs are also heavily influenced by the amount of musical training received by the listener and by the spectrotemporal auditory processing deficits that often accompany...... sensorineural hearing loss. This paper reviews the latest evidence for how musical training and hearing loss affect pitch discrimination performance, based on behavioral F0DL experiments with complex tones containing either resolved or unresolved harmonics, carried out in listeners with different degrees...... of hearing loss and musicianship. A better understanding of the interaction between these two factors is crucial to determine whether auditory training based on musical tasks or targeted towards specific auditory cues may be useful to hearing-impaired patients undergoing hearing rehabilitation....

  10. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  11. Statistical study of ion pitch-angle distributions

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Mcentire, R.W.; Lui, A.T.Y.; Krimigis, S.M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt. 9 references

  12. Adaptive pitch control for load mitigation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  13. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed-forward control have been demonstrated through both experiments and simulations in several...... studies, whereas the potential of preview control for alleviating the load variations caused by azimuth dependent inflow variations is less described. Individual or cyclic pitch is required to alleviate azimuth dependent load variations and is traditionally applied through feedback control of the blade...

  14. Signal collection and position reconstruction of silicon strip detectors with 200 μm readout pitch

    International Nuclear Information System (INIS)

    Krammer, M.; Pernegger, H.

    1997-01-01

    Silicon strip detectors with large readout pitch and intermediate strips offer an interesting approach to reduce the number of readout channels in the tracking systems of future collider experiments without compromising too much on the spatial resolution. Various detector geometries with a readout pitch of 200 μm have been studied for their signal response and spatial resolution. (orig.)

  15. Perceived Pitch of Violin and Cello Vibrato Tones among Music Majors

    Science.gov (United States)

    Geringer, John M.; MacLeod, Rebecca B.; Allen, Michael L.

    2010-01-01

    The purpose of this study was to investigate the perceived pitch of string vibrato tones. The authors used recordings of acoustic instruments (cello and violin) to provide both vibrato stimulus tones and the nonvibrato tones that listeners adjusted to match the perceived pitch of the vibrato stimuli. We were interested especially in whether there…

  16. Tonal Language Background and Detecting Pitch Contour in Spoken and Musical Items

    Science.gov (United States)

    Stevens, Catherine J.; Keller, Peter E.; Tyler, Michael D.

    2013-01-01

    An experiment investigated the effect of tonal language background on discrimination of pitch contour in short spoken and musical items. It was hypothesized that extensive exposure to a tonal language attunes perception of pitch contour. Accuracy and reaction times of adult participants from tonal (Thai) and non-tonal (Australian English) language…

  17. Evaluation of health risks of playing sports on synthetic turf pitches with rubber granulate

    NARCIS (Netherlands)

    Oomen AG; de Groot GM; CPV; M&V

    2017-01-01

    New research by the Dutch National Institute for Public Health and the Environment (RIVM) indicates that the health risk of playing sports on synthetic turf pitches with an infill of rubber granulate is virtually negligible. Therefore, it is considered safe for people to play sports on such pitches.

  18. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    Directory of Open Access Journals (Sweden)

    Andrey Vyshedskiy

    2012-01-01

    Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  19. Perceiving differences in linguistic and non-linguistic pitch: A pilot study with German congenital amusics

    NARCIS (Netherlands)

    Hamann, S.; Exter, M.; Pfeifer, J.; Krause-Burmester, M.; Cambouropoulos, F.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.

    2012-01-01

    This study investigates the perception of pitch differences by seven German congenital amusics in speech and two types of non-speech material (sinusoidal waves and pulse trains). Congenital amusia is defined by a deficit in musical pitch perception, and recent studies indicate that at least a

  20. Latent infection by Fusarium circinatum influences susceptibility of monterey pine seedlings to pitch canker

    Science.gov (United States)

    Cassandra L. Swett; Thomas R. Gordon

    2012-01-01

    Pitch canker, caused by Fusarium circinatum, is a serious disease affecting Pinus radiata D. Don (Monterey pine) in nurseries, landscapes, and native forests. A typical symptom of pitch canker is canopy dieback resulting from girdling lesions on terminal branches (Gordon et al. 2001). More extensive dieback can result from...

  1. A rule-based backchannel prediction model using pitch and pause information

    NARCIS (Netherlands)

    Truong, Khiet Phuong; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We manually designed rules for a backchannel (BC) prediction model based on pitch and pause information. In short, the model predicts a BC when there is a pause of a certain length that is preceded by a falling or rising pitch. This model was validated against the Dutch IFADV Corpus in a

  2. Pitch Discrimination without Awareness in Congenital Amusia: Evidence from Event-Related Potentials

    Science.gov (United States)

    Moreau, Patricia; Jolicoeur, Pierre; Peretz, Isabelle

    2013-01-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller…

  3. Impaired Pitch Production and Preserved Rhythm Production in a Right Brain-Damaged Patient with Amusia

    Science.gov (United States)

    Murayama, Junko; Kashiwagi, Toshihiro; Kashiwagi, Asako; Mimura, Masaru

    2004-01-01

    Pre- and postmorbid singing of a patient with amusia due to a right-hemispheric infarction was analyzed acoustically. This particular patient had a premorbid tape recording of her own singing without accompaniment. Appropriateness of pitch interval and rhythm was evaluated based on ratios of pitch and duration between neighboring notes. The…

  4. A Novel Binaural Pitch Elicited by Phase-Modulated Noise: MEG and Psychophysical Observations

    NARCIS (Netherlands)

    Witton, C.; Hillebrand, A.; Furlong, P.L.; Henning, G.B.

    2012-01-01

    Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent

  5. Brief Report: Discrimination of Foreign Speech Pitch and Autistic Traits in Non-Clinical Population

    Science.gov (United States)

    Iao, Lai-Sang; Wippich, Anna; Lam, Yu Hin

    2018-01-01

    Individuals with Autism Spectrum Conditions (ASC) are widely suggested to show enhanced perceptual discrimination but inconsistent findings have been reported for pitch discrimination. Given the high variability in ASC, this study investigated whether ASC traits were correlated with pitch discrimination in an undergraduate sample when musical and…

  6. The thermal transformations of pitch and its compositions with thermo-anthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    The derivatographic method was used to examine the nature of thermal treatment of pitch in a mixture with heat-treated anthracite. The basic effect of anthracite on the thermal conversion of pitch was established, as well as the stages of mass loss and the processes that limit such losses. (9 refs.)

