WorldWideScience

Sample records for piperidones differential cytotoxicity

  1. Synthesis and Lateral Root-Inducing Activity of N-Benzyl-3-Substituted-2-Piperidones

    OpenAIRE

    Tsukada, Hidetaka; Itamura, Tomoaki; Ishii, Rika; Taniguchi, Eiji; Kuwano, Eiichi

    1999-01-01

    Thirty N-benzyl-3-substituted-2-piperidones were synthesized, and their plant growth regulatory activity was evaluated by using a lettuce seedling test. Most of the compounds at 100 ppm caused lateral root formation. Of the series of compounds tested, N-benzyl-3-[1-hydroxy-1-(4-quinolyl)methyl]-2-piperidone (30) showed the highest activity. When 1ppm of compound 30 was supplied to seedlings, 29% of the primary roots formed at least one lateral root.

  2. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2016-12-01

    Full Text Available In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA and vertical electron affinities (VEA, as well as vertical detachment energy (VDE. To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f+ and Parr (P+ functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  3. Application of hanging drop technique for stem cell differentiation and cytotoxicity studies.

    Science.gov (United States)

    Banerjee, Meenal; Bhonde, Ramesh R

    2006-05-01

    The aim of our study is to explore the possibility of using an ancient method of culture technique- the hanging drop technique for stem cell differentiation and cytotoxicity testing. We demonstrate here a variety of novel applications of this age old technique not only to harness the differentiation potential of stem cells into specific lineages but also for cytotoxicity studies. Here we have prepared hanging drop cultures by placing 20 microl micro-drops of nutrient media and 10% Fetal Calf Serum (FCS) containing cells of interest on the lids of 60 mm dishes. Bottom plates of the dishes were filled with sterile Phosphate Buffer Saline (PBS) to avoid desiccation of samples. Lids were then placed on the bottom plates to achieve hanging drop cultures. We utilized this technique for cultivation of ciliated epithelia to study cytotoxicity and differentiation of bone marrow stromal cells. Most importantly the modified culture technique presented here is simple, economical and cost effective in terms of the time taken and the reagents required and are amenable to goal specific modification such as cytotoxicity testing. It is advantageous over the existing system in terms of retention of viability and functionality for longer duration and for providing three dimensional growth micro-environment making it useful for organotypic cultures and in vivo simulation.

  4. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li-Wu [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Wu, Qiangen [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Green, Bridgett; Nolen, Greg [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Shi, Leming [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); LoSurdo, Jessica [Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 (United States); Deng, Helen [Arkansas Department of Health, Little Rock, AR 72205 (United States); Bauer, Steven [Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 (United States); Fang, Jia-Long, E-mail: jia-long.fang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Ning, Baitang, E-mail: baitang.ning@fda.hhs.gov [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States)

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.

  5. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Guo, Li-Wu; Wu, Qiangen; Green, Bridgett; Nolen, Greg; Shi, Leming; LoSurdo, Jessica; Deng, Helen; Bauer, Steven; Fang, Jia-Long; Ning, Baitang

    2012-01-01

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.

  6. One-Pot Two-Step Organocatalytic Asymmetric Synthesis of Spirocyclic Piperidones via Wolff Rearrangement–Amidation–Michael–Hemiaminalization Sequence

    Directory of Open Access Journals (Sweden)

    Yanqing Liu

    2017-02-01

    Full Text Available A highly enantioselective organocatalytic Wolff rearrangement–amidation–Michael–hemiaminalization stepwise reaction is described involving a cyclic 2-diazo-1,3-diketone, primary amine and α,β-unsaturated aldehyde. Product stereocontrol can be achieved by adjusting the sequence of steps in this one-pot multicomponent reaction. This approach was used to synthesize various optically active spirocyclic piperidones with three stereogenic centers and multiple functional groups in good yields up to 76%, moderate diastereoselectivities of up to 80:20 and high enantioselectivities up to 97%.

  7. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  8. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay.

    Directory of Open Access Journals (Sweden)

    Kelly J Chandler

    Full Text Available The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7 and cytotoxicity (DRAQ5™/Sapphire700™ were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC₅₀ values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500 revealed significant associations for a subset of chemicals (26 that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

  10. Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons

    International Nuclear Information System (INIS)

    Lim, Chun Kyu; Kim, Suel-Kee; Ko, Duck Sung; Cho, Jea Won; Jun, Jin Hyun; An, Su-Yeon; Han, Jung Ho

    2009-01-01

    Potential applications of embryonic stem (ES) cells are not limited to regenerative medicine but can also include in vitro screening of various toxicants. In this study, we established mouse ES cell lines from isolated blastomeres of two-cell stage embryos and examined their potential use as an in vitro system for the study of developmental toxicity. Two ES cell lines were established from 69 blastomere-derived blastocysts (2.9%). The blastomere-derived ES (bm-ES) cells were treated with mono-(2-ethylhexyl) phthalate (MEHP) in an undifferentiated state or after directed differentiation into early neural cell types. We observed significantly decreased cell viability when undifferentiated bm-ES cells were exposed to a high dose of MEHP (1000 μM). The cytotoxic effects of MEHP were accompanied by increased DNA fragmentation, nuclear condensation, and activation of Caspase-3, which are biochemical and morphological features of apoptosis. Compared to undifferentiated bm-ES cells, considerably lower doses of MEHP (50 and 100 μM) were sufficient to induce cell death in early neurons differentiated from bm-ES cells. At the lower doses, the number of neural cells positive for the active form of Caspase-3 was greater than that for undifferentiated bm-ES cells. Thus, our data indicate that differentiating neurons are more sensitive to MEHP than undifferentiated ES cells, and that undifferentiated ES cells may have more efficient defense systems against cytotoxic stresses. These findings might contribute to the development of a new predictive screening method for assessment of hazards for developmental toxicity.

  11. Differential Cytotoxic Activity of Essential Oil of Lippia citriodora from Different Regions in Morocco.

    Science.gov (United States)

    Oukerrou, Moulay Ali; Tilaoui, Mounir; Mouse, Hassan Ait; Bouchmaa, Najat; Zyad, Abdelmajid

    2017-07-01

    The aim of this work was to investigate the cytotoxic effect of the essential oil of dried leaves of Lippia citriodora (H.B. & K.) harvested in different regions of Morocco. This effect was evaluated against the P815 murine mastocytoma cell line using the MTT assay. Interestingly, this work demonstrated for the first time that these essential oils exhibited a strong cytotoxic activity against the P815 cell line, with IC 50 values ranging from 7.75 to 13.25 μg/ml. This cytotoxicity began early and increased in a dose- and time-dependent manner. The chemical profile of these essential oils was analyzed by gas chromatography coupled to mass spectrometry. Importantly, the difference in terms of major components' contents was not significant suggesting probably that the differential cytotoxicity between these essential oils could be attributed to the difference in the content of these essential oils in minor compounds, which could interact with each other or with the main molecules. Finally, this study demonstrated for the first time that essential oils of L. citriodora from different regions in Morocco induced apoptosis against P815 tumor cell line. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  12. Cytotoxicity of Vitex agnus-castus fruit extract and its major component, casticin, correlates with differentiation status in leukemia cell lines.

    Science.gov (United States)

    Kikuchi, Hidetomo; Yuan, Bo; Nishimura, Yoshio; Imai, Masahiko; Furutani, Ryota; Kamoi, Saki; Seno, Misako; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Hu, Xiao-Mei; Takagi, Norio; Hirano, Toshihiko; Toyoda, Hiroo

    2013-12-01

    We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D₃ (VD₃)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.

  13. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    International Nuclear Information System (INIS)

    Tran, Phong A; Biswas, Dhee P; O’Connor, Andrea J; O’Brien-Simpson, Neil; Reynolds, Eric C; Pantarat, Namfon

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices. (paper)

  14. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    Science.gov (United States)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  15. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection.

    Science.gov (United States)

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.

  16. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shuichi Kitayama

    2016-02-01

    Full Text Available Vα24 invariant natural killer T (iNKT cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer.

  17. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy

    Directory of Open Access Journals (Sweden)

    Han JW

    2017-10-01

    Full Text Available Jae Woong Han, Sangiliyandi Gurunathan, Yun-Jung Choi, Jin-Hoi Kim Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC, Konkuk University, Seoul, Republic of Korea Background: Silver nanoparticles (AgNPs exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods: AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results: The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm. High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion: The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner

  18. GoldiRunx and Remembering Cytotoxic Memory.

    Science.gov (United States)

    Mikami, Yohei; Kanno, Yuka

    2018-04-17

    The molecular basis for T cell memory differentiation remains elusive. Wang et al. (2018) identify Runx3 as an initiating transcription factor that specifies regulatory regions required for cytotoxic T cell (CTL) memory differentiation early after TCR signaling and constrains the ability of T-bet to drive terminal effector generation. Published by Elsevier Inc.

