WorldWideScience

Sample records for piston internal combustion

  1. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  2. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  3. Predictive piston motion control in a free-piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Jones, E.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-05-15

    A piston motion controller for a free-piston internal combustion engine is presented. To improve dynamic performance in the control of the piston motion and engine compression ratio, the controller response is determined from a prediction of engine top dead centre error rather than the measured value from the previous cycle. The proposed control approach showed superior performance compared with that of standard PI feedback control known from the literature due to a reduced control action time delay. The manipulation of fuel injection timing to reduce in-cylinder pressure peaks and cycle-to-cycle variations was also studied, indicating that with the piston motion estimation, the injection timing is a powerful control variable for this purpose. (author)

  4. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  5. The highlighting of an internal combustion engine piston ring radial oscillations

    Directory of Open Access Journals (Sweden)

    Djallel ZEBBAR

    2016-06-01

    Full Text Available This paper deals with the definition of the lube-oil film thickness in the piston ring cylinder liner junction of an internal combustion engine. At first, a mathematical model for the estimation of the film thickness is established. It is used to point out the oscillating motion of the piston ring normal to the cylinder wall. For the first time, has been highlighted and analytically evaluated the oscillating behavior of the piston ring in its housing in the radial direction. Furthermore, it is demonstrated that the radial oscillations frequency is a function of piston ring stiffness, material and geometry.

  6. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  7. CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS

    Directory of Open Access Journals (Sweden)

    Michał BIAŁY

    2017-03-01

    Full Text Available The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.

  8. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  9. Flow effects due to valve and piston motion in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2015-01-01

    Highlights: • Flow regime identification depending on the valve lift during the exhaust stroke. • Analysis of the valve motion effect onto the flow development in the exhaust port. • Physical interpretation of commonly used discharge and flow coefficient formulations. • Illustration of flow effects in junction regions with pulsatile flow. - Abstract: Performance optimization regarding e.g. exhaust valve strategies in an internal combustion engine is often performed based on one-dimensional simulation investigation. Commonly, a discharge coefficient is used to describe the flow behavior in complex geometries, such as the exhaust port. This discharge coefficient for an exhaust port is obtained by laboratory experiments at fixed valve lifts, room temperatures, and low total pressure drops. The present study investigates the consequences of the valve and piston motion onto the energy losses and the discharge coefficient. Therefore, Large Eddy Simulations are performed in a realistic internal combustion geometry using three different modeling strategies, i.e. fixed valve lift and fixed piston, moving piston and fixed valve lift, and moving piston and moving valve, to estimate the energy losses. The differences in the flow field development with the different modeling approaches is delineated and the dynamic effects onto the primary quantities, e.g. discharge coefficient, are quantified. Considering the motion of piston and valves leads to negative total pressure losses during the exhaust cycle, which cannot be observed at fixed valve lifts. Additionally, the induced flow structures develop differently when valve motion is taken into consideration, which leads to a significant disparity of mass flow rates evolving through the two individual valve ports. However, accounting for piston motion and limited valve motion, leads to a minor discharge coefficient alteration of about one to two percent

  10. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  11. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  12. Efficiency of a new internal combustion engine concept with variable piston motion

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2014-01-01

    Full Text Available This paper presents simulation of working process in a new IC engine concept. The main feature of this new IC engine concept is the realization of variable movement of the piston. With this unconventional piston movement it is easy to provide variable compression ratio, variable displacement and combustion during constant volume. These advantages over standard piston mechanism are achieved through synthesis of the two pairs of non-circular gears. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of IC engines. For this paper Ricardo/WAVE software was used, which provides a fully integrated treatment of time-dependent fluid dynamics and thermodynamics by means of onedimensional formulation. The results obtained herein include the efficiency characteristic of this new heat engine concept. The results show that combustion during constant volume, variable compression ratio and variable displacement have significant impact on improvement of fuel consumption.

  13. Cylinder head seal for piston engines especially internal combustion engines. Zylinderkopfdichtung fuer Hubkolbenmaschinen, insbesondere Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.; Winter, J.

    1991-01-17

    The invention concerns a cylinder head seal for reciprocating piston engines especially internal combustion engines and preferentially those with cylinder sleeves. With performances of internal combustion engines encreasing all the time it is becoming more and more difficult to seal the cylinder heat. The invention proposes a ring seal whose sides are plastically deformed when the cylinder headed screws are tightened. The inner deformations of the cylinder head resulting from the pressure forces inside the cylinder are compensated by means of elastic spring action of the combustion chamber sealing ring. The dimension of land, groove and sides are matched in such a way as to prevent any seal squeezing during plastification which would result in a deformation of the cylinder sleeve. The ring can therefore be set directly into the centering of the cylinder sleeve. Separate centering devices are not required.

  14. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  15. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  16. Reduction of HCCI combustion noise through piston crown design

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2010-01-01

    . The largest and most consistent reduction in noise level was however achieved with a diesel bowl type piston. The increased surface area as well as the larger crevice volumes of the experimental piston crowns generally resulted in lower IMEP than the flat piston. While the crevice volumes can be reduced...... away from the engine. The experiments were conducted in a diesel engine that was run in HCCI combustion mode with a fixed quantity of DME as fuel. The results show that combustion knock is effectively suppressed by limiting the size of the volume in which the combustion occurs. Splitting...... the compression volume into four smaller volumes placed between the perimeter of the piston and the cylinder liner increased the noise to a higher level than that generated with a flat piston crown. This was due to resonance between the four volumes. Using eight volumes instead decreased the noise. The noise...

  17. A computational study of free-piston diesel engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2009-07-15

    This paper investigates the in-cylinder gas motion, combustion process and nitrogen oxide formation in a free-piston diesel engine and compares the results to those of a conventional engine, using a computational fluid dynamics engine model. Enhanced radial gas flow (squish and reverse squish) around top dead centre is found for the free-piston engine compared to a conventional engine, however it is found that this has only minor influence on the combustion process. A higher heat release rate from the pre-mixed combustion phase due to an increased ignition delay was found, along with potential reductions in nitrogen oxides emissions formation for the free-piston engine. (author)

  18. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  19. Development and Experimental Investigation of a Two-Stroke Opposed-Piston Free-Piston Engine

    OpenAIRE

    Schneider, Stephan; Chiodi, Marco; Friedrich, Horst E.; Bargende, Michael

    2016-01-01

    The proposed paper deals with the development process and initial measurement results of an opposed-piston combustion engine for application in a Free-Piston Linear Generator (FPLG). The FPLG, which is being developed at the German Aerospace Center (DLR), is an innovative internal combustion engine for a fuel based electrical power supply. With its arrangement, the pistons freely oscillate between the compression chamber of the combustion unit and a gas spring with no mechanical coupling like...

  20. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  1. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    International Nuclear Information System (INIS)

    Mikalsen, R.; Roskilly, A.P.

    2009-01-01

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator

  2. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)], E-mail: tony.roskilly@ncl.ac.uk

    2009-01-15

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator.

  3. Double bowl piston

    Science.gov (United States)

    Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold

    2007-03-06

    A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.

  4. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  5. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  6. Experimental Investigation of Piston Rings for Internal Combustion Engines

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders

    2007-01-01

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. A very important condition for describing the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external...... forces are small compared to the rest of the acting forces the main design idea is to fix the piston, while the cylinder liner moves. This approach makes it simple to measure the parameters mentioned above by putting the instrumentation in the piston. The aim of this paper is describe the tribological...

  7. Free-piston engine

    Science.gov (United States)

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  8. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release process of the engine. Load changing has a small effect on premixed combustion duration while it influences diffusion combustion duration significantly. The heat release process has more significant isochoric and isobaric combustion which differs from the conventional diesel engine situation, except at high exhaust pressure and temperature, due to its two-stroke and uniflow scavenging characteristics. Meanwhile, a relatively high-quality exhaust heat energy is produced in opposed-piston folded-cranktrain diesel engines.

  9. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  10. Advantages and disadvantages of composite pistons for small power combustion engines

    Directory of Open Access Journals (Sweden)

    Andrzej POSMYK

    2007-01-01

    Full Text Available The results of technological and metallographic investigations of small dimensions, low power combustion engines piston has been presented. Semi-finished pistons has been produced by gravitations casting of composite material with EN-AC-47000 alloy matrix +15% Al2O3P and EN-AW-6061 alloy matrix +22% Al2O3P. Some small casting defects have been detected during the cutting process of piston made of composite material with EN-AC-47000 alloy matrix +15% Al2O3P. These defects were sources of micro perforations. In the piston made of EN-AW-6061 alloy matrix has been any defects detected.

  11. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  12. Experimental Investigation of Piston Rings for Internal Combustion Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Vølund, Anders

    2008-01-01

    absorbed in the bearing. Since the frictional forces are small compared to the rest of the acting forces the rig is designed such that the piston is fixed while the cylinder liner moves. This approach makes it simple to measure the parameters mentioned above by putting the instrumentation in the piston...

  13. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    Science.gov (United States)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first

  14. Numerical simulation of catalysis combustion inside micro free-piston engine

    International Nuclear Information System (INIS)

    Wang, Qian; Zhang, Di; Bai, Jin; He, Zhixia

    2016-01-01

    Highlights: • A modeling study is applied on methane HCCI process of micro power device. • Mathematical formulas are established to predict the combustion characteristics. • Impacts of catalysis on the combustion characteristics are analyzed respectively. • The catalyst can improve the work steadily and reliability of micro power device. - Abstract: In order to investigate the catalytic combustion characteristics concerning homogeneous charge compression ignition (HCCI) in micro power device, numerical simulations with a 3D computation model that coupled motion of free piston and fluid dynamics of methane–air mixture flow were carried out and detailed gas-phase and surface catalytic reaction mechanisms of methane–air mixture were applied to the catalytic reactions model, a series of mathematical formula are established to predict the characteristics of compression ignition condition, impacts of catalysis on temperature, pressure, work capacity and other factors were analyzed respectively. Simulation results reveal that catalytic combustion facilitates the improvement of energy conversion efficiency and extends the ignition limit of methane–air mixture obviously, the ignition timing is brought forward as well, while compression ratio decreases and ignition delay period shrinks significantly. Numerical results demonstrate that the existence of catalytic wall helped to restrain the peak combustion pressure and maximum rate of pressure rise contributing to the steadily and reliability of operation inside micro free-piston power device.

  15. Mathematical Model of Piston Ring Sealing in Combustion Engine

    Directory of Open Access Journals (Sweden)

    Koszałka Grzegorz

    2015-01-01

    Full Text Available This paper presents a mathematical model of piston-rings-cylinder sealing (TPC of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.

  16. Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process

    Directory of Open Access Journals (Sweden)

    Yuxi Miao

    2016-08-01

    Full Text Available The free-piston gasoline engine linear generator (FPGLG is a new kind of power plant consisting of free-piston gasoline engines and a linear generator. Due to the elimination of the crankshaft mechanism, the piston motion process and the combustion heat release process affect each other significantly. In this paper, the combustion characteristics during the stable generating process of a FPGLG were presented using a numerical iteration method, which coupled a zero-dimensional piston dynamic model and a three-dimensional scavenging model with the combustion process simulation. The results indicated that, compared to the conventional engine (CE, the heat release process of the FPGLG lasted longer with a lower peak heat release rate. The indicated thermal efficiency of the engine was lower because less heat was released around the piston top dead centre (TDC. Very minimal difference was observed on the ignition delay duration between the FPGLG and the CE, while the post-combustion period of the FPGLG was significantly longer than that of the CE. Meanwhile, the FPGLG was found to operate more moderately due to lower peak in-cylinder gas pressure and a lower pressure rising rate. The potential advantage of the FPGLG in lower NOx emission was also proven with the simulation results presented in this paper.

  17. Effect of the piston top contour on the tumble flow and combustion features of a GDI engine with a CMCV: a CFD study

    Directory of Open Access Journals (Sweden)

    Congbo Yin

    2016-01-01

    Full Text Available In spite of much progress in the development of gasoline direct injection (GDI engines, choosing an appropriate piston top contour to obtain desirable combustion efficiency is still an arduous process for engineers. This study investigates the combined effects of piston bowl geometry and a charge motion control valve (CMCV on tumble flow and combustion features in GDI engines. Based on the model validation, the processes of intake, spray, mixture formation and combustion at different engine speeds are simulated and analyzed for different piston shapes for the two cases of opening and closing the CMCV. The results show that the bowl on the top of piston is beneficial for the formation and development of tumble flow. The flat top piston with the CMCV closed is able to achieve acceptable combustion pressure. However, with the increase of engine speed and load, the advantages of the flat top pistons gradually disappear; the dual offset bowl piston has a minimum tumble ratio and turbulence kinetic energy (TKE at the end of the compression stroke because of the projection in the middle of the piston top surface which leads to a lower pressure rise rate and a reduced flame propagation speed at high load. The closed CMCV contributes to a faster evaporation rate and a more uniform mixture at lower speeds. It is not recommended for use at high speeds due to lower intake air mass and reduced combustion pressure. The research provides an effective way for engineers to choose an appropriate piston top contour combined with a CMCV to obtain desirable combustion efficiency.

  18. The effect of surface roughness on the performances of liner-piston ...

    African Journals Online (AJOL)

    The effect of surface roughness on the performances of liner-piston ring contact in internal combustion engine. ... The surface roughness between the liner and the piston rings, plays an ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Motion characteristic of a free piston linear engine

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jin; Li, Qingfeng; Huang, Zhen [Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2010-04-15

    A mathematical model of a free piston linear engine is established. The motion characteristics as well as the natural frequency map of the free piston are established. Then, its motion characteristics are successfully explained from the oscillation point. The full simulation model is built up in Matlab/Simulink for a better understanding of its motion features. The results show that the free piston system is a forced vibration system with variable damping coefficient and stiffness. Its steady-state response of periodical excitation is convergent which means that the system is stable under the periodical combustion. Furthermore, it has some unique features which are different from those of traditional Internal Combustion (IC) engines. (author)

  20. A review of free-piston engine history and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [School of Marine Science and Technology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2007-10-15

    This document reviews the history of free-piston internal combustion engines, from the air compressors and gas generators used in the mid-20th century through to recent free-piston hydraulic engines and linear electric generators. Unique features of the free-piston engine are presented and their effects on engine operation are discussed, along with potential advantages and disadvantages compared to conventional engines. The paper focuses mainly on developed engines where operational data has been reported. Finally, the potential of the free-piston engine is evaluated and the most promising designs identified. (author)

  1. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  2. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  3. Design and preliminary test of heat isulated pistons for a diesel engine. Dieselmoottorin laempoeeristetyn maennaen suunnittelu ja esikokeet

    Energy Technology Data Exchange (ETDEWEB)

    Kojonen, M.; Pitkaenen, J.; Kleimola, M.

    1989-01-01

    This report describes the ceramic heat insulation of the combustion chamber of high speed diesel engines and results of tests carried out in one cylinder of a four-cylinder engine with two different heat insulated experimental pistons. The work is part of the research programme called 'Ceramic applications in mechanical engineering'. The research work is being done at Helsinki University of Technology in the Internal Combustion Engine Laboratory and is financed mainly by the Technology Development Centre TEKES. Valmet Oy Linnavuori Works has contributed to the work by supplying the test engine for the research. In the short literature review presented first. advantages of the combustion chamber insulation and design solutions for heat flow prevention are described. In the experimental part of the research two different experimental pistons with ceramic combustion chamber were designed for the Valmet 411 DSJ diesel engine with direct injection. One of the pistons was furnished with a steel piston head, which was fastened to the aluminium piston body. The ceramic combustion chamber bowl was inserted into the steel head. The other piston was developed from Kymenite cast iron, which made it possible to insert the piston bowl direct into the piston body. The aim of the experiments was to clarify the function ability and the necessary clearances of the piston constructions and to indicate the insulation ability of the combustion chamber by means of the temperature measurements of the cylinder liner, cylinder head and exhaust gas temperature.

  4. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  5. Experimental and numerical investigation of hetero-/homogeneous combustion-based HCCI of methane–air mixtures in free-piston micro-engines

    International Nuclear Information System (INIS)

    Chen, Junjie; Liu, Baofang; Gao, Xuhui; Xu, Deguang

    2016-01-01

    Highlights: • Single-shot experiments and a transient model of micro-engine were presented. • Coupled combustion can significantly improve in-cylinder temperatures. • Coupled combustion can reduce mass losses and compression ratios. • Heterogeneous reactions cause earlier ignition. • Heat losses result in higher mass losses. - Abstract: The hetero-/homogenous combustion-based HCCI (homogeneous charge compression ignition) of fuel–lean methane–air mixtures over alumina-supported platinum catalysts was investigated experimentally and numerically in free-piston micro-engines without ignition sources. Single-shot experiments were carried out in the purely homogeneous and coupled hetero-/homogeneous combustion modes, involved temperature measurements, capturing the visible combustion image sequences, exhaust gas analysis, and the physicochemical characterization of catalysts. Simulations were performed with a two-dimensional transient model that includes detailed hetero-/homogeneous chemistry and transport, leakage, and free-piston motion to gain physical insight and to explore the hetero-/homogeneous combustion characteristics. The micro-engine performance concerning combustion efficiency, mass loss, energy density, and free-piston dynamics was investigated. The results reveal that both purely homogeneous and coupled hetero-/homogeneous combustion of methane–air mixtures in a narrow cylinder with a diameter of 3 mm and a height of approximately 0.3 mm are possible. The coupled hetero-/homogeneous mode can not only significantly improve the combustion efficiency, in-cylinder temperature and pressure, output power and energy density, but also reduce the mass loss because of its lower compression ratio and less time spent around TDC (top dead center) and during the expansion stroke, indicating that this coupled mode is a promising combustion scheme for micro-engine. Heat losses result in higher mass losses. Heterogeneous reactions cause earlier ignition

  6. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  7. Lubrication of Piston Rings in Large 2–and 4–stroke Diesel Engines

    DEFF Research Database (Denmark)

    Felter, Christian Lotz

    Piston rings are vital components of any internal combustion engine, and their performance affect important properties such as frictional losses, oil consumption, and wear of parts. This thesis deals with the lubrication of piston rings from a theoretical point of view. Predictions are made using...

  8. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    Science.gov (United States)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  9. Nuclear piston engine and pulsed gaseous core reactor power systems

    International Nuclear Information System (INIS)

    Dugan, E.T.

    1976-01-01

    The investigated nuclear piston engines consist of a pulsed, gaseous core reactor enclosed by a moderating-reflecting cylinder and piston assembly and operate on a thermodynamic cycle similar to the internal combustion engine. The primary working fluid is a mixture of uranium hexafluoride, UF 6 , and helium, He, gases. Highly enriched UF 6 gas is the reactor fuel. The helium is added to enhance the thermodynamic and heat transfer characteristics of the primary working fluid and also to provide a neutron flux flattening effect in the cylindrical core. Two and four-stroke engines have been studied in which a neutron source is the counterpart of the sparkplug in the internal combustion engine. The piston motions which have been investigated include pure simple harmonic, simple harmonic with dwell periods, and simple harmonic in combination with non-simple harmonic motion. The results of the conducted investigations indicate good performance potential for the nuclear piston engine with overall efficiencies of as high as 50 percent for nuclear piston engine power generating units of from 10 to 50 Mw(e) capacity. Larger plants can be conceptually designed by increasing the number of pistons, with the mechanical complexity and physical size as the probable limiting factors. The primary uses for such power systems would be for small mobile and fixed ground-based power generation (especially for peaking units for electrical utilities) and also for nautical propulsion and ship power

  10. Thermodynamic and energy saving benefits of hydraulic free-piston engines

    International Nuclear Information System (INIS)

    Zhao, Zhenfeng; Wang, Shan; Zhang, Shuanlu; Zhang, Fujun

    2016-01-01

    The hydraulic free-piston engine integrates the internal combustion engine with a hydraulic pump. The piston of an HFPE is not connected to the crankshaft and the piston movement is determined by the forces that act upon it. These features optimize combustion and make higher power density and efficiency increase. In this paper, a detailed thermodynamic and energy saving analysis is performed to demonstrate the fundamental efficiency advantage of an HFPE. The thermodynamic results show that the combustion process can be optimized to an ideal engine cycle. The experimental results show that the HFPE combustion process is a nearly constant-volume process; the efficiency is approximately 50%; the piston displacement and velocity curves for a cycle are the same at any frequency, even at a 1.25 Hz. The maximum velocities are of the same value at high or low frequencies. Similarly, pump output flow is not influenced by frequency. The independent cyclic characteristics of HFPE determine that it should work in higher frequencies when the vehicle runs in Japanese 10–15 road conditions. It indicates that a higher working frequency will lead to the starting frequency of HFPE, and a lower frequency will decrease the pressurized pressure of the hydraulic accumulator. - Highlights: • The thermodynamic and energy saving benefits of the HFPEs was investigated. • The approach of combustion optimization was obtained by adjusting the injection timing and compression ratio. • The high efficiency area of HFPE was given as a function of injection timing and compression pressure. • The maximum efficiency of HFPE of 50% was obtained from the prototype. • The method of energy saving with adjusting the piston frequency was examined.

  11. Analytical and experimental investigation of ringless-piston concept. Interim report, September 1986-December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, D.W.; Wood, C.D.

    1987-12-01

    The purpose of this project was to analytically and experimentally investigate the concept of a ringless-piston internal-combustion engine. A joint objective was to design, build, and test a ringless piston to improve ringless-piston engine performance. A computer model was developed to predict ringed and ringless-piston engine performance. Experimental performance data were then collected by operating a small, liquid-cooled, two-stroke gasoline engine with and without the piston ring on the stock aluminum and Southwest Research Institute prototype steel piston. The experimental performance data were then compared with the results of the computer model. The results showed that a piston engine can operate without piston rings.

  12. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2011-01-01

    Full Text Available This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the working fluid (the expansion stroke is larger than compression stroke, valveless gas flowing and complete discharge of residual combustion products from the combustion chamber. In this concept, the movement of the piston is different than in conventional piston mechanisms. The results obtained herein include the efficiency characteristics of irreversible reciprocating new engine cycle which is very similar to Miller cycle. The results show that with this thermodynamic cycle engine has higher efficiency than with the standard Otto cycle. In this article, the patent application material under number 2008/607 at the Intellectual Property Office of the Republic of Serbia was used.

  13. Large-eddy simulations of turbulent flows in internal combustion engines

    Science.gov (United States)

    Banaeizadeh, Araz

    The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and

  14. Cold flow simulation of an internal combustion engine with vertical valves using layering approach

    Science.gov (United States)

    Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.

    2015-11-01

    Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.

  15. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  16. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  17. Numerical study of heat transfer and combustion in IC engine with a porous media piston region

    International Nuclear Information System (INIS)

    Zhou, Lei; Xie, Mao-Zhao; Luo, Kai Hong

    2014-01-01

    Based on superadiabatic combustion in porous medium (PM), the porous medium engine as a new combustion concept is proposed to achieve high combustion efficiency and low emissions. In this paper, an axisymmetric model with detailed chemistry and two-temperature treatment is implemented into a variant of the KIVA-3V code to simulate the working process of the PM engine. Comparisons with the same engine but without PM are conducted. Temperature evolution of the PM and its effects are discussed in detail. Key factors affecting heat transfer, combustion and emissions of the PM engine, such as porosity, the initial PM temperature and equivalence ratio, are analyzed. The results show that the characteristics of heat transfer, emissions and combustion of the PM engine are superior to the engine without PM, providing valuable support for the PM engine concept. In particular, the PM engine is shown to sustain ultra lean combustion. - Graphical abstract: In the PM engine, a PM reactor is mounted on the piston head as shown in Fig. 1 which shows the schematic diagram of the computational domain. The heat exchange process between PM material and compressed air increases with upward motion of piston at compression stroke. At the TDC, almost all the air is compressed and closed to PM volume, meanwhile, the fuel is injected into PM chamber to achieve homogenization combustion. - Highlights: •Two-temperature treatment studies the working process of the PM engine. •Self-balancing temperature of the PM determines the continued and stable work. •Stronger heat exchange occurs between gas and PM with smaller porosity. •The PM engine can have lower levels of NO x , unburnt HC and CO emissions

  18. Modeling the lubrication, dynamics, and effects of piston dynamic tilt of twin-land oil control rings in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Tian, T.; Wong, V.W.