  7. Solid state 13 C NMR quantitative study of wood tar pitches

    International Nuclear Information System (INIS)

    Prauchner, Marcos Juliano; Pasa, Vanya Marcia Duarte; Menezes, Sonia Maria Cabral de

    1999-01-01

    In this work, solid-state 13 C NMR is used with other techniques to characterize Eucalyptus tar pitches and to follow their polymerization reactions. The pitches are the residues of distillation (about 50% m;m) of the tar generated in Eucalyptus slow pyrolysis for charcoal production in metal industry

  8. The investment strategies of sovereign wealth funds: A reverse engineered pitch

    Directory of Open Access Journals (Sweden)

    Stanislav Martínek

    2017-12-01

    Full Text Available This letter describes personal reflection based on the utilization of the Faff’s (2017, Pitching Research pitch template for a reverse engineering technique in order to summarize, evaluate and properly interpret information from articles in respected scientific journals which represents key or seminal scientific research work upon which a researcher built his/her scientific work.

  9. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  10. The effects of medial ulnar collateral ligament reconstruction on Major League pitching performance.

    Science.gov (United States)

    Keller, Robert A; Steffes, Matthew J; Zhuo, David; Bey, Michael J; Moutzouros, Vasilios

    2014-11-01

    Medial ulnar collateral ligament (MUCL) reconstruction is commonly performed on Major League Baseball (MLB) pitchers. Previous studies have reported that most pitchers return to presurgical statistical performance levels after MUCL reconstruction. Pitching performance data--specifically, earned run average (ERA), walks and hits per inning pitched (WHIP), winning percentage, and innings pitched--were acquired for 168 MLB pitchers who had undergone MUCL reconstruction. These data were averaged over the 3 years before surgery and the 3 years after surgery and also acquired from 178 age-matched, uninjured MLB pitchers. Of the pitchers who had MUCL reconstruction surgery, 87% returned to MLB pitching. However, compared with presurgical data, pitching performance declined in terms of ERA (P = .001), WHIP (P = .011), and innings pitched (P = .026). Pitching performance also declined in the season before the surgery compared with previous years (ERA, P = .014; WHIP, P = .036; innings pitched, P risk factor for requiring surgery. In addition, there is an increased risk of MUCL reconstruction for pitchers who enter the major leagues at a younger age. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. 29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...

  12. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  13. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    that the use of spectral cues remained plausible. Simulations of auditory-nerve representations of the complex tones further suggested that a spectrotemporal mechanism combining precise timing information across auditory channels might best account for the behavioral data. Overall, this work provides insights...... investigated using psychophysical methods. First, hearing loss was found to affect the perception of binaural pitch, a pitch sensation created by the binaural interaction of noise stimuli. Specifically, listeners without binaural pitch sensation showed signs of retrocochlear disorders. Despite adverse effects...... of reduced frequency selectivity on binaural pitch perception, the ability to accurately process the temporal fine structure (TFS) of sounds at the output of the cochlear filters was found to be essential for perceiving binaural pitch. Monaural TFS processing also played a major and independent role...

  14. A Comparative Analysis of Pitch Detection Methods Under the Influence of Different Noise Conditions.

    Science.gov (United States)

    Sukhostat, Lyudmila; Imamverdiyev, Yadigar

    2015-07-01

    Pitch is one of the most important components in various speech processing systems. The aim of this study was to evaluate different pitch detection methods in terms of various noise conditions. Prospective study. For evaluation of pitch detection algorithms, time-domain, frequency-domain, and hybrid methods were considered by using Keele and CSTR speech databases. Each of them has its own advantages and disadvantages. Experiments have shown that BaNa method achieves the highest pitch detection accuracy. The development of methods for pitch detection, which are robust to additive noise at different signal-to-noise ratio, is an important field of research with many opportunities for enhancement the modern methods. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Evidence for shared cognitive processing of pitch in music and language.

    Science.gov (United States)

    Perrachione, Tyler K; Fedorenko, Evelina G; Vinke, Louis; Gibson, Edward; Dilley, Laura C

    2013-01-01

    Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct--either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals' pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.

  16. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch.

    Directory of Open Access Journals (Sweden)

    Sujin Kim

    Full Text Available Individuals possessing absolute pitch (AP are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3-19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On "pitch-congruent" trials, participants heard an auditory melody that was congruent in pitch with the visual score, on "pitch-incongruent" trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on "melody-incongruent" trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts

  17. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  18. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    OpenAIRE

    Charles R Larson; Donald A Robin

    2016-01-01

    The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor ...

  19. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch

    Science.gov (United States)

    Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.

    2015-01-01

    Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6

  20. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch.

    Science.gov (United States)

    Remaley, D Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M

    2015-01-01

    Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Descriptive laboratory study. Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o'clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. During the 6 pitches, the greatest muscular activity was in phases 5 and 6

  1. Politeness, emotion, and gender: A sociophonetic study of voice pitch modulation

    Science.gov (United States)

    Yuasa, Ikuko

    The present dissertation is a cross-gender and cross-cultural sociophonetic exploration of voice pitch characteristics utilizing speech data derived from Japanese and American speakers in natural conversations. The roles of voice pitch modulation in terms of the concepts of politeness and emotion as they pertain to culture and gender will be investigated herein. The research interprets the significance of my findings based on the acoustic measurements of speech data as they are presented in the ERB-rate scale (the most appropriate scale for human speech perception). The investigation reveals that pitch range modulation displayed by Japanese informants in two types of conversations is closely linked to types of politeness adopted by those informants. The degree of the informants' emotional involvement and expressions reflected in differing pitch range widths plays an important role in determining the relationship between pitch range modulation and politeness. The study further correlates the Japanese cultural concept of enryo ("self-restraint") with this phenomenon. When median values were examined, male and female pitch ranges across cultures did not conspicuously differ. However, sporadically occurring women's pitch characteristics which culturally differ in width and height of pitch ranges may create an 'emotional' perception of women's speech style. The salience of these pitch characteristics appears to be the source of the stereotypically linked sound of women's speech being identified as 'swoopy' or 'shrill' and thus 'emotional'. Such women's salient voice characteristics are interpreted in light of camaraderie/positive politeness. Women's use of conspicuous paralinguistic features helps to create an atmosphere of camaraderie. These voice pitch characteristics promote the establishment of a sense of camaraderie since they act to emphasize such feelings as concern, support, and comfort towards addressees, Moreover, men's wide pitch ranges are discussed in view

  2. Experimental study of surface pattern effects on the propulsive performance and wake of a bio-inspired pitching panel

    Science.gov (United States)

    King, Justin; Kumar, Rajeev; Green, Melissa

    2016-11-01

    Force measurements and stereoscopic particle image velocimetry (PIV) were used to characterize the propulsive performance and wake structure of rigid, bio-inspired trapezoidal pitching panels. In the literature, it has been demonstrated that quantities such as thrust coefficient and propulsive efficiency are affected by changes in the surface characteristics of a pitching panel or foil. More specifically, the variation of surface pattern produces significant changes in wake structure and dynamics, especially in the distribution of vorticity in the wake. Force measurements and PIV data were collected for multiple surface patterns chosen to mimic fish surface morphology over a Strouhal number range of 0.17 to 0.56. Performance quantities are compared with the three-dimensional vortex wake structure for both the patterned and smooth panels to determine the nature and magnitude of surface pattern effects in terms of thrust produced, drag reduced, and wake vortices reshaped and reorganized. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  3. Short-Term Memory Performance in 7- and 8-Year-Old Children: The Relationship between Phonological and Pitch Processing

    Science.gov (United States)

    Flagge, Ashley Gaal; Estis, Julie M.; Moore, Robert E.