  19. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Rashda [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Efferth, Thomas [Institute of Pharmacy und Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Kuhmann, Christine [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Opatz, Till [Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz (Germany); Hao, Xiaojiang [Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 (China); Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy

  20. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    International Nuclear Information System (INIS)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine; Opatz, Till; Hao, Xiaojiang; Popanda, Odilia; Schmezer, Peter

    2012-01-01

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC 50 values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC 50 values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in

  1. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  2. A conformational study of the adducts of 2'-deoxythymidine and 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl by sup(1)H and sup(13)C nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hruska, F.E.; Berger, Maurice; Cadet, Jean; Remin, Mieczyslaw

    1985-01-01

    γ-Irradiation of oxygen-free, aqueous solutions of 2'-deoxythymidine in the presence of the organic nitroxide free radical, 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl (TAN) leads to a complex mixture of products in which the TAN moiety is linked to the C5 or C6 position of a 5,6-saturated thymine ring. Extensive sup(1)H and sup(13)C nmr data are provided for the eight TAN-dT adducts which are produced in the largest amounts. The results show that the conformational properties of the sugar moiety are dependent on the point of attachment of the TAN group and the configuration of the standard thymine ring

  3. Human hepatoma cells exposed to estuarine sediment contaminant extracts permitted the differentiation between cytotoxic and pro-mutagenic fractions

    International Nuclear Information System (INIS)

    Pinto, M.; Costa, P.M.; Louro, H.; Costa, M.H.; Lavinha, J.

    2014-01-01

    Complex toxicant mixtures present in estuarine sediments often render contaminant screening unfeasible and compromise determining causation. HepG2 cells were subjected to bioassays with sediment extracts obtained with a series of progressively polar solvents plus a crude extract. The sediments were collected from an impacted area of an estuary otherwise regarded as pristine, whose stressors result mostly from aquaculture effluents and hydrodynamic shifts that enhance particle deposition. Compared to a reference scenario, the most polar extracts yielded highest cytotoxicity while higher genotoxicity (including oxidative damage) was elicited by non-polar solvents. While the former caused effects similar to those expected from biocides, the latter triggered effects compatible with known pro-mutagens like PAHs, even though the overall levels of toxicants were considered of low risk. The results indicate that the approach may constitute an effective line-of-evidence to infer on the predominant set of hazardous contaminants present in complex environmental mixtures. -- Highlights: • Estuarine sediment contaminants were extracted with different organic solvents. • More polar solvents contained the most cytotoxic contaminant fraction. • Non-polar solvents extracted the main genotoxic component of the mixture. • DNA base oxidation was detected through FPG/Comet assay. • The contamination pattern could be inferred from cytoassays with HepG2 cells. -- Polar/non-polar sediment fractions elicited differential cytotoxic and genotoxic effects in human HepG2 cells

  4. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells.

    Science.gov (United States)

    Kumar, S; Seal, C J; Howes, M J R; Kite, G C; Okello, E J

    2010-10-01

    Withania somnifera L. Dunal (Solanaceae), also known as 'ashwagandha' in Sanskrit and as 'Indian ginseng', is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer, with antiaging, antistress, immunomodulatory and antioxidant properties. There is a paucity of data on the potential neuroprotective effects of W. somnifera root, as traditionally used, against H(2)O(2)- and Aβ((1-42))-induced cytotoxicity which are current targets for novel approaches to treat dementia, especially dementia of the Alzheimer's type (AD). In this study, an aqueous extract prepared from the dried roots of W. somnifera was assessed for potential protective effects against H(2)O(2)- and Aβ((1-42))-aggregated fibril cytotoxicity by an MTT assay using a differentiated rat pheochromocytoma PC12 cell line. The results suggest that pretreatments of differentiated PC12 cells with aqueous extracts of W. somnifera root significantly protect differentiated PC12 cells against both H(2)O(2)- and Aβ((1-42))-induced cytotoxicity, in a concentration dependent manner. To investigate the compounds that could explain the observed effects, the W. somnifera extract was analysed by liquid chromatography-serial mass spectrometry and numerous withanolide derivatives, including withaferin A, were detected. These results demonstrate the neuroprotective properties of an aqueous extract of W. somnifera root and may provide some explanation for the putative ethnopharmacological uses of W. somnifera for cognitive and other neurodegenerative disorders that are associated with oxidative stress. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Investigation of the role of stereoelectronic effects in the conformation of piperidones by NMR spectroscopy and X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Cesar Garcias-Morales

    2015-10-01

    Full Text Available This paper reports the synthesis of a series of piperidones 1–8 by the Mannich reaction and analysis of their structures and conformations in solution by NMR and mass spectrometry. The six-membered rings in 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones, compounds 1 and 2, adopt a chair–boat conformation, while those in 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ones, compounds 3–8, adopt a chair–chair conformation because of stereoelectronic effects. These stereoelectronic effects were analyzed by the 1JC–H coupling constants, which were measured in the 13C satellites of the 1H NMR spectra obtained with the hetero-dqf pulse sequence. In the solid state, these stereoelectronic effects were investigated by measurement of X-ray diffraction data, the molecular geometry (torsional bond angles and bond distances, and inter- and intramolecular interactions, and by natural bond orbital analysis, which was performed using density functional theory at the ωB97XD/6311++G(d,p level. We found that one of the main factors influencing the conformational stability of 3–8 is the interaction between the lone-pair electrons of nitrogen and the antibonding sigma orbital of C(7–Heq (nN→σ*C–H(7eq, a type of hyperconjugative interaction.

  6. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    Science.gov (United States)

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca(2+) Influx.

    Science.gov (United States)

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-07-11

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca(2+) influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca(2+) hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases.

  8. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening.

    Science.gov (United States)

    Tong, Zhi-Bin; Hogberg, Helena; Kuo, David; Sakamuru, Srilatha; Xia, Menghang; Smirnova, Lena; Hartung, Thomas; Gerhold, David

    2017-02-01

    More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis.

    Science.gov (United States)

    Ren, Xiaohu; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Liu, Wei; Ye, Jinbo; Huang, Haiyan; Huang, Xinfeng; Shen, Liming; Yang, Linqing; Zhuang, Zhixiong; Liu, Jianjun

    2014-05-16

    Trichloroethylene (TCE) is an effective solvent for a variety of organic materials. Since the wide use of TCE as industrial degreasing of metals, adhesive paint and polyvinyl chloride production, TCE has turned into an environmental and occupational toxicant. Exposure to TCE could cause severe hepatotoxicity; however, the toxic mechanisms of TCE remain poorly understood. Recently, we reported that SET protein mediated TCE-induced cytotoxicity in L-02 cells. Here, we further identified the proteins related to SET-mediated hepatic cytotoxicity of TCE using the techniques of DIGE (differential gel electrophoresis) and MALDI-TOF-MS/MS. Among the 20 differential proteins identified, 8 were found to be modulated by SET in TCE-induced cytotoxicity and three of them (cofilin-1, peroxiredoxin-2 and S100-A11) were validated by Western-blot analysis. The functional analysis revealed that most of the identified SET-modulated proteins are apoptosis-associated proteins. These data indicated that these proteins may be involved in SET-mediated hepatic cytotoxicity of TCE in L-02 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Cerebrospinal fluid cytotoxicity does not affect survival in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Galán, L; Matías-Guiu, J; Matias-Guiu, J A; Yáñez, M; Pytel, V; Guerrero-Sola, A; Vela-Souto, A; Arranz-Tagarro, J A; Gómez-Pinedo, U; García, A G

    2017-09-01

    Cerebrospinal fluid (CSF) from some patients with amyotrophic lateral sclerosis (ALS) has been demonstrated to significantly reduce the neuronal viability of primary cell cultures of motor neurons. We aimed to study the potential clinical consequences associated with the cytotoxicity of CSF in a cohort of patients with ALS. We collected CSF from thirty-one patients with ALS. We analysed cytotoxicity by incubating it into the primary cultures of motor cortex neurons. Neural viability was quantified after 24 hours using the colorimetric MTT reduction assay. All patients were followed up from the moment of diagnosis to death, and a complete evaluation during disease progression and survival was performed, including gastrostomy and respiratory assistance. Twenty-one patients (67.7%) presented a cytotoxic CSF. There were no significant differences between patients with and without cytotoxicity regarding mean time from symptom onset to the diagnosis, from the diagnosis to death, from the diagnosis to respiratory assistance with BIPAP, from diagnosis to gastrostomy and from the onset of symptoms to death. In Cox regression analysis, bulbar onset, but not cytotoxicity, gender or age at onset, was associated with a lower risk of survival. Cerebrospinal fluid cytotoxicity was not associated with differential survival rates. This suggests that the presence of cytotoxicity in CSF, measured through neuronal viability in primary cultures of motor cortex neurons, could reflect different mechanisms of the disease, but it does not predict disease outcome. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells

    Science.gov (United States)

    Muraro, Elena; Merlo, Anna; Martorelli, Debora; Cangemi, Michela; Dalla Santa, Silvia; Dolcetti, Riccardo; Rosato, Antonio

    2017-01-01

    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors. PMID:28289418

  12. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements

    Directory of Open Access Journals (Sweden)

    Nigar Najim

    2014-01-01

    Full Text Available ZnO absorbs certain wavelengths of light and this behavior is more pronounced for nanoparticles of ZnO. As many toxicity measurements rely on measuring light transmission in cell lines, it is essential to determine how far this light absorption influences experimental toxicity measurements. The main objective was to study the ZnO absorption and how this influenced the cytotoxicity measurements. The cytotoxicity of differently sized ZnO nanoparticles in normal and cancer cell lines derived from lung tissue (Hs888Lu, neuron-phenotypic cells (SH-SY5Y, neuroblastoma (SH-SY5Y, human histiocytic lymphoma (U937, and lung cancer (A549 was investigated. Our results demonstrate that the presence of ZnO affected the cytotoxicity measurements due to the absorption characteristic of ZnO nanoparticles. The data revealed that the ZnO nanoparticles with an average particle size of around 85.7 nm and 190 nm showed cytotoxicity towards U937, SH-SY5Y, differentiated SH-SY5Y, and Hs888Lu cell lines. No effect on the A549 cells was observed. It was also found that the cytotoxicity of ZnO was particle size, concentration, and time dependent. These studies are the first to quantify the influence of ZnO nanoparticles on cytotoxicity assays. Corrections for absorption effects were carried out which gave an accurate estimation of the concentrations that produce the cytotoxic effects.