    2000-01-01

    A theoretical model was developed to study the lubrication, friction, dynamics, and oil transport of twin-land oil control rings (TLOCR) in internal combustion engines. A mixed lubrication model with consideration of shear-thinning effects of multigrade oils was used to describe the lubrication between the running surfaces of the two lands and the liner. Oil squeezing and asperity contact were both considered for the interaction between the flanks of the TLOCR and the ring groove. Then, the moments and axial forces from TLOCR/liner lubrication and TLOCR/groove interaction were coupled into the dynamic equations of the TLOCR. Furthermore, effects of piston dynamic tilt were considered in a quasi three-dimensional manner so that the behaviors of the TLOCR at different circumferential location could be studied. As a first step, variation of the third land pressure was neglected. The model predictions were illustrated via an SI engine. One important finding is that around thrust and anti-thrust sides, the difference between the minimum oil film thickness of two lands can be as high as several micrometers due to piston dynamic tilt. As a result, at thrust and anti-thrust sides, significant oil can pass under one land of the TLOCR along the bore, although the other land perfectly seals the bore. Then, the capabilities of the model were further explained by studying the effects of ring tension and torsional resistance on the lubrication and oil transport between the lands and the liner. The effects of oil film thickness on the flanks of the ring groove on the dynamics of the TLOCR were also studied. Friction results show that boundary lubrication contributes significantly to the total friction of the TLOCR.

  19. STUDY OF ELABORATION OF CONSTRUCTION CRANKSHAFT PISTON OF AUTOMOBILE PNEUMATIC ENGINE

    Directory of Open Access Journals (Sweden)

    Voronkov, А.

    2013-01-01

    Full Text Available Expound are the results of study of elaration of construction of crankshaft 4-cylinder V-evocative piston pneumatic engine, which is made by conversion of serial internal-combustion engine 4Ч 7,6x6,6.

  20. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  1. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...

  2. Integrated Free-Piston Generators: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Waqas M.; Thelin, Peter; Sadarangani, Chandur [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Electrical Machines and Power Electronics; Baeckstroem, Thomas [ABB Group Services-Corporate Research, Vaesteraas (Sweden)

    2002-08-01

    The free-piston generator is an energy conversion device that integrates a combustion engine and an electrical generator into a single unit. Thereby the intermediary crankshaft stage present in conventional hybrid topologies is eliminated. This has benefits in efficiency, weight reduction, robustness, variable compression operation and multi-fuel possibilities. This paper presents the free-piston generator concepts, along with the expected benefits and drawbacks. A literature survey is provided. Results from a simplified combustion modeling process are presented in terms of piston motion profiles. These have implications upon the dimensioning and selection of an appropriate electrical machine. Specifications for the electrical machine are outlined. Some distinct electrical machine solutions are presented and discussed. An application of the free-piston generator in a series hybrid vehicle is also proposed.

  3. Rotation of a piston pin in the small connecting rod eye during engine operation; Drehung eines Kolbenbolzens im kleinen Pleuelauge waehrend des Motorbetriebs

    Energy Technology Data Exchange (ETDEWEB)

    Wachtmeister, Georg; Hubert, Andreas [Technische Univ. Muenchen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (LVK)

    2008-12-15

    A constant increase of powerful combustion engines has lead to higher loads on the crankshaft drive and piston pin. To ensure a robust design the effective forces and movements at the piston pin have to be known. At the Technische Universitaet Muenchen, Chair of Internal Combustion Engines, a research project looked into the piston pins movement during engine operation. The main goal was to determine the rotary movements of the piston pin by measurement at a 4-l gas SI engine as a function of the engine load and speed and to clarify the mechanisms that cause the rotary movement of the piston pin especially in the small connecting rod eye. (orig.)

  4. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    Science.gov (United States)

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  5. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  6. Analytical and experimental investigation of ringless-piston concept. Final report, September 1986-November 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, D.W.; Wood, C.D.

    1988-03-01

    The purpose of this project was to analytically and experimentally investigate the concept of a ringless-piston internal combustion engine. A joint objective was to design, build, and test a ringless piston to improve ringless piston engine performance. A computer model was developed to predict ringed and ringless piston engine performance. Experimental performance data were then collected by operating a small, liquid-cooled, two-stroke gasoline engine with and without the piston ring on the stock aluminum and Southwest Research Institute prototype steel piston. The experimental performance data were then compared with the results of the computer model. The results showed that a piston engine can operate without piston rings. Ringless-piston engine power and efficiency were found to be defined by the expression C/NBS, where C = piston-to-bore diametrical clearance, N = engine speed in rpm, B = engine bore, and S = engine stroke. There was good agreement between predicted and measured performance reperformance can be improved by using piston and liner materials that have similar coefficients of thermal expansion.

  7. Piston engines and gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, V.M.

    1999-07-01

    The concept of a free piston engine utilising overlean fuel-air mixture and using entropy rising compression is examined. An analysis was made of engine operation. The high compression parameters can be reached under compression of the mixture by a free piston to ensure the space heat release occurs from the mixture is not capable to self-combustion. It is shown that two stage entropy rising compression allows to reduce the final compression pressure and increase a perfomance of the piston engine. (orig.)

  8. 3-D steady state thermomechanical analysis of a piston of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Abid, M.; Bannikov, M.G.; Ali, H.

    2005-01-01

    Piston of internal combustion engine is subjected to the coupled action of the thermal and the mechanical loads. Piston distortion due to temperature nonuniformities has a significant impact on the piston component of the engine friction. In regions of high heat flux, thermal stresses can reach levels that would cause fatigue cracking. Any change of engine design and/or operating conditions resulting in an increased heat flux through the piston may cause engine performance deterioration and even engine failure. This work presents a three-dimensional finite element analysis of a piston of a high power direct injection diesel engine. The goal of such analysis was the prediction of the piston behavior in conditions of the increased brake mean effective pressure and engine speed. Thermal and mechanical loads required for analysis were obtained from the engine cycle simulation. Thermal boundary conditions were determined in the form of the cycle averaged temperature of combustion chamber content and cycle averaged spatially distributed heat transfer coefficients. Mechanical load was represented by the combined gas pressure and inertia forces. Using ANSYS software temperature and stress distributions within the piston body as well as piston deformation were obtained. Analysis was performed for separate as well as combined load. It was shown that contribution of mechanical load is insignificant and can be neglected. Main emphasis is given to scuffing and strength analysis of the piston. Results obtained at various thermal loads are discussed. (author)

  9. The performance simulation of single cylinder electric power confined piston engine

    Science.gov (United States)

    Gou, Yanan

    2017-04-01

    A new type of power plant. i.e, Electric Power Confined Piston Engine, is invented by combining the free piston engine and the crank connecting rod mechanism of the traditional internal combustion engine. Directly using the reciprocating movement of the piston, this new engine converts the heat energy produced by fuel to electrical energy and output it. The paper expounds the working mechanism of ECPE and establishes the kinematics and dynamics equations. Furthermore, by using the analytic method, the ECPE electromagnetic force is solved at load cases. Finally, in the simulation environment of MARLAB, the universal characteristic curve is obtained in the condition of rotational speed n between 1000 r/min and 2400 r/min, throttle opening α between 30% and 100%.

  10. Risk Assessment of Defect Occurrences in Engine Piston Castings by FMEA Method

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2017-09-01

    Full Text Available The FMEA (Failure Mode and Effects Analysis method consists in analysis of failure modes and evaluation of their effects based on determination of cause-effect relationships for formation of possible product or process defects. Identified irregularities which occur during the production process of piston castings for internal combustion engines were ordered according to their failure rates, and using Pareto-Lorenz analysis, their per cent and cumulated shares were determined. The assessments of risk of defects occurrence and their causes were carried out in ten-point scale of integers, while taking three following criteria into account: significance of effects of the defect occurrence (LPZ, defect occurrence probability (LPW and detectability of the defect found (LPO. A product of these quantities constituted the risk score index connected with a failure occurrence (a so-called “priority number,” LPR. Based on the observations of the piston casting process and on the knowledge of production supervisors, a set of corrective actions was developed and the FMEA was carried out again. It was shown that the proposed improvements reduce the risk of occurrence of process failures significantly, translating into a decrease in defects and irregularities during the production of piston castings for internal combustion engines.

  11. Researches on the Piston Ring

    Science.gov (United States)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  12. Pistonics

    DEFF Research Database (Denmark)

    Perram, John W.; Præstgaard, Eigil; Smith, Edgar R.

    2011-01-01

    is proportional to its internal energy. We report molecular dynamics experiments with ideal gas particles and show that they can exchange energy with their container. We then construct a dynamical system modelling the motion of the piston and heat transfer to the surroundings when the piston is released...... to the dynamical system can make it resemble a quasi-static process. We then generalise the dynamical system to a two-compartment adiabatic cylinder in which the gases in the two chambers are separated by a movable piston. We show that, if the piston is subjected to infinitesimal kinetic friction, in all cases...

  13. The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    International Nuclear Information System (INIS)

    Hung, Nguyen Ba; Lim, Ocktaeck; Iida, Norimasa

    2015-01-01

    Highlights: • A free piston engine is modeled and simulated by three mathematical models. • The models include dynamic model, linear alternator model and thermodynamic model. • The SI-HCCI transition is successful if the key parameters are adjusted suitably. • Spring stiffness has a strong influence on reducing peak temperature in HCCI mode. • Adjusting spark timing helps the SI-HCCI transition to be more convenient. - Abstract: An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from P in = 1.1 bar to P in = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (P in = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for

  14. Shocks in magneto-reactive-gas dynamics with application to the piston problem; Sur les chocs dans un milieu magnetodynamique reactif avec application au probleme du piston

    Energy Technology Data Exchange (ETDEWEB)

    Soubbaramayer, [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    This work deals with detonation and deflagration waves in magnetogasdynamics. Four types of detonations and four types of deflagration are considered. We point out that the propagation of these waves is not always completely determined by the initial boundary conditions and the conservation laws across the discontinuity. To fix the ideas we consider the piston problem and we show that in some cases more conditions must be added to the conservation laws in order to provide sufficient data for the unique determination of the propagation process. We then show that the needed additional conditions may be derived from an investigation of the internal structure of the detonation and deflagration process in magneto gas dynamics. This internal structure is investigated for the eight types of process under the influence of the combustion mechanism and the dissipative coefficients (viscosities, electrical and thermal conductivity). Finally all the possible solutions for the piston problem are discussed in a simple case. The methods developed here may be extended to ionizing shocks. (author) [French] On considere dans ce travail les ondes de detonation et de deflagration en magneto-dynamique. Quatre types de detonation et quatre types de deflagration sont etudies. On montre d'abord que la propagation de ces ondes n'est pas toujours completement determinee par les conditions initiales, les conditions aux limites et les conditions de choc. Pour fixer les idees nous considerons le probleme du piston et nous montrons que, dans certains cas, des conditions supplementaires doivent etre jointes aux conditions de choc pour determiner l'ecoulement d'une facon unique. Nous montrons ensuite que ces conditions supplementaires peuvent etre deduites de l'analyse de la structure interne des detonations et des deflagrations magnetodynamiques. Cette structure interne est etudiee en tenant compte du mecanisme de combustion et des coefficients de dissipation (viscosites, conductivites

  15. On the controllability and run-away possibility of a totally free piston, pulsed compression reactor

    NARCIS (Netherlands)

    Roestenberg, T.; Glouchenkov, Maxim Joerjevisj; glushenkov, M.J.; Kronberg, Alexandre E.; van der Meer, Theodorus H.

    2010-01-01

    The pulsed compression reactor promises to be a compact, economical and energy efficient alternative to conventional chemical reactors. While its design and operation is similar to that of a free piston internal combustion engine, it does not benefit from any controllability through the load.

  16. PROSPECTS OF MANUFACTURE OF PISTON RINGS INTERNAL COMBUSTION ENGINES OF POWDER MATERIALS ON THE BASE OF IRON

    Directory of Open Access Journals (Sweden)

    B. M. Musaibov

    2013-01-01

    Full Text Available Development and production of piston rings made of sintered materials on the basis of iron powder metallurgy is an innovative way. In the application of this technology reduces the consumption of material and costs for the production of piston rings 30-40% in comparison with the traditional methods of their manufacture

  17. Pistons and engine testing

    CERN Document Server

    GmbH, Mahle

    2012-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece - the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and machining processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific know-how of this kind, whether they work in the field of design, development, testing, or maintenance. This techni

  18. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  19. Limitation of Piston Centre Shift in Free Piston Stirling Engines

    Energy Technology Data Exchange (ETDEWEB)

    Van der Woude, R.R. [ECN Energy in the Built Environment and Networks, Petten (Netherlands)

    2006-09-15

    Piston centre shift is one of the phenomena setting Free Piston engines apart from traditional kinematic engines. In kinematic engines the piston centre position is determined by the design of the engine's internal mechanisms. In Free Piston engines however, the piston's mid-stroke position is determined by the balance of forces acting on the piston, in particular flexure and gas pressure forces. As a result, a mean pressure difference across the piston emerging during engine operation will cause the piston mid-stroke position to shift away from the geometrical centre. This process will continue until a new balance is reached with the flexure forces counteracting the new mean pressure balance. Yet, before the new equilibrium is reached, the resulting piston centre shift may have grown to such an extent that piston overstrokes have become inevitable. In order to limit piston centre shift and prevent piston overstrokes, several solutions have been proposed in the past. Popular solutions include ingenious mechanisms to vent gas between the spaces separated by the piston, in an attempt to limit the pressure difference. Enatec however has adopted a different approach by applying a precisely determined clearance between the piston and cylinder. With the right shape the clearance effectively limits the mean pressure difference across the piston and therefore limits the extent of the piston centre drift. Taking benefit of tightly controlled tolerances of both piston and cylinder, Enatec has demonstrated the effectiveness of this simple concept in series produced engines.

  20. Ensuring Steady Operation of Free-Piston Generator

    OpenAIRE

    Pavel Nemecek

    2006-01-01

    This paper describes Free-Piston Generator (FPG) model and its control for achieving steady operation. A FPG is a special type of combustion engine representing a new approach concerning the conversion of the chemical energy of hydrocarbon fuel into electrical energy. Unlike conventional engines, this type of engine does not use a crankshaft, and generates electric energy directly by a linear movement of pistons.

  1. Ensuring Steady Operation of Free-Piston Generator

    Directory of Open Access Journals (Sweden)

    Pavel Nemecek

    2006-02-01

    Full Text Available This paper describes Free-Piston Generator (FPG model and its control for achieving steady operation. A FPG is a special type of combustion engine representing a new approach concerning the conversion of the chemical energy of hydrocarbon fuel into electrical energy. Unlike conventional engines, this type of engine does not use a crankshaft, and generates electric energy directly by a linear movement of pistons.

  2. Improvements of diesel combustion with pilot and main injections at different piston positions; Piston iso wo koryoshita pilot funsha ni yoru diesel nenshono kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.; Ogawa, H.; Miyamoto, N. [Hokkaido University, Sapporo (Japan); Sakai, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    2000-06-25

    The fuel spray distribution in a DI diesel engine with a pilot injection was actively controlled by pilot and main fuel injections at different piston positions to avoid the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separated the cores of the pilot and main fuel sprays. The experiments showed that more smoke was emitted with pilot injection in an ordinary cavity without the central lip while smokeless and low NO{sub x} operation was realized with pilot injection in a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emitted smoke so much. The indicated specific energy consumption ISEC was a little bit higher with the pilot injection, mainly because of the reduction in the degree of constant volume combustion. With the advanced pilot injection, ISEC was improved more than that with the retarded pilot injection while the NO{sub x} is a little higher than the retarded pilot injection maintaining still much lower than in ordinary operation. (author)

  3. Free-piston engine-and-hydraulic pump for railway vehicles

    Directory of Open Access Journals (Sweden)

    A. F. Golovchuk

    2013-04-01

    Full Text Available Purpose. The development of the free-piston diesel engine-and-hydraulic pump for the continuously variable hydrostatical transmission of mobile power vehicles. Methodology. For a long time engine builders have been interesting in the problem of developing free piston engines, which have much bigger coefficient of efficiency (40…80%. Such engines don’t have the conversion of reciprocating motion for inner combustion engine piston into rotating motion of crankshaft, from which the engine torque is transferred to the power machine transmission. Free-piston engines of inner combustion don’t have the crank mechanism (CM that significantly reduces mechanical losses for friction. Such engines can be used as compressors. Free-piston engine compressor (FPEC – is a free-piston machine in which energy received from engine’s cylinder is being transferred direct to compressor’s pistons connected with operational pistons of engine without crank mechanism. Part of the pressed air is being consumed for engine cylinder drain and the other part is going to the consumer. Findings. The use of free-piston engines-and-hydraulic pumps as power-transmission plants of power vehicles (diesel locomotives, combine harvester, tractors, cars and other mobile and stationary power installations with the continuously variable transmissions allows cost effectiveness improvement and metal consumption reduction of these vehicles, since the cost effectiveness of FPE is higher by 25-30%, and the metal consumption is lower by 40-50%. Originality. One of the important advantages of the free-piston engines is their simplicity and engine balance. As a result of the crank mechanism absence their construction is much simplified and the vibrations, peculiar to the ordinary engines are eliminated. In such installation the engine pistons are directly connected through the rod to compressor pistons and therefore there are no losses in the bearing bushes. Practical value. The free-piston

  4. Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion

    Science.gov (United States)

    Alrbai, Mohammad

    Free-piston engines have the potential to challenge the conventional crankshaft engines by their design simplicity and higher operational efficiency. Many studies have been performed to overcome the limitations of the free-piston devices especially the stability and control issues. The investigations within the presented dissertation aim to satisfy many objectives by employing the approach of chemical kinetics to present the combustion process in the free-piston engine. This approach in addition to its advanced accuracy over the empirical methods, it has many other features like the ability to analyze the engine emissions. The effect of the heat release rate (HRR) on the engine performance is considered as the main objective. Understanding the relation between the HRR and the piston dynamics helps in enhancing the system efficiency and identifying the parameters that affect the overall performance. The dissertation covers some other objectives that belongs to the combustion phasing. Exhaust gas recirculation (EGR), equivalence ratio and the intake temperature represent the main combustion parameters, which have been discussed in this dissertation. To obtain the stability in system performance, the model requires a proper controller to simulate the operation and manage the different system parameters; for this purpose, different controlling techniques have been employed. In addition, the dissertation considers some other topics like engine emissions, fuels and fuels mechanisms. The model of the study describes the processes within a single cylinder, two stroke engine, which includes springs to support higher frequencies, reduce cyclic variations and sustain the engine compression ratio. An electrical generator presents the engine load; the generator supports different load profiles and play the key role in controlling the system. The 1st law of thermodynamics and Newton's 2nd law are applied to couple the piston dynamics with the engine thermodynamics. The model

  5. An introductory model of a one-piston engine

    International Nuclear Information System (INIS)

    GlarIa, Jaime; Wendler, Thomas; Goodwin, Graham

    2005-01-01

    Reciprocating internal combustion engine models have the antithetical goals of accurately describing complex nonlinear behaviour and being simple enough for such purposes as automatic control and online diagnosis. A one-piston four-stroke engine is modelled here by recursively stating simple physical equations. To do that, the domestic ideas of domination and dependence are called as methodological tools for modelling, since they hand out necessary and sufficient equations with few manoeuvres, allocate simulations with the same characteristic and, hopefully, provide a fine way to understanding. The resulting model reveals both steady cycles and transient behaviour

  6. Experimentally Validated Combustion and Piston Fatigue Life Evaluation Procedures for the Bi-Fuel Engines, Using an Integral-Type Fatigue Criterion

    Directory of Open Access Journals (Sweden)

    M. Shariyat

    Full Text Available Abstract A relatively complete procedure for high cycle fatigue life assessment of the engine components is outlined in the present paper. The piston is examined as a typical component of the engine. In this regard, combustion process and transient heat transfer simulations, determination of the instantaneous variations of the pressure and temperature in the combustion chamber, kinematic and dynamic analyses of the moving parts of the engine, thermoelastic stress analyses, and fatigue life analyses are accomplished. Results of the simulation are compared with the test data to verify the results. The heat transfer results are validated by the experimental results measured by the Templugs. The nonlinear multipoint contact constraints are modeled accurately. Results of the more accurate available fatigue criteria are compared with those of a fatigue criterion recently proposed by the first author. These results are also evaluated by comparing them with the experimental durability tests. The presented procedure may be used, e.g., to decide whether it is suitable to convert a gasoline-based engine to a bi-fuel one. Results of the various thermomechanical fatigue analyses performed reveal that the piston life decreases considerably when natural gas is used instead of gasoline.

  7. The impact of microgeometry pistons with a stepped bearing surface for the friction loss of the internal combustion engine

    Directory of Open Access Journals (Sweden)

    Wroblewski Emil

    2017-01-01

    Full Text Available This paper present the results of experimental piston friction losses on stepped bearing surface microgeometry obtained on the test rig. This test rig is equipped with special temperature control system, which provides better stability to temperature than in standard systems. The results of station tests was discussed. Tests was analyzed depending the moment caused by the friction on the oil temperature in the oil sump. Specified conclusions allow to assess the impact of the stepped profile of the pistons bearing surface microgeometry for different values of engine speed and the oil temperature at the friction losses in the main kinematic engine node which is piston-cylinder.

  8. Calculation of Oil Film Thickness from Damping Coefficients for a Piston Ring in an Internal Combustion Engine

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders

    2007-01-01

    engine. The basic idea is to use the fluid film damping coefficients to estimate the film thickness variation for a piston ring under cyclic varying load. Reynolds Equation is solved for a piston ring and the oil film thickness is determined. In this analysis hydrodynamic lubrication is assumed......In 1966 Jorgen W. Lund published an approach to find the dynamic coefficients of a journal bearing by a first order perturbation of the Reynold's equation. These coefficients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid seventies Jorgen...

  9. Device for controlling the composition of the mixture burnt in the combustion spaces of an internal combustion engine. Einrichtung zur Regelung der Zusammensetzung des in den Brennraeumen einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches

    Energy Technology Data Exchange (ETDEWEB)

    Latsch, R; Bianchi, V

    1986-07-31

    The purpose of the invention is to create a device by which the extent of the reaction to the control of the composition of the mixture burnt in the combustion spaces of an internal combustion engine can be measured in a sensitive, responsive and safe way, where the position of the elements detecting the reaction should have a relatively small effect on the accuracy of the measurement and the extent of measurement. According to the invention, this problem is solved by the use of 2 thermal sensors connected to a control device (photo-electric diode, photo-electric transistor), one of which acts catalytically and causes the parts of the gas mixture there to react. The thermal sensor output signals are periodically integrated via the piston work and are entered in the control device. The measured temperature is a measure of how far the method of operation of the internal combustion engine has approached its limits. (HWJ).

  10. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  11. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  12. Pistons and engine testing

    CERN Document Server

    2016-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece—the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and manufacturing processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific expertise of this kind, whether they work in the field of design, development, testing, or maintenance. This technical book answers these questions in detail and in a very clear and comprehensible way. In this second, revised edition, every chapter has been revised and expanded. The chapter on “Engine testing”, for example, now include extensive results in the area of friction power loss measurement and lube oil consumption measurement. Contents Piston function, requirements, and types Design guidelines Simulation of the ope...

  13. Free piston variable-stroke linear-alternator generator

    Science.gov (United States)

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  14. Interring Gas Dynamic Analysis of Piston in a Diesel Engine considering the Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2015-01-01

    Full Text Available Understanding the interaction between ring dynamics and gas transport in ring pack systems is crucial and needs to be imperatively studied. The present work features detailed interring gas dynamics of piston ring pack behavior in internal combustion engines. The model is developed for a ring pack with four rings. The dynamics of ring pack are simulated. Due to the fact that small changes in geometry of the grooves and lands would have a significant impact on the interring gas dynamics, the thermal deformation of piston has been considered during the ring pack motion analysis in this study. In order to get the temperature distribution of piston head more quickly and accurately, an efficient method utilizing the concept of inverse heat conduction is presented. Moreover, a sensitive analysis based on the analysis of partial regression coefficients is presented to investigate the effect of groove parameters on blowby.