    2016-01-01

    Purpose: The relationship between short-term memory for phonology and pitch was explored by examining accuracy scores for typically developing children for 5 experimental tasks: immediate nonword repetition (NWR), nonword repetition with an 8-s silent interference (NWRS), pitch discrimination (PD), pitch discrimination with an 8-s silent…

  4. Size matters: pitch dimensions constrain inter-team distances and surface area difference in small-sided soccer games

    NARCIS (Netherlands)

    Frencken, Wouter; van der Plaats, Jorrit; Visscher, Chris; Lemmink, Koen

    2013-01-01

    Pitch size varies in official soccer matches and differently sized pitches are adopted for tactical purposes in small-sided training games. Since interactive team behaviour emerges under con- straints, the authors evaluate the effect of pitch size (task) manipulations on interactive team behaviour

  5. Beethoven's Last Piano Sonata and Those Who Follow Crocodiles: Cross-Domain Mappings of Auditory Pitch in a Musical Context

    Science.gov (United States)

    Eitan, Zohar; Timmers, Renee

    2010-01-01

    Though auditory pitch is customarily mapped in Western cultures onto spatial verticality (high-low), both anthropological reports and cognitive studies suggest that pitch may be mapped onto a wide variety of other domains. We collected a total number of 35 pitch mappings and investigated in four experiments how these mappings are used and…

  6. Preparation and characterization of pitch-based nanoporous carbons for improving CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul-Yi; Yoo, Hye-Min [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon (Korea, Republic of); Park, Sang Wook; Hee Park, Sang; Oh, Young Se [GS Caltex Corporation, Munji-dong, Yuseong-gu, Daejeon (Korea, Republic of); Rhee, Kyong Yop [Industrial Liaison Research Institute, Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon (Korea, Republic of)

    2014-07-01

    Pitch is considered a promising low-cost carbon precursor. However, when pitch is pyrolyzed, it forms polycrystalline graphite, which is non-porous, and therefore, not useful for CO{sub 2} adsorption. In this work, pitch was chemically activated to obtain a large specific surface area and micropore volume. Varying weight ratios of KOH (i.e., 0, 1, 2, and 3) were used as the activating agent. The characteristics of the samples were investigated using scanning electron microscopy (SEM), N{sub 2}/77 K adsorption isotherms, and X-ray diffraction (XRD). The CO{sub 2} adsorption performance was studied by isothermal adsorption/desorption measurements. The results showed that an increase in specific surface areas and total pore volumes of pitch-based nanoporous carbons, resulted in an enhancement of CO{sub 2} adsorption capacity. - Graphical abstract: This is the surface morphologies of pitch precursor and pitch-derived activated carbon (AC-2). - Highlights: • Pitch is considered a promising low-cost carbon precursor. • Specific surface area: 1442 m{sup 2}/g and micropore volume: 0.504 cm{sup 3}/g. • CO{sub 2} adsorption capacity showed 203 mg/g (@ RT/1 bar)

  7. Rapid area change in pitch-up manoeuvres of small perching birds.

    Science.gov (United States)

    Polet, D T; Rival, D E

    2015-10-26

    Rapid pitch-up has been highlighted as a mechanism to generate large lift and drag during landing manoeuvres. However, pitching rates had not been measured previously in perching birds, and so the direct applicability of computations and experiments to observed behaviour was not known. We measure pitch rates in a small, wild bird (the black-capped chickadee; Poecile atricapillus), and show that these rates are within the parameter range used in experiments. Pitching rates were characterized by the shape change number, a metric comparing the rate of frontal area increase to acceleration. Black-capped chickadees increase the shape change number during perching in direct proportion to their total kinetic and potential energy at the start of the manoeuvre. The linear relationship between dissipated energy and shape change number is in accordance with a simple analytical model developed for two-dimensional pitching and decelerating airfoils. Black-capped chickadees use a wing pitch-up manoeuvre during perching to dissipate energy quickly while maintaining lift and drag through rapid area change. It is suggested that similar pitch-and-decelerate manoeuvres could be used to aid in the controlled, precise landings of small manoeuvrable air vehicles.

  8. A comparative Tg-Ms study of the carbonization behaviour of different pitches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Arenillas, A.; Crespo, J.L.; Pis, J.J.; Moinelo, S.R. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon

    2002-08-01

    The purpose of this work was to study the formation of mesophase spherules from a low-temperature coal tar pitch under carbonization conditions. For comparison, the carbonization of a high-temperature coal tar pitch and a petroleum pitch were also considered. Different degrees of mesophase formation and development for each pitch. The results from Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and the thermogravimetric analyzer mass spectrometer (TG-MS) tests were compared with the different extents of mesophase formation, checked by optical microscopy. According to the results, several stages can be distinguished as temperature increases in the carbonization process of the pitches. In the low-temperature coal tar pitch, the devolatilization of light components, especially phenols, accounts for the most significant weight loss. Moreover, cross-linking contributes greatly to the formation and development of mesophase, resulting in the predominance of bulk mesophase in a relatively short time in the case of the low-temperature coal tar pitch. 19 refs., 10 figs., 2 tabs.

  9. Exploring the Effects of Pitch Layout on Learning a New Musical Instrument

    Directory of Open Access Journals (Sweden)

    Jennifer MacRitchie

    2017-11-01

    Full Text Available Although isomorphic pitch layouts are proposed to afford various advantages for musicians playing new musical instruments, this paper details the first substantive set of empirical tests on how two fundamental aspects of isomorphic pitch layouts affect motor learning: shear, which makes the pitch axis vertical, and the adjacency (or nonadjacency of pitches a major second apart. After receiving audio-visual training tasks for a scale and arpeggios, performance accuracies of 24 experienced musicians were assessed in immediate retention tasks (same as the training tasks, but without the audio-visual guidance and in a transfer task (performance of a previously untrained nursery rhyme. Each participant performed the same tasks with three different pitch layouts and, in total, four different layouts were tested. Results show that, so long as the performance ceiling has not already been reached (due to ease of the task or repeated practice, adjacency strongly improves performance accuracy in the training and retention tasks. They also show that shearing the layout, to make the pitch axis vertical, worsens performance accuracy for the training tasks but, crucially, it strongly improves performance accuracy in the transfer task when the participant needs to perform a new, but related, task. These results can inform the design of pitch layouts in new musical instruments.