  13. Biochemical studies of immune RNA using a cell-mediated cytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Sellin, H.G.; Novelli, G.D.

    1980-01-01

    Immune RNA (iRNA), a subcellular macromolecular species usually prepared by phenol extraction of lymphoid tissue, can confer some manifestation(s) of cellular immunity on naive lymphocytes. Experiments were done to develop an assay system to detect activation of lymphocytes by iRNA to become cytotoxic toward tumor cells, and to study certain properties of iRNA using this system. Guinea pigs were immunized with human mammary carcinoma cells and the iRNA, prepared from spleens of animals shown by prior assay to have blood lymphocytes highly cytotoxic against the tumor cells, was assayed by ability of iRNA-activated lymphocytes to lyse /sup 51/Cr-labelled tumor cells. The ability of iRNA to activate lymphocytes to tumor cytotoxicity could only be differentiated from a cytotoxic activation by RNA preparations from unimmunized animals at very low doses of RNA. The most active iRNA preparations were from cytoplasmic subcellular fractions, extracted by a cold phenol procedure, while iRNA isolated by hot phenol methods was no more active than control RNA prepared by the same techniques. Attempts to demonstrate poly(A) sequences in iRNA were inconclusive.

  14. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  15. Cell-type-specific and differentiation-status-dependent variations in cytotoxicity of tributyltin in cultured rat cerebral neurons and astrocytes.

    Science.gov (United States)

    Oyanagi, Koshi; Tashiro, Tomoko; Negishi, Takayuki

    2015-08-01

    Tributyltin (TBT) is an organotin used as an anti-fouling agent for fishing nets and ships and it is a widespread environmental contaminant at present. There is an increasing concern about imperceptible but serious adverse effect(s) of exposure to chemicals existing in the environment on various organs and their physiological functions, e.g. brain and mental function. Here, so as to contribute to improvement of and/or advances in in vitro cell-based assay systems for evaluating brain-targeted adverse effect of chemicals, we tried to evaluate cell-type-specific and differentiation-status-dependent variations in the cytotoxicity of TBT towards neurons and astrocytes using the four culture systems differing in the relative abundance of these two types of cells; primary neuron culture (> 95% neurons), primary neuron-astrocyte (2 : 1) mix culture, primary astrocyte culture (> 95% astrocytes), and passaged astrocyte culture (100% proliferative astrocytes). Cell viability was measured at 48 hr after exposure to TBT in serum-free medium. IC50's of TBT were 198 nM in primary neuron culture, 288 nM in primary neuron-astrocyte mix culture, 2001 nM in primary astrocyte culture, and 1989 nM in passaged astrocyte culture. Furthermore, in primary neuron-astrocyte mix culture, vulnerability of neurons cultured along with astrocytes to TBT toxicity was lower than that of neurons cultured purely in primary neuron culture. On the other hand, astrocytes in primary neuron-astrocyte mix culture were considered to be more vulnerable to TBT than those in primary or passaged astrocyte culture. The present study demonstrated variable cytotoxicity of TBT in neural cells depending on the culture condition.

  16. Fused pyrazine mono-N-oxides as bioreductive drugs. II cytotoxicity in human cells and oncogenicity in a rodent transformation assay

    International Nuclear Information System (INIS)

    Langmuir, Virginia K.; Laderoute, Keith R.; Mendonca, Holly L.; Sutherland, Robert M.; Hei, Tom K.; Liu, S.-X.; Hall, Eric J.; Naylor, Matthew A.; Adams, Gerald E.

    1996-01-01

    Purpose: To determine what structural moieties of the fused pyrazine mono-N-oxides are determining factors in their in vitro cytotoxicity and oncogenicity. Methods and Materials: A new series of experimental bioreductive drugs, fused pyrazine mono-N-oxides, was evaluated in vitro for aerobic and hypoxic cytotoxicity in the HT29 human colon adenocarcinoma cell line by using clonogenic assays. The relative oncogenicities of these compounds were also determined in aerobic cultures of C3H 10T1/2 mouse embryo fibroblasts by using a standard transformation assay. Results: Removal of the 4-methyl piperazine side chain from the parent compound, RB 90740, reduced the potency of the hypoxic cytotoxin. Reduction of the N-oxide function increased the aerobic cytotoxicity and eliminated most of the hypoxic/aerobic cytotoxic differential. The reduced N-oxide also had significant oncogenicity, consistent with a mechanism of genotoxicity following bioreduction of RB 90740. Conclusion: This new series of bioreductive compounds may be effective in cancer therapy, particularly the lead compound RB 90740. The oncogenic potential of these compounds is similar to that for other cancer therapies. Further studies should include evaluation of these compounds in vivo and the development of analogs with reduced oncogenic potential and retention of the hypoxic/aerobic cytotoxicity differential

  17. Hypoxic cytotoxicity of chlorpromazine and the modification of radiation response in E. coli B/r

    International Nuclear Information System (INIS)

    Shenoy, M.A.; Singh, B.B.

    1978-01-01

    Chlorpromazine (0.1 mM) was cytotoxic to E. coli B/r cells under hypoxic but not euoxic conditions. Under nitrogen bubbling, there was no further enhancement in cellular lethality beyond 45 min contact time. The presence of the free drug seemed necessary for the cytocidal action to be demonstrated. Hypoxic cytotoxicity increased steadily with temperature between 30 and 37 0 C. Treatment of cells with N-ethyl maleimide (0.5 mM) completely abolished the subsequent hypoxic cytotoxicity of chlorpromazine (0.1 mM). Hypoxic gamma irradiation of cells pretreated for 45 min with chlorpromazine under nitrogen bubbling gave a DMF for survival of almost twice that produced by oxygen. Irradiation under aerobic conditions of cells subjected to the same pretreatment produced only the normal oxygen effect. The results indicate that the differential cytotoxicity of chlorpromazine is due to its effect on the changes induced in the membrane-associated biochemical state of the cells under euoxic and hypoxic conditions. (U.K.)

  18. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  19. Emergence of cytotoxic resistance in cancer cell populations*

    Directory of Open Access Journals (Sweden)

    Lorenzi Tommaso

    2015-01-01

    Full Text Available We formulate an individual-based model and an integro-differential model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  20. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity.

    Science.gov (United States)

    Labani-Motlagh, Alireza; Israelsson, Pernilla; Ottander, Ulrika; Lundin, Eva; Nagaev, Ivan; Nagaeva, Olga; Dehlin, Eva; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2016-04-01

    Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.

  1. Cytotoxic chemotherapy in the treatment of advanced renal cell carcinoma in the era of targeted therapy.

    Science.gov (United States)

    Diamond, E; Molina, A M; Carbonaro, M; Akhtar, N H; Giannakakou, P; Tagawa, S T; Nanus, D M

    2015-12-01

    Renal cell carcinoma (RCC) is a heterogeneous disease with regards to histology, progression, and response to treatment. Cytotoxic chemotherapy has been extensively studied in metastatic RCC (mRCC). Responses in most studies are modest and the mechanisms of resistance remain poorly understood. Targeted therapies have significantly improved outcomes in mRCC; however, most patients eventually relapse and die of their disease. Early clinical data suggest that combinations of chemotherapy and targeted agents are clinically active and are well tolerated. We reviewed the available literature for published clinical trials incorporating traditional chemotherapeutic agents in the treatment of mRCC. These papers were identified through a Medline search and were included if they employed at least one chemotherapeutic agent in the treatment of mRCC. The literature was also reviewed for information regarding mechanisms of chemotherapy resistance. The data regarding the use of cytotoxic chemotherapy in mRCC consist of small, non-randomized phase I and II studies. The major response proportions with single agent chemotherapies are low but combination regimens either with other cytotoxic agents, cytokines, or targeted agents have demonstrated moderate activity. Disparate trial designs and lack of head to head clinical trials make it difficult to compare the efficacy of chemotherapy with that of immunotherapy or targeted agents. Chemotherapy is particularly useful in patients with collecting duct histology and predominantly sarcomatoid differentiation. Chemotherapy resistance may be mediated by overexpression of p-glycoprotein efflux pumps and the dysregulation of the microtubule-hypoxia inducible factor signaling axis. The role of cytotoxic chemotherapy in the treatment for clear cell RCC remains poorly defined. Cytotoxic chemotherapy is considered a standard of care in patients with mRCC with predominantly sarcomatoid differentiation and collecting duct RCC variants (Motzer et al

  2. Spectroscopic and Theoretical Studies of Some 3-(4′-Substituted phenylsulfanyl-1-methyl-2-piperidones

    Directory of Open Access Journals (Sweden)