  15. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  16. Optimal paths of piston motion of irreversible diesel cycle for minimum entropy generation

    Directory of Open Access Journals (Sweden)

    Ge Yanlin

    2011-01-01

    Full Text Available A Diesel cycle heat engine with internal and external irreversibility’s of heat transfer and friction, in which the finite rate of combustion is considered and the heat transfer between the working fluid and the environment obeys Newton’s heat transfer law [q≈ Δ(T], is studied in this paper. Optimal piston motion trajectories for minimizing entropy generation per cycle are derived for the fixed total cycle time and fuel consumed per cycle. Optimal control theory is applied to determine the optimal piston motion trajectories for the cases of with piston acceleration constraint on each stroke and the optimal distribution of the total cycle time among the strokes. The optimal piston motion with acceleration constraint for each stroke consists of three segments, including initial maximum acceleration and final maximum deceleration boundary segments, respectively. Numerical examples for optimal configurations are provided, and the results obtained are compared with those obtained when maximizing the work output with Newton’s heat transfer law. The results also show that optimizing the piston motion trajectories could reduce engine entropy generation by more than 20%. This is primarily due to the decrease in entropy generation caused by heat transfer loss on the initial portion of the power stroke.

  17. The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-04-15

    Free-piston engines are under investigation by a number of research groups due to potential fuel efficiency and exhaust emissions advantages over conventional technology. The main challenge with such engines is the control of the piston motion, and this has not yet been fully resolved for all types of free-piston engines. This paper builds on the fundamental investigations presented in the accompanying paper and investigates the dynamics of the engine and the feasibility of classical control approaches. The response of the engine to rapid load changes are investigated using decentralised PID, PDF and disturbance feedforward. It is found that the engine is sensitive to rapid load changes but that in constant power applications standard control techniques provide satisfactory performance. The influence of cycle-to-cycle variations in the combustion process are investigated, but not found to be critical for engine operation. (author)

  18. Secondary drive of an internal combustion engine for an air presser. Nebenantrieb einer Brennkraftmaschine fuer einen Luftpresser

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.

    1990-04-19

    The invention concerns an air presser propelled by a gearwheel and designed as a piston compressor. The drive gearwheel on the air presser crankshaft meshes with a gearwheel on the camshaft of the internal combustion engine. In the case of these drives, a negative torque of the air presser results when the top dead centre of the air presser piston is reached. This is accompanied by an unpleasant noise. In addition, the driving torque of the camshaft often has negative fractions. If the negative torque of the air presser is superposed by small or negative torques of the camshaft in the re-expansion phase additionally to the air presser wheel there will be a backward acceleration of the camshaft gear which propagates as impact into the rest of the gear drive. The invention prevents the backward acceleration of the camshaft wheel and minimizes stroke momentum and noise in the mesh of the camshaft wheel.

  19. Identification Of Damages Of Tribological Associations In Crankshaft And Piston Systems Of Two-Stroke Internal Combustion Engines Used As Main Propulsion In Sea-Going Vessels And Proposal Of Probabilistic Description Of Loads As Causes Of These Damages

    Directory of Open Access Journals (Sweden)

    Girtler Jerzy

    2015-04-01

    Full Text Available The article discusses damages of essential tribological associations in crankshaft and piston systems of large power two-stroke engines used as main engines, which take place during transport tasks performed by those ships. Difficulties are named which make preventing those damages impossible, despite the fact that the technical state of engines of this type is identified with the aid of complex diagnostic systems making use of advanced computer technology. It is demonstrated that one of causes of the damages is the lack of research activities oriented on recognising random properties of the loads leading to those damages. A proposal is made for the loads acting at a given time t on tribological associations in crankshaft and piston systems of internal combustion engines used as main engines to be considered as random variables Qt. At the same time the loads examined within a given time interval tr ≤ t ≤ tz would be considered stochastic processes {Q(t: t ≥ 0}. Essential properties of the loads of the abovementioned tribological associations are named and explained by formulating hypotheses which need empirical verification. Interval estimation is proposed for estimating the expected value E(Qt of the load Qt acting at time t. A relation is indicated between the mechanical load and the thermal load acting on tribological associations in the ship main engine crankshaft and piston system. A suggestion is formulated that a stochastic form of the relation between these types of load is to be searched for, rather than statistic relation, and a proposal is made to measure the intensity (strength of the stochastic relation using the Czuprow’s convergence coefficient.

  20. AlSi17Cu5Mg alloy as future material for castings of pistons for internal combustion engines

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-07-01

    Full Text Available The paper presents chosen properties and microstructure of AlSi17Cu5Mg alloy as future material for casting pistons in automotive industry. Tests were conducted to elaborate technology of preparation, assessment of crystallisation parameters and shaping the primary structure of the silumin with the aim to improve the working parameters and the functioning efficiency in cylinder-piston system. Refinement of Si crystals, achieved due to overheating above the temperature Tliq. causes that the alloy reaches satisfactory properties in working chamber of the engine are optimised. Such condition of material characteristics causes that hypereutectic silumins, for chosen applications in transport, may serve as an alternative to Al - Si alloys of hypoeutectic and near - eutectic type.

  1. Flame Acceleration and Transition to Detonation in High-Speed Turbulent Combustion

    Science.gov (United States)

    2016-12-21

    ficult to overestimate, as it is the main process in all internal-combustion engines used for propulsion and energy generation. These include piston ...distorted tulip flame develops a double -cusped, concave flame front (6.91 and 7.34 ms) . By t his time, the pressure waves are amplified , and

  2. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  3. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  4. Feasibility of free piston generation unit for electrical power provision

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.; Roskilly, A.; Shaw, R.; French, C. [Newcastle Univ. (United Kingdom)

    2000-07-01

    Free piston linear engines offer the capability of providing power without the need to convert reciprocating motion into rotary motion. This allows for the utilisation of higher peak pressures during the combustion process and thus improves efficiency. The objective of this paper is to outline the potential benefits of a Free Piston Generator (FPG) and discuss the feasibility of this technology as a potential platform for electrical power provision. (authors)

  5. Contribution of developing advanced engineering methods in interdisciplinary studying the piston rings from 1.6 spark ignited Ford engine at Technical University of Cluj-Napoca

    Science.gov (United States)

    -Aurel Cherecheş, Ioan; -Ioana Borzan, Adela; -Laurean Băldean, Doru

    2017-10-01

    Study of construction and wearing process in the case of piston-rings and other significant components from internal combustion engines leads at any time to creative and useful optimizing ideas, both in designing and manufacturing phases. Main objective of the present paper is to realize an interdisciplinary research using advanced methods in piston-rings evaluation of a common vehicle on the streets which is Ford Focus FYDD. Specific objectives are a theoretical study of the idea for advanced analysis method in piston-rings evaluation and an applied research developed in at Technical University from Cluj-Napoca with the motor vehicle caught in the repairing process.

  6. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  7. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  8. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  9. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  10. Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod

    Science.gov (United States)

    Klotsche, K.; Thomas, C.; Hesse, U.

    2017-08-01

    The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.

  11. Numerical investigation on the combined effects of varying piston bowl geometries and ramp injection rate-shapes on the combustion characteristics of a kerosene-diesel fueled direct injection compression ignition engine

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji

    2017-01-01

    Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the

  12. An Improved Lubrication Model between Piston Rings and Cylinder Liners with Consideration of Liner Dynamic Deformations

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2017-12-01

    Full Text Available The friction pair of piston rings and cylinder liner is one of the most important friction couplings in an internal combustion engine. It influences engine efficiency and service life. Under the excitation of piston slaps, the dynamic deformation of cylinder liner is close to the surface roughness magnitudes, which can affect the friction and lubrication performance between the piston rings and cylinder assemblies. To investigate the potential influences of structural deformations to tribological behaviours of cylinder assemblies, the dynamic deformation of the inner surface due to pistons slaps is obtained by dynamic simulations, and then coupled into an improved lubrication model. Different from the traditional lubrication model which takes the pressure stress factor and shear stress factor to be constant, the model proposed in this paper calculated these factors in real time using numerical integration to achieve a more realistic simulation. Based on the improved piston rings and cylinder liner lubrication model, the minimum oil film thickness and friction force curves are obtained for an entire work cycle. It shows that the friction force obtained from the improved model manifests clear oscillations in each stoke, which is different from the smoothed profiles predicted traditionally. Moreover, the average amplitude of the friction forces also shows clear reduction.

  13. Analysis and control of a hybrid vehicle powered by free-piston energy converter

    OpenAIRE

    Hansson, Jörgen

    2006-01-01

    The introduction of hybrid powertrains has made it possible to utilise unconventional engines as primary power units in vehicles. The free-piston energy converter (FPEC) is such an engine. It is a combination of a free-piston combustion engine and a linear electrical machine. The main features of this configuration are high efficiency and a rapid transient response. In this thesis the free-piston energy converter as part of a hybrid powertrain is studied. One issue of the FPEC is the generati...

  14. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  15. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  16. Thermal Fluctuations in Casimir Pistons

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.

    2012-07-01

    We present analytical and simple expressions to determine the free energy, internal energy, entropy, as well as the pressure acting at the interface of a perfectly conducting rectangular Casimir piston. We show that infrared divergencies linear in temperature become cancelled within the piston configuration, and show a continuous behavior consistent with intuitive expectations.

  17. Determination of TDC in internal combustion engines by a newly developed thermodynamic approach

    International Nuclear Information System (INIS)

    Pipitone, Emiliano; Beccari, Alberto

    2010-01-01

    In-cylinder pressure analysis is nowadays an indispensable tool in internal combustion engine research and development. It allows the measure of some important performance related parameters, such as indicated mean effective pressure (IMEP), mean friction pressure, indicated fuel consumption, heat release rate, mass fraction burned, etc. Moreover, future automotive engine will probably be equipped with in-cylinder pressure sensors for continuous combustion monitoring and control, in order to fulfil the more and more strict emission limits. For these reasons, in-cylinder pressure analysis must be carried out with maximum accuracy, in order to minimize the effects of its characteristic measurement errors. The exact determination of crank position when the piston is at top dead centre (TDC) is of vital importance, since a 1 deg. error can cause up to a 10% evaluation error on IMEP and 25% error on the heat released by the combustion: the position of the crank shaft (and hence the volume inside the cylinder) should be known with the precision of at least 0.1 crank angle degrees, which is not an easy task, even if the engine dimensions are well known: it corresponds to a piston movement in the order of one tenth of micron, which is very difficult to estimate. A good determination of the TDC position can be pursued by means of a dedicated capacitive TDC sensor, which allows a dynamic measurement (i.e. while engine is running) within the required 0.1 deg. precision . Such a sensor has a substantial cost and its use is not really fast, since it must be fitted in the spark plug or injector hole of the cylinder. A different approach can be followed using a thermodynamic method, whose input is in-cylinder pressure sampled during the compression and expansion strokes: some of these methods, more or less valid, can be found in literature . This paper will discuss a new thermodynamic approach to the problem of the right determination of the TDC position. The base theory of the

  18. An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Monsalve-Serrano, Javier

    2015-01-01

    Highlights: • Great influence of piston geometry at low load using single injection strategies. • Enhanced combustion development at mid load through optimized piston surface area. • Double injection allows ultra-low NOx and soot levels for the three piston geometries. • Unacceptable soot emissions at high load using single injection and bathtub geometry. • Stepped geometry leads to ultra-clean combustion with lower fuel consumption than CDC. - Abstract: This experimental work investigates the effects of piston bowl geometry on RCCI performance and emissions at low, medium and high engine loads. For this purpose three different piston bowl geometries with compression ratio 14.4:1 have been evaluated using single and double injection strategies. The experiments were conducted in a heavy-duty single-cylinder engine adapted for dual fuel operation. All the tests were carried out at 1200 rev/min. Results suggest that piston geometry has great impact on combustion development at low load conditions, more so when single injection strategies are used. It terms of emissions, it was proved that the three geometries enables ultra-low NOx and soot emissions at low and medium load when using double injection strategies. By contrast, unacceptable emissions were measured at high load taking into account EURO VI limitations. Finally, the application of a mathematical function considering certain self-imposed constraints suggested that the more suitable piston geometry for RCCI operation is the stepped one, which has a modified transition from the center to the squish region and reduced piston surface area than the stock geometry

  19. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  20. Free piston linear generator in comparison to other range-extender technologies

    OpenAIRE

    Virsik, Roman; Heron, Alex

    2013-01-01

    The free piston linear generator is a new range-extender technology. It converts chemical energy into electrical energy by means of a combustion process and linear generator. Thereby the technology aims to have better properties than other range extenders. Therefore this publication deals with the explanation of the concept and the characteristics of a free piston linear generator and a comparison to other technologies. In order to compare the range extender systems, fuel cells, micro gas tur...

  1. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  2. Thermo-hydraulic free piston engine as a primary propulsion unit in mobile hydraulic drives; Die thermohydraulische Freikolbenmaschine - ein neues Antriebskonzept fuer hydraulische angetriebene Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, H. [Technische Univ. Dresden (Germany)

    2004-07-01

    The principle function of a free piston engine was tested on a test stand. The engine can drive hydraulic loads as a primary aggregate in a storage-based constant pressure network. Its power is independent of the loads. The engine is operated in intermittent operation and at the optimal operating point. There are no idle or part-load fractions. Measurements so far have shown that the performance of the new system equals that of a current combination of internal combustion engine and axial piston pump in their optimal operating point. In cyclic operation, the performance is even better. (orig.)

  3. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  4. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-02-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  5. Regeneration in an internal combustion engine: Thermal-hydraulic modeling and analysis

    International Nuclear Information System (INIS)

    Thyageswaran, Sridhar

    2016-01-01

    Highlights: • An arrangement is proposed for in-cylinder regeneration in a 4-stroke engine. • Thermodynamic models are formulated for overall cycle analysis. • A design procedure is outlined for micro-channel regenerators. • Partial differential equations are solved for flow inside the regenerator. • Regeneration with lean combustion decreases the idealized cycle efficiency. - Abstract: An arrangement is proposed for a four-stroke internal combustion engine to: (a) recover thermal energy from products of combustion during the exhaust stroke; (b) store that energy as sensible heat in a micro-channel regenerator matrix; and (c) transfer the stored heat to compressed fresh charge that flows through the regenerator during the succeeding mechanical cycle. An extra moveable piston that can be locked at preferred positions and a sequence of valve events enable the regenerator to lose heat to the working fluid during one interval of time but gain heat from the fluid during another interval of time. This paper examines whether or not this scheme for in-cylinder regeneration (ICR) improves the cycle thermal efficiency η I . Models for various thermodynamic processes in the cycle and treatments for unsteady compressible flow and heat transfer inside the regenerator are developed. Digital simulations of the cycle are made. Compared to an idealized engine cycle devoid of regeneration, provisions for ICR seem to deteriorate the thermal efficiency. In an 8:1 compression ratio octane engine simulated with an equivalence ratio of 0.75, η I  = 0.455 with regeneration and η I  = 0.491 without. This study shows that previous claims on efficiency gains via ICR, using highly-simplified models, may be misleading.

  6. Producer for vegetal combustibles for internal-combustion motors

    Energy Technology Data Exchange (ETDEWEB)

    1943-12-28

    A producer is described for internal-combustion motors fed with wood or agricultural byproducts characterized by the fact that its full operation is independent of the degree of wetness of the material used.

  7. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    Science.gov (United States)

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6).

  8. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  9. EXPERIMENTAL INSTALLATION FOR AN ASSESSMENT OF METHODS OF WATER SUPPLY IN AN INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev

    2015-01-01

    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  10. Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2016-04-01

    Full Text Available On the basis of introducing the origin and development of finite time thermodynamics (FTT, this paper reviews the progress in FTT optimization for internal combustion engine (ICE cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs; the studies on the optimum piston motion (OPM trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored.

  11. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  12. Free-piston linear generator and the development of a solid lubrication system

    OpenAIRE

    Virsik, Roman; Rinderknecht, Frank; Friedrich, Horst E.

    2017-01-01

    The free piston linear generator is a new electromechanical generator. It converts chemical energy into electrical energy by means of a combustion process, a linear generator and a gas spring. The free piston linear generator doesn´t use any crankshaft, which is responsible for a lot of losses. Thereby the technology aims to have better properties than other electromechanical generators: higher efficiency over wide range of operating points, better noise-vibration-harshness, package … This pu...

  13. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  14. Modeling study on the effect of piston bowl geometries in a gasoline/biodiesel fueled RCCI engine at high speed

    International Nuclear Information System (INIS)

    Li, J.; Yang, W.M.; Zhou, D.Z.

    2016-01-01

    Highlights: • The RCCI engine fueled with gasoline and biodiesel is simulated. • The effect of piston bowl geometry is investigated. • The throat diameter of a piston can affect combustion process. • SCC shows superiority among three investigated geometries for RCCI combustion. - Abstract: This paper reports the numerical investigation on the effects of three bowl geometries on a gasoline/biodiesel fueled RCCI engine operated at high engine speed. The three bowl geometries are HCC (Hemispherical Combustion Chamber), SCC (Shallow depth Combustion Chamber) and OCC (Omega Combustion Chamber). To simulate the combustion in an RCCI engine, coupled KIVA4–CHEMKIN code was used. One recently developed reaction mechanism, which contains 107 species and 425 reactions, was adopted in this study to mimic the combustion of gasoline and biodiesel. During the simulation, the engine speed was fixed at 3600 rpm. The low reactivity fuel gasoline was premixed with air with energy percentages of 20% and 40%; accordingly, to maintain the same energy input, the percentages of biodiesel were 80% and 60% (B80 and B60). In addition, the SOI timing was varied at three levels: −11, −35 and −60 deg ATDC for B80 and B60, respectively. With SOI timing of −11 deg ATDC, the combustion is mixing-controlled; in contrast, advancing SOI timing to −60 deg ATDC, the combustion turns into the reactivity-controlled. Comparing the results on combustion characteristics, engine performance and emissions among different bowl geometries, it is concluded that the original OCC design for Toyota diesel engine is better for mixing-controlled combustion; whereas, SCC is the most suitable piston design for RCCI combustion among the three selected geometries under the investigated operating conditions of the engine. With SCC, better combustion and performance can be achieved while maintaining relatively lower CO, NO and soot emissions.

  15. Optical Engines as Representative Tools in the Development of New Combustion Engine Concepts Moteurs transparents comme outils représentatifs dans le développement de nouveaux concepts des moteurs à combustion interne

    Directory of Open Access Journals (Sweden)

    Kashdan J.

    2011-11-01

    Full Text Available Single cylinder optical engines are used for Internal Combustion (IC engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline Homogeneous Charge Compression Ignition (HCCI and Diesel Low Temperature Combustion (LTC. In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study. The objective was to investigate the principal differences between optical and all-metal engines and understand how these differences ultimately affect mixing, combustion and emissions formation processes. Experimental results reveal the significant impact of differences in combustion chamber wall temperatures between optical and standard engine piston bowls on combustion phasing and engine-out emissions. Quantitative measurements of piston wall temperatures using a laser-induced phosphorescence technique were performed which allowed the subsequent definition of appropriate engine operating strategies so as to compensate for differences in heat transfer properties. Furthermore, differences in combustion chamber geometry were also studied. Geometrical differences can arise as a result of dynamic (compressive/tensile and thermal loading of the extended piston-liner assembly on the optical engine, potentially leading to changes in the effective Compression Ratio. In addition, intake charge dilution in optical engines is often achieved via the use of simulated Exhaust Gas Recirculation

  16. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  17. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  18. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  19. Prototype testing and analysis of a novel internal combustion linear generator integrated power system

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhaoping; Chang, Siqin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-04-15

    A novel four-stroke free-piston engine equipped with a linear electric generator (namely internal combustion linear generator integrated power system) is proposed in this paper to achieve efficient energy conversion from fuel to electricity. Unique features of the novel power system are presented and their effects on the continuous running are discussed, along with potential advantages and disadvantages compared to conventional engines. A single cylinder, gasoline and spark ignition prototype is fabricated with reference to the geometric and control parameters of an existing conventional four-stroke engine. Stable running of the prototype is realized, and a 2.2 kW average output power with the generating efficiency of 32% has been obtained up to now. The feasibility and performance of the proposed design are verified. Detailed testing results from the continuous running prototype are analyzed in this paper for giving insight into the performance and dynamic behaviors of the novel power system. (author)

  20. Horsepower with Brains - The design of the CHIRON Free Piston Engine

    NARCIS (Netherlands)

    Achten, P.A.J.; Oever, van den J.P.J.; Potma, J.; Vael, G.E.M.

    2000-01-01

    The CHIRON is a hydraulic free piston engine developed by the Dutch companies NOAX and Innas. In the CHIRON the energy of the combustion process is almost directly converted into hydraulic energy. The CHIRON features a direct electronic control of the injection parameters, the flow and the

  1. Effect of piston profile on performance and emission characteristics of a GDI engine with split injection strategy - A CFD study

    Science.gov (United States)

    Karaya, Y.; Mallikarjuna, J. M.

    2017-09-01

    Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions. But in these engines, the mixture preparation plays an important role which affects combustion, performance and emission characteristics. The mixture preparation in turn depends mainly upon combustion chamber geometry. Therefore, in this study, an attempt has been made to understand the effect of piston profile on the performance and emission characteristics in a GDI engine. The analysis is carried out on a four-stroke wall guided GDI engine using computational fluid dynamics (CFD). The spray breakup model used is validated with the available experimental results from the literature to the extent possible. The analysis is carried out for four piston profiles viz., offset pentroof with offset bowl (OPOB), flat piston with offset bowl (FPOB), offset pentroof with offset scoop (OPOS) and inclined piston with offset bowl (IPOB) fitted in an engine equipped with a six-hole injector with the split injection ratio of 30:70. All the CFD simulations are carried out at the engine speed of 2000 rev/min., with the overall equivalence ratio of about 0.65±0.05. The performance and emission characteristics of the engine are compared while using the above piston profiles. It is found that, the OPOB piston is preferred compared to that of the other pistons because it has better in-cylinder flow, IMEP and lower HC emissions compared to that of other pistons.

  2. The free-piston linear generator. Theoretical engine analysis and experimental investigations on gas spring subsystems; Der Freikolbenlineargenerator. Theoretische Betrachtungen des Gesamtsystems und experimentelle Untersuchungen zum Teilsystem der Gasfeder

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, S.E.

    2007-07-01

    The thesis presents the modeling and simulation of a novel development in the field of free-piston engines and the experimental investigation of controllable gas springs. The free-piston linear alternator proposed by the German Aerospace Center (DLR) - Institute of Vehicle Concepts (IFK) combines a two stroke combustion engine with a linear alternator. An adjustable gas spring is used to reset the piston assembly. The engine is designed to enable new degrees of freedom for advanced optimization of the combustion process. In contrast to conventional crankshaft engines, the free-piston design offers mainly two degrees of freedom to improve engine performance: a variable piston stroke and a variable compression ratio. These key features allow for designing a combustion process with low emissions. The variable stroke and variable compression ratio can be used to optimize the combustion process for part load conditions. The goal is to achieve a compact electric power engine with high efficiency and reduced emissions. The free-piston linear alternator aims towards automotive application as auxiliary power unit and as power generator in hybrid electric vehicles. To study the features of free-piston engines this thesis provides a Modelica library containing basic and advanced component models. Control strategies are developed and the dynamic system behavior is characterized through parameter variations. The second part of the thesis examines two gas spring concepts allowing adjustable spring constants during engine operation. The gas spring concepts are theoretically and experimentally investigated. The experimental data is discussed and compared to simulation results. (orig.)

  3. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Stephen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding of how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.

  4. Improvement in the production of cylinder shirt of inner diesel combustion engines; Mejoras en la construccion de camisas de cilindro de motores de combustion interna ciclo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, F.; Barroso-Moreno, A.