  10. Pitch structure, but not selective attention, affects accent weightings in metrical grouping.

    Science.gov (United States)

    Prince, Jon B

    2014-10-01

    Among other cues, pitch and temporal accents contribute to grouping in musical sequences. However, exactly how they combine remains unclear, possibly because of the role of structural organization. In 3 experiments, participants rated the perceived metrical grouping of sequences that either adhered to the rules of tonal Western musical pitch structure (musical key) or did not (atonal). The tonal status of sequences did not provide any grouping cues and was irrelevant to the task. Experiment 1 established equally strong levels of pitch leap accents and duration accents in baseline conditions, which were then recombined in subsequent experiments. Neither accent type was stronger or weaker for tonal and atonal contexts. In Experiment 2, pitch leap accents dominated over duration accents, but the extent of this advantage was greater when sequences were tonal. Experiment 3 ruled out an attentional origin of this effect by replicating this finding while explicitly manipulating attention to pitch or duration accents between participant groups. Overall, the presence of tonal pitch structure made the dimension of pitch more salient at the expense of time. These findings support a dimensional salience framework in which the presence of organizational structure prioritizes the processing of the more structured dimension regardless of task relevance, independent from psychophysical difficulty, and impervious to attentional allocation.

  11. Investigation of habitual pitch during free play activities for preschool-aged children.

    Science.gov (United States)

    Chen, Yang; Kimelman, Mikael D Z; Micco, Katie

    2009-01-01

    This study is designed to compare the habitual pitch measured in two different speech activities (free play activity and traditionally used structured speech activity) for normally developing preschool-aged children to explore to what extent preschoolers vary their vocal pitch among different speech environments. Habitual pitch measurements were conducted for 10 normally developing children (2 boys, 8 girls) between the ages of 31 months and 71 months during two different activities: (1) free play; and (2) structured speech. Speech samples were recorded using a throat microphone connected with a wireless transmitter in both activities. The habitual pitch (in Hz) was measured for all collected speech samples by using voice analysis software (Real-Time Pitch). Significantly higher habitual pitch is found during free play in contrast to structured speech activities. In addition, there is no showing of significant difference of habitual pitch elicited across a variety of structured speech activities. Findings suggest that the vocal usage of preschoolers appears to be more effortful during free play than during structured activities. It is recommended that a comprehensive evaluation for young children's voice needs to be based on the speech/voice samples collected from both free play and structured activities.

  12. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    Science.gov (United States)

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  13. Utterance-final position and pitch marking aid word learning in school-age children.

    Science.gov (United States)

    Filippi, Piera; Laaha, Sabine; Fitch, W Tecumseh

    2017-08-01

    We investigated the effects of word order and prosody on word learning in school-age children. Third graders viewed photographs belonging to one of three semantic categories while hearing four-word nonsense utterances containing a target word. In the control condition, all words had the same pitch and, across trials, the position of the target word was varied systematically within each utterance. The only cue to word-meaning mapping was the co-occurrence of target words and referents. This cue was present in all conditions. In the Utterance-final condition, the target word always occurred in utterance-final position, and at the same fundamental frequency as all the other words of the utterance. In the Pitch peak condition, the position of the target word was varied systematically within each utterance across trials, and produced with pitch contrasts typical of infant-directed speech (IDS). In the Pitch peak + Utterance-final condition, the target word always occurred in utterance-final position, and was marked with a pitch contrast typical of IDS. Word learning occurred in all conditions except the control condition. Moreover, learning performance was significantly higher than that observed with simple co-occurrence ( control condition) only for the Pitch peak + Utterance-final condition. We conclude that, for school-age children, the combination of words' utterance-final alignment and pitch enhancement boosts word learning.

  14. Characterization of pitches by liquid chromatography using cellulose 3,5-dinitrobenzoate as the packing material

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Judo, R.; Ota, E. [Gunma University, Gunma (Japan). Dept. of Chemistry

    1997-08-01

    Characterization of coal tar, petroleum and PVC pitches by a liquid chromatography using cellulose 3,5-dinitrobenzoate (DNB-cellulose) as the packing material was investigated. Separation mechanism based on charge-transfer interaction between the dinitrobenzoyl group and polyaromatic compounds was expected to be useful for separation of the constituents of the pitches. First, 26 model polyaromatic compounds were tested to examine the characteristic feature of the packing material by liquid chromatography. The compounds were found to be classified roughly into four groups with different retention volume, principally according to the number of condensed rings. The nonplanar structure and aliphatic side chain of the polyaromatic compounds also affected the separation behavior. Both benzene soluble-hexane soluble and benzene soluble-hexane insoluble fractions of the three pitches were separated on DNB-cellulose. It was found that coal tar pitch contains relatively large amounts of some highly condensed polyaromatic compounds with condensed rings of 4 to 5; petroleum pitch has small amounts of such specific highly condensed polyaromatic compounds, while PVC pitch has large amounts of less condensed polyaromatic compounds and there is no significant amount of highly condensed compound in it. Thus DNB-cellulose was useful as the convenient packing material for liquid chromatography to characterize pitches.

  15. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  16. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  17. Developmental trajectories of pitch-related music skills in children with Williams syndrome.

    Science.gov (United States)

    Martínez-Castilla, Pastora; Rodríguez, Manuel; Campos, Ruth

    2016-01-01

    The study of music cognition in Williams syndrome (WS) has resulted in theoretical debates regarding cognitive modularity and development. However, no research has previously investigated the development of music skills in this population. In this study, we used the cross-sectional developmental trajectories approach to assess the development of pitch-related music skills in children with WS compared with typically developing (TD) peers. Thus, we evaluated the role of change over time on pitch-related music skills and the developmental relationships between music skills and different cognitive areas. In the TD children, the pitch-related music skills improved with chronological age and cognitive development. In the children with WS, developmental relationships were only found between several pitch-related music skills and specific cognitive processes. We also found non-systematic relationships between chronological age and the pitch-related music skills, stabilization in the level reached in music when cognitive development was considered, and uneven associations between cognitive and music skills. In addition, the TD and WS groups differed in their patterns of pitch-related music skill development. These results suggest that the development of pitch-related music skills in children with WS is atypical. Our findings stand in contrast with the views that claim innate modularity for music in WS; rather, they are consistent with neuroconstructivist accounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sounds like a winner: voice pitch influences perception of leadership capacity in both men and women.