    Julio Zukerman-Schpector

    2013-06-01

    Full Text Available The analysis of the IR carbonyl bands of some 3-(4′-substituted phenylsulfanyl-1-methyl-2-piperidones 1–6 bearing substituents: NO2 (compound 1, Br (compound 2, Cl (compound 3, H (compound 4 Me (compound 5 and OMe (compound 6 supported by B3LYP/6-31+G(d,p and PCM calculations along with NBO analysis (for compound 4 and X-ray diffraction (for 2 indicated the existence of two stable conformations, i.e., axial (ax and equatorial (eq, the former corresponding to the most stable and the least polar one in the gas phase calculations. The sum of the energy contributions of the orbital interactions (NBO analysis and the electrostatic interactions correlate well with the populations and the νCO frequencies of the ax and eq conformers found in the gas phase. Unusually, in solution of the non-polar solvents n-C6H14 and CCl4, the more intense higher IR carbonyl frequency can be ascribed to the ax conformer, while the less intense lower IR doublet component to the eq one. The same νCO frequency trend also holds in polar solvents, that is νCO (eq< νCO (ax. However, a reversal of the ax/eq intensity ratio occurs going from non-polar to polar solvents, with the ax conformer component that progressively decreases with respect to the eq one in CHCl3 and CH2Cl2, and is no longer detectable in the most polar solvent CH3CN. The PCM method applied to compound 4 supports these findings. In fact, it predicts the progressive increase of the eq/ax population ratio as the relative permittivity of the solvent increases. Moreover, it indicates that the computed νCO frequencies of the ax and eq conformers do not change in the non–polar solvents n-C6H14 and CCl4, while the νCO frequencies of the eq conformer become progressively lower than that of the ax one going from CHCl3 to CH2Cl2 and to CH3CN, in agreement with the experimental IR values. The analysis of the geometries of the ax and eq conformers shows that the carbonyl oxygen atom of the eq conformer is free

  3. Prion Replication Elicits Cytopathic Changes in Differentiated Neurosphere Cultures

    Science.gov (United States)

    Iwamaru, Yoshifumi; Takenouchi, Takato; Imamura, Morikazu; Shimizu, Yoshihisa; Miyazawa, Kohtaro; Mohri, Shirou; Yokoyama, Takashi

    2013-01-01

    The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level. PMID:23740992

  4. Correlating cytotoxicity to elution behaviors of composite resins in term of curing kinetic.

    Science.gov (United States)

    Meng, Junquan; Yang, Huichuan; Cao, Man; Li, Lei; Cai, Qing

    2017-09-01

    Cytotoxicity of photocurable composite resins is a key issue for their safe use in dental restoration. Curing kinetic and elution behaviors of the composite resin would have decisive effects on its cytotoxicity. In this study, composite resins composed of bisphenol-glycidyl dimethacrylate (Bis-GMA), triethyleneglycol dimethacrylate (TEGDMA), camphorquinone (CQ), N,N-dimethylaminoethyl methacrylate (DMAEMA) and barium glass powders were prepared by setting the photoinitiators CQ/DMAEMA at 0.5wt%, 1wt% or 3wt% of the total weight of Bis-GMA/TEGDMA. The ratio of Bis-GMA/TEGDMA was 6:4, the ratio of CQ/DMAEMA was 1:1, and the incorporated inorganic powder was 75wt%. Then, curing kinetics were studied by using real-time Fourier transform infrared spectroscopy (FTIR) and photo-DSC (differential scanning calorimeter). Elution behaviors in both ethanol solution and deionized water were monitored by using liquid chromatogram/mass spectrometry (LC/MS). Cytotoxicity was evaluated by in vitro culture of L929 fibroblasts. Finally, they were all analyzed and correlated in terms of initiator contents. It was found that the commonly used 0.5wt% of photoinitiators was somewhat insufficient in obtaining composite resin with low cytotoxicity. Copyright © 2017. Published by Elsevier B.V.

  5. Structure-cytotoxicity relationships for dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, V.; Dragsted, L.O.

    1998-01-01

    The cytotoxicity of a large series of dietary flavonoids was tested in a non-tumorigenic mouse and two human cancer cell lines, using the neutral red dye exclusion assay. All compounds tested exhibited a concentration-dependent cytotoxic action in the employed cell lines. The relative cytotoxicity...... of the flavonoids, however, Tvas found to vary greatly among the different cell Lines. With a few exceptions, the investigated flavonoids were more cytotoxic to the human cancer cell lines, than the mouse cell line. The differences in cytotoxicity were accounted for in part by differences in cellular uptake...... and metabolic capacity among the different cell types. In 3T3 cells fairly consistent structure-cytotoxicity relationships were found. The most cytotoxic structures tested in 3T3 cells were flavonoids with adjacent 3',4' hydroxy groups on the B-ring, such as luteolin, quercetin, myricetin, fisetin, eriodictyol...

  6. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27–Stimulated Cytotoxicity of NK Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jie Zhou

    2018-01-01

    Full Text Available Natural killer (NK cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC lines (Ishikawa, RL95-2 and KLE led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130 on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.

  7. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  8. Relationship between spermatogonial stem cell survival and testis function after cytotoxic therapy

    International Nuclear Information System (INIS)

    Meistrich, M.L.

    1986-01-01

    This review, with substantial bibliography, concludes that the acute effects of radiation and cytotoxic drugs are a result of toxicity to the most sensitive of the germ cells, which in most cases are the differentiating spermatogonia. Long-term sterility or reduction in sperm production depends directly on killing of spermatogonial stem cells. For a variety of cytotoxic agents, the same relationship holds between the stem cell survival index and the prompt recovery level of sperm production (at 56 days), the maximal recovered level of sperm production, and the time required for fertility to return. It also appears that the spermatogonial stem cell is the target for long-term sterility in man following cytotoxic therapy. It is not known whether the delay in recovery is a result of this direct damage to the stem cell or an effect on another target cell in the tissue. Data obtained in both experimental animals and man indicate very little direct changes in the secretory cells and other stromal cells of the testis, and there is no evidence as yet that any alterations in these cells adversely affect sperm production or reproductive performance. (UK)

  9. IGF-1 promotes the development and cytotoxic activity of human NK cells

    Science.gov (United States)

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression leads to disparate cytotoxicity in human primary natural killer cells. Moreover, miR-483-3p is identified as a critical regulator of IGF-1 expression in natural killer cells. Overexpression of miR-483-3p has an effect similar to IGF-1 blockade and decreased natural killer cell cytotoxicity, whereas inhibition of miR-483-3p has the opposite effect, which is reversible with IGF-1 neutralizing antibody. These findings indicate that IGF-1 and miR-483-3p belong to a new class of natural killer cell functional modulators and strengthen the prominent role of IGF-1 in innate immunity. PMID:23403580

  10. Oxidative Mechanisms of Monocyte-Mediated Cytotoxicity

    Science.gov (United States)

    Weiss, Stephen J.; Lobuglio, Albert F.; Kessler, Howard B.

    1980-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to rapidly destroy autologous erythrocyte targets. Monocyte-mediated cytotoxicity was related to phorbol myristate acetate concentration and monocyte number. Purified preparations of lymphocytes were incapable of mediating erythrocyte lysis in this system. The ability of phorbol myristate acetate-stimulated monocytes to lyse erythrocyte targets was markedly impaired by catalase or superoxide dismutase but not by heat-inactivated enzymes or albumin. Despite a simultaneous requirement for superoxide anion and hydrogen peroxide in the cytotoxic event, a variety of hydroxyl radical and singlet oxygen scavengers did not effect cytolysis. However, tryptophan significantly inhibited cytotoxicity. The myeloperoxidase inhibitor cyanide enhanced erythrocyte destruction, whereas azide reduced it modestly. The inability of cyanide to reduce cytotoxicity coupled with the protective effect of superoxide dismutase suggests that cytotoxicity is independent of the classic myeloperoxidase system. We conclude that monocytes, stimulated with phorbol myristate acetate, generate superoxide anion and hydrogen peroxide, which together play an integral role in this cytotoxic mechanism.

  11. Differential cytotoxicity and internalization of graphene family nanomaterials in myocardial cells

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Torres, Flavio F., E-mail: contreras.flavio@itesm.mx [Laboratorio de Nanotecnología Ambiental, Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, 64849 (Mexico); Rodríguez-Galván, Andrés [Department of Chemistry, Universityof Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Guerrero-Beltrán, Carlos E. [Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, 64849 (Mexico); Martínez-Lorán, Erick [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Vázquez-Garza, Eduardo [Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, 64849 (Mexico); Ornelas-Soto, Nancy [Laboratorio de Nanotecnología Ambiental, Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, 64849 (Mexico); and others

    2017-04-01

    Given the well-known physical properties of graphene oxide (GO), numerous applications for this novel nanomaterial have been recently envisioned to improve the performance of biomedical devices. However, the toxicological assessment of GO, which strongly depends on the used material and the studied cell line, is a fundamental task that needs to be performed prior to its use in biomedical applications. Therefore, the toxicological characterization of GO is still ongoing. This study contributes to this, aiming to synthesize and characterize GO particles and thus investigate their toxic effects in myocardial cells. Herein, GO particles were produced from graphite using the Tour method and subsequent mild reduction was carried out to obtain low-reduced GO (LRGO) particles. A qualitative analysis of the viability, cellular uptake, and internalization of particles was carried out using GO (~ 54% content of oxygen) and LRGO (~ 37% content of oxygen) and graphite. GO and LRGO reduce the viability of cardiac cells at IC{sub 50} of 652.1 ± 1.2 and 129.4 ± 1.2 μg/mL, respectively. This shows that LRGO particles produce a five-fold increase in cytotoxicity when compared to GO. The cell uptake pattern of GO and LRGO particles demonstrated that cardiac cells retain a similar complexity to control cells. Morphological alterations examined with electron microscopy showed that internalization by GO and LRGO-treated cells (100 μg/mL) occurred affecting the cell structure. These results suggest that the viability of H9c2 cells can be associated with the surface chemistry of GO and LRGO, as defined by the amount of oxygen functionalities, the number of graphitic domains, and the size of particles. High angle annular dark-field scanning transmission electron microscopy, dynamic light-scattering, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies were used to characterize the as-prepared materials. - Highlights: • H9c2 cells were treated with a family of

  12. Research progress of follicular cytotoxic T cells in HIV infection

    Directory of Open Access Journals (Sweden)

    Guo Ming

    2018-04-01

    Full Text Available Recently, a new type of CD8+ T-cell subset, namely, the chemokine (C-X-C motif receptor 5 (CXCR5+ cluster of differentiation (CD8+ T-cell subset (also called the follicular cytotoxic T-cell (TFC subgroup, has been discovered around B-cell follicles. The discovery has aroused widespread interest. However, the processes and mechanisms of TFCs taking part in the immune response of the germinal center and their specific roles must still be clearly identified. This article reviews domestic and foreign studies on factors regulating the phenotype, physiological functions, maturity, and differentiation of TFCs and roles and clinical significance of these cells in HIV infection. This review has shown good application prospects for TFCs. The author believes that further studies on TFCs can provide another tool for cytotherapy to control or cure chronic viral infections or tumors.