    2013-06-01

    This study deals with the different types of wear as well as other parameters present in the tribological system piston segment- cylinder in a combustion engine. By means of engineering methods were defined the wear rates in the three components of the system. The biggest wear in the analysis resulted in the cylinder shirt. Specialized methods applied were used to analyze the prevailing metallographic characteristics in its original construction, obtaining a gray melted iron with perlitic matrix. A new material with bainitic matrix has been proposed for increasing wear resistance. To demonstrate the efficiency of this new product, the experimental techniques carried out, were based on a dynamometric testing in a internal combustion engine diesel cycle Scania of 150 kW. It was exposed to a full charge during 500 h with 30 % of potency rising. Compared with the perlitic one, it has been proved that the bainitic matrix allows a better result. Besides, a superior dimensional stability was obtained. The piston segments had a similar wear rate in both materials in reference to the original tribological pair of the project. (Author)

  5. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  6. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  7. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  8. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... and vehicles with certain electronic equipment when transported by aircraft or vessel. When an... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...

  9. Improvement in the production of cylinder shirt of inner diesel combustion engines

    International Nuclear Information System (INIS)

    Martinez-Perez, F.; Barroso-Moreno, A.

    2013-01-01

    This study deals with the different types of wear as well as other parameters present in the tribological system piston segment- cylinder in a combustion engine. By means of engineering methods were defined the wear rates in the three components of the system. The biggest wear in the analysis resulted in the cylinder shirt. Specialized methods applied were used to analyze the prevailing metallographic characteristics in its original construction, obtaining a gray melted iron with perlitic matrix. A new material with bainitic matrix has been proposed for increasing wear resistance. To demonstrate the efficiency of this new product, the experimental techniques carried out, were based on a dynamometric testing in a internal combustion engine diesel cycle Scania of 150 kW. It was exposed to a full charge during 500 h with 30 % of potency rising. Compared with the perlitic one, it has been proved that the bainitic matrix allows a better result. Besides, a superior dimensional stability was obtained. The piston segments had a similar wear rate in both materials in reference to the original tribological pair of the project. (Author)

  10. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  11. Experimental studies of thermal preparation of internal combustion engine

    Science.gov (United States)

    Karnaukhov, N. N.; Merdanov, Sh M.; V, Konev V.; Borodin, D. M.

    2018-05-01

    In conditions of autonomous functioning of road construction machines, it becomes necessary to use its internal sources. This can be done by using a heat recovery system of an internal combustion engine (ICE). For this purpose, it is proposed to use heat accumulators that accumulate heat of the internal combustion engine during the operation of the machine. Experimental studies have been carried out to evaluate the efficiency of using the proposed pre-start thermal preparation system, which combines a regular system based on liquid diesel fuel heaters and an ICE heat recovery system. As a result, the stages of operation of the preheating thermal preparation system, mathematical models and the dependence of the temperature change of the antifreeze at the exit from the internal combustion engine on the warm-up time are determined.

  12. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  13. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  14. Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

    OpenAIRE

    Sakowitz, Alexander

    2013-01-01

    This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR...

  15. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  16. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  17. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  18. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  19. Investigation on the radial micro-motion about piston of axial piston pump

    Science.gov (United States)

    Xu, Bing; Zhang, Junhui; Yang, Huayong; Zhang, Bin

    2013-03-01

    The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key friction pairs are always a key and difficult problem in the research on axial piston pump. In the traditional research on piston/cylinder pair, the assembly relationship of piston and cylinder bore is simplified into ideal cylindrical pair, which can not be used to analyze the influences of radial micro-motion of piston on the distribution characteristics of oil-film thickness and pressure in details. In this paper, based on the lubrication theory of the oil film, a numerical simulation model is built, taking the influences of roughness, elastic deformation of piston and pressure-viscosity effect into consideration. With the simulation model, the dynamic characteristics of the radial micro-motion and pressure distribution are analyzed, and the relationships between radial micro-motion and carrying ability, lubrication condition, and abrasion are discussed. Furthermore, a model pump for pressure distribution measurement of oil film between piston and cylinder bore is designed. The comparison of simulation and experimental results of pressure distribution shows that the simulation model has high accuracy. The experiment and simulation results demonstrate that the pressure distribution has peak values that are much higher than the boundary pressure in the piston chamber due to the radial micro-motion, and the abrasion of piston takes place mainly on the hand close to piston ball. In addition, improvement of manufacturing roundness and straightness of piston and cylinder bore is helpful to improve the carrying ability of piston/cylinder pair. The proposed research provides references for designing piston/cylinder pair, and helps to prolong the service life of axial piston pump.

  20. Contribution to the study of influence of hydrodynamic conditions on the combustion of a preliminary mixture in a enclosed medium; Contribution a l`etude de l`influence des conditions hydrodynamiques sur la combustion d`un melange prealable dans un milieu confine

    Energy Technology Data Exchange (ETDEWEB)

    Henry, J.D.

    1996-02-01

    This thesis is a study on the internal combustion of a pistons engine. the first chapter is devoted to the description of the experimental device and measurement means. The combustion chamber is described with its adaptation to new experimental conditions. The second chapter concerns the diagnosis means to interpret the hydrodynamic conditions by the cross checking of displays with the measures of flow speed by laser velocimetry. The third chapter gives the result of analysis on the process of the birth of a turbulent flow in a whirl movement. The study of the electric spark and the initial phase of the combustion, in media with or without movement, is in the last chapter. (N.C.)

  1. 75 FR 75937 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-12-07

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... internal combustion engines. Subsequently, the Administrator received two petitions for reconsideration... Any industry using a stationary 2211 Electric power reciprocating internal generation, combustion...

  2. A Piston Geometry and Nozzle Spray Angle Investigation in a DI Diesel Engine by Quantifying the Air-Fuel Mixture

    Directory of Open Access Journals (Sweden)

    Pavlos Dimitriou

    2015-03-01

    Full Text Available Low temperature diesel combustion has been widely investigated over the last few years for reducing in-cylinder emissions of Direct Injection (DI diesel engines without sacrificing efficiency and fuel consumption. The spatial distribution of the fuel within the combustion chamber and the air-fuel mixing quality are the key factors affecting temperature generation within the cylinder. Avoiding fuel rich areas within the cylinder can significantly reduce the local high temperatures resulting in low NOx formation. This paper investigates the effects of the combustion chamber geometry and spray angle on the air-fuel mixing and emissions formation of a DI diesel engine. A new quantitative factor measuring the air-fuel mixing quality has been adopted in order to analyze and compare air-fuel mixing quality for different piston geometries. The results have shown that pistons with a narrow entrance and a deep combustion re-entrant chamber benefit from increased air-fuel mixtures due to the significantly higher swirl generated within the cylinder. However, the improved air-fuel mixing does not consequently lead to a reduced NOx generation, which is highly affected by the combustion efficiency of the engine.

  3. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  4. 76 FR 12923 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2011-03-09

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... pollutants for existing stationary spark ignition reciprocating internal combustion engines. The final rule... reciprocating internal combustion generation, engine. transmission, or distribution. 622110 Medical and surgical...

  5. 75 FR 51569 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-08-20

    ... Air Pollutants for Reciprocating Internal Combustion Engines; Final Rule #0;#0;Federal Register / Vol... for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines AGENCY: Environmental... hazardous air pollutants for existing stationary spark ignition reciprocating internal combustion engines...

  6. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-10-03

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Pollutants for Stationary Reciprocating Internal Combustion Engines to solicit comment on specific issues...

  7. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  8. 77 FR 33811 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-07

    ... 63 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines; Proposed Rule #0;#0... Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source...

  9. Nonstationary heat flow in the piston of the turbocharged engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2010-01-01

    Full Text Available In this study the numeric computations of nonstationary heat flow in form of temperature distribution on characteristic surfaces of the piston of the turbocharged engine at the beginning phase its work was presented. The computations were performed for fragmentary load engine by means of the two-zone combustion model, the boundary conditions of III kind and the finite elements method (FEM by using of COSMOS/M program.

  10. PISTON

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-08

    This presentation was a part of the guest lecture series for graduate classes at the University of Oregon on many-core visualization. It discussed a practical introduction to high-level data parallelism using thrust and PISTON; presented an overview of PISTON and PINION; provided tutorial examples; additional details on research results.

  11. Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In-cylinder air flow is very important from the point of view of mixture formation and combustion. In this direction, intake chamber structure and piston crown shape play a very crucial role for in-cylinder air pattern of opposed-piston two-stroke (OP2S engines. This study is concerned with the three-dimensional (3D computational fluid dynamics (CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the zero-dimensional (0D parametric model. Three configurations viz., a flat piston uniform scavenging chamber, a flat piston non-uniform scavenging chamber and a pit piston non-uniform scavenging chamber have been studied. 0D model analysis of in-cylinder air flow is consistent with 3D CFD simulation. It is concluded that a pit piston non-uniform scavenging chamber is the best design from the point of view of tumble ratio, turbulent kinetic energy and turbulent intensity, which play very important roles in imparting proper air motion. Meanwhile a flat piston uniform scavenging chamber can organize a higher swirl ratio and lower tumble ratio which is important to improve the scavenging process.

  12. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  13. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  14. Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine

    OpenAIRE

    Fukang Ma; Changlu Zhao; Fujun Zhang; Zhenfeng Zhao; Shuanlu Zhang

    2015-01-01

    In-cylinder air flow is very important from the point of view of mixture formation and combustion. In this direction, intake chamber structure and piston crown shape play a very crucial role for in-cylinder air pattern of opposed-piston two-stroke (OP2S) engines. This study is concerned with the three-dimensional (3D) computational fluid dynamics (CFD) analysis of in-cylinder air motion coupled with the comparison of predicted results with the zero-dimensional (0D) parametric model. Three con...

  15. Piston pump and method of reducing vapor lock

    Science.gov (United States)

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  16. Experimental Verification of Oil Whirl of Piston in Axial Piston Pmmp and Motor

    OpenAIRE

    田中, 嘉津彦; 中原, 綱光; 京極, 啓史

    1999-01-01

    Piston motion which interacts with lubrication characteristics including friction force between the piston and cylinder has been measured in order to prove the oil whirl phenomena in an axial piston pump and motor which had been found theoretically in the previous paper. The piston motion has been measured by means of eddy current displacement sensors, comparing with calculated results. It has been verified that the piston has whirled in the cylinder under certain operating conditions and spe...

  17. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  18. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  19. 3rd International Workshop on Turbulent Spray Combustion

    CERN Document Server

    Gutheil, Eva

    2014-01-01

    This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...

  20. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  1. 75 FR 37732 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-06-30

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion... combustion engines. 40 CFR 63.6590 was amended by revising paragraphs (b)(1) and (3). Inadvertently...

  2. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  3. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.

  4. 76 FR 12863 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2011-03-09

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... combustion engines. The final rule was published on August 20, 2010. This direct final action amends certain... Emission Standards for Hazardous Air Pollutant for Stationary Reciprocating Internal Combustion Engines...

  5. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  6. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  7. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  8. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  9. Cold starting characteristics analysis of hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2017-01-01

    The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed. - Highlights: • The cold start behaviors of HFPE are investigated in detail. • CFD method is used for simulating temperature distribution in start process. • Thermodynamic derivation uncovers the compression temperature distribution. • The improvement suggestions of cold start strategy are proposed.

  10. Design of a single cylinder optical access to the combustion engine Scania D12

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Juergen

    2000-11-01

    In this work a maximum optical access to a diesel engine is developed. The combustion-process in the engine should be representative to the one in a standard engine, so the geometry of the combustion chamber is modified as little as possible. A Scania single cylinder, 2-litre engine was subjected to modifications allowing the optical access. Solutions to these problems are obtained by using the method of Product-Development, mainly based on the literature by Prof Dr.-Ing. Birkhofer at the Technical University of Darmstadt, Germany. An optical engine design of the Bowditch type was the chosen main working principle. This engine contains an extended cylinder, partly made of glass, a glass piston-crown and a mirror placed inside the extended piston. The laser sheet is led into the combustion chamber through the glass part of the cylinder, then gets reflected inside the combustion chamber and is led through the glass piston crown and via the mirror out of the engine. A redesign of the valve-train, using extended push-rods, is necessary. The demand to examine the combustion at Top-Dead-Centre (TDC) and the necessity of supporting the glass, give the reasons to do work on the cylinder head. This in return brings sealing problems, which have been solved. Another problem that occurs with that type of engine is that is has to run without oil-lubrication. Piston rings made of Rylon are used to solve this problem. A special feature of the engine that has been constructed here is that the inner surface of the glass may be cleaned without removing the cylinder head. This is obtained by a construction with a movable cylinder. In cleaning-state the cylinder is driven up and down together with the piston, while the head is supported by an outer structure. When running the engine, the cylinder is fixed to the structure. Furthermore this report contains the necessary calculations and integrity assessments on the critical parts of the construction. All calculations, except the

  11. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  12. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  13. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    Science.gov (United States)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  14. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  15. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  16. The provision of clearances accuracy in piston - cylinder mating

    Science.gov (United States)

    Glukhov, V. I.; Shalay, V. V.

    2017-08-01

    The paper is aimed at increasing the quality of the pumping equipment in oil and gas industry. The main purpose of the study is to stabilize maximum values of productivity and durability of the pumping equipment based on the selective assembly of the cylinder-piston kinematic mating by optimization criterion. It is shown that the minimum clearance in the piston-cylinder mating is formed by maximum material dimensions. It is proved that maximum material dimensions are characterized by their own laws of distribution within the tolerance limits for the diameters of the cylinder internal mirror and the outer cylindrical surface of the piston. At that, their dispersion zones should be divided into size groups with a group tolerance equal to half the tolerance for the minimum clearance. The techniques for measuring the material dimensions - the smallest cylinder diameter and the largest piston diameter according to the envelope condition - are developed for sorting them into size groups. Reliable control of the dimensions precision ensures optimal minimum clearances of the piston-cylinder mating in all the size groups of the pumping equipment, necessary for increasing the equipment productivity and durability during the production, operation and repair processes.

  17. Analysis of piston behavior according to eccentricity ratio of disk in bent-axis type piston pump

    International Nuclear Information System (INIS)

    Baek, Il Hyun; Cho, Ihn Sung; Jung, Jae Youn; Hong, Lu

    2008-01-01

    To improve the performance of the bent-axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism for the bent-axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as the tilting angle of the piston and the ahead delay angle influence performance of the bent-axis type axial piston pump

  18. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  19. Modelling of the heat load in the piston of turbo diesel engine - continuation

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available In this study the mathematical description of characteristic surfaces of the heat exchange of the piston and temperature distribution of the turbo diesel engine at the beginning phase its work was presented. The computations were performed by means of the two-zone combustion model, the boundary conditions of III kind and the finite elements method (MES by using of COSMOS/M program.

  20. The Analysis of Secondary Motion and Lubrication Performance of Piston considering the Piston Skirt Profile

    Directory of Open Access Journals (Sweden)

    Yanjun Lu

    2018-01-01

    Full Text Available The work performance of piston-cylinder liner system is affected by the lubrication condition and the secondary motion of the piston. Therefore, more and more attention has been paid to the secondary motion and lubrication of the piston. In this paper, the Jakobson-Floberg-Olsson (JFO boundary condition is employed to describe the rupture and reformation of oil film. The average Reynolds equation of skirt lubrication is solved by the finite difference method (FDM. The secondary motion of piston-connecting rod system is modeled; the trajectory of the piston is calculated by the Runge-Kutta method. By considering the inertia of the connecting rod, the influence of the longitudinal and horizontal profiles of piston skirt, the offset of the piston pin, and the thermal deformation on the secondary motion and lubrication performance is investigated. The parabolic longitudinal profile, the smaller top radial reduction and ellipticities of the middle-convex piston, and the bigger bottom radial reduction and ellipticities can effectively reduce the secondary displacement and velocity, the skirt thrust, friction, and the friction power loss. The results show that the connecting rod inertia, piston skirt profile, and thermal deformation have important influence on secondary motion and lubrication performance of the piston.

  1. Mixture preparation and combustion in an optically-accessible HCCI, diesel engine; La preparation du melange et de la combustion dans un moteur Diesel, HCCI a acces optique

    Energy Technology Data Exchange (ETDEWEB)

    Kashdan, J.; Bruneaux, G. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France)

    2006-07-01

    Planar laser-induced fluorescence (LIF) imaging techniques have been applied in order to study the mixture preparation and combustion process in a single cylinder, optically-accessible homogeneous charge, compression ignition (HCCI) engine. In particular, the influence of piston bowl geometry on the in-cylinder mixture distribution and subsequent combustion process has been investigated. A new optically-accessible piston design enabled the application of LIF diagnostics directly within the combustion chamber bowl. Firstly, laser-induced exciplex fluorescence (LIEF) was exploited in order to characterise the in-cylinder fuel spray and vapour distribution. Subsequently a detailed study of the two-stage HCCI combustion process was conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH{sub 2}O) which is present during the cool flame and LIF of the OH radical which is subsequently present in the reaction and burned gas zones at higher temperature. Finally, spectrometry measurements were performed with the objective of determining the origin of the emitting species of the chemiluminescence signal. The experiments were performed on a single cylinder optical engine equipped with a direct-injection, common rail injection system and narrow angle injector. The experimental results presented reveal the significant role of the combustion chamber geometry on the mixture preparation and combustion characteristics for late HCCI injection strategies particularly in such cases where liquid impingement is unavoidable. Planar LIF 355 imaging revealed the presence of the intermediate species formaldehyde allowing the temporal and spatial detection of auto-ignition precursors prior to the signal observed by chemiluminescence in the early stages of the cool flame. Formaldehyde was then rapidly consumed at the start of main combustion which was marked not only by the increase in the main heat release

  2. Internal combustion engines history - a review

    International Nuclear Information System (INIS)

    Gaviria Rios, Jorge Enrique; Mora Guzman, Jorge Hernan; Agudelo, John Ramiro

    2002-01-01

    In this article, a chronological analysis of the technologies and events that any way influenced in the evolution of the internal combustion engine is done everything it through the observation of the works carried out for scientific empiric and engineers whose technical and conceptual value meant the motivation of other people for the search of a better development in this engineering field

  3. Simulation Of The Internal-Combustion Engine

    Science.gov (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  4. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  5. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  6. 49 CFR 229.55 - Piston travel.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Piston travel. 229.55 Section 229.55... Piston travel. (a) Brake cylinder piston travel shall be sufficient to provide brake shoe clearance when... piston travel may not exceed 11/2 inches less than the total possible piston travel. The total possible...

  7. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Science.gov (United States)

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers...

  8. Free-piston cutting machine

    Science.gov (United States)

    Ciccarelli, Gaby; Subudhi, Manomohan; Hall, Robert E.

    2000-01-01

    A cutting machine includes a gun barrel for receiving a projectile. A compression tube is disposed in flow communication with the barrel and includes a piston therein. A reservoir is disposed in flow communication with the tube and receives a first gas under pressure. A second gas fills the compression tube on a front face of the piston. And, the pressurized first gas is discharged into the tube on a back face of the piston to accelerate the piston through the tube for compressing the second gas, and in turn launching the projectile through the barrel to impact a workpiece.

  9. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  10. Three-dimensional simulation of a novel rotary-piston engine in the motoring mode

    Directory of Open Access Journals (Sweden)

    Mohammadreza Khani

    2017-09-01

    Full Text Available In this simulation study, the flow and thermal characteristics of a novel rotary-piston engine, which is a kind of internal combustion engines, were investigated by computational fluid dynamics and the finite volume method. The structure of this engine is different to others, mainly for having 24 cylinders during the motoring mode. As a novel engine, creation of numerical models based on Reynolds average Navier Stokes (RANS simulation and analysis of various speed engines on the flow and thermal fields during intake and compression strokes are the focus of this work. The results were illustrated in term of the streamline patterns, in-cylinder temperature and pressure profile, swirl ratio (SR, wall heat flux, and turbulent velocity fluctuation. The present study indicates that, the mean pressure, temperature trace, and heat loss from the wall increase when switching to a higher engine speed. The temperature distribution reveals that the maximum temperature is restricted in the center of the combustion chamber near top dead center (TDC. Also, the maximum amount of turbulent velocity and swirl ratio are achieved at the beginning of the intake stroke and near TDC. It is observed that the obtained numerical results are in general agreement with the available experimental data.

  11. New type of microengine using internal combustion of hydrogen and oxygen

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Ma, Kechun; Elwenspoek, Michael Curt

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we

  12. Influence of the single EGR valve usability on development of the charge directed to individual cylinders of an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Krakowian Konrad

    2017-01-01

    Full Text Available Exhaust gas recirculation systems (EGR, aside to a catalytic converters, are nowadays widely used in piston internal combustion engines to reduce nitrogen oxides (NOx in the exhaust gas. They are characterized in that a portion of exhaust gases from the exhaust manifold is recirculated (via a condenser, and directed to a particular valve. The valve, depending on the current engine load and speed, doses the appropriate amount of exhaust gas into the exhaust manifold. Moreover, its location has a significant impact on the diverse formation of nitrogen oxides and fumes smokiness from the individual cylinders of the engine, which is a result of uneven propagation of exhaust gas into the channels of the intake manifold. This article contains the results of numerical characterized charges formed in symmetrical intake manifold with a centrally–placed EGR valve. Simulations were performed for the original intake system derived from the two-liter, turbocharged VW diesel engine.

  13. Influence of the single EGR valve usability on development of the charge directed to individual cylinders of an internal combustion engine

    Science.gov (United States)

    Krakowian, Konrad; Kaźmierczak, Andrzej; Górniak, Aleksander; Wróbel, Radosław

    2017-11-01

    Exhaust gas recirculation systems (EGR), aside to a catalytic converters, are nowadays widely used in piston internal combustion engines to reduce nitrogen oxides (NOx) in the exhaust gas. They are characterized in that a portion of exhaust gases from the exhaust manifold is recirculated (via a condenser), and directed to a particular valve. The valve, depending on the current engine load and speed, doses the appropriate amount of exhaust gas into the exhaust manifold. Moreover, its location has a significant impact on the diverse formation of nitrogen oxides and fumes smokiness from the individual cylinders of the engine, which is a result of uneven propagation of exhaust gas into the channels of the intake manifold. This article contains the results of numerical characterized charges formed in symmetrical intake manifold with a centrally-placed EGR valve. Simulations were performed for the original intake system derived from the two-liter, turbocharged VW diesel engine.

  14. Improvement in thermal fatigue resistance of cast iron piston; Chutetsu piston no tainetsu hiro sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Amano, K; Uosaki, Y; Takeshige, N [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Cast iron piston is superior in reduction of diesel engine emission to aluminum piston because of its characteristic of heat insulation. In order to study thermal fatigue characteristics of cast iron, thermal fatigue tests were carried out on two kinds of ferrite ductile cast iron. Differences between cast iron piston and aluminum piston in thermal fatigue resistance have been investigated by using FEM analysis. 5 refs., 14 figs., 1 tab.

  15. Sibling cycle piston and valving method

    Science.gov (United States)

    Mitchell, Matthew P. (Inventor); Bauwens, Luc (Inventor)

    1990-01-01

    A double-acting, rotating piston reciprocating in a cylinder with the motion of the piston providing the valving action of the Sibling Cycle through the medium of passages between the piston and cylinder wall. The rotating piston contains regenerators ported to the walls of the piston. The piston fits closely in the cylinder at each end of the cylinder except in areas where the wall of the cylinder is relieved to provide passages between the cylinder wall and the piston leading to the expansion and compression spaces, respectively. The piston reciprocates as it rotates. The cylinder and piston together comprise an integral valve that seqentially opens and closes the ports at the ends of the regenerators alternately allowing them to communicate with the expansion space and compression space and blocking that communication. The relieved passages in the cylinder and the ports in the piston are so arranged that each regenerator is sequentially (1) charged with compressed working gas from the compression space; (2) isolated from both expansion and compression spaces; (3) discharged of working gas into the expansion space; and (4) simultaneously charged with working gas from the expansion space while being discharged of working gas into the compression space, in the manner of the Sibling Cycle. In an alterate embodiment, heat exchangers are external to the cylinder and ports in the cylinder wall are alternately closed by the wall of the piston and opened to the expansion and compression spaces through relieved passages in the wall of the reciprocating, rotating piston.