    Science.gov (United States)

    Klofstad, Casey A; Anderson, Rindy C; Peters, Susan

    2012-07-07

    It is well known that non-human animals respond to information encoded in vocal signals, and the same can be said of humans. Specifically, human voice pitch affects how speakers are perceived. As such, does voice pitch affect how we perceive and select our leaders? To answer this question, we recorded men and women saying 'I urge you to vote for me this November'. Each recording was manipulated digitally to yield a higher- and lower-pitched version of the original. We then asked men and women to vote for either the lower- or higher-pitched version of each voice. Our results show that both men and women select male and female leaders with lower voices. These findings suggest that men and women with lower-pitched voices may be more successful in obtaining positions of leadership. This might also suggest that because women, on average, have higher-pitched voices than men, voice pitch could be a factor that contributes to fewer women holding leadership roles than men. Additionally, while people are free to choose their leaders, these results clearly demonstrate that these choices cannot be understood in isolation from biological influences.

  19. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    Science.gov (United States)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  20. Current-Loop Control for the Pitching Axis of Aerial Cameras via an Improved ADRC

    Directory of Open Access Journals (Sweden)

    BingYou Liu

    2017-01-01

    Full Text Available An improved active disturbance rejection controller (ADRC is designed to eliminate the influences of the current-loop for the pitching axis control system of an aerial camera. The improved ADRC is composed of a tracking differentiator (TD, an improved extended state observer (ESO, an improved nonlinear state error feedback (NLSEF, and a disturbance compensation device (DCD. The TD is used to arrange transient process. The improved ESO is utilized to observe the state extended by nonlinear dynamics, model uncertainty, and external disturbances. Overtime variation of the current-loop can be predicted by the improved ESO. The improved NLSEF is adopted to restrain the residual errors of the current-loop. The DCD is used to compensate the overtime variation of the current-loop in real time. The improved ADRC is designed based on a new nonlinear function newfal(·. This function exhibits enhanced continuity and smoothness compared to previously available nonlinear functions. Thus, the new nonlinear function can effectively decrease the high-frequency flutter phenomenon. The improved ADRC exhibits improved control performance, and disturbances of the current-loop can be eliminated by the improved ADRC. Finally, simulation experiments are performed. Results show that the improved ADRC displayed better performance than the proportional integral (PI control strategy and traditional ADRC.

  1. Pelvic rotation torque during fast-pitch softball hitting under three ball height conditions.

    Science.gov (United States)

    Iino, Yoichi; Fukushima, Atsushi; Kojima, Takeji

    2014-08-01

    The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior-inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.

  2. Numerical study of the static and pitching RISOe-B1-18 airfoil[STALL

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2004-01-01

    The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISOe-B1-18 airfoil which was equipped and measured in an open jet wind tunnel is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used for performing calculations. Computational results are compared to the experimental results that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the main characteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can then be used to improve the performance of the engineering model. (au)

  3. Experimental investigation of a supercritical airfoil boundary layer in pitching motion

    Energy Technology Data Exchange (ETDEWEB)

    Masdari, Mehran; Tabrizian, Arshia [Faculty of New Science and Technology, University of Tehran, Tehran (Iran, Islamic Republic of); Jahanmiri, Mohsen; Gorji, Mohamamd [Dept. of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Soltani, Mohammad Reza [Dept. of Aerospace Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-01-15

    In this study, the boundary layer velocity profile on the upper surface of a supercritical airfoil in a forced sinusoidal pitching motion was measured and experimentally investigated. Measurements were performed using a boundary layer rake, including total pressure tubes positioned at 25 % of the chord far from the leading edge on the upper surface. For static measurements, the effects of the angle of attack between −3° and 14° and free-stream velocity between 40 m/s and 70 m/s were investigated; for dynamic measurements, the effects of oscillation amplitude variation between ±3° and ±10°, reduced frequency from 0.007 to 0.0313, and mean angle of attack between −3° and 6° were studied during one oscillation cycle. Results indicated that the boundary layer thickness decreased in upstroke motion. Increasing the oscillation frequency led to the extension of hysteresis loops. Fast Fourier transform was used on pressure signals to study the amplitude of the dominant frequency in the velocity profile. Spectral analysis showed that the dominant forced frequency of oscillation in the boundary layer and the amplitude of this frequency were varied by increasing the reduced frequency and other parameters.

  4. Absence of modulatory action on haptic height perception with musical pitch

    Directory of Open Access Journals (Sweden)

    Michele eGeronazzo

    2015-09-01

    Full Text Available Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., high in pitch or low in pitch. Pitch-height is known to modulate (and interact with the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step.We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point’s height within (i a narrower and (ii a wider pitch range, or (iii a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only. Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non musicians when estimations of the auditory conditions are matched with estimations in the no sound condition.

  5. A nonlinear theory of cosmic ray pitch angle diffusion in homogeneous magnetostatic turbulence

    International Nuclear Information System (INIS)

    Goldstein, M.L.

    1975-04-01

    A plasma strong turbulence, weak coupling theory is applied to the problem of cosmic ray pitch angle scattering in magnetostatic turbulence. The theory used is a rigorous generalization of Weinstock's resonance-broadening theory and contains no ad hoc approximations. A detailed calculation is presented for a model of slab turbulence with an exponential correlation function. The results agree well with numerical simulations. The rigidity dependence of the pitch angle scattering coefficient differs from that found by previous researchers. The differences result from an inadequate treatment of particle trajectories near 90 0 pitch angle in earlier work

  6. Pitch systems in wind and wave power systems; Pitchantriebe in Windkraft- und Meerestroemungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Roesmann, Tobias; Senicar, Felix [LTi REENERGY GmbH, Unna (Germany)

    2007-07-01

    Modern windmills and multimegawatt turbines are nearly exclusively equipped with electrical pitch systems. The first chapters of this paper describe the general structure and behavior of a pitch system. In the following two main components are described more detailed. The PITCHmaster II was developed especially for application in the hub of a wind turbine. The special characteristics and functions are described. Also the design of DC machines for pitch application is picked up as a central theme. Here an invention allows the adoption of the machine to nearly any required system behavior and solves actual design problems. (orig.)