  13. Natural lipids in nanostructured lipid carriers and its cytotoxicity

    Science.gov (United States)

    Lima, Paula A.; Rampazo, Caroline A. D.; Costa, Amanda F.; Rodrigues, Tiago; Watashi, Carolina M.; Durán, Nelson

    2017-06-01

    Nanostructured lipid carriers (NLCs) are active carrier systems which modulate the sustained release of actives and protect unstable compounds against degradation. NLCs can also protect skin from sun light, due to its particulates nature, which gives them intrinsic scattering properties. In this work, we present the preparation of NLCs using natural lipids and its cytotoxicity profile. It was used a vegetal butter with melting point (m.p.) ~32-40°C, an animal wax (m.p. 35-40°C) and a vegetal oil (boiling point ~120-150°C). NLCs were prepared by hot high pressure homogenization method and particles were characterized by average size (Zave), polydispersity index (PDI) and zeta potential (PZ) (Fig.1). The thermal behavior of the NLCs was studied using Differential Scanning Calorimetry (DSC). All the formulations were followed up for 60 days in order to evaluate their stability. NLCs exhibited a Zave around 150-200 nm, PDI less than 0.2 and PZ varying from -25 to -40 mV. The m.p. for the lyophilized NLCs was about 40-56°C. Cytotoxicity of the formulations were evaluated for human keratinocytes (HaCaT) and melanocytes (Melan-A) in the exponential growth phase. Cell viability was used as indicator of cytotoxicity and determined after 4 days of culture by MTT assay. It was found that the NLC formulations were not toxic against HaCaT and Melan-A cells. Results showed that the NLCs produced are potential carriers for nanocosmetics and sunscreen products.

  14. Total synthesis of (-)- and (+)-tedanalactam

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Parameswaran, P.S.; Tilve, S.G.

    : The Journal of Organic Chemistry, vol.74(16); 6378-6381 1 Total Synthesis of (-) and (+)-Tedanalactam Mahesh S. Majik, † Peruninakulath S. Parameswaran, ‡ and Santosh G. Tilve* ,† Department of Chemistry, Goa University, Taleigao Plateau, Goa 403..., displaying a wide range of biological activities. 1 Piperidones are key synthetic intermediates 2 for the synthesis of piperidine ring due to the presence of keto function which allows the introduction of other groups. Piperidones are also known...

  15. IGF-1 promotes the development and cytotoxic activity of human NK cells

    OpenAIRE

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression...

  16. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  17. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  18. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun, E-mail: qflei@zju.edu.cn

    2016-04-15

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF{sub 4}]{sup −} anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by {sup 1}H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  19. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF_4]"− anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by "1H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  20. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Directory of Open Access Journals (Sweden)

    Thurber Aaron

    2009-01-01

    Full Text Available Abstract Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  1. Cytotoxic glucosphingolipid from Celtis Africana.

    Science.gov (United States)

    Perveen, Shagufta; Al-Taweel, Areej Mohammad; Fawzy, Ghada Ahmed; El-Shafae, Azza Muhammed; Khan, Afsar; Proksch, Peter

    2015-05-01

    Literature survey proved the use of the powdered sun-dried bark and roots of Celtis africana for the treatment of cancer in South Africa. The aim of this study was to do further isolation work on the ethyl acetate fraction and to investigate the cytotoxic activities of the various fractions and isolated compound. Cytotoxicity of petroleum ether, chloroform, ethyl acetate, n-butanol fractions and compound 1 were tested on mouse lymphoma cell line L5178Y using the microculture tetrazolium assay. One new glucosphingolipid 1 was isolated from the aerial parts of C. africana. The structure of the new compound was determined by extensive analysis by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry. The ethyl acetate fraction and compound 1 showed strong cytotoxic activity with an EC50 value of 8.3 μg/mL and 7.8 μg/mL, respectively, compared with Kahalalide F positive control (6.3 μg/mL). This is the first report of the occurrence of a cytotoxic glucosphingolipid in family Ulmaceae.

  2. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Mohyeldin SM

    2016-05-01

    Full Text Available Salma M Mohyeldin, Mohammed M Mehanna, Nazik A Elgindy Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Purpose: This article investigated the influence of novel rifampicin nanosuspension (RIF NS for enhancing drug delivery properties. Methods: RIF NS was fabricated using the antisolvent precipitation technique. The impact of solvent type and flow rate, stabilizer type and concentration, and stirring time and apparatus together with the solvent–antisolvent volume ratio on its controlled nanocrystallization has been evaluated. NSs were characterized by transmission electron microscopy, particle size and zeta potential analysis, solubility, and dissolution profiles. The compatibility between RIF and the stabilizer was investigated via Fourier transform infrared spectroscopy and the differential scanning calorimetry techniques. The shelf-life stability of the RIF NS was assessed within a period of 3 months at different storage temperatures. Cell cytotoxicity was evaluated using 3(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay on lung epithelial cells. Results: Polyvinyl alcohol at 0.4% w/v, 1:15 methanol to deionized water volume ratio and 30-minutes sonication were the optimal parameters for RIF NS preparation. Nanocrystals were obtained with a nanometeric particle size (101 nm and a negative zeta potential (-26 mV. NS exhibited a 50-fold enhancement in RIF solubility and 97% of RIF was dissolved after 10 minutes. The RIF NS was stable at 4±0.5°C with no significant change in particle size or zeta potential. The MTT cytotoxicity assay of RIF NS demonstrated a good safety profile and reduction in cell cytotoxicity with half maximal inhibitory concentration values of 0.5 and 0.8 mg/mL for free RIF and RIF NS, respectively. Conclusion: A novel RIF NS could be followed as an approach for enhancing RIF physicochemical characteristics with a prominence of a safer and better drug

  3. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    Science.gov (United States)

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  4. Cytotoxic Effects of Bangladeshi Medicinal Plant Extracts

    Directory of Open Access Journals (Sweden)

    Shaikh J. Uddin

    2011-01-01

    Full Text Available To investigate the cytotoxic effect of some Bangladeshi medicinal plant extracts, 16 Bangladeshi medicinal plants were successively extracted with n-hexane, dichloromethane, methanol and water. The methanolic and aqueous extracts were screened for cytotoxic activity against healthy mouse fibroblasts (NIH3T3 and three human cancer-cell lines (gastric: AGS; colon: HT-29; and breast: MDA-MB-435S using the MTT assay. Two methanolic extracts (Hygrophila auriculata and Hibiscus tiliaceous and one aqueous extract (Limnophila indica showed no toxicity against healthy mouse fibroblasts, but selective cytotoxicity against breast cancer cells (IC50 1.1–1.6 mg mL−1. Seven methanolic extracts from L. indica, Clerodendron inerme, Cynometra ramiflora, Xylocarpus moluccensis, Argemone mexicana, Ammannia baccifera and Acrostichum aureum and four aqueous extracts from Hygrophila auriculata, Bruguiera gymnorrhiza, X. moluccensis and Aegiceras corniculatum showed low toxicity (IC50 > 2.5 mg mL−1 against mouse fibroblasts but selective cytotoxicity (IC50 0.2–2.3 mg mL−1 against different cancer cell lines. The methanolic extract of Blumea lacera showed the highest cytotoxicity (IC50 0.01–0.08 mg mL−1 against all tested cell lines among all extracts tested in this study. For some of the plants their traditional use as anticancer treatments correlates with the cytotoxic results, whereas for others so far unknown cytotoxic activities were identified.

  5. [3H]uridine uptake by target monolayers as a terminal label in an in vitro cell-mediated cytotoxicity assay

    International Nuclear Information System (INIS)

    Smith, G.; Nicklin, S.

    1979-01-01

    A terminal labelling method is described for measuring cell-mediated cytotoxicity based on the ability of surviving target cells to incorporate [ 3 H]uridine into their RNA precursor pools. Parameters of the system were examined using whole and damaged embryonic mouse fibroblast monolayers. This assay is less laborious than direct cell counting and gives increased sensitivity at low target to effector cell ratios. The labelling time is short and, unlike similar techniques, it allows target cell monolayers to remain intact after completion of the radioassay and available for histological examination. This is important where heterogeneous target populations are employed since it allows assessment of differential cell killing and eliminates the need for duplicate cultures. The assay was used in conjunction with a well defined mouse popliteal lymph node assay to investigate the appearance of cytotoxic cells during a localised graft versus host response. Results showed a direct correlation between proliferative index and the development of highly specific cell-mediated cytotoxicity. (Auth.)