  16. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  17. Method for Determining Volumetric Efficiency and Its Experimental Validation

    OpenAIRE

    Ambrozik Andrzej; Kurczyński Dariusz; Łagowski Piotr

    2017-01-01

    Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, ...

  18. Free piston inertia compressor

    Science.gov (United States)

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  19. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  20. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  1. Design of Piston Ring Friction Tester Apparatus

    DEFF Research Database (Denmark)

    Klit, Peder

    2006-01-01

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing the frictio......One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing...... the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external load may be established by measuring the pressure distribution, i.e. the pressure drop in the piston ring package. Speed and temperature may also be established. The amount...... available is reflected in the friction absorbed in the bearing. The following properties will be measured: Oil fillm thickness - along liner (axial variation), oil film thickness - along piston ring (circumferential variation), piston tilt, temperature of piston rings and liner, pressure at piston lands...

  2. 49 CFR 230.76 - Piston travel.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Piston travel. 230.76 Section 230.76... Tenders Brake and Signal Equipment § 230.76 Piston travel. (a) Minimum piston travel. The minimum piston travel shall be sufficient to provide proper brake shoe clearance when the brakes are released. (b...

  3. Drift stabilizer for reciprocating free-piston devices

    Science.gov (United States)

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  4. Modification of piston bowl geometry and injection strategy, and investigation of EGR composition for a DME-burning direct injection engine

    Directory of Open Access Journals (Sweden)

    Kianoosh Shojae

    2017-01-01

    Full Text Available The amount of pollutant gases in the atmosphere has reached a critical state due to an increase in industrial development and the rapid growth of automobile industries that use fossil fuels. The combustion of fossil fuels produces harmful gases such as carbon dioxide, nitrogen monoxide (NO, soot, particulate matter (PM, etc. The use of Dimethyl Ether (DME biofuel in diesel engines or other combustion processes have been highly regarded by researchers. Studies show that the use of pure DME in automotive engines will be possible in the near future. The present work evaluated the environmental and performance effects of changing the injection strategy (time and temperature, piston bowl geometry, and exhaust gas recirculation (EGR composition for a DME-burning engine. The modification of piston bowl parameters and engine simulation were numerically performed by using AVL fire CFD code. For model validation, the calculated mean pressure and rate of heat released (RHR were compared to the experimental data and the results showed a good agreement (under a 70% load and 1200-rpm engine speed. It was found that retarding injection timing (reduction in in-cylinder temperature, consequently caused a reduction in NO emissions and increased soot formation, reciprocally; this occurred because of a reduction in temperature and a lower soot oxidation in the combustion chamber. It became clear that 3 deg before top dead center (BTDC was the appropriate injection timing for the DME-burning heavy duty diesel engine running under 1200 rpm. Also, the parametrical modification of the piston bowl geometry and the simultaneous decrease of Tm (piston bowl depth and R3 (bowl inner radius lengths were associated with lower exhaust NO emissions. For the perfect utilization of DME fuel in an HD diesel engine, the suggested proper lengths of Tm and R3 were 0.008 and 0.0079 m, respectively. Furthermore, various EGR compositions for the reduction of exhaust NO were investigated

  5. Experimental results with hydrogen fueled internal combustion engines

    Science.gov (United States)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  6. Piston-Skirt Lubrication System For Compressor

    Science.gov (United States)

    Schroeder, Edgar C.; Burzynski, Marion, Jr.

    1994-01-01

    Piston-skirt lubrication system provides steady supply of oil to piston rings of gas compressor. No need for oil-filled crankcase or external oil pump. Instead, part of each piston acts as its own oil pump circulating oil from reservoir. Annular space at bottom of piston and cylinder constitutes working volume of small oil pump. Depending on application, reservoir open to atmosphere, or sealed and pressurized in bellows to prevent contact between oil and atmosphere. Filter removes particles worn away from piston rings and cylinder wall during normal operation.

  7. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  8. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  9. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  10. Air-steam hybrid engine : an alternative to internal combustion.

    Science.gov (United States)

    2011-03-01

    In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...

  11. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  12. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    Science.gov (United States)

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  13. Energy convergence of shock waves and its destruction mechanism in cone-roof combustion chambers

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde; Gao, Jian

    2016-01-01

    Highlights: • Experiments with simulations are designed to probe into engine severe knock. • Energy convergence at central and edge region is observed in closed-limited space. • Modes with different intensities and mechanism of energy convergence are revealed. • Chamber shape and equivalence ratio can affect the energy convergence. • The destruction effects of energy convergence on pistons are recognized. - Abstract: Energy convergence is considered as an important phenomenon in internal combustion engines under severe knock, in which shock waves caused by violent combustion may aggregate the energy released by fuel burning to damage engine parts like pistons and spark plugs easily. In order to reveal such convergence mechanism and its destruction effects, a novel detonation bomb experiment combined with numerical simulations are conducted. In bomb experiments, a detonation wave is forcibly introduced into a clearance-variable cone-roof combustion chamber by a high energy spark ignition. Four pressure transducers were installed in different positions to monitor the energy convergence. Combined with the experiments, numerical simulations were conducted to reveal the convergence modes and mechanisms. Finally, destruction samples were presented to validate this research. It’s found that the energy convergence of shock waves always occurs in middle and edge region, which are vulnerable to be damaged. Three modes of energy convergence are concluded for middle region while several ways of energy convergence are concluded for edge region, which are all related with the chamber shape and may result in different levels of convergence. It’s also found that though detonation strength (knock intensity) can be changed by both equivalence ratios and initial pressures, only the equivalence ratios can change the convergence modes while the initial pressures cannot.

  14. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  15. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines participating in the voluntary... I am a manufacturer of stationary SI internal combustion engines participating in the voluntary... internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline...

  16. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  17. Dynamic similitude in internal-combustion engines

    Science.gov (United States)

    Lutz, O

    1941-01-01

    In this report it will be seen that the piston speed - as, moreover, any other speed, such as bearing velocity - must be independent of the quantity dimensions and must be a representative quantity similar to the high speed and the specific weight per horsepower.

  18. Powertrain sizing of electrically supercharged internal combustion engine vehicles

    NARCIS (Netherlands)

    Murgovski, N.; Marinkov, S.; Hilgersom, D.; de Jager, B.; Steinbuch, M.; Sjöberg, J.

    2015-01-01

    We assess the concept of electrically supercharged internal combustion engines, where the supercharger, consisting of a compressor and an electric motor, draws electric power from a buffer (a battery or a supercapacitor). In particular, we investigate the scenario of downsizing the engine, while

  19. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  20. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  1. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn..., and must test their engines as specified in that part. Stationary SI internal combustion engine...

  2. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  3. From aluminium pistons to steel pistons in trucks and ships; Von Aluminium- zum Stahlgrosskolben bei Nkw und Schiffen

    Energy Technology Data Exchange (ETDEWEB)

    Kortas, J. [Mahle GmbH, Markgroeningen (Germany). Produktkonstruktion Grossmotorenkomponenten

    2005-11-01

    This article is intended to show the development from one-piece aluminum pistons to composite pistons made from forged steel. With the Mahle pistons completely produced from forged steel, process-safe peak cylinder pressures of 25 MPa can be achieved. The steel piston development was initiated in the commercial vehicle sector and then extended to large engines with cylinder diameters up to 480 mm. (orig.)

  4. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  5. Reciprocating piston pump system with screw drive

    Science.gov (United States)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1981-01-01

    A pump system of the reciprocating piston type is described, which facilitates direct motor drive and cylinder sealing. A threaded middle potion of the piston is engaged by a nut connected to rotate with the rotor of an electric motor, in a manner that minimizes loading on the rotor by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded piston portion, with an oil-carrying groove in the nut being interrupted. A fluid emitting seal located at the entrance to each cylinder, can serve to center the piston within the cylinder, wash the piston, and to aid in sealing. The piston can have a long stroke to diameter ratio to minimize reciprocations and wear on valves at high pressures. The voltage applied to the motor can be reversed prior to the piston reaching the end of its stroke, to permit pressure on the piston to aid in reversing the motor.

  6. Numerical study on dissimilar guide vane design with SCC piston for air and emulsified biofuel mixing improvement

    Directory of Open Access Journals (Sweden)

    Hamid Mohd Fadzli

    2017-01-01

    Full Text Available Crude palm oil (CPO is one of the most potential biofuels that can be applied in the conventional diesel engines, where the chemical properties of CPO are comparable to diesel fuel. However, its higher viscosity and heavier molecules can contributes to several engine problems such as low atomization during injection, carbon deposit formation, injector clogging, low mixing with air and lower combustion efficiency. An emulsification of biofuel and modifications of few engine critical components have been identified to mitigate the issues. This paper presents the effects of dissimilar guide vane design (GVD in terms of height variation of 0.25R, 0.3R and 0.35R at the intake manifold with shallow depth re-entrance combustion chamber (SCC piston application to the incylinder air flow characteristics improvement. The simulation results show that the intake manifold with GVD improved the performance of the air flow characteristic particularly swirl, tumble and cross tumble ratios from the intake manifold to the engine. The GVD with the height of 0.3R was found to be the optimum design with respect to the overall improvement of the air flow characteristic. The improvement of the air flow characteristic with the application of GVD and SCC piston in the engine was expected to contribute to a better air fuel mixing, fuel atomization and combustion efficiency of the engine using emulsified biofuel as a source of fuel.

  7. Experimental study on the influence of the rotating cylinder and circling pistons on churning losses in axial piston pumps

    OpenAIRE

    Zhang, Junhui; Li, Ying; Xu, Bing; Pan, Min; Lv, Fei

    2017-01-01

    Pressure and performance requirements of axial piston pumps and the proportion of churning losses in axial piston pumps increase significantly with increasing speed. To investigate the primary distribution of churning losses in axial piston pumps at various ranges of speed, a test rig was set up in which other friction losses can be eliminated, thus making it possible to investigate the net churning losses in an axial piston pump. The influence of the rotating cylinder block and pistons on ch...

  8. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  9. Drive piston assembly for a valve actuator assembly

    Science.gov (United States)

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  10. Stabilizing Gas Bearings In Free-Piston Machines

    Science.gov (United States)

    Dhar, Manmohan

    1995-01-01

    Gas bearings and clearance seals between pistons and cylinders in free-piston machines designed to reduce undesired dynamic forces and torques on pistons, gas bearings, and cylinders. Circumferential grooves and drain galleries added to piston or cylinder in improved design. Provides stabilization without significant reduction in length of seal, or significant increase in leakage and consequent reduction of efficiency.

  11. Critical needs for piston engine overhaul centre in Malaysia

    Science.gov (United States)

    Khairuddin, M. H.; Yahya, M. Y.; Johari, M. K.

    2017-12-01

    Piston engine overhaul centre (PEOC) is the branch of aviation Maintenance, Repair and Overhaul (MRO) providers, which plays a pivotal role in maintaining the fleet of business and commercial aircraft in the world. The centre typically offers three main MRO capabilities: airframe, engine and component services. Companies holding a PEOC(s) are all subjected to stringent procedures and conditions regulated and audited by the International Civil Aviation Organization. Currently, piston engine maintenance and repair for Asian countries is conducted only in Singapore. The focus of this study is to establish the needs for a PEOC in Malaysia, which will cater almost all small local aircraft companies such as transport and flying school companies.

  12. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  13. Modeling a Linear Generator for Energy Harvesting Applications

    Science.gov (United States)

    2014-12-01

    10 1. Free-piston Stirling Engine ...............................................................10 2. Crankless Internal Combustion...1 Figure 2. Free-piston Stirling engine ...11 Figure 3. Depiction of a solar concentrator utilizing a reflective parabolic dish and a Stirling engine , from [15

  14. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  15. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  16. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  17. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  18. Results of measurements of emission from internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Jovanovska, Vangelica

    1999-01-01

    A mathematical model for solving the emission from internal combustion engines on the cross roads are made. The exhausted pipes from vehicles are substituted with a pipe in a centre of the cross road. This model is proved with measurement made on vehicles in the city of Bitola (Macedonia). (Author)

  19. Spherical Casimir pistons

    Energy Technology Data Exchange (ETDEWEB)

    Dowker, J S, E-mail: dowker@man.ac.uk [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2011-08-07

    A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.

  20. Spherical Casimir pistons

    International Nuclear Information System (INIS)

    Dowker, J S

    2011-01-01

    A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.

  1. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  2. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  3. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  4. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  5. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  6. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    International Nuclear Information System (INIS)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man; Baek, Tae-Sil

    2015-01-01

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H 2 SO 4 solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode

  7. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man [Korea Maritime University, Dong Sam-Dong,Yong Do-ku, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-04-15

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H{sub 2}SO{sub 4} solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

  8. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-12-23

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-HQ-OAR-2008-0708, FRL-9244-2] RIN 2060-AP36 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... combustion engines and requesting public comment on one issue arising from the final rule. Specifically, EPA...

  9. Internal combustion engines in stationary installations for the efficient use of energy. VDI-meeting at Stuttart

    Energy Technology Data Exchange (ETDEWEB)

    Titl, A

    1976-11-01

    The efficient use of stationary internal combustion engines for energy supply is discussed: the state of technology and the scientific significance of internal combustion engines; thermal power coupling with unit-type thermal power plants which supply current as well as heat; and operational experience with unit-type thermal power plants for living districts, sport centers, industries etc.

  10. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  11. Method and means for repairing injection fuel pump pistons

    Energy Technology Data Exchange (ETDEWEB)

    Ash, E.G.; Tompkins, M.J. Jr.

    1988-06-07

    This patent describes an improvement in timing pistons for rotary fuel injection pumps of the type having a die cast aluminum housing. The housing has a cylindrical chamber, a steel piston, the piston being received in the chamber, means for reciprocating the piston lengthwise of the chamber, an aluminum jacket surrounding the piston and extending the full length thereof, the jacket being rigidly secured to the piston. The jacket has an exterior surface hard coat anodized to the hardness of about 60-70 Rockwell (C scale) as the means of preventing galling due to the reciprocal movement of the aluminum jacket piston within the aluminum chamber.

  12. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  13. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  14. The influence of the engine speed on the temperature distribution in the piston of the turbocharged diesel engine

    Directory of Open Access Journals (Sweden)

    Aleksander HORNIK

    2011-01-01

    Full Text Available This article presented the numeric computations of non-stationary heat flow in the form of distribution of temperature fields on characteristic surfaces of the piston for two different rotational speeds for the same engine load during 60 seconds during in which the engine worked. The object of research was a turbocharged Diesel engine with a direct fuel injection to the combustion chamber and the engine cubic capacity that is 2390 [cm3] and power rating, which is 85 [kW]. The numeric computations were carried out by the use of the finite element method (FEM with the help of COSMOS/M software and the use of the two – zone combustion model.

  15. Fuel injection apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, H; Kobayashi, H; Nagata, S

    1975-01-07

    A fuel injection apparatus for a rapid cut of fuel supply to internal combustion engines during deceleration is described. The fuel cut is achieved by an electromagnetic switch. The number of engine revolutions are determined by the movement of cam shafts, and one of the cam shafts is made of electroconductive and nonconductive materials which generate an intermittent electrical signal to the magnetic switch. The device can cut the fuel in any deceleration condition, therefore it is more advantageous than fuel injection utilizing the intake load variation which can operate only under certain deceleration conditions.

  16. Ionization in the Knock Zone of an Internal-combustion Engine

    Science.gov (United States)

    Hasting, Charles E

    1940-01-01

    The ionization in the knock zone of an internal-combustion engine was investigated. A suspected correlation between the intensity of knock and the degree of ionization was verified and an oscillation in the degree of ionization corresponding in frequency to the knock vibrations in the cylinder pressure was observed.

  17. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  18. Effet de la rugosité de surface sur les performances du contact ...

    African Journals Online (AJOL)

    Effet de la rugosité de surface sur les performances du contact segment- chemise dans un moteur à combustion interne. The effect of surface roughness on the performances of liner-piston ring contact in internal combustion engine. Amar Ayad. *. , Amar Skendraoui & Ammar Haiahem. Laboratoire de Mécanique Industrielle ...

  19. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    Science.gov (United States)

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A Linear Electromagnetic Piston Pump

    Science.gov (United States)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  1. Combustion of Liquid Bio-Fuels in an Internal Circulating Fluidized Bed

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Kalisz, S.; Baxter, D.; Svoboda, Karel

    2008-01-01

    Roč. 143, 1-3 (2008), s. 172-179 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40720504 Keywords : internal circulating fluidized bed * liquid fuel * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2008

  2. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  3. Influence of Pressure Build-Up Time of Compression Chamber on Improving the Operation Frequency of a Single-Piston Hydraulic Free-Piston Engine

    Directory of Open Access Journals (Sweden)

    Hai-bo Xie

    2013-01-01

    Full Text Available A single-piston hydraulic free-piston engine with a two-cylinder four-stroke diesel engine as its driver is introduced. It takes the free-piston assembly a certain time to move after the pressure in the compression chamber starts to increase. The time difference between the pressure increasing and the piston starting to move is defined as the pressure build-up time. The characteristics of the pressure build-up time and its influence on the performance of the free-piston engine are introduced and analyzed. Based on the basic law of dynamics of the free-piston assembly, the parameters which influence the pressure build-up time are analyzed. And then improvement and optimization are proposed to shorten the pressure build-up time.

  4. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  5. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  6. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H. [Ruhr Univ., Bochum (Germany); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T. [Colorado School of Mines (United States)

    1996-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  7. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H [Ruhr Univ., Bochum (Germany); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T [Colorado School of Mines (United States)

    1997-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  8. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  9. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  10. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  11. Remaining useful life prediction based on the Wiener process for an aviation axial piston pump

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2016-06-01

    Full Text Available An aviation hydraulic axial piston pump’s degradation from comprehensive wear is a typical gradual failure model. Accurate wear prediction is difficult as random and uncertain characteristics must be factored into the estimation. The internal wear status of the axial piston pump is characterized by the return oil flow based on fault mechanism analysis of the main frictional pairs in the pump. The performance degradation model is described by the Wiener process to predict the remaining useful life (RUL of the pump. Maximum likelihood estimation (MLE is performed by utilizing the expectation maximization (EM algorithm to estimate the initial parameters of the Wiener process while recursive estimation is conducted utilizing the Kalman filter method to estimate the drift coefficient of the Wiener process. The RUL of the pump is then calculated according to the performance degradation model based on the Wiener process. Experimental results indicate that the return oil flow is a suitable characteristic for reflecting the internal wear status of the axial piston pump, and thus the Wiener process-based method may effectively predicate the RUL of the pump.

  12. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  13. Magnetic bearings for free-piston Stirling engines

    Science.gov (United States)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  14. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  15. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    Science.gov (United States)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  16. Performance evaluation of free piston compressor coupling organic Rankine cycle under different operating conditions

    International Nuclear Information System (INIS)

    Han, Yongqiang; Kang, Jianjian; Zhang, Guangpan; Liu, Zhongchang; Tian, Jing; Chai, Jiahong

    2014-01-01

    Highlights: • An ORC-FPC is proposed to recover the waste heat of exhaust gas. • The simulation model has been established in GT-Suite ver. 7.0. • Performances of ORC-FPC under different operating conditions have been evaluated. • Performances prediction of the ORC-FPC for real application has been made in the paper. - Abstract: An organic Rankine cycle coupling free piston compressor (ORC-FPC) system has been proposed, which is used in recovering the waste heat of exhaust gas from the stationary compressed nature gas (CNG) fueled internal combustion compressor. The free piston compressor functions as an expander in ORC and operates reciprocally to compress natural gas in compression cylinders to demanded pressure. After capturing the waste heat available and turning into vapor in evaporator, the working fluid R245ca can provide power to drive the free piston moving reciprocally in expander. The model of ORC-FPC built up in the GT-suite ver. 7.0 assists evaluating performances of this system under different operating conditions. In this paper, the operating condition includes two aspects: thermodynamic state of working fluid and input power. The purpose of simulation based on the model is to specify appropriate thermodynamic states of working fluid which yield high value of η (the ratio of work produced by the power piston to enthalpy reduction of working fluid in the power cylinder) and k (the ratio of output CNG’s mass to enthalpy reduction of working fluid in the power cylinder) value. Performances of the ORC-FPC under different input power, which determined by the operating frequency and injection quantity of the heated working fluid, have also been evaluated. Results show that when the heated working fluid is at 11.5 bar and 383 K, the system achieves better performances than other thermodynamic states, of which k is 601.1 mg/kJ and η is 44.3%. Based on the optimum thermodynamic state and the principle of obtaining the maximum k, the specific input

  17. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  18. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  19. The effect of bowl-in-piston geometry layout on fluid flow pattern

    Directory of Open Access Journals (Sweden)

    Jovanovic Zoran S.

    2011-01-01

    Full Text Available In this paper some results concerning the evolution of 3D fluid flow pattern through all four strokes in combustion chambers with entirely different bowl-in-piston geometry layouts ranging from ”omega” to “simple cylinder” were presented. All combustion chambers i.e. those with „omega“ bowls, with different profiles, and those with „cylinder“ bowls, with different squish area ranging from 44% to 62%, were with flat head, vertical valves and identical elevation of intake and exhaust ports. A bunch of results emerged by dint of multidimensional modeling of nonreactive fluid flow in arbitrary geometry with moving objects and boundaries. The fluid flow pattern during induction and compression in all cases was extremely complicated and entirely three-dimensional. It should be noted that significant differences due to geometry of the bowl were encountered only in the vicinity of TDC. Namely, in the case of “omega” bowl all three types of organized macro flows were observed while in the case of “cylinder” bowl no circumferential velocity was registered at all. On the contrary, in the case of “cylinder” bowl some interesting results concerning reverse tumble and its center of rotation shifting from exhaust valve zone to intake valve zone during induction stroke and vice-verse from intake valve zone to exhaust valve zone during compression were observed while in the case of “omega” bowl no such a displacement was legible. During expansion the fluid flow pattern is fully controlled by piston motion and during exhaust it is mainly one-dimensional, except in the close proximity of exhaust valve. For that reason it is not affected by the geometry of the bowl.

  20. Thermal Loss Determination for a Small Internal Combustion Engine

    Science.gov (United States)

    2014-03-27

    an engine driven compressor (supercharger) or by means of an exhaust turbine driven compressor (turbocharger). The compressed air has a higher density...low and high adjustment screws were screwed in (leaned) or out (enrich) as needed to bring the air /fuel mixture closer to stoichiometric conditions...THERMAL LOSS DETERMINATION FOR A SMALL INTERNAL COMBUSTION ENGINE THESIS Joshua A. Rittenhouse, Captain, USAF AFIT-ENY-14-M-41 DEPARTMENT OF THE AIR

  1. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  2. Starting apparatus for internal combustion engines

    Science.gov (United States)

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  3. A numerical simulation of the piston cooling in view of consumption capabilities and enhanced power density; Numerische Simulation der Kolbenkuehlung im Hinblick auf Verbrauchspotentiale und erhoehte Leistungsdichte

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Johannes [BMW Group, Muenchen (Germany)

    2012-11-01

    To meet stringent emission regulations and high power requirements, peak cylinder pressures and specific power of petrol engines have increased dramatically in recent years. Nevertheless, regarding customer expectations and in the interest of driving dynamics, modern engines should still adhere to the established wide speed range, resulting in higher thermal loading of in-cylinder components such as piston. To ensure durability and reliability, it is vital for piston cooling concepts to keep maximum temperatures securely below an acceptable limit. In addition, reducing piston cooling at part load can help to gain efficiency and decrease fuel consumption. These exacting demands on the cooling concept require an exact analysis of thermal boundary conditions and their influence on the piston temperature. While good verified models for the combustion simulation already exist, the thermal cooling boundaries involve a greater level of uncertainty. The reason for this lies in the inadequately investigated heat transfer conditions on the piston undercrown and the running surface at present, due to complex fluid dynamics of the oil jet cooling and strong ring movements during a load cycle. This study refines the thermal boundary conditions and leads to precise knowledge of the transient and averaged heat flow through the piston and the cylinder liner. Based on these results, optimized cooling strategies to gain efficiency can be developed with the help of well validated one dimensional thermal engine models. (orig.)