  7. Studi Sintesis Metil Ester Asam Lemak Dari Pitch Cair Melalui Tahap Reaksi Esterifikasi Dan Transesterifikasi

    OpenAIRE

    Turnip, Roselprida

    2015-01-01

    Pitch liquid having high Free Fatty Acid (FFA) derived from by product of process Palm Kernel Oil (PKO) became Fatty acid & Glycerine. The Reaction of making fatty acid methyl esters (FAME) from Pitch liquid having high FFA min 25,60% was investigated in two step. The acid-catalyzed (H2SO4(p)) esterification follow to Transesterification by the base catalyzed (KOH) methanolysis with mol ratio of methanol and TG of Pitch liquid 6 : 1, The first step reduced the FFA 1.01% with reaction time ...

  8. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  9. Leadership off the pitch:the role of the manager in semi-professional football

    OpenAIRE

    Molan, Conor; Matthews, James; Arnold, Rachel

    2016-01-01

    Research question: The first-team manager’s position in semi-professional or professional football clubs can be viewed as the de-facto leadership role. Although there has been considerable research conducted in relation to leadership on the pitch, in a coaching or in-game context, the football manager’s leadership off the pitch remains an underexplored topic. The purpose of this study was, therefore, to explore the manager’s off the pitch leadership role, utilising semi-professional football ...

  10. Propulsive performance of pitching foils with variable chordwise flexibility

    Science.gov (United States)

    Zeyghami, Samane; Moored, Keith; Lehigh University Team

    2017-11-01

    Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.

  11. A fuzzy logic pitch angle controller for power system stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)

    2006-07-12

    In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).

  12. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies

    International Nuclear Information System (INIS)

    Ishihara, D; Horie, T; Niho, T

    2014-01-01

    The relative importance of the wing’s inertial and aerodynamic forces is the key to revealing how the kinematical characteristics of the passive pitching motion of insect flapping wings are generated, which is still unclear irrespective of its importance in the design of insect-like micro air vehicles. Therefore, we investigate three species of flies in order to reveal this, using a novel fluid-structure interaction analysis that consists of a dynamically scaled experiment and a three-dimensional finite element analysis. In the experiment, the dynamic similarity between the lumped torsional flexibility model as a first approximation of the dipteran wing and the actual insect is measured by the Reynolds number Re, the Strouhal number St, the mass ratio M, and the Cauchy number Ch. In the computation, the three-dimension is important in order to simulate the stable leading edge vortex and lift force in the present Re regime over 254. The drawback of the present experiment is the difficulty in satisfying the condition of M due to the limitation of available solid materials. The novelty of the present analysis is to complement this drawback using the computation. We analyze the following two cases: (a) The equilibrium between the wing’s elastic and fluid forces is dynamically similar to that of the actual insect, while the wing’s inertial force can be ignored. (b) All forces are dynamically similar to those of the actual insect. From the comparison between the results of cases (a) and (b), we evaluate the contributions of the equilibrium between the aerodynamic and the wing’s elastic forces and the wing’s inertial force to the passive pitching motion as 80–90% and 10–20%, respectively. It follows from these results that the dipteran passive pitching motion will be based on the equilibrium between the wing’s elastic and aerodynamic forces, while it will be enhanced by the wing’s inertial force. (paper)

  13. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers—An Observational Study

    Science.gov (United States)

    Zaremski, Jason L.; Zeppieri, Giorgio; Jones, Deborah L.; Tripp, Brady L.; Bruner, Michelle; Vincent, Heather K.; Horodyski, MaryBeth

    2018-01-01

    Background: Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Hypotheses: Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. Results: We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. Conclusion: In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury. PMID:29662911

  14. Locomotion of a bioinspired flyer powered by one pair of pitching foils

    Science.gov (United States)

    Zhang, Xiang; He, Guowei; Wang, Shizhao; Zhang, Xing

    2018-01-01

    We numerically investigate the flight dynamics and aerodynamics of a two-dimensional model for the jellyfishlike ornithopter recently devised by Ristroph and Childress [L. Ristroph and S. Childress, J. R. Soc. Interface 11, 20130992 (2014), 10.1098/rsif.2013.0992]. This simplified model is composed of two rigid thin foils which are forced to pitch in antiphase fashion. The Navier-Stokes equations for the fluid and the dynamics equations for the flyer are solved together in the simulations. We first consider the constrained-flying condition where the flyer model is only allowed to move in the vertical direction. The influences of the control parameters on the hovering performance are studied. With the variations in parameter values, three different locomotion states, i.e., ascending, descending, and approximate hovering, are identified. The wake structures corresponding to these three locomotion states are explored. It is found that the approximate hovering state cannot persist due to the occurrence of wake symmetry breaking after long-time simulation. We then consider the free-flying condition where the motions in three degrees of freedom are allowed. We study the postural stability of a flyer, with its center of gravity located at the geometric center. The responses of the flyer at different locomotion states to physical and numerical perturbations are examined. Our results show that the ascending state is recoverable after the perturbation. The descending state is irrecoverable after the perturbation and a mixed fluttering and tumbling motion which resembles that of a falling card emerges. The approximate hovering state is also irrecoverable and it eventually transits to the ascending state after the perturbation. The research sheds light on the lift-producing mechanism and stability of the flyer and the results are helpful in guiding the design and optimization of the jellyfishlike flying machine.

  15. Exploration of coal-based pitch precursors for ultra-high thermal conductivity graphite fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, G.V. [Amoco Performance Products, Inc., Alpharetta, GA (United States)

    1996-12-27

    Goal was to explore the utility of coal-based pitch precursors for use in ultra high thermal conductivity carbon (graphite) fibers. From graphite electrode experience, it was established that coal-based pitches tend to form more highly crystalline graphite at lower temperatures. Since the funding was limited to year 1 effort of the 3 year program, the goal was only partially achieved. The coal-base pitches can form large domain mesophase in spite of high N and O contents. The mesophase reactivity test performed on one of the variants of coal-based pitch (DO84) showed that it was not a good candidate for carbon fiber processing. Optimization of WVU`s isotropic pitch process is required to tailor the pitch for carbon fiber processing. The hetero atoms in the coal pitch need to be reduced to improve mesophase formation.

  16. Individuals with congenital amusia imitate pitches more accurately in singing than in speaking: implications for music and language processing.

    Science.gov (United States)

    Liu, Fang; Jiang, Cunmei; Pfordresher, Peter Q; Mantell, James T; Xu, Yi; Yang, Yufang; Stewart, Lauren

    2013-11-01

    In this study, we investigated the impact of congenital amusia, a disorder of musical processing, on speech and song imitation in speakers of a tone language, Mandarin. A group of 13 Mandarin-speaking individuals with congenital amusia and 13 matched controls were recorded while imitating a set of speech and two sets of song stimuli with varying pitch and rhythm patterns. The results indicated that individuals with congenital amusia were worse than controls in both speech and song imitation, in terms of both pitch matching (absolute and relative) and rhythm matching (relative time and number of time errors). Like the controls, individuals with congenital amusia achieved better absolute and relative pitch matching and made fewer pitch interval and contour errors in song than in speech imitation. These findings point toward domain-general pitch (and time) production deficits in congenital amusia, suggesting the presence of shared pitch production mechanisms but distinct requirements for pitch-matching accuracy in language and music processing.