  6. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity.

    Science.gov (United States)

    Boulenouar, Selma; Michelet, Xavier; Duquette, Danielle; Alvarez, David; Hogan, Andrew E; Dold, Christina; O'Connor, Donal; Stutte, Suzanne; Tavakkoli, Ali; Winters, Desmond; Exley, Mark A; O'Shea, Donal; Brenner, Michael B; von Andrian, Ulrich; Lynch, Lydia

    2017-02-21

    Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    Science.gov (United States)

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  8. Cytotoxic drug sensitivity of Epstein-Barr virus transformed lymphoblastoid B-cells

    Directory of Open Access Journals (Sweden)

    Olah Eva

    2006-11-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV is the causative agent of immunosuppression associated lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD, AIDS related immunoblastic lymphomas (ARL and immunoblastic lymphomas in X-linked lymphoproliferative syndrome (XLP. The reported overall mortality for PTLD often exceeds 50%. Reducing the immunosuppression in recipients of solid organ transplants (SOT or using highly active antiretroviral therapy in AIDS patients leads to complete remission in 23–50% of the PTLD/ARL cases but will not suffice for recipients of bone marrow grafts. An additional therapeutic alternative is the treatment with anti-CD20 antibodies (Rituximab or EBV-specific cytotoxic T-cells. Chemotherapy is used for the non-responding cases only as the second or third line of treatment. The most frequently used chemotherapy regimens originate from the non-Hodgkin lymphoma protocols and there are no cytotoxic drugs that have been specifically selected against EBV induced lymphoproliferative disorders. Methods As lymphoblastoid cell lines (LCLs are well established in vitro models for PTLD, we have assessed 17 LCLs for cytotoxic drug sensitivity. After three days of incubation, live and dead cells were differentially stained using fluorescent dyes. The precise numbers of live and dead cells were determined using a custom designed automated laser confocal fluorescent microscope. Results Independently of their origin, LCLs showed very similar drug sensitivity patterns against 29 frequently used cytostatic drugs. LCLs were highly sensitive for vincristine, methotrexate, epirubicin and paclitaxel. Conclusion Our data shows that the inclusion of epirubicin and paclitaxel into chemotherapy protocols against PTLD may be justified.

  9. In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential.

    Science.gov (United States)

    Ibrahim, Mohamed; Xue, Ying; Ostermann, Melanie; Sauter, Alexander; Steinmueller-Nethl, Doris; Schweeberg, Sarah; Krueger, Anke; Cimpan, Mihaela R; Mustafa, Kamal

    2018-02-16

    Scaffolds functionalized with nanodiamond particles (nDP) hold great promise with regard to bone tissue formation in animal models. Degradation of the scaffolds over time may leave nDP within the tissues, raising concerns about possible long-term unwanted effects. Human SaOS-2 osteoblast-like cells and U937 monoblastoid cells were exposed to five different concentrations (0.002-2 mg/L) of nDP (size range: 2.36-4.42 nm) for 24 h. Cell viability was assessed by impedance-based methods. The differential expression of stress and toxicity-related genes was evaluated by polymerase chain reaction (PCR) super-array, while the expression of selected inflammatory and cell death markers was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Furthermore, the expression of osteogenic genes by SaOS-2 cells, alkaline phosphatase activity and the extracellular calcium nodule deposition in response to nDP were determined in vitro. Cells responded differently to higher nDP concentrations (≥0.02 mg/L), that is, no loss of viability for SaOS-2 cells and significantly reduced viability for U937 cells. Gene expression showed significant upregulation of several cell death and inflammatory markers, among other toxicity reporter genes, indicating inflammatory and cytotoxic responses in U937 cells. Nanodiamond particles improved the osteogenicity of osteoblast-like cells with no evident cytotoxicity. However, concentration-dependent cytotoxic and inflammatory responses were seen in the U937 cells, negatively affecting osteogenicity in co-cultures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  10. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28+ NKG2D- Th1 Cytotoxic CD4+ T cells.

    Science.gov (United States)

    Riaz, Tahira; Sollid, Ludvig Magne; Olsen, Ingrid; de Souza, Gustavo Antonio

    2016-03-01

    T-helper cells are differentiated from CD4+ T cells and are traditionally characterized by inflammatory or immunosuppressive responses in contrast to cytotoxic CD8+ T cells. Mass-spectrometry studies on T-helper cells are rare. In this study, we aimed to identify the proteomes of human Th1 and Th1/Th17 clones derived from intestinal biopsies of Crohn's disease patients and to identify differentially expressed proteins between the two phenotypes. Crohn's disease is an inflammatory bowel disease, with predominantly Th1- and Th17-mediated response where cells of the "mixed" phenotype Th1/Th17 have also been commonly found. High-resolution mass spectrometry was used for protein identification and quantitation. In total, we identified 7401 proteins from Th1 and Th1/Th17 clones, where 334 proteins were differentially expressed. Major differences were observed in cytotoxic proteins that were overrepresented in the Th1 clones. The findings were validated by flow cytometry analyses using staining with anti-granzyme B and anti-perforin and by a degranulation assay, confirming higher cytotoxic features of Th1 compared with Th1/Th17 clones. By testing a larger panel of T-helper cell clones from seven different Crohn's disease patients, we concluded that only a subgroup of the Th1 cell clones had cytotoxic features, and these expressed the surface markers T-cell-specific surface glycoprotein CD28 and were negative for expression of natural killer group 2 member D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  13. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana; Todaro, Matilde; Di Franco, Simone; MacCalli, Cristina; Garofalo, Cinzia; Sottile, Rosa; Palmieri, Camillo; Tirinato, Luca; Pangigadde, Pradeepa N.; La Rocca, Rosanna; Mandelboim, Ofer; Stassi, Giorgio; Di Fabrizio, Enzo M.; Parmiani, Giorgio; Moretta, Alessandro; Dieli, Francesco; Kã rre, Klas; Carbone, Ennio

    2013-01-01

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  14. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  15. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    Science.gov (United States)

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  16. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy.

    Science.gov (United States)

    Radulović, Niko S; Zlatković, Dragan B; Ilić-Tomić, Tatjana; Senerović, Lidija; Nikodinovic-Runic, Jasmina

    2014-04-11

    Reseda lutea L. (Resedaceae) or Wild Mignonette is a widely distributed plant species. Pliny the Elder (AD 23-AD 79), a Roman scholar and naturalist, reported the use of R. lutea for reducing tumors in his Historia naturalis. Accounts of the beneficial effects of R. lutea in tumor treatment could also be found in the works of later authors, such as Étienne François Geoffroy (1672-1731) and Samuel Frederick Gray (1766-1828). However, to date no in vivo or in vitro evidence exists in support of the alleged tumor healing properties of R. lutea. The composition of autolysates obtained from different organs (root, flower and fruit) of R. lutea was investigated by GC and GC-MS analyses and IR, 1D and 2D NMR spectroscopy. These analyses led to the discovery of a new compound isolated in pure form from the flower autolysate. Autolysates and their major constituents were submitted to MTT-dye reduction cytotoxic assay on human A375 (melanoma) and MRC5 (fibroblast) cell lines. Mechanism of the cytotoxic effects was studied by cell cycle analysis and Annexin V assay. Benzyl isothiocyanate and 2-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate were identified as the major constituents of the root and flower autolysates, respectively (the later represents a new natural product). These compounds showed significant antiproliferative effects against both cell lines, which could also explain the observed high cytotoxic activity of the tested autolysates. Cell cycle analysis revealed apoptosis as the probable mechanism of cell death. Tumor healing properties attributed to R. lutea in the pre-modern texts were substantiated by the herein obtained results. Two isothiocyanates were found to be the major carriers of the observed activity. Although there was a relatively low differential effect of the plant metabolites on transformed and non-transformed cell lines, one can argue that the noted strong cytotoxicity provides first evidence that could explain the long forgotten use of this

  17. Jizanpeptins, Cyanobacterial Protease Inhibitors from a Symploca sp. Cyanobacterium Collected in the Red Sea.

    Science.gov (United States)

    Gallegos, David A; Saurí, Josep; Cohen, Ryan D; Wan, Xuemei; Videau, Patrick; Vallota-Eastman, Alec O; Shaala, Lamiaa A; Youssef, Diaa T A; Williamson, R Thomas; Martin, Gary E; Philmus, Benjamin; Sikora, Aleksandra E; Ishmael, Jane E; McPhail, Kerry L

    2018-05-29

    Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC 50 = 72 nM to 1 μM) compared to chymotrypsin (IC 50 = 1.4 to >10 μM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.

  18. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... and the nitroblue tetrazolium (NBT) assay. The cytotoxicity ... The antioxidant activity and cytotoxic effect of the extracts increased with increase ... supplements are concoctions of plants and/or plant .... In vitro antioxidant assay.

  19. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  20. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom.