  4. Convex modeling and sizing of electrically supercharged internal combustion engine powertrain

    NARCIS (Netherlands)

    Marinkov, S.; Murgovski, N.; de Jager, B.

    2016-01-01

    This paper investigates a concept of an electrically supercharged internal combustion engine powertrain. A supercharger consists of an electric motor and a compressor. It draws its power from an electric energy buffer (e.g., a battery) and helps the engine during short-duration high-power demands.

  5. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  6. Numerical analysis of gas leakage in the piston-cylinder clearance of reciprocating compressors considering compressibility effects

    Science.gov (United States)

    Braga, V. M.; Deschamps, C. J.

    2017-08-01

    Leakage is a major source of inefficiency in low-capacity reciprocating compressors. Not only does it lower the mass flow rate provided by the compressor, reducing its volumetric efficiency, but also gives rise to outflux of energy that decreases the isentropic efficiency. Leakage in the piston-cylinder clearance of reciprocating compressors is driven by the piston motion and pressure difference between the compression chamber and the shell internal environment. In compressors adopted for domestic refrigeration, such a clearance is usually filled by a mixture of refrigerant and lubricating oil. Besides its lubricating function, the oil also acts as sealing element for the piston-cylinder clearance, and hence leakage is expected to be more detrimental to oil-free compressors. This paper presents a model based on the Reynolds equation for compressible fluid flow to predict leakage in oil-free reciprocating compressors. The model is solved throughout the compression cycle so as to assess the effect of the clearance geometry and piston velocity on leakage and compressor efficiency. The results show that compressible fluid flow formulation must be considered for predictions of gas leakage in the cylinder-piston clearance.

  7. On the Influence of Piston and Cylinder Density in Tribodynamics of a Radial Piston Digital Fluid Power Displacement Motor

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.

    2015-01-01

    -stroke displacement simulations are used as basis for the parametric analysis. From the parametric analysis a change, in the minimum film thickness as function of piston and cylinder density, is shown for certain operating modes of the digital fluid power displacement motor. This indicate a need for careful....... In this paper the influence of the inertia term on the lubrication gaps of a radial piston motor are studied by a parametric analysis of the piston and cylinder density in a multibody tribodynamic simulation model. The motor is modeled as a digital fluid power displacement machine and a series of full...... assessment of the applicability, of the force balance condition, if it is used in multibody tribodynamic simulations of radial piston digital fluid power displacement motors....

  8. Wear Performance of Bionic Dimpled-Shape Pistons of Mud Pump

    Directory of Open Access Journals (Sweden)

    Xuejing Cheng

    2017-01-01

    Full Text Available The piston is one of the parts that most easily become worn out and experience failure in mud pumps for well drilling. By imitating the body surface morphology of the dung beetle, this paper proposed a new type (BW-160 of mud pump piston that had a dimpled shape in the regular layout on the piston leather cup surface and carried out a performance test on the self-built test rig. Firstly, the influence of different dimple diameters on the service life of the piston was analyzed. Secondly, the analysis of the influence of the dimple central included angle on the service life of the piston under the same dimple area density was obtained. Thirdly, the wear of the new type of piston under the same wear time was analyzed. The experimental results indicated that the service life of the piston with dimples on the surface was longer than that of L-Standard pistons, and the maximum increase in the value of service life was 92.06%. Finally, the Workbench module of the software ANSYS was used to discuss the wear-resisting mechanism of the new type of piston.

  9. Immersion piston for producing crude oil and liquids from boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, I; Hornyos, J

    1967-02-09

    When using a free piston to pump an oil well, oil and gas accumulates above and below the piston; upon venting the gas pressure above the piston, the gas pressure below it drives the piston and the oil above it to the surface. In the past, such pistons were too heavy and did not run tight in the tubing, causing loss of efficiency and high gas consumption. According to this invention, the piston is made of aluminum or plastic; it consists of at least 2 parts flexibly connected by wire rope or plastic strings, and is equipped with a labyrinth gasket and a paraffin scraper. (3 claims)

  10. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment. 1915.136 Section 1915.136 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment §...

  11. Development of velocity interferometer and its application to piston motion measurement in a compression tube of freepiston shock tube; Sokudo kanshokei no kaihatsu to sono jiyu piston shogekihakan no asshuku kannai no piston undo no keisoku eno oyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Koremoto, K.; Hashimoto, T. [Tohoku University, Sendai (Japan); Takayama, K. [Tohoku University, Sendai (Japan). Inst. of Fluid Science; Ito, K [National Aerospace Laboratory, Tokyo (Japan)

    1999-10-25

    A free piston shock tunnel has been intensively used as a hypersonic flow ground test facility and its characteristics depend sensitively upon the piston motion in its compression tube. The continuous measurement of the piston motion in its compression tube was studied in an analogue facility in which a piston motion in a 50mm dia. and 2000mm long compression tube was measured continuously and accurately from its start to the collision with bumper section. To achieve it a velocity interferometer was developed particularly to measure the piston speed in it. Then piston motions were successfully measured and result agreed very well with numerical result. (author)

  12. Multi technical analysis of wear mechanisms in axial piston pumps

    Science.gov (United States)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  13. Advanced Controller Developed for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  14. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  15. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  16. Free-piston reciprocating cryogenic expander utilizing phase controller

    Science.gov (United States)

    Cha, Jeongmin; Park, Jiho; Kim, Kyungjoong; Jeong, Sangkwon

    2017-02-01

    In a free-piston expander which eliminates mechanical linkages, a prescribed behaviour of the free-piston movement is the key to an expander performance. In this paper, we have proposed an idea of reducing complexity of the free-piston expander. It is to replace both multiple solenoid valves and reservoirs that are indispensable in a previous machine with a combination of a single orifice-reservoir assembly. It functions as a phase controller like that of a pulse tube refrigerator so that it generates time-delay of pressure variation between the warm-end and the reservoir resulting in the intended expansion of the cold-end volume down to the pre-set reservoir pressure. The modeling of this unique free-piston reciprocating expander utilizing phase controller is developed to understand and predict the performance of the new-type expander. Additionally, the operating parameters are analysed at the specified conditions to enable one to develop a more efficient free-piston type cryogenic expander.

  17. Hydrogen enrichment of an internal combustion engine via closed loop thermochemical recuperation

    NARCIS (Netherlands)

    Zwitserlood, J.G.; Hofman, T.; Erickson, P.A.

    2013-01-01

    Hydrogen enrichment in an internal combustion engine can greatly improve efficiency and at the same time reduce emissions without the need for extensive engine modifications. One option for a hydrogen source for the enrichment is actively producing hydrogen on-board the vehicle through steam

  18. Use of a perfume composition as a fuel for internal combustion engines

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to fuel compositions containing perfume fractions, that is to say compositions of fragrance materials, and to the use of such perfume fractions containing fuel compositions to provide a fuel for internal combustion engines and burners. According to the present fuel

  19. On the validity range of piston theory

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-06-01

    Full Text Available The basis of linear piston theory in unsteady potential flow is used in this work to develop a quantitative treatment of the validity range of piston theory. In the limit of steady flow, velocity perturbations from Donov’s series expansion...

  20. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  1. La mécanique du piston. Perspectives théoriques en physique de l’ascension socio-professionnelle Piston mechanics: theoretical perspectives on the physics of socio-professional rising

    Directory of Open Access Journals (Sweden)

    Laurent Matthey

    2007-01-01

    Full Text Available Cet article souhaite interroger la physique de l’ascension sociale. En prenant pour analogie la course d’un piston dans un moteur à explosion, il se donne pour ambition, en premier lieu, de questionner les modalités de production et de reproduction des classes sociales dans le domaine professionnel. Littéralement, le « piston » est bien une pièce métallique dont le parcours à l’intérieur d’un cylindre permet de produire du travail mécanique à partir d’énergie thermique. Mais il est aussi, au sens figuré attesté depuis 1857, l’instrument social qui autorise la course victorieuse des individus favorisés. Aussi, de l’admission à l’échappement, les quatre temps du mouvement du piston devraient permettre de vérifier l’hypothèse selon laquelle les candidats demeurent profondément inégaux du point de vue des chances de réussite. La seconde partie de l’article est consacrée à la discussion du modèle qui sert aujourd’hui à théoriser le monde professionnel, à savoir celui du réseau. Quels sont en effet les enjeux d’un tel glissement terminologique ? N’est-il pas en lien avec une propension à opacifier les régimes de reproduction sociale en recourant à un lexique démocratique qui postule que tout le monde bénéficie de chances égales ?The aim of this article is to question the physics of social rising. Building on the analogy of a piston’s movement in an internal-combustion engine, its main ambition it to question the modalities of production and of reproduction of social classes in the professional arena. Literally, a “piston” is a metallic piece whose movement within a cylinder transforms thermic energy into motive power. However, since 1857, the French language also employs it to designate a social tool that favors individuals over others during social competition. Therefore, from induction to exhaust, the four strokes of a piston’s movement provide an analogy that should help

  2. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  3. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  4. Gas action effect of free piston Stirling engine

    International Nuclear Information System (INIS)

    Mou, Jian; Li, Wei; Li, Jinze; Hong, Guotong

    2016-01-01

    Highlights: • The gas action effect is analyzed by the method of rotation vector decomposition. • Gas force can be decomposed into motivation force and spring or inertia force. • The optimal phase angles of displacements to pressure wave have been found. - Abstract: Gas action effect of free piston Stirling engine (FPSE) is very important to solve the key problem of start-up and find the way to increase its efficiency. The gas force is a key force to free FPSE. In this paper, the gas action effect has been analyzed by the method of rotation vector decomposition. It is found that the gas forces of piston and displacer can be decomposed into two forces, one component acts as motivation force resisting the damping force to output power, the other acts as spring force or inertia force according to the phase angle of pressure wave to displacements of the displacer and piston. Only when the motivation components of both piston and displacer resist their damping forces, will the FPSE be start-up and work stably. And only when the spring force is approximately equal to inertia force of piston, will the piston need the smallest gas spring force and nearly all the gas force be put for the alternator, meanwhile the engine outputs the maximum work. In the perfect condition, the optimal phase angle of the reciprocating movements of the displacer and piston ahead of the pressure wave are 180° and 90° respectively. The analyses above are verified by a series of experiments on a FPSE designed by our laboratory.

  5. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  6. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  7. Instantaneous heat flux flowing into piston top-land surface of D.I. diesel engine; DI diesel kikan no piston top land bu eno shunji netsuryusoku

    Energy Technology Data Exchange (ETDEWEB)

    Taguma, M [Zexel Corp., Tokyo (Japan); Inui, M; Enomoto, Y; Hagihara, Y [Musashi Institute of Technology, Tokyo (Japan); Koyama, T [Mitsubishi Motors Co., Tokyo (Japan)

    1997-10-01

    The thermal loads of the piston top-land surface in D.I. diesel engine during actual operation is not cleared. The authors fixed thin film thermocouples in the top-land center of a standard piston, and measured the instantaneous heat fluxes in that place. As a result, the authors made clear the thermal loads of the piston top-land surface in a cycle, and confirmed presence of the flame inflow to the piston top-land center. In addition, the authors made clear the thermal loads of the piston top-land surface in EGR operation. 4 refs., 8 figs.

  8. Research on Control Strategy of Free-Piston Stirling Power Generating System

    Directory of Open Access Journals (Sweden)

    Jigui Zheng

    2017-10-01

    Full Text Available As a clean and fuel adaptive alternative power plant, the Stirling power generating system has drawn attention of experts and scholars in the energy field. In practical application, the instability of free-piston Stirling power generating system caused by abrupt load change is an inevitable problem. Thus, methods to improve the output frequency response and stability of the free-piston Stirling power generating system are necessary. The model of free-piston Stirling power generating system is built by isothermal analysis firstly, and the initial control strategy based on given voltage system is put forward. To further improve the performance of power system, a current feedback decoupling control strategy is proposed, and the mathematical model is established. The influence of full decoupled quadrature-direct (d-q axis currents is analyzed with respect to the output voltage adjusting time and fluctuation amplitude under the variations of piston displacement and output load. The simulation results show that the system performance is significantly improved, but the dynamic regulation lags caused by the decoupled current control still exist. To solve this problem and improve the performance of decoupled-state feedback current control that relies on parameter accuracy, internal model control based on sliding mode (IMC-SM current decoupling control strategy is proposed, the system model is established, and then the performance of voltage ripple in generating mode is improved. Finally, the test bench is built, and the steady state and transient voltage control performances are tested. The feasibility and priority of the control strategy is verified by experiment and simulation results.

  9. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  10. Experimental analysis of damages in a motor piston to gasoline operating with addition of hydroxy gas

    Energy Technology Data Exchange (ETDEWEB)

    Sanabio, Robdon Guimaraes, E-mail: robson.sanabio@alu.ufc.br [Universidade Estadual do Ceara (UFC), Fortaleza, CE(Brazil); Nascimento, Rubens Maribondo; Chellapa, Thiago; Dantas, Valter Bezerra; Medeiros, Isaac Pericles Maia [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    Full text: The addition of hydrogen gas as an alternative fuel source has been widely used, as well reported in scientific literature. Today, several experiments are underway for the use of hydrogen generators (electrolyser) demand for motor vehicles. In all these products their ads manufacturers claim that this provides a reduction of fuel consumption, reduces the emission levels of toxic gas by the discharge and improves engine life. This research analyzes the physical structure of engine components using electrolysis on demand. To this end, a stationary system was fitted with a power generator of electricity, drum roller and adapted two electrolyzers: a dry cell and wet cell other. In steps observation were consumption analyzes in four work load ranges and observing the piston engine, which has been cut and analyzed by Optical Microscopy (OM), Scanning Electron Microscopy and Dispersive Energy (SEM-EDS), X – Ray Diffraction (XRD) and Confocal Microscopy, the stationary system in each step. The results showed a considerable reduction in fuel consumption and a high corrosion in the original factory piston constituted of aluminum-silicon alloy. As corrosion barrier was made a plasma nitriding in the piston head, which proved resistant to attack by hydrogen, although it has presented evidence also, of having been attacked. It is concluded that the automotive electrolysers can be a good choice in terms of consumption and reducing toxic gas emissions, but the material of the combustion chambers of vehicles must be prepared for this purpose. (author)

  11. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  12. Electromagnetic liquid pistons for capillarity-based pumping

    Science.gov (United States)

    Malouin, Bernard; Olles, Joseph; Cheng, Lili; Hirsa, Amir; Vogel, Michael

    2011-11-01

    Two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their motion can be exploited to displace a surrounding liquid, forming electromagnetic liquid pistons. Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes or resonant frequencies with no solid moving parts. Here we demonstrate the use of these liquid pistons in capillarity-dominated systems for variable focal distance liquid lenses with nearly perfect spherical interfaces. These liquid/liquid lenses feature many promising qualities not previously realized together in a liquid lens, including large apertures, immunity to evaporation, invariance to orientation relative to gravity, and low driving voltages. The dynamics of these liquid pistons is examined, with experimental measurements showing good agreement with a spherical cap model. A centimeter-scale lens was shown to respond in excess of 30 Hz, with resonant frequencies over 1 kHz predicted for scaled down systems.

  13. International cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes an international cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity. In June, 1994, NEDO and NASA reached a basic agreement with each other about this cooperative R and D on combustion under microgravity conditions. In fiscal 2000, Japan proposed an experiment using the drop tower facilities and parabolic aircraft at NASA Glen Research Center and at JAMIC (Japan Microgravity Center). In other words, the proposals from Japan included experiments on combustion of droplets composed of diversified fuels under different burning conditions (vaporization), flame propagation in smoldering porous materials and dispersed particles under microgravity conditions, and control of interactive combustion of two droplets by acoustical and electrical perturbations. Additionally proposed were experiments on effect of low external air flow on solid material combustion under microgravity, and sooting and radiation effects on the burning of large droplets under microgravity conditions. This report gives an outline of the results of these five cooperative R and D projects. The experiments were conducted under ordinary normal gravity and microgravity conditions, with the results compared and examined mutually. (NEDO)

  14. Influence of biofuels usage in internal combustion engines of agricultural tractors on output parametrs

    Directory of Open Access Journals (Sweden)

    Tomáš Šmerda

    2010-01-01

    Full Text Available Application of alternative fuels brings the social benefits in terms of reducing dependence on oil industry and its products as well as decreasing of damage of the environment together with using of na­tu­ral resources, especially in field of renewable energy resources. The use of biofuels is the most important part of energy strategy in European Union, whose member states have agreed the content of biofuels will achieve 5.75% of the total energy sum of fuel for transport purposes in 2010. Operation of internal combustion engine fueled by RME brings environmental benefits as described several authors in analysis of the life cycle. The contribution deals with technical difficulties of the RME usage in internal combustion engine used in agricultural tractors. Different fuel causes different process of combustion which means changes in output power and pollution. The aim of this experiment was to determine these effects. Experimental work was divided into two parts according to various fuel systems. The first tractor was equipped with mechanical injection system, the second one was provided with common-rail fuel system. The test procedures consisted of measurement of power- torque curves where the engine load was created by Eddy current dynamometer. Exhaust gas analyzer sampled the pollution of carbon monoxide, carbon dioxide and hydrocarbons as the most important indicators of combustion process.

  15. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  16. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    Van Rijswick, R.; Van Rhee, C.

    2013-01-01

    Piston diaphragm pumps are used world-wide for the transport of aggressive and/or abrasive fluids in the chemical, mining and mineral processing industries. Figure 1 shows a cross section of a piston diaphragm pump as is used in the mining and mineral processing industries for the transport of

  17. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  18. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors; Etude de la tenue de la gaine interne pour-element combustible a refroidissement interne et externe d'un reacteur graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boudouresque, B; Courcon, P; Lestiboubois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm{sup 2} gas pressure, should remain in contact with the fuel. (authors) [French] La cartouche d'un element combustible annulaire, a refroidissement interne et externe pour reacteur graphite-gaz, est composee d'un tube combustible en uranium, d'une gaine externe et d'une gaine interne en alliage de magnesium. Pour que l'echange thermique entre la gaine interne et le combustible soit bon, il faut que la gaine reste appliquee sur l'uranium quel que soit le regime de temperature. Cette note a pour but de montrer comment, d'apres une etude theorique, le jeu combustible-gaine interne varie au cours des operations de gainage, de chargement dans le reacteur, et des cyclages thermiques. Les parametres suivants sont etudies: diametres de tube, pression du gaz caloporteur, temperature d'entree du gaz, plasticite de l'alliage de gaine. Il est montre que, quel que soit le regime de fonctionnement, la gaine interne d'un element 77 x 95, en projet pour un reacteur graphite-gaz sous pression de 40 kg/cm{sup 2}, doit rester appliquee sur le combustible. (auteurs)

  19. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  20. The influence oil film lubrication of the piston-cylinder dynamic

    Directory of Open Access Journals (Sweden)

    Adriana Tokar

    2008-10-01

    Full Text Available An analytical study of the dynamics of a piston in a reciprocating engine was conducted. The equation of Reynolds and moving of piston are derived. The analysis, which incorporates a hydrodynamic lubrication model, was applied to M501 diesel engine. The results of this study indicate that piston dynamics were found to be sensitive to piston-cylinder bore clearance, location of the wrist pin and lubricant viscosity, underscoring their importance in engine design.

  1. Development of a non-piston MR suspension rod for variable mass systems

    Science.gov (United States)

    Deng, Huaxia; Han, Guanghui; Zhang, Jin; Wang, Mingxian; Ma, Mengchao; Zhong, Xiang; Yu, Liandong

    2018-06-01

    The semi-active suspension systems for variable mass systems require long work stroke and variable damping, while the currently piston structure limits the work stroke for the magnetorheological (MR) dampers. The main work of this paper is to design a semi-active non-piston MR (NPMR) suspension rod for the reduction of the vibration of an automatic impeller washing machine, which is a typical variable mass system. The designed suspension rod locates in the suspension system that links the internal tub to the washing machine cabinet. The NPMR suspension rod includes a MR part and a air part. The MR part can provide low initial damping force and the unlimited work stroke compared with the piston MR damper. The hysteretic response tests and vibration performance evaluation with different loadings are conducted to verify the dynamic performance for the designed rod. The measured damping force of the MR part varies from 5 to 20 N. Studies of dehydration mode experiments of the washing machine indicate that its vibration acceleration with the NPMR suspension rods can reduce to half of the original passive ones in certain conditions.

  2. Investigation of reciprocating conformal contact of piston skirt-to-surface modified cylinder liner in high performance engines

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, S.; Rahnejat, H. [Loughborough University (United Kingdom). Wolfson School of Mechanical and Manufacturing Engineering; Howell-Smith, S. [Perfect Bore Motorsport Ltd., Andover (United Kingdom)

    2005-11-15

    The article presents detailed analysis of the conforming contact between a piston and cylinder liner in a high-speed racing engine under extreme operating conditions owing to high loads and operating speeds in excess of 19 000 r/min, resulting in a high sliding velocity of 42 m/s. The analysis indicates contact forces generated in the order of 2.5 kN. The contribution due to fluid film lubrication is found to reside in iso-viscous rigid or elastic regimes of lubrication, which is insufficient to form a coherent lubricant film during some parts of the cycle, such as at top-dead-centre (TDC). The article shows that at combustion, 95 per cent of the contact can remain in boundary or mixed regimes of lubrication. Piston skirt surface modification features are used in conjunction with an electrolytically applied composite coating, Ni[SiC]p to produce advanced cylinder liners to remedy the situation. Detailed numerical analysis shows that significant improvement is achieved in the regime of lubrication condition. (author)

  3. Engine including a piston member having a high top ring groove

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.L.; Kamman, K.R.; Ballheimer, B.; Shoup, S.G.

    1990-07-17

    This patent describes an improvement in an engine. It is of the type having a block defining an upper bore, a cylinder liner located in the block bore and defining a piston bore, a cylinder head connected to the block, and a piston assembly including a steel piston member disposed for reciprocation in the piston bore.

  4. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  5. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    Heat transfer between the cylinder gas and the piston surface during combustion in large two-stroke uniflow scavenged marine diesel engines has been investigated in the present work. The piston surface experiences a severe thermal load during combustion due to the close proximity of the combustion...... zone to the surface. At the same time, cooling of the piston crown is relatively complicated. This can cause large thermal stresses in the piston crown and weakening of the material strength, which may be critical as it can lead to formation of cracks. Information about the piston surface heat transfer...... is thus important for the engine manufactures. The piston surface heat transfer was studied in the event of impingement of hot combustion products on the piston during combustion, and an estimate was obtained of the peak heat flux level experienced on the piston surface. The investigation was carried out...

  6. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  7. Using biofuel tracers to study alternative combustion regimes

    International Nuclear Information System (INIS)

    Mack, J.H.; Flowers, D.L.; Buchholz, B.A.; Dibble, R.W.

    2007-01-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO 2 emissions are countered with higher nitrogen oxides (NO x ) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NO x formation. Altering the combustion regime to burn at temperatures below the NO x threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NO x and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling

  8. New monobolt piston design for large engines; Neues Monobolt-Kolbendesign fuer Grossmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Estrum, T.; Kortas, J.; Geissler, C. [Mahle GmbH, Markgroeningen (Germany). Profitcenter Grossmotorenkomponenten

    2008-07-15

    High-load pistons for modern, powerful large diesel and gas engines require increasingly more compact and lightweight designs. Due to the low installation height, less room remains for the required screw length in traditional large-bore piston designs, where the piston crown is screwed to the piston skirt. With the new development of the compact monobolt piston design, the Mahle Large Engine Components Profit Center succeeded in satisfying the requirements for an extremely low installation height of a composite piston, while allowing high mechanical and thermal loads. (orig.)