  17. Potential load reductions on megawatt turbines exposed to wakes using individual-pitch wake compensator and trailing-edge flaps

    DEFF Research Database (Denmark)

    Markou, Helen; Andersen, Peter Bjørn; Larsen, Gunner Chr.

    2011-01-01

    that typically focus on either load or power prediction. As a consequence, the wake affected inflow field generated by the DWM formulation opens for control strategies for the individual turbine. Two different control approaches for load reduction on the individual turbines are implemented in the multi-body aero-servo-elastic...... tool HAWC2, developed at Risø-DTU in Denmark, and their potential load reduction capabilities compared: (1) full-blade ‘individual-pitch controllers’ acting as wake compensators and (2) controllers using trailing-edge flaps. Information on the wake inflow conditions, induced by upstream turbines...... for the loading conditions of the individual turbines in the farm. The dynamic wake meandering model (DWM) is believed to capture the essential physics of the wake problem, and thus, both load and production aspects can be predicted, which is contrary to the traditional engineering wake prediction methods...

  18. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  19. Evaluation of pitches and cokes from solvent-extracted coal materials

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, E.R.

    1996-12-01

    Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

  20. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  1. Pitch control for ships with diesel mechanical and hybrid propulsion : Modelling, validation and performance quantification

    NARCIS (Netherlands)

    Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Loonstijn, M.A.; Hopman, J.J.

    2017-01-01

    Ships, in particular service vessels, need to reduce fuel consumption, emissions and cavitation noise while maintaining manoeuvrability and preventing engine overloading. Diesel mechanical propulsion with controllable pitch propellers can provide high fuel efficiency with good manoeuvrability.

  2. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  3. Application of the matching law to pitch selection in professional baseball.

    Science.gov (United States)

    Cox, David J; Sosine, Jacob; Dallery, Jesse

    2017-04-01

    This study applied the generalized matching equation (GME) to pitch selection in professional baseball. The GME was fitted to the relation between pitch selection and hitter outcomes for five professional baseball pitchers during the 2014 Major League Baseball season. The GME described pitch selection well. Pitch allocation varied across different game contexts such as inning, count, and number of outs in a manner consistent with the GME. Finally, within games, bias decreased for four of the five pitchers and the sensitivity parameter increased for three of the five pitchers. The results extend the generality of the GME to multialternative natural sporting contexts, and demonstrate the influence of context on behavior in natural environments. © 2017 Society for the Experimental Analysis of Behavior.

  4. Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report

    Science.gov (United States)

    1978-01-01

    Detailed design parameters are presented for a variable-pitch change mechanism. The mechanism is a mechanical system containing a ball screw/spline driving two counteracting master bevel gears meshing pinion gears attached to each of 18 fan blades.

  5. Tempo discrimination of musical patterns: effects due to pitch and rhythmic structure.

    Science.gov (United States)

    Boltz, M G

    1998-11-01

    The purpose of this research was to investigate a set of factors that may influence the perceived rate of an auditory event. In a paired-comparison task, subjects were presented with a set of music-like patterns that differed in their relative number of contour changes and in the magnitude of pitch skips (Experiment 1) as well as in the compatibility of rhythmic accent structure with the arrangement of pitch relations (Experiment 2) Results indicated that, relative to their standard referents, comparison melodies were judged to unfold more slowly when they displayed more changes in pitch direction, greater pitch distances, and an incompatible rhythmic accent structure. These findings are suggested to stem from an imputed velocity hypothesis, in which people overgeneralize certain invariant relations that typically occur between melodic and temporal accent structure within Western music.

  6. Low Cost/Low Noise Variable Pitch Ducted Fan, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ACI proposes a design for a Propulsor (Low Cost/Low Noise Variable Pitch Ducted Fan) that has wide application in all sectors of Aviation. Propulsor hardware of this...

  7. A Study of the Interaction between Batting Cage Baseballs and Pitching Machine

    Directory of Open Access Journals (Sweden)

    Patrick Drane

    2018-02-01

    Full Text Available Batting cage pitching machines are widely used across the sports of baseball and softball for training and recreation purposes. The balls are specifically designed for the machines and for the environment to ensure high durability and typically do not have seams. Polymeric foam balls are widely used in these automated pitching machines for batting practice in a cage environment and are similar in weight and size compared with the regulation balls used in leagues. The primary objective of this paper is to characterize the polymeric balls and their interaction with the pitching machine. The paper will present measured ball properties and measured relationships between various pitching machine parameters such as wheel speed, and the ratio of wheel speeds on the ball exit velocity and rotation. This paper will also characterize some of the effects of wear on the baseballs and wheels from their prolonged use.

  8. The relationship between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions.

    Science.gov (United States)

    Keppler, H; Degeest, S; Dhooge, I

    2017-11-01

    Chronic tinnitus is associated with reduced auditory input, which results in changes in the central auditory system. This study aimed to examine the relationship between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions. For audiometry, the parameters represented the edge frequency of hearing loss, the frequency of maximum hearing loss and the frequency range of hearing loss. For distortion product otoacoustic emissions, the parameters were the frequency of lowest distortion product otoacoustic emission amplitudes and the frequency range of reduced distortion product otoacoustic emissions. Sixty-seven patients (45 males, 22 females) with subjective chronic tinnitus, aged 18 to 73 years, were included. No correlation was found between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions. However, tinnitus pitch fell mostly within the frequency range of hearing loss. The current study seems to confirm the relationship between tinnitus pitch and the frequency range of hearing loss, thus supporting the homeostatic plasticity model.

  9. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    2017-01-01

    superior temporal gyrus, Heschl's gyrus, insular cortex, inferior frontal gyrus, and in the inferior colliculus. Both subcortical and cortical neural responses predicted the individual pitch-discrimination performance. However, functional activity in the inferior colliculus correlated with differences...