    Directory of Open Access Journals (Sweden)

    Luciana Miato Gonçalves Silva

    Full Text Available Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells.C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation.In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom.LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory effect of ATP synthesis may

  1. Evaluation of the cytotoxicity of dihydroxytryptamines and 5-hydroxytryptamine antagonists as cytotoxic agents in dimethylhydrazine-induced adenocarcinomata.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-01-01

    The cytotoxicity of 5,6-dihydroxytryptamine (5,6-DHT), 5,7-dihydroxytryptamine (5,7-DHT), bromolysergic acid diethylamide (BOL), methysergide, and cyproheptadine, and also of 5,6-DHT together with either BOL, methysergide, or cyproheptadine in dimethylhydrazine-induced (DMH) carcinomata of rat colon was evaluated by estimating the percentage of necrotic cells in histological sections of tissues taken 15 h after injection of each of the drugs. In addition, the influence of methysergide and cyproheptadine on the tumour cell mitotic rate was estimated by means of a stathmokinetic technique. Both 5,6-DHT and 5,7-DHT were cytotoxic at each dose tested and for each of these agents the percentage of necrotic cells was directly correlated with the dose of drug used. BOL was not found to be cytotoxic to the colonic carcinomata, whereas both methysergide and cyproheptadine did cause detectable tumour cell necrosis. Methysergide was also found to accelerate tumour cell proliferation, whereas cyproheptadine did not. BOL competitively inhibited the cytotoxicity of 5,6-DHT and neither methysergide nor cyproheptadine potentiated the effect of 5,6 DHT.

  2. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes

    Science.gov (United States)

    Defrance, Matthieu; Vu Manh, Thien-Phong; Azouz, Abdulkader; Detavernier, Aurélie; Hoyois, Alice; Das, Jishnu; Bizet, Martin; Pollet, Emeline; Tabbuso, Tressy; Calonne, Emilie; van Gisbergen, Klaas; Dalod, Marc; Fuks, François; Goriely, Stanislas

    2018-01-01

    Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer. PMID:29488879

  3. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  4. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  5. Interleukin-2 activation of cytotoxic cells in postmastectomy seroma.

    Science.gov (United States)

    Gercel-Taylor, C; Hoffman, J P; Taylor, D D; Owens, K J; Eisenberg, B L

    1996-02-15

    Lymphocytes were isolated from breast seroma fluids and used to study the mechanism of activation of cytotoxic lymphocytes and possible role of immunological potentiation following surgery in breast cancer patients. Single or serial samples were obtained from patients who had undergone mastectomy or lumpectomy with axillary node dissection. Lymphocytes were activated with rIL-2 (interleukin-2) and their cytotoxic activity was studied against Daudi and K562 cells and against a breast tumor line (SKBr-3). All of the patients (21/21) responded to IL-2 stimulation by significant activation of cytotoxic activity. The unstimulated cytotoxic activity of these cells against NK targets was low with less than 10% specific release in cytotoxicity assays. In simultaneous experiments, autologous seroma fluid was included during activation of lymphocytes to study possible regulatory molecules that may be present. In 17/21 patients, the presence of their seroma fluid, during the activation period, enhanced or did not effect the cytotoxic potential of their lymphocytes; inhibition was observed when seroma fluids from 4/21 patients were included. Analysis of the cytotoxic population derived from combined IL-2 and seroma treatments indicates the presence of cells with increased expression of CD56, and CD2, as well as in some cases CD16 expression. Cytotoxic lymphocytes derived from IL-2 and seroma treatments appeared to be more effective killers. Modulation of CD2 expression with seroma alone appeared to result in the generation of this highly cytotoxic population. This study demonstrates the role of CD2 expression in the effectiveness of LAK cell killing and also potential benefit of an immunotherapeutic approach to the postoperative treatment of carcinoma of the breast.

  6. Cytotoxicity evaluation of extracts and fractions of five marine sponges from the Persian Gulf and HPLC fingerprint analysis of cytotoxic extracts

    Institute of Scientific and Technical Information of China (English)

    Davood; Mahdian; Milad; Iranshahy; Abolfazl; Shakeri; Azar; Hoseini; Hoda; Yavari; Melika; Nazemi; Mehrdad; Iranshahi

    2015-01-01

    Objective: To screen the cytotoxic effects of some marine sponges extracts on HeLa and PC12 cells.Methods: Five marine sponges including Ircinia echinata(I. echinata), Dysidea avara,Axinella sinoxea, Haliclona tubifera and Haliclona violacea were collected from the Persian Gulf(Hengam Island). The cytotoxic effect of these sponges was evaluated by using MTT assay. The metabolic high performance liquid chromatography fingerprint of I. echinata was also carried out at two wavelengths(254 and 280 nm).Results: Among the sponges tested in this study, the extracts of I. echinata and Dysidea avara possessed the cytotoxic effect on HeLa and PC12 cells. The obtained fractions from high performance liquid chromatography were evaluated for their cytotoxic properties against the cell lines. The isolated fractions did not show significant cytotoxic properties.Conclusions: I. echinata could be considered as a potential extract for chemotherapy.Further investigation is needed to determine the accuracy of mechanism.

  7. Cytotoxicity evaluation of extracts and fractions of ifve marine sponges from the Persian Gulf and HPLC ifngerprint analysis of cytotoxic extracts

    Institute of Scientific and Technical Information of China (English)

    Davood Mahdian; Milad Iranshahy; Abolfazl Shakeri; Azar Hoseini; Hoda Yavari; Melika Nazemi; Mehrdad Iranshahi

    2015-01-01

    Objective:To screen the cytotoxic effects of some marine sponges extracts on HeLa and PC12 cells. Methods: Five marine sponges including Ircinia echinata (I. echinata), Dysidea avara, Axinella sinoxea, Haliclona tubifera and Haliclona violacea were collected from the Persian Gulf (Hengam Island). The cytotoxic effect of these sponges was evaluated by using MTT assay. The metabolic high performance liquid chromatography fingerprint of I. echinata was also carried out at two wavelengths (254 and 280 nm). Results:Among the sponges tested in this study, the extracts of I. echinata and Dysidea avara possessed the cytotoxic effect on HeLa and PC12 cells. The obtained fractions from high performance liquid chromatography were evaluated for their cytotoxic properties against the cell lines. The isolated fractions did not show significant cytotoxic properties. Conclusions:I. echinata could be considered as a potential extract for chemotherapy. Further investigation is needed to determine the accuracy of mechanism.

  8. Characteristics of medication errors with parenteral cytotoxic drugs

    OpenAIRE

    Fyhr, A; Akselsson, R

    2012-01-01

    Errors involving cytotoxic drugs have the potential of being fatal and should therefore be prevented. The objective of this article is to identify the characteristics of medication errors involving parenteral cytotoxic drugs in Sweden. A total of 60 cases reported to the national error reporting systems from 1996 to 2008 were reviewed. Classification was made to identify cytotoxic drugs involved, type of error, where the error occurred, error detection mechanism, and consequences for the pati...

  9. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.

    2015-12-22

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  10. Cytotoxicity and intracellular dissolution of nickel nanowires.

    Science.gov (United States)

    Perez, Jose E; Contreras, Maria F; Vilanova, Enrique; Felix, Laura P; Margineanu, Michael B; Luongo, Giovanni; Porter, Alexandra E; Dunlop, Iain E; Ravasi, Timothy; Kosel, Jürgen

    2016-09-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis, and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage, and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 μm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  11. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.; Contreras, Maria F.; Vidal, Enrique Vilanova; Felix Servin, Laura P.; Margineanu, Michael B.; Luongo, Giovanni; Porter, Alexandra E.; Dunlop, Iain E.; Ravasi, Timothy; Kosel, Jü rgen

    2015-01-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  12. Cytotoxic activity of four Mexican medicinal plants.

    Science.gov (United States)

    Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo

    2009-01-01

    Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.

  13. Effect of radiotherapy on lymphocyte cytotoxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, J; Melen, B [Central Microbiological Laboratory, Stockholm County Council (Sweden); Blomgren, H; Glas, U; Perlmann, P

    1975-11-01

    The cytotoxic functions of highly purified blood lymphocytes from patients with breast cancer were studied before and after radiotherapy. Addition of PHA or of rabbit antibodies to target cells (chicken erythrocytes) were chosen as two means of inducing lymphocyte cytotoxicity in vitro. The proportion of T and non-T lymphocytes was determined by means of E and EAC rosette tests. The antibody-induced cytotoxicity of lymphocytes decreased following radiotherapy while that mediated by PHA remained unchanged. There was some reduction in the percentage of EAC rosette-forming cells. These results, as well as earlier observations, suggest that the decrease in the peripheral blood of the proportion of lymphocytes with receptors for activated complement is responsible for changes in the antibody-mediated lymphocyte cytotoxicity.

  14. Protection against SR 4233 (tirapazamine) aerobic cytotoxicity by the metal chelators desferrioxamine and tiron

    International Nuclear Information System (INIS)

    Herscher, L.L.; Krishna, M.C.; Cook, J.A.