  9. Decoupling Design and Verification of a Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2016-12-01

    Full Text Available This paper proposes a decoupling design approach for a free-piston linear generator (FPLG constituted of three key components, including a combustion chamber, a linear generator and a gas spring serving as rebounding device. The approach is based on the distribution of the system power and efficiency, which provides a theoretical design method from the viewpoint of the overall power and efficiency demands. The energy flow and conversion processes of the FPLG are analyzed, and the power and efficiency demands of the thermal-mechanical and mechanical-electrical energy conversion are confirmed. The energy and efficiency distributions of the expansion and compression strokes within a single stable operation cycle are analyzed and determined. Detailed design methodologies of crucial geometric dimensions and operational parameters of each key component are described. The feasibility of the proposed decoupling design approach is validated through several design examples with different output power.

  10. Starting procedure for internal combustion vessels

    Science.gov (United States)

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  11. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  12. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  13. Three-dimensional Casimir piston for massive scalar fields

    International Nuclear Information System (INIS)

    Lim, S.C.; Teo, L.P.

    2009-01-01

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a 4 when a→0 + and decays exponentially when a→∞. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  14. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  15. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  16. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  17. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  18. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  19. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  20. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  1. Coupled hydrodynamic-structure analysis of piston motion in reciprocating compressors

    International Nuclear Information System (INIS)

    Moon, Seung Ju; Cho, Jin Rae; Ryu, Sung Hyon

    2003-01-01

    The piston slap phenomenon is one of the major noise source of reciprocating compressors used in household electric appliances. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, the dynamic behavior of suction and discharge valves are analytically calculated and the lubricant behavior between piston and cylinder are investigated using two-dimensional Reynolds equation. And the piston slap caused by the piston secondary motion is investigated by the finite element method

  2. Analysis and experimental investigation of ceramic powder coating on aluminium piston

    Science.gov (United States)

    Pal, S.; Deore, A.; Choudhary, A.; Madhwani, V.; Vijapuri, D.

    2017-11-01

    Energy conservation and efficiency have always been the quest of engineers concerned with internal combustion engines. The diesel engine generally offers better fuel economy than its counterpart petrol engine. Even the diesel engine rejects about two thirds of the heat energy of the fuel, one-third to the coolant, and one third to the exhaust, leaving only about one-third as useful power output. Theoretically if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. Low Heat Rejection engines aim to do this by reducing the heat lost to the coolant. Thermal Barrier Coatings (TBCs) in diesel engines lead to advantages including higher power density, fuel efficiency, and multifuel capacity due to higher combustion chamber temperature. Using TBC can increase engine power by 8%, decrease the specific fuel consumption by 15-20% and increase the exhaust gas temperature by 200K. Although several systems have been used as TBC for different purposes, yttria stabilized zirconia with 7-8 wt.% yttria has received the most attention. Several factors playing important role in TBC life include thermal conductivity, thermo chemical stability at the service temperature, high thermo mechanical stability to the maximum service temperature and thermal expansion coefficient (TEC). This work mainly concentrates on the behaviour of three TBC powders under the same diesel engine conditions. This work finds out the best powder among yttria, alumina and zirconia to be used as a piston coating material i.e., the one resulting in lowest heat flux and low side skirt and bottom temperature has been chosen for the coating purpose. This work then analyses the coated sample for its surface properties such as hardness, roughness, corrosion resistance and microstructural study. This work aims at making it easier for the manufacturers choose the coating material for engine coating purposes and surface

  3. Dictionary of engines. The internal combustion engine from A-Z; Lexikon Motorentechnik. Der Verbrennungsmotor von A-Z

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, F. (ed.); Basshuysen, R. van

    2004-04-01

    This dictionary describes current engine technology and gives an outlook to the future. Cross-references, broader and narrower terms ensure optimal user guidance. Entries do not stand alone but provide content-oriented information. About 4,500 terms are included from A-Z, providing an outline of subjects like exhaust systems, acoustics, supercharging, combustion chamber, injection systems, control, flame propagation, mixing, catalytic converters, pistons, fuels, cooling, crank casing, stratified charging, lambda control, camshaft, oil, particulate filters, sensors/actuators, pollutants, valves, combustion processes, efficiency, ignition, cylinder head. The dictionary is for development engineers in the motor car industry, in component and system development in the supply industry, university teachers and students, foremen in motor car repair shops, etc. (orig.) [German] Das Lexikon Motorentechnik ist ein Nachschlagewerk, das die aktuelle Motorentechnik umfassend beschreibt und Ausblicke in der Zukunft ermoeglicht. Das ausgefeilte System aus Querverweisen fuehrt alle Unterbegriffe zum Hauptbegriff und ermoeglicht so eine optimale Benutzerfuehrung. Dadurch stehen die Stichwoerter nicht isoliert, sondern es werden inhaltlich zusammenhaengende Betrachtungen moeglich. Der Inhalt umfasst 4 500 Begriffe von A-Z wie z.B.: Abgastechnik, Akustik, Aufladung, Brennraum, Einspritzsysteme, Elektronische Motorsteuerung, Flammenausbreitung, Gemischbildung, Katalysator, Kolben, Kraftstoff, Kuehlung, Kurbelgehaeuse, Kurbeltrieb, Ladungswechsel, Lambda-Regelung, Nockenwelle, Oel, Partikelfilter, Sensoren/Aktuatoren, Schadstoffe, Ventiltrieb, Verbrennungsverfahren, Wirkungsgrad, Zuendung, Zylinderkopf. Die Zielgruppen waeren Ingenieure in Motoren- und Fahrzeugentwicklung der Automobilindustrie, Ingenieure in der Komponenten- und Systementwicklung der Zuliefererindustrie, Professoren und Studenten an Hochschulen mit Schwerpunkt Kraftfahrzeugtechnik, Meister in Kfz-Werkstaetten. (orig.)

  4. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  5. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    Science.gov (United States)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  6. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  7. Fluorocarbon seal replaces metal piston ring in low density gas environment

    Science.gov (United States)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  8. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    Science.gov (United States)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  9. Tribological Performance of Different Geometries of Piston Rings in Marine Diesel Engines

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    Friction in the piston ring package (piston, piston rings and liner) is a major source of power consumption in two stroke marine diesel engines. It is well-known that a typical piston ring operates under full separation in the mid-part of the stroke, and in the mixed lubrication regime at the dead...

  10. Fluid powered linear piston motor with harmonic coupling

    Science.gov (United States)

    Raymond, David W.

    2016-09-20

    A motor is disclosed that includes a module assembly including a piston that is axially cycled. The piston axial motion is coupled to torque couplers that convert the axial motion into rotary motion. The torque couplers are coupled to a rotor to rotate the rotor.

  11. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    Science.gov (United States)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  12. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    Science.gov (United States)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  13. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  14. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  15. ProMotor - a technology programme of internal combustion engines; Moottoritekniikan teknologiaohjelma ProMOTOR 1999-2003. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The technology program ProMOTOR, related to the technology of internal combustion engines, covered the whole chain from fuels to engine, and from engine combustion to exhaust gas clean-up. One of the main challenges in the engine sector is to decrease emissions significantly. In order to meet this challenge, the whole chain has to be considered. The program was designed in close cooperation with the national industry of this sector. The main objective of the program was to support product development of the engine- related industry in order to develop and maintain international competitiveness. Corporate projects formed a substantial part of the program, amounting to about 70% of the whole budget volume. Good results were achieved in every sector of the program. In the sector of 'Engine Theory' great efforts were directed to the development of calculation and simulation procedures and protocols. The efforts paid off, and significant progress was achieved. Close international cooperation and academic theses give indication of the high level. In addition to computational work optical method to study incylinder phenomena was developed. Research infrastructure was improved in many different areas. A new research engine, EVE (Extreme Value Engine), makes it possible to vary the operational parameters and the engine process in such ways which are not possible in ordinary engines. A very high boost pressure and freely selectable valve timing are important new features providing more freedom in testing. The mechanical structure of this engine, which is designed for extremely high mean effective pressures, is unique. A research device for piston ring tribology and a large bearing test rig were also designed and constructed for tribology research. The research facilities for work on heavy vehicles and engines improved significantly. Today it is possible to run complete heavy-duty vehicles on a chassis dynamometer and test engines, for example, according to

  16. Simulations geometric structures of the stepped profile bearing surface of the piston

    Directory of Open Access Journals (Sweden)

    Wroblewski Emil

    2017-01-01

    Full Text Available The main node piston-pin-piston rings are most responsible for the formation of mechanical losses. It is advisable to reduce friction losses in the piston-cylinder group lead to an increase in the overall efficiency of the engine and thus reduce the fuel consumption. The method to reduce the area covered by the oil film is a modification of the bearing surface of the piston by adjusting the profile. In this paper the results of simulation for the stepped microgeometry piston bearing surface are presented.

  17. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  18. Experimental Piston Ring Tribology for Marine Diesel Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Vølund, Anders

    2008-01-01

    A very important condition for describing the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. It is often assumed that piston rings operate under fully flooded conditions, but this is not the case in real life operation. In large two-stroke engin...

  19. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  20. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-01-01

    Full Text Available Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders (Stobart and Weerasinghe, 2006. Dependable data for small steam expanders will allow us to predict their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Present paper is based on results of experiments carried out on small scale Wankel and two-stroke reciprocating engines as air expanders and as steam expanders. A test facility developed at Sussex used for measurements is comprised of a torque, power and speed measurements, electronic actuation of valves, synchronized data acquisition of pressure, and temperatures of steam and inside of the engines for steam and internal combustion cycles. Results are presented for four engine modes, namely, reciprocating engine in uniflow steam expansion mode and air expansion mode and rotary Wankel engine in steam expansion mode and air expansion mode. The air tests will provide base data for friction and motoring effects whereas steam tests will tell how effective the engines will be in this mode. Results for power, torque, and p-V diagrams are compared to determine the change in performance from air expansion mode to steam expansion mode.

  1. RE-1000 free-piston Stirling engine update

    Science.gov (United States)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  2. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    OpenAIRE

    Weerasinghe, Rohitha; Hounsham, Sandra

    2017-01-01

    Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders [1]. Dependable data for small steam expanders will allow us to predict on their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Wankel Engines, with its lower resistance properties at small scale provide excellent contenders for bottoming cycle expanders. Present paper is based on results of experiments carried ...

  3. Computational fluid dynamics applied to flows in an internal combustion engine

    Science.gov (United States)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  4. Development and validation of a free-piston engine generator numerical model

    International Nuclear Information System (INIS)

    Jia, Boru; Zuo, Zhengxing; Tian, Guohong; Feng, Huihua; Roskilly, A.P.

    2015-01-01

    Highlights: • Detailed numerical model of free-piston engine generator is presented. • Sub models for both starting process and steady operation are derived. • Simulation results show good agreement with prototype test data. • Engine performance with different starting motor force and varied loads are simulated. • The efficiency of the prototype is estimated to be 31.5% at a power output of 4 kW under full load. - Abstract: This paper focuses on the numerical modelling of a spark ignited free-piston engine generator and the model validation with test results. Detailed sub-models for both starting process and steady operation were derived. The compression and expansion processes were not regarded as ideal gas isentropic processes; both heat transfer and air leakage were taken into consideration. The simulation results show good agreement with the prototype test data for both the starting process and steady operation. During the starting process, the difference of the in-cylinder gas pressure can be controlled within 1 bar for every running cycle. For the steady operation process, the difference was less than 5% and the areas enclosed on the pressure–volume diagram were similar, indicating that the power produced by the engine and the engine efficiency could be predicted by this model. Based on this model, the starting process with different starting motor forces and the combustion process with various throttle openings were simulated. The engine performance during stable operation at 100% engine load was predicted, and the efficiency of the prototype was estimated to be 31.5% at power output of 4 kW

  5. The control of a free-piston engine generator. Part 1: Fundamental analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, England (United Kingdom)

    2010-04-15

    Free-piston engines are under investigation by a number of research groups due to potential fuel efficiency and exhaust emissions advantages over conventional technology. The main challenge with such engines is the control of the piston motion, and this has not yet been fully resolved for all types of free-piston engines. This paper discusses the basic features of a single piston free-piston engine generator under development at Newcastle University and investigates engine control issues using a full-cycle simulation model. Control variables and disturbances are identified, and a control strategy is proposed. It is found that the control of the free-piston engine is a challenge, but that the proposed control strategy is feasible. Engine speed control does, however, represent a challenge in the current design. (author)

  6. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  7. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels

    International Nuclear Information System (INIS)

    Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo

    2014-01-01

    Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance

  8. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  9. Dynamics of a massive piston in an ideal gas

    International Nuclear Information System (INIS)

    Chernov, N I; Lebowitz, J L; Sinai, Yakov G

    2002-01-01

    This survey is a study of a dynamical system consisting of a massive piston in a cubic container of large size L filled with an ideal gas. The piston has mass M∼L 2 and undergoes elastic collisions with N∼L 3 non-interacting gas particles of mass m=1. It is found that under suitable initial conditions there is a scaling regime with time and space scaled by L in which the motion of the piston and the one-particle distribution of the gas satisfy autonomous coupled equations (hydrodynamic equations) such that in the limit L→∞ the mechanical trajectory of the piston converges in probability to the solution of the hydrodynamic equations for a certain period of time. There is also a heuristic discussion of the dynamics of the system on longer intervals of time

  10. The Casimir effect for pistons with transmittal boundary conditions

    Science.gov (United States)

    Fucci, Guglielmo

    2017-11-01

    This work focuses on the analysis of the Casimir effect for pistons subject to transmittal boundary conditions. In particular we consider, as piston configuration, a direct product manifold of the type I × N where I is a closed interval of the real line and N is a smooth compact Riemannian manifold. By utilizing the spectral zeta function regularization technique, we compute the Casimir energy of the system and the Casimir force acting on the piston. Explicit results for the force are provided when the manifold N is a d-dimensional sphere.

  11. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  12. Performance simulation of a spark ignited free-piston engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-10-15

    Free-piston engines are under investigation by a number of research groups worldwide due to potential fuel efficiency and engine emissions advantages. The free-piston engine generator, in which a linear electric generator is fixed to the mover to produce electric power, has been proposed as an alternative prime mover for hybrid-electric vehicles. This paper investigates the performance of a spark ignited free-piston engine generator and compares it to a conventional engine using a computational fluid dynamics simulation model. The particular operating characteristics of the free-piston engine were not found to give noticeable performance advantages, and it is concluded that the main potential of this technology lies in the simplicity and flexibility of the concept. (author)

  13. Numerical simulation of two-piston light gas gun for pellet injection in tokamaks

    International Nuclear Information System (INIS)

    Shi Yumei; He Yaling; Chen Zhongqi; Wu Peiyi

    1995-01-01

    Analysing the shortcoming of the single-piston light gas gun, the author uses the method of characteristics to estimate the performance of the two-piston light gas gun, and compare it with the single-piston gun, the result shows that two-piston gun has advantage on the aspect of the pressure pulse that promotes the pellet. The effects of some important parameters are also discussed. This work provides the theoretical basis for the design and optimization of two-piston light gas gun

  14. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  15. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  16. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  17. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, Wayne [Cummins, Inc., Columbus, IN (United States); Rutland, Chris [Univ. of Wisconsin, Madison, WI (United States); Rohlfing, Eric [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Singh, Gurpreet [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; McIlroy, Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  18. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  19. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  20. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  1. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  2. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response.

  3. Energy efficient piston configuration for effective air motion – A CFD study

    International Nuclear Information System (INIS)

    Gnana Sagaya Raj, Antony Raj; Mallikarjuna, Jawali Maharudrappa; Ganesan, Venkitachalam

    2013-01-01

    Highlights: ► All piston crown show similar flow pattern for experimental and simulated studies. ► Piston position plays a predominant role in the air pattern inside the cylinder. ► The flat bowl piston shows higher TKE compared to all other piston crown shape. ► The turbulence intensity and length scale are higher for flat bowl piston. ► The quantitative error between the CFD and PIV analysis is about 5%. -- Abstract: Air motion inside the cylinder is very important from the point of view of energy efficiency. In this direction, piston configuration plays a very crucial role. This study is concerned with the CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the experimental results available in the literature. Four configurations viz., flat, inclined, centre bowl and inclined offset bowl pistons have been studied. For numerical analysis STAR-CD CFD software has been used. Experimental results available in the literature for comparison are obtained by PIV measurements. From this study, it is concluded that a centre bowl on flat piston is found to be the best from the point of view of tumble ratio, turbulent kinetic energy, turbulent intensity and turbulent length scale which play very important role in imparting proper air motion, there by increasing the energy efficiency of the engine.

  4. The effect of oil additives on exhaust emission of internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, M.B.; Kuzmanovski, K.A.

    1999-01-01

    An attempt was conducted to acquire data on connection between motor oil and motor oil additives and exhaust emission of internal combustion engine. The consulted literature did not contain enough data, so experiments were conducted. The results of the experiments are presented on diagrams that have been processed in the computer program EXCEL. Conclusions that were made out of that work show the need of expanding research on the subject. (Author)

  5. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  6. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    Science.gov (United States)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  7. Waste heat recovery systems for internal combustion engines: classification and benefits

    OpenAIRE

    Marchenko, A.; Samoilenko, D.; Adel Hamzah, Ali; Adel Hamzah, Omar

    2014-01-01

    Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combustion engines are the major consumer of fossil fuel around the globe. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste ...

  8. Exhaust gas turbo-charger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.

    1982-01-07

    The invention is concerned with a exhaust gas turbocharger for internal combustion engines. A turbine driving a compressor, is feeded with the exhaust gas. Intended is the over-temperature protection of the exhaust gas turbocharger. For this reason a ring shaped sheet with a well polished nickel surface, serves as thermal shield. A sealing avoids soiling of the turbine shaft. Due to the heat shielding effect no tinder, oxide or dirt deposition is possible. The heat reflection factor is constant.

  9. Pump having pistons and valves made of electroactive actuators

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor)

    1997-01-01

    The present invention provides a pump for inducing a displacement of a fluid from a first medium to a second medium, including a conduit coupled to the first and second media, a transducing material piston defining a pump chamber in the conduit and being transversely displaceable for increasing a volume of the chamber to extract the fluid from the first medium to the chamber and for decreasing the chamber volume to force the fluid from the chamber to the second medium, a first transducing material valve mounted in the conduit between the piston and the first medium and being transversely displaceable from a closed position to an open position to admit the fluid to the chamber, and control means for changing a first field applied to the piston to displace the piston for changing the chamber volume and for changing a second field applied to the first valve to change the position of the first valve.

  10. An investigation of the fluid-structure interaction of piston/cylinder interface

    Science.gov (United States)

    Pelosi, Matteo

    The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.

  11. Optimised intake stroke analysis for flat and dome head pistons ...

    African Journals Online (AJOL)

    Optimised intake stroke analysis for flat and dome head pistons. ... in understanding the performance characteristics optioned between flat head and dome head pistons in engine design. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  12. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  13. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Sung Hwan Park

    2013-01-01

    Full Text Available An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  14. Uji Unjuk Kerja Pompa Pedal Multi Piston

    OpenAIRE

    Sukwanputra, Firman Yoko; Soegihardjo, Oegik

    2003-01-01

    Multi piston pedal pump is classified under reciprocating pump. This pump is generally designed for applications that require high capacity with low head. This pump is used for shallow well or to pump water in the system with low static and dynamic head. This experiment will examine the performance of multi piston pedal pump with capacity 3000 liter/hour. Two parameters, volumetric efficiency and overall efficiency will be examined during the experiment. The goal is to know the actual perform...

  15. Dynamic response characteristics evaluation of hydrostatic bearing in hydraulic piston pump/motor

    International Nuclear Information System (INIS)

    Ham, Young Bog; Yun, So Nam; Kim, Dong Soo; Choi, Byoung Oh; Kim, Sung Dong

    2001-01-01

    In swash plate type axial piston hydraulic pump and motor, the piston shoe is periodically pressurized with square function shape by supply pressure load as rotation of cylinder barrel. Therefore the recess pressure ono bottom part of piston shoe is suddenly increase through orifice in the piston shoe. In this study, we simulated that the frequency response of the recess pressure against with change of supply pressure with analysis tool. Also, we evaluate the dynamic response characteristics of overbalanced hydrostatic bearing with change of the orifice diameter

  16. Radial-piston pump for drive of test machines

    Science.gov (United States)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.

    2018-01-01

    The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.

  17. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  18. Single-piston alternative to Stirling engines

    International Nuclear Information System (INIS)

    Glushenkov, Maxim; Sprenkeler, Martin; Kronberg, Alexander; Kirillov, Valeriy

    2012-01-01

    Highlights: ► Thermodynamic analysis of an unconventional heat engine. ► The engine has a number of advantages compared to state-of-the-art Stirling engines. ► The engine can to be fuelled with “difficult” fuels and used for micro-CHP systems. ► The energy conversion efficiency can be as high as 40–50%. ► A prototype of the engine was demonstrated. -- Abstract: Thermodynamic analysis of an unconventional heat engine was performed. The engine studied has a number of advantages compared to state-of-the-art Stirling engines. The main advantage of the engine proposed is its simplicity. A power piston is integral with a displacer and a heat regenerator. It allows solving the problem of the high-temperature sealing of the piston and the displacer typical of all types of Stirling engines. In addition the design proposed provides ideal use of the displacer volume eliminating heat losses from outside gas circuit. Both strokes of the piston are working ones in contrary to any other types of piston engines. The engine can be considered as maintenance-free as it has no piston rings or any other rubbing components requiring lubrication. The only seal is contactless and wear free. It is located in the cold part of the cylinder. As a result the leakage rate in operation can be one-two orders of magnitude as small as that in Stirling engines. Balancing of the engine is much easy compared to Stirling engines with two reciprocating masses because of the only moving part inside the engine cylinder. The engine suits ideally to be fuelled with “difficult” fuels such as bio oil and can be used as a prime mover for micro-CHP systems. The thermodynamic model developed incorporates non-ideal features of the cycle, such as specific regenerator efficiency, dead volumes and other geometrical parameters of the engine. The model shows that the energy efficiency is highly sensitive to regenerator performance. For realistic geometric and operating parameters and the

  19. A numerical model on thermodynamic analysis of free piston Stirling engines

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  20. Unsteady response of flow system around balance piston in a rocket pump

    Science.gov (United States)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  1. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  2. TRIBOLOGICAL PERFORMANCE OF PISTON RING IN MARINE DIESEL ENGINE

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    From a tribology point of view, it is the two dead centers that are the main area of interest for experimental study of piston rings in large marine diesel engines. Therefore, in this work the performance of piston rings is studied to mark the importance of the two dead centers. A test rig based...

  3. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  4. Acoustic emission testing of piston check valves

    International Nuclear Information System (INIS)

    Stewart, D.L.

    1994-01-01

    Based on test experience at Comanche Peak Unit 1, an acoustic emission data evaluation matrix for piston check valves has been developed. The degradations represented in this matrix were selected based on Edwards piston check valve failure data reported in the Nuclear Plant Reliability Data System. Evidence to support this matrix was collected from site test data on a variety of valve types. Although still under refinement, the matrix provides three major attributes for closure verification, which have proven useful in developing test procedures for inservice testing and preventing unnecessary disassembly

  5. Investigation on the Potential of High Efficiency for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2018-02-01

    Full Text Available The current brake thermal efficiency of advanced internal combustion engines is limited to 50%, and how to further improve the efficiency is a challenge. In this study, a theoretical investigation on engine thermal efficiency was carried out using one-dimension simulations based on the first law of thermodynamics. The energy balance was evaluated by varying parameters such as compression ratio (CR; heat transfer coefficient; intake charge properties; and combustion phasing etc.—their influences on the efficiency limits were demonstrated. Results show that for a given heat transfer coefficient, an optimal CR exists to obtain the peak efficiency. The optimal CR decreases with the increase of heat transfer coefficient, and high CR with a low heat-transfer coefficient can achieve a significantly high efficiency. A higher density and specific heat ratio of intake charge, as well as a shorter combustion duration with a proper CA50 (crank angle at 50% of total heat release, can increase efficiency significantly. Methanol shows an excellent ability in decreasing the peak in-cylinder temperature; and the peak indicated efficiency is relatively higher than other tested fuels. The displacement has few effects on the indicated efficiency, while it shows a strong effect on the energy distribution between heat transfer and exhaust energy. All these strategies with high CR result in high in-cylinder pressure and temperature; which means a breakthrough of material is needed in the future.