  10. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  11. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  12. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    Science.gov (United States)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  13. Uncovering phenotypes of poor-pitch singing: the Sung Performance Battery (SPB)

    Science.gov (United States)

    Berkowska, Magdalena; Dalla Bella, Simone

    2013-01-01

    Singing is as natural as speaking for humans. Increasing evidence shows that the layman can carry a tune (e.g., when asked to sing a well-known song or to imitate single pitches, intervals and short melodies). Yet, important individual differences exist in the general population with regard to singing proficiency. Some individuals are particularly inaccurate or imprecise in producing or imitating pitch information (poor-pitch singers), thus showing a variety of singing phenotypes. Unfortunately, so far there is not a standard set of tasks for assessing singing proficiency in the general population, allowing to uncover and characterize individual profiles of poor-pitch singing. Different tasks and analysis methods are typically used in various experiments, making the comparison of the results across studies arduous. To fill this gap we propose here a new tool for assessing singing proficiency (the Sung Performance Battery, SPB). The SPB starts from the assessment of participants' vocal range followed by five tasks: (1) single-pitch matching, (2) pitch-interval matching, (3) novel-melody matching, (4) singing from memory of familiar melodies (with lyrics and on a syllable), and (5) singing of familiar melodies (with lyrics and on a syllable) at a slow tempo indicated by a metronome. Data analysis via acoustical methods provides objective measures of pitch accuracy and precision in terms of absolute and relative pitch. The SPB has been tested in a group of 50 occasional singers. The results indicate that the battery is useful for characterizing proficient singing and for detecting cases of inaccurate and/or imprecise singing. PMID:24151475

  14. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    OpenAIRE

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quanti...

  15. In search of rules behind environmental framing; the case of head pitch.

    Science.gov (United States)

    Wilson, Gwendoline Ixia; Norman, Brad; Walker, James; Williams, Hannah J; Holton, M D; Clarke, D; Wilson, Rory P

    2015-01-01

    Whether, and how, animals move requires them to assess their environment to determine the most appropriate action and trajectory, although the precise way the environment is scanned has been little studied. We hypothesized that head attitude, which effectively frames the environment for the eyes, and the way it changes over time, would be modulated by the environment. To test this, we used a head-mounted device (Human-Interfaced Personal Observation platform - HIPOP) on people moving through three different environments; a botanical garden ('green' space), a reef ('blue' space), and a featureless corridor, to examine if head movement in the vertical axis differed between environments. Template matching was used to identify and quantify distinct behaviours. The data on head pitch from all subjects and environments over time showed essentially continuous clear waveforms with varying amplitude and wavelength. There were three stylised behaviours consisting of smooth, regular peaks and troughs in head pitch angle and variable length fixations during which the head pitch remained constant. These three behaviours accounted for ca. 40 % of the total time, with irregular head pitch changes accounting for the rest. There were differences in rates of manifestation of behaviour according to environment as well as environmentally different head pitch values of peaks, troughs and fixations. Finally, although there was considerable variation in head pitch angles, the peak and trough values bounded most of the variation in the fixation pitch values. It is suggested that the constant waveforms in head pitch serve to inform people about their environment, providing a scanning mechanism. Particular emphasis to certain sectors is manifest within the peak and trough limits and these appear modulated by the distribution of the points where fixation, interpreted as being due to objects of interest, occurs. This behaviour explains how animals allocate processing resources to the

  16. Contributions of pitch contour, tonality, rhythm, and meter to melodic similarity.

    Science.gov (United States)

    Prince, Jon B

    2014-12-01

    The identity of a melody resides in its sequence of pitches and durations, both of which exhibit surface details as well as structural properties. In this study, pitch contour (pattern of ups and downs) served as pitch surface information, and tonality (musical key) as pitch structure; in the temporal dimension, surface information was the ordinal duration ratios of adjacent notes (rhythm), and meter (beat, or pulse) comprised the structure. Factorially manipulating the preservation or alteration of all of these forms of information in 17 novel melodies (typifying Western music) enabled measuring their effect on perceived melodic similarity. In Experiment 1, 34 participants (varied musical training) rated the perceived similarity of melody pairs transposed to new starting pitches. Rhythm was the largest contributor to perceived similarity, then contour, meter, and tonality. Experiment 2 used the same melodies but varied the tempo within a pair, and added a prefix of 3 chords, which oriented the listener to the starting pitch and tempo before the melody began. Now contour was the strongest influence on similarity ratings, followed by tonality, and then rhythm; meter was not significant. Overall, surface features influenced perceived similarity more than structural, but both had observable effects. The primary theoretical advances in melodic similarity research are that (a) the relative emphasis on pitch and temporal factors is flexible; (b) pitch and time functioned independently when factorially manipulated, regardless of which dimension is more influential; and (c) interactions between surface and structural information were unreliable and never occurred between dimensions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Learning of pitch and time structures in an artificial grammar setting.

    Science.gov (United States)

    Prince, Jon B; Stevens, Catherine J; Jones, Mari Riess; Tillmann, Barbara

    2018-04-12

    Despite the empirical evidence for the power of the cognitive capacity of implicit learning of structures and regularities in several modalities and materials, it remains controversial whether implicit learning extends to the learning of temporal structures and regularities. We investigated whether (a) an artificial grammar can be learned equally well when expressed in duration sequences as when expressed in pitch sequences, (b) learning of the artificial grammar in either duration or pitch (as the primary dimension) sequences can be influenced by the properties of the secondary dimension (invariant vs. randomized), and (c) learning can be boosted when the artificial grammar is expressed in both pitch and duration. After an exposure phase with grammatical sequences, learning in a subsequent test phase was assessed in a grammaticality judgment task. Participants in both the pitch and duration conditions showed incidental (not fully implicit) learning of the artificial grammar when the secondary dimension was invariant, but randomizing the pitch sequence prevented learning of the artificial grammar in duration sequences. Expressing the artificial grammar in both pitch and duration resulted in disproportionately better performance, suggesting an interaction between the learning of pitch and temporal structure. The findings are relevant to research investigating the learning of temporal structures and the learning of structures presented simultaneously in 2 dimensions (e.g., space and time, space and objects). By investigating learning, the findings provide further insight into the potential specificity of pitch and time processing, and their integrated versus independent processing, as previously debated in music cognition research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia

    OpenAIRE

    Philippe Albouy; Marion Cousineau; Anne Caclin; Barbara Tillmann; Isabelle Peretz

    2016-01-01

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participa...

  19. Pitch Discrimination in Musicians and Non-Musicians: Effects of Harmonic Resolvability and Processing Effort

    DEFF Research Database (Denmark)

    Bianchi, Federica; Santurette, Sébastien; Wendt, Dorothea

    2016-01-01

    -musicians, suggesting similar peripheral frequency selectivity in the two groups of listeners. In a follow-up experiment, listeners’ pupil dilations were measured as an indicator of the required effort in performing the same pitch discrimination task for conditions of varying resolvability and task difficulty...... abilities in musicians are unlikely to be related to higher peripheral frequency selectivity and may suggest an enhanced pitch representation at more central stages of the auditory system in musically trained listeners....

  20. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    Science.gov (United States)

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.