  6. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  7. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  8. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  9. Hearing results using the SMart piston prosthesis.

    Science.gov (United States)

    Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W

    2009-12-01

    SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.

  10. Symmetry of the Adiabatic Condition in the Piston Problem

    Science.gov (United States)

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  11. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  12. Internal combustion engine with rotary valve assembly having variable intake valve timing

    Science.gov (United States)

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  13. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Science.gov (United States)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  14. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  15. Analysis and dynamical modeling of a piston valve for a wave energy converter

    OpenAIRE

    Cruz Gispert, Albert

    2014-01-01

    The Ocean Grazer, a novel wave energy converter, has been proposed by the University of Groningen. The system can collect and store multiple forms of ocean energy, with a pistontype hydraulic pump as its core technology. In this work, the dynamical behavior of a piston valve for use in the piston pump system is studied. In order to gain insight into the dynamical behavior of the piston-type hydraulic pump, a simulation model is developed to describe the movement of the piston v...

  16. NEW SOLUTIONS FOR THE CONSTRUCTION OF DRILLING PISTON PUMPS VALVES

    Directory of Open Access Journals (Sweden)

    Рима Явдатовна Абдюкова

    2016-08-01

    Full Text Available The article consideres theoretical and practical researches aimed to develop a new design of the valve pairs of drill piston pump. The result of the research is a new design of the drill piston pump valve according to the specified requirements.

  17. Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Shi Jian

    2014-01-01

    Full Text Available The unsteady pressure gradient can cause flow noise in prepressure rising of piston pump, and the fluid shock comes up due to the large pressure difference of the piston chamber and discharge port in valve plate. The flow fluctuation control is the optimization objective in previous study, which cannot ensure the steady pressure gradient. Our study is to stabilize the pressure gradient in prepressure rising and control the pressure of piston chamber approaching to the pressure in discharge port after prepressure rising. The models for nonoil shock and dynamic pressure of piston chamber in prepressure rising are established. The parameters of prepressure rising angle, cross angle, wrap angle of V-groove, vertex angle of V-groove, and opening angle of V-groove were optimized, based on which the pressure of the piston chamber approached the pressure in discharge port after prepressure rising, and the pressure gradient is more steady compared to the original parameters. The max pressure gradient decreased by 70.8% and the flow fluctuation declined by 21.4%, which showed the effectivness of optimization.

  18. Piston-assisted proton pumping in Complex I of mitochondria membranes

    Science.gov (United States)

    Mourokh, Lev; Filonenko, Ilan

    2014-03-01

    Proton-pumping mechanism of Complex I remains mysterious because its electron and proton paths are well separated and the direct Coulomb interaction seems to be negligible. The structure of this enzyme was resolved very recently and its functionality was connected the shift of the helix HL. We model the helix as a piston oscillating between the protons and electrons. We assume that positive charges are accumulated near the edges of the helix. In the oxidized state, the piston is attracted to electrons, so its distance to the proton sites increases, the energy of these sites decreases and the sites can be populated. When electrons proceed to the drain, elastic forces return the piston to the original position and the energies of populated proton sites increase, so the protons can be transferred to the positive site of the membrane. In this work, we explore a simplified model when the interaction of the piston with electrons is replaced by a periodic force. We derive quantum Heisenberg equations for the proton operators and solve them jointly with the Langevin equation for the piston position. We show that the proton pumping is possible in such structure with parameters closely resembling the real system. We also address the feasibility of using such mechanism in nanoelectronics.

  19. Development of cryogenic free-piston reciprocating expander utilizing phase controller

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jeong Min; Park, Ji Ho; Kim, Kyung Joong; Jeong, Sang Kwon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander.

  20. Development of cryogenic free-piston reciprocating expander utilizing phase controller

    International Nuclear Information System (INIS)

    Cha, Jeong Min; Park, Ji Ho; Kim, Kyung Joong; Jeong, Sang Kwon

    2016-01-01

    A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander

  1. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  2. Dry piston coal feeder

    Science.gov (United States)

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  3. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  4. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA)

    Energy Technology Data Exchange (ETDEWEB)

    Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moses, Ronald W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.

  5. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  6. Durability, Performance, and Emission of Diesel Engines Using Carbon Fiber Piston and Liner

    Science.gov (United States)

    Afify, E. M.; Roberts, W. L.

    1999-01-01

    This report summarizes the research conducted by NC State University in investigating the durability, performance and emission of a carbon fiber piston and liner in our single cylinder research Diesel engine. Both the piston and liner were supplied to NC State University by NASA LaRC and manufactured by C-CAT under a separate contract to NASA LaRC. The carbon-carbon material used to manufacture the piston and liner has significantly lower thermal conductivity, coefficient of thermal expansion, and superior strength characteristics at elevated temperatures when compared to conventional piston materials such as aluminum. The results of the carbon-carbon fiber piston testing were compared to a baseline configuration, which used a conventional aluminum piston in a steel liner. The parameters measured were the brake specific fuel consumption, ignition delay, frictional horsepower, volumetric efficiency, and durability characteristics of the two pistons. Testing was performed using a naturally aspirated Labeco Direct Injection single cylinder diesel engine. Two test cases were performed over a range of loads and speeds. The fixed test condition between the aluminum and carbon-carbon piston configurations was the brake mean effective pressure. The measured data was the fuel consumption rate, volumetric efficiency, load, speed, cylinder pressure, needle lift, and exhaust gas temperature. The cylinder pressure, and fuel consumption, exhaust gas temperature, and needle lift were recorded using a National Instruments DAQ board and a PC. All test cases used Diesel no. 2 for fuel.

  7. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  8. Biomass-based gasifiers for internal combustion (IC) engines—A ...

    Indian Academy of Sciences (India)

    biomass is converted into a combustible producer gas. ..... with gasification efficiency, increased with the increase in gas flow rate. .... Livingston W R 2007 Report on Biomass ash characteristics and behaviour in combustion, gasification.

  9. Synthèse: Revue des Sciences et de la Technologie - Vol 33 (2016)

    African Journals Online (AJOL)

    The effect of surface roughness on the performances of liner-piston ring contact in internal combustion engine · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Amar Ayad, Amar Skendraoui, Ammar Haiahem, 175 -184 ...

  10. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  11. Vibration isolation in a free-piston driven expansion tube facility

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.

    2013-09-01

    The stress waves produced by rapid piston deceleration are a fundamental feature of free-piston driven expansion tubes, and wave propagation has to be considered in the design process. For lower enthalpy test conditions, these waves can traverse the tube ahead of critical flow processes, severely interfering with static pressure measurements of the passing flow. This paper details a new device which decouples the driven tube from the free-piston driver, and thus prevents transmission of stress waves. Following successful incorporation of the concept in the smaller X2 facility, it has now been applied to the larger X3 facility, and results for both facilities are presented.

  12. Casimir pistons with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Guglielmo Fucci

    2015-02-01

    Full Text Available In this work we analyze the Casimir energy and force for a scalar field endowed with general self-adjoint boundary conditions propagating in a higher dimensional piston configuration. The piston is constructed as a direct product I×N, with I=[0,L]⊂R and N a smooth, compact Riemannian manifold with or without boundary. The study of the Casimir energy and force for this configuration is performed by employing the spectral zeta function regularization technique. The obtained analytic results depend explicitly on the spectral zeta function associated with the manifold N and the parameters describing the general boundary conditions imposed. These results are then specialized to the case in which the manifold N is a d-dimensional sphere.

  13. Computer Aided Design of Kaplan Turbine Piston with SolidWorks

    OpenAIRE

    Camelia Jianu

    2010-01-01

    The paper presents the steps for 3D computer aided design (CAD) of Kaplan turbine piston made in SolidWorks.The present paper is a tutorial for a Kaplan turbine piston 3D geometry, which is dedicaded to the Parts Sketch and Parts Features design and Drawing Geometry and Drawing Annotation.

  14. From orbital debris capture systems through internal combustion engines on Mars

    Science.gov (United States)

    1991-01-01

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  15. Performance analysis of a miniature free piston expander for waste heat energy harvesting

    International Nuclear Information System (INIS)

    Champagne, C.; Weiss, L.

    2013-01-01

    Highlights: • A novel free piston expander is experimentally analyzed for waste heat retrieval. • A variety of variables are analyzed using three separate experiments. • Lubrication of device is optimized with lower viscosity lubricants. • Circular cross sectional pistons show increased repeatability and sealing. - Abstract: Initial experimental analysis of a small-scale Free Piston Expander (FPE) is presented. In final form, the FPE will be a MEMS-based device capable of operation from low temperature waste heat sources. Currently, a millimeter scale device is constructed and tested to yield insight into critical operational parameters for use in later design and testing. Operating conditions are examined to increase operational performance. Piston stroke length and repeatability are considered. Optimized variables include piston length and mass, FPE shape and size, input pressure, and lubrication. Construction of this testbed device is via concentric copper tubing, allowing an effective baseline study of these determining parameters. Results show that, while thick lubricants seal well in static configurations, piston motion is decreased in dynamic testing, indicating leakage. By contrast, reduced viscosity lubricants prove ineffective as sealing agents during static conditions, however, yield increased piston motion in dynamic testing with little leakage around critical piston sealing surfaces. The trends established by the study of varying viscosity lubricants hold true for pistons of increasing mass and length as well. A mixture of isopropanol and water performed well in these tests, and represented a low viscosity sealing fluid, which was used in later repeatability tests. Repeatability tests were performed in a closed dynamic environment on FPE designs with multiple cross sectional shapes and areas. Results from these tests show that circular FPE’s are more precise than square FPE’s. The final closed system tests yield a pressure–volume curve

  16. Heat flows in piston compressors

    NARCIS (Netherlands)

    Lekic, U.; Kok, J.B.W.; van der Meer, T.H.; van Steenhoven, A.A.; Stoffels, G.G.M.

    2008-01-01

    Piston compressors are widely used in today's engineering applications. Among the most important applications is however the compression of thermal carrier gas in Rankine and Stirling refrigeration cycles. Fluids used in these cycles are commonly Ammonia and Helium. In order to improve the design

  17. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  18. Multiple fuel supply system for an internal combustion engine

    Science.gov (United States)

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  19. Assessing the damage importance rank in acoustic diagnostics of technical conditions of the internal combustion engine with multi-valued logical decision trees

    Directory of Open Access Journals (Sweden)

    Deptuła Adam

    2017-01-01

    Full Text Available This paper presents possible applications of acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with the common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum may be generated. These results may be helpful in future diagnostics of internal combustion engines. In the paper, we present the results from the scientific works in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology. The broader study has so far allowed us to develop an authoritative method of identifying the type of engine damage using gametree structures. The present works assess the possibility of using multi-valued logic trees.

  20. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  1. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  2. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  3. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  4. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  5. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  6. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  7. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales

    2016-12-01

    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  8. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  9. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  10. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  11. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  12. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  13. 5-kWe Free-piston Stirling Engine Convertor

    Science.gov (United States)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  14. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  15. Thermoacoustic model of a modified free piston Stirling engine with a thermal buffer tube

    International Nuclear Information System (INIS)

    Yang, Qin; Luo, Ercang; Dai, Wei; Yu, Guoyao

    2012-01-01

    This article presents a modified free-piston Stirling heat engine configuration in which a thermal buffer tube is added to sandwich between the hot and cold heat exchangers. Such a modified configuration may lead to an easier fabrication and lighter weight of a free piston. To analyze the thermodynamic performance of the modified free piston Stirling heat engine, thermoacoustic theory is used. In the thermoacoustic modelling, the regenerator, the free piston, and the thermal buffer tube are given at first. Then, based on linear thermoacoustic network theory, the thermal and thermodynamic networks are presented to characterize acoustic pressure and volume flow rate distributions at different interfaces, and the global performance such as the power output, the heat input and the thermal efficiency. A free piston Stirling heat engine with several hundreds of watts mechanical power output is selected as an example. The typical operating and structure parameters are as follows: frequency around 50 Hz, mean pressure around 3.0 MPa, and a diameter of free piston around 50 mm. From the analysis, it was found that the modified free-piston Stirling heat engine has almost the same thermodynamic performance as the original design, which indicates that the modified configuration is worthy to develop in future because of its mechanical simplicity and reliability.

  16. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    Directory of Open Access Journals (Sweden)

    Guan Changbin

    2014-02-01

    Full Text Available Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The single- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD. The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and optimized design recommendations for the aviation axial-piston pump have been given out.

  17. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  18. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke

    2011-01-01

    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  19. Benchmarking the internal combustion engine and hydrogen

    International Nuclear Information System (INIS)

    Wallace, J.S.

    2006-01-01

    The internal combustion engine is a cost-effective and highly reliable energy conversion technology. Exhaust emission regulations introduced in the 1970's triggered extensive research and development that has significantly improved in-use fuel efficiency and dramatically reduced exhaust emissions. The current level of gasoline vehicle engine development is highlighted and representative emissions and efficiency data are presented as benchmarks. The use of hydrogen fueling for IC engines has been investigated over many decades and the benefits and challenges arising are well-known. The current state of hydrogen-fueled engine development will be reviewed and evaluated against gasoline-fueled benchmarks. The prospects for further improvements to hydrogen-fueled IC engines will be examined. While fuel cells are projected to offer greater energy efficiency than IC engines and zero emissions, the availability of fuel cells in quantity at reasonable cost is a barrier to their widespread adaptation for the near future. In their current state of development, hydrogen fueled IC engines are an effective technology to create demand for hydrogen fueling infrastructure until fuel cells become available in commercial quantities. During this transition period, hydrogen fueled IC engines can achieve PZEV/ULSLEV emissions. (author)

  20. New generation of free-piston shock tunnels

    Science.gov (United States)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  1. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  2. Impact of Fuel Type on the Internal Combustion Engine Condition

    Directory of Open Access Journals (Sweden)

    Zdravko Schauperl

    2012-07-01

    Full Text Available The paper studies the influence of liquefied petroleum gas as alternative fuel on the condition of the internal combustion engine. The traffic, energy, economic and ecological influence as well as the types of fuel are studied and analyzed in an unbiased manner, objectively, and in detail, and the obtained results are compared with the condition of the engine of a vehicle powered by the stipulated fuel, petrol Eurosuper 95. The study was carried out on two identical passenger cars with one being fitted with gas installation. The obtained results show that properly installed gas installations in vehicles and the usage of LPG have no significant influence on the driving performances, but they affect significantly the ecological and economic parameters of using passenger cars.

  3. Exhaust gas turbocharger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.; Dommes, W.; Gerwig, W.

    1982-01-21

    The invention aimes at the heat protection of a turbocharger for internal combustion engines. The turbine is feeded with exhaust gas and drives the shaft of a compressor. For resolving this problem a thermal shield has been installed on the backside of the turbine. The shaft is sealed with an elastic gasket ring. This gasket avoids the deposition of dust and dirt. As a consequence of this constructive measure a growth of tinder and oxides can be avoided as well as the deposition of dirt. A constant reflection factor is ensured. The thermal shield can be manufactured of thin sheet with a nickel surface and can fastened with distance pieces on the backside of the turbine case. Furthermore it is possible to use a ceramic heat shield.

  4. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  5. Cylinder with differential piston for mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bordeaşu, I.; Bălăşoiu, V. [Universitatea Politehnica din Timişoara, Timosoara (Romania); Hadă, A. [UniversitateaPolitehnicaBucureşti, Bucureşti (Romania); Popoviciu, M. [Academy of Romanian ScientistsTimişoara Branch (Romania)

    2007-07-01

    The paper presents a cylinder with differential piston, adapted for measuring the weight of fixed objects such as: fuel tanks (regardless of their capacity), bunkers and silos for all kind of materials, or mobile objects such as: automobiles, trucks, locomotives and railway cars. Although, the cylinder with differential piston is used on a large scale in hydraulic drive or hydraulic control circuits, till now it was not used as constituent part for weight measurements devices. The novelty of the present paper is precisely the use of the device for such purposes. Based on a computation algorithm, the paper presents the general design (assembly), of the device used for weighing important masses (1…. 100 tones). The fundamental idea consist in the fact that, a mass over 10 tones may be weighted with a helicoidally spring subjected to an axial force between 0 and 3000 N, with a deflection of about 30 mm. Simultaneously with the mechanical part, the electronic recording system is also described. The great advantage of the presented device consist in the fact that it can be used in heavy polluted atmosphere or difficult topographic conditions as a result of both the small dimensions and the protection systems adopted. Keywords: cylinder hydraulic with differential piston, hydrostatic pressure, measuring devices.

  6. Development of a model capable of predicting the performance of piston ring-cylinder liner-like tribological interfaces

    DEFF Research Database (Denmark)

    Felter, C.L.; Vølund, A.; Imran, Tajammal

    2010-01-01

    Friction in the piston ring package (piston, piston rings, and liner) is a major source of power consumption in large two-stroke marine diesel engines. In order to improve the frictional and wear performance, knowledge about the tribological interface between piston rings and liner is needed...

  7. A study on the pressure ripple characteristics in a bent-axis type oil hydraulic piston pump

    International Nuclear Information System (INIS)

    Cho, Ihn Sung; Jung, Jae Youn

    2013-01-01

    To improve the performance of a bent-axis type axial piston pump driven by tapered pistons, it is necessary to know the pressure ripple characteristics. The purpose of this paper is to understand the effect on the pressure ripple characteristics, and to predict by comparing experimental and theoretical analysis results. The simulation model of a bent-axis type axial piston pump is developed in the AMESim environment using the geometrical dimension, and the driving mechanism of the piston pump, such as the stroke of pump, the velocity of piston, the instantaneous volumetric flow, the overlap area of valve plate opening to cylinder bore, the angle of notch, and so on. The results show that theoretical analysis results of the bent-axis type axial piston pump by using the AMESim approximate the pressure ripple characteristic of the test pump, and through this, simulations can be obtained that predict the performance characteristics of a bentaxis type axial piston pump.

  8. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  9. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  10. Non-adiabatic pumping in an oscillating-piston model

    Science.gov (United States)

    Chuchem, Maya; Dittrich, Thomas; Cohen, Doron

    2012-05-01

    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.

  11. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  12. Proceedings of the 12. meeting of the International Post-Combustion CO{sub 2} Capture Network

    Energy Technology Data Exchange (ETDEWEB)

    Topper, J. [IEA Greenhouse Gas R and D Programme, Cheltenham, Gloucestershire (United Kingdom)] (comp.)

    2009-07-01

    This conference provided a forum to discuss new developments in post combustion capture of carbon dioxide (CO{sub 2}) emissions from fossil-fueled power plants. Since the creation of the Post-Combustion Capture Network in 2000, these conferences have provided exposure to latest research findings, acted as a conduit for trial of latest ideas and served as a means of encouraging trans-national co-operation. As host of the conference, the University of Regina is among the leading institutions in the world with expertise in working on solvent based capture and promoting international activity through the International Test Centre. The topics of discussion ranged from amine based solvent investigations; ammonia as an alternative means of capture; pilot plant progress reports; simulation and modelling studies; latest developments by technology providers; national programs with a special interest in demonstration plant proposals; and more novel techniques such as membranes. The sessions of the conference were entitled: fundamental studies; pilot plant work and scale-up; modelling and plant studies; and commercial and other aspects. This meeting featured 49 presentations, of which 46 have been catalogued separately for inclusion in this database. refs., figs.

  13. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  14. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    Science.gov (United States)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  15. LINC-NIRVANA piston control elements

    Science.gov (United States)

    Brix, Mario; Pott, Jörg-Uwe; Bertram, Thomas; Rost, Steffen; Borelli, Jose Luis; Herbst, Thomas M.; Kuerster, Martin; Rohloff, Ralf-Rainer

    2010-07-01

    We review the status of hardware developments related to the Linc-Nirvana optical path difference (OPD) control. The status of our telescope vibration measurements is given. We present the design concept of a feed-forward loop to damp the impact of telescope mirror vibrations on the OPD seen by Linc-Nirvana. At the focus of the article is a description of the actuator of the OPD control loop. The weight and vibration optimized construction of this actuator (aka piston mirror) and its mount has a complex dynamical behavior, which prevents classical PI feedback control from delivering fast and precise motion of the mirror surface. Therefore, an H-; optimized control strategy will be applied, custom designed for the piston mirror. The effort of realizing a custom controller on a DSP to drive the piezo is balanced by the outlook of achieving more than 5x faster servo bandwidths. The laboratory set-up to identify the system, and verify the closed loop control performance is presented. Our goal is to achieve 30 Hz closed-loop control bandwidth at a precision of 30 nm.

  16. Pre-compression volume on flow ripple reduction of a piston pump

    Science.gov (United States)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  17. Computer Aided Design of Kaplan Turbine Piston with\tSolidWorks

    Directory of Open Access Journals (Sweden)

    Camelia Jianu

    2010-10-01

    Full Text Available The paper presents the steps for 3D computer aided design (CAD of Kaplan turbine piston made in SolidWorks.The present paper is a tutorial for a Kaplan turbine piston 3D geometry, which is dedicaded to the Parts Sketch and Parts Features design and Drawing Geometry and Drawing Annotation.

  18. Stochastic stability assessment of a semi-free piston engine generator concept

    Science.gov (United States)

    Kigezi, T. N.; Gonzalez Anaya, J. A.; Dunne, J. F.

    2016-09-01

    Small engines, as power generators with low-noise and vibration characteristics, are needed in two niche application areas: as electric vehicle range extenders and as domestic micro Combined Heat and Power systems. A recent semi-free piston design known as the AMOCATIC generator fully meets this requirement. The engine potentially allows for high energy conversion efficiencies at resonance derived from having a mass and spring assembly. As with free-piston engines in general, stability and control of piston motion has been cited as the prime challenge limiting the technology's widespread application. Using physical principles, we derive in this paper two important results: an energy balance criterion and a related general stability criterion for a semi-free piston engine. Control is achieved by systematically designing a Proportional Integral (PI) controller using a control-oriented engine model for which a specific stability condition is stated. All results are presented in closed form throughout the paper. Simulation results under stochastic pressure conditions show that the proposed energy balance, stability criterion, and PI controller, operate as predicted to yield stable engine operation at fixed compression ratio.

  19. A Free-Piston Linear Generator Control Strategy for Improving Output Power

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-01-01

    Full Text Available This paper presents a control strategy to improve the output power for a single-cylinder two-stroke free-piston linear generator (FPLG. The comprehensive simulation model of this FPLG is established and the operation principle is introduced. The factors that affect the output power are analyzed theoretically. The characteristics of the piston motion are studied. Considering the different features of the piston motion respectively in acceleration and deceleration phases, a ladder-like electromagnetic force control strategy is proposed. According to the status of the linear electric machine, the reference profile of the electromagnetic force is divided into four ladder-like stages during one motion cycle. The piston motions, especially the dead center errors, are controlled by regulating the profile of the electromagnetic force. The feasibility and advantage of the proposed control strategy are verified through comparison analyses with two conventional control strategies via MatLab/Simulink. The results state that the proposed control strategy can improve the output power by around 7–10% with the same fuel cycle mass.

  20. Design and theoretical analysis of a sliding valve distribution radial piston pump

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Guo; Shengdun, Zhao; Yanghuiwen, Yu [Xian Jiaotong University, Xian (China); Peng, Shang [Xian Engineering University of Armed Police Force, Xian (China)

    2016-01-15

    A Sliding valve distribution radial piston pump (SVDRPP) is presented. In this pump, a new distribution method that uses sliding valves to distribute oil for the piston chambers is developed. With this design, the disadvantages brought by the distribution shaft and the check valves (traditional distribution mechanisms), such as the poor stress state of the shaft and the energy waste for opening the check valves, are expected to be eliminated. In addition, a method of using pressure oil to accomplish the returning stroke of the piston is also proposed, which could be used to replace the usage of springs along with their shortcomings. A pump with five pistons is designed as an example to elaborate the structure and the working principle of SVDRPP. Furthermore, the flow characteristics of SVDRPP are studied, and the formulas of the displacement, the average flow rate and the instantaneous flow rate are deduced.