    1994-01-01

    Metal chelating agents and antioxidants were evaluated as potential protectors against aerobic SR 4233 cytotoxicity in Chinese hamster V79 cells. The differential protection of aerobic and hypoxic cells by two metal chelators, desferrrioxamine and Tiron, is discussed in the context of their potential use in the on-going clinical trials with SR 4233. Cytotoxicity was evaluated using clonogenic assay. SR 4233 exposure was done in glass flasks as a function of time either alone or in the presence of the following agents: superoxide dismutase, catalase, 5,5-dimethyl-1-pyrroline, Trolox, ICRF-187, desferrioxamine, Tiron (1,2-dihydroxybenzene-3,5-disulfonate), and ascorbic acid. Experiments done under hypoxic conditions were carried out in specially designed glass flasks that were gassed with humidified nitrogen/carbon dioxide mixture and with a side-arm reservoir from which SR 4233 was added to cell media after hypoxia was obtained. Electron paramagnetic resonance studies were also performed. Electron paramagnetic resonance and spectrophotometry experiments suggest that under aerobic conditions SR 4233 undergoes futile redox cycling to produce superoxide. Treatment of cells during aerobic exposure to SR 4233 with the enzymes superoxide dismutase and catalase, the spin trapping agent DMPO, the water-soluble vitamin E analog Trolox, and the metal chelator ICRF-187 provided little or no protection against aerobic SR 4233 cytotoxicity. However, two other metal chelators, desferrioxamine and Tiron afforded significant protection against minimal protection to hypoxic cells treated with SR 4233. One potential mechanism of aerobic cytotoxicity is redox cycling of SR 4233 with molecular oxygen resulting in several potentially toxic oxidative species that overburden the intrinsic intracellular detoxification systems such as superoxide dismutase, catalase, and glutathione peroxidase. 23 refs., 4 figs., 1 tab

  15. Synthesis and biological activity of chimeric structures derived from the cytotoxic natural compounds dolastatin 10 and dolastatin 15.

    Science.gov (United States)

    Poncet, J; Busquet, M; Roux, F; Pierré, A; Atassi, G; Jouin, P

    1998-04-23

    The natural cytotoxic compounds dolastatins 10 and 15 exhibit great similarities in structure and in their biological activity profiles. Two compounds (1 and 2) formed by interchanging the dolaisoleuine residue of dolastatin 10 and the MeVal-Pro dipeptide of dolastatin 15 were synthesized in order to evaluate the possible equivalence of these units. These compounds can be considered as chimeras of dolastatins 10 and 15 formed by the N-terminal part of the former and the C-terminal part of the latter and vice versa. Both analogues exhibited a marked decrease in their cytotoxic activity but showed similar differential cytotoxicity with regard to the cell lines assayed compared with the parent compounds. HT-29 cell line was the least sensitive one. However, this activity was in the nanomolar level and close to that of vincristine. The differences in their effect on tubulin polymerization were less pronounced. We confirmed the already known crucial role of the Dil residue in this assay. The nonequivalence of the Dil unit and the MeVal-Pro dipeptide probably reflects modification in the relative positions of the N-dimethylamino and the phenyl moieties.

  16. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro

    Directory of Open Access Journals (Sweden)

    Bruno Corrêa Bellagamba

    2016-03-01

    Full Text Available Abstract Mesenchymal stem cells (MSCs are known for their important properties involving multilineage differentiation potential., trophic factor secretion and localization along various organs and tissues. On the dark side, MSCs play a distinguished role in tumor microenvironments by differentiating into tumor-associated fibroblasts or supporting tumor growth via distinct mechanisms. Cisplatin (CIS is a drug widely applied in the treatment of a large number of cancers and is known for its cytotoxic and genotoxic effects, both in vitro and in vivo. Here we assessed the effects of CIS on MSCs and the ovarian cancer cell line OVCAR-3, by MTT and comet assays. Our results demonstrated the resistance of MSCs to cell death and DNA damage induction by CIS, which was not observed when OVCAR-3 cells were exposed to this drug.

  17. Phytochemical and Cytotoxic Investigations of Alpinia mutica Rhizomes

    Directory of Open Access Journals (Sweden)

    Kae Shin Sim

    2011-01-01

    Full Text Available The methanol and fractionated extracts (hexane, ethyl acetate and water of Alpinia mutica (Zingiberaceae rhizomes were investigated for their cytotoxic effect against six human carcinoma cell lines, namely KB, MCF7, A549, Caski, HCT116, HT29 and non-human fibroblast cell line (MRC 5 using an in vitro cytotoxicity assay. The ethyl acetate extract possessed high inhibitory effect against KB, MCF7 and Caski cells (IC50 values of 9.4, 19.7 and 19.8 µg/mL, respectively. Flavokawin B (1, 5,6-dehydrokawain (2, pinostrobin chalcone (3 and alpinetin (4, isolated from the active ethyl acetate extract were also evaluated for their cytotoxic activity. Of these, pinostrobin chalcone (3 and alpinetin (4 were isolated from this plant for the first time. Pinostrobin chalcone (3 displayed very remarkable cytotoxic activity against the tested human cancer cells, such as KB, MCF7 and Caski cells (IC50 values of 6.2, 7.3 and 7.7 µg/mL, respectively. This is the first report of the cytotoxic activity of Alpinia mutica.

  18. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.

    Science.gov (United States)

    Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K

    2017-07-03

    The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.

  19. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3

    NARCIS (Netherlands)

    Spits, H.; Yssel, H.; Leeuwenberg, J.; de Vries, J. E.

    1985-01-01

    T3 is a human differentiation antigen expressed exclusively on mature T cells. In this study it is shown that anti-T3 monoclonal antibodies, in addition to their capacity to induce T cells to proliferate, are able to induce antigen-specific cytotoxic T lymphocyte clones to mediate antigen

  20. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

    Science.gov (United States)

    Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi

    2013-12-06

    Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration

  1. Cytotoxicity of fluorographene

    Czech Academy of Sciences Publication Activity Database

    Teo, W. Z.; Sofer, Z.; Šembera, Filip; Janoušek, Zbyněk; Pumera, M.

    2015-01-01

    Roč. 5, č. 129 (2015), s. 107158-107165 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA15-09001S Institutional support: RVO:61388963 Keywords : fluorinated graphene * viability assays * cytotoxicity Subject RIV: CC - Organic Chemistry Impact factor: 3.289, year: 2015

  2. Dual Functions of Natural Killer Cells in Selection and Differentiation of Stem Cells; Role in Regulation of Inflammation and Regeneration of Tissues

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Yan-Gao Man, Han-Ching Tseng

    2013-01-01

    Full Text Available Accumulated evidence from our laboratory indicates that conditioned or anergized NK cells have the ability to induce resistance of healthy stem cells and transformed cancer stem cells through both secreted factors and direct cell-cell contact by inducing differentiation. Cytotoxic function of NK cells is suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. Furthermore, decreased peripheral blood NK cell function has been documented in many cancer patients. We have previously shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, human mesenchymal stem cells (hMSCs, human dental pulp stem cells (hDPSCs and induced human pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or gene deletion of COX2 significantly augmented NK cell function. Furthermore, the induction of resistance of the stem cells to NK cell mediated cytotoxicity and their subsequent differentiation is amplified when either the stem cells or the NK cells were cultured in the presence of monocytes. Therefore, we propose that the two stages of NK cell maturation namely CD16+CD56dimCD69- NK cells are important for the lysis of stem cells or poorly differentiated cells whereas the CD16dim/-CD56dim/+CD69+NK cells are important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus functionally serving as regulatory NK cells (NKreg. CD16 receptor on the NK cells were found to be the receptor with significant potential to induce NK cell anergy

  3. Differential responses of neuronal and spermatogenic cells to the doppel cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Kefeng Qin

    Full Text Available Although structurally and biochemically similar to the cellular prion (PrP(C, doppel (Dpl is unique in its biological functions. There are no reports about any neurodegenerative diseases induced by Dpl. However the artificial expression of Dpl in the PrP-deficient mouse brain causes ataxia with Purkinje cell death. Abundant Dpl proteins have been found in testis and depletion of the Dpl gene (Prnd causes male infertility. Therefore, we hypothesize different regulations of Prnd in the nerve and male productive systems. In this study, by electrophoretic mobility shift assays we have determined that two different sets of transcription factors are involved in regulation of the Prnd promoter in mouse neuronal N2a and GC-1 spermatogenic (spg cells, i.e., upstream stimulatory factors (USF in both cells, Brn-3 and Sp1 in GC-1 spg cells, and Sp3 in N2a cells, leading to the expression of Dpl in GC-1 spg but not in N2a cells. We have further defined that, in N2a cells, Dpl induces oxidative stress and apoptosis, which stimulate ataxia-telangiectasia mutated (ATM-modulating bindings of transcription factors, p53 and p21, to Prnp promoter, resulting the PrP(C elevation for counteraction of the Dpl cytotoxicity; in contrast, in GC-1 spg cells, phosphorylation of p21 and N-terminal truncated PrP may play roles in the control of Dpl-induced apoptosis, which may benefit the physiological function of Dpl in the male reproduction system.

  4. The future of cytotoxic therapy: selective cytotoxicity based on biology is the key

    International Nuclear Information System (INIS)

    Bono, Johann S de; Tolcher, Anthony W; Rowinsky, Eric K

    2003-01-01

    Although mortality from breast cancer is decreasing, 15% or more of all patients ultimately develop incurable metastatic disease. It is hoped that new classes of target-based cytotoxic therapeutics will significantly improve the outcome for these patients. Many of these novel agents have displayed cytotoxic activity in preclinical and clinical evaluations, with little toxicity. Such preferential cytotoxicity against malignant tissues will remain tantamount to the Holy Grail in oncologic therapeutics because this portends improved patient tolerance and overall quality of life, and the capacity to deliver combination therapy. Combinations of such rationally designed target-based therapies are likely to be increasingly important in treating patients with breast carcinoma. The anticancer efficacy of these agents will, however, remain dependent on the involvement of the targets of these agents in the biology of the individual patient's disease. Results of DNA microarray analyses have raised high hopes that the analyses of RNA expression levels can successfully predict patient prognosis, and indicate that the ability to rapidly 'fingerprint' the oncogenic profile of a patient's tumor is now possible. It is hoped that these studies will support the identification of the molecules driving a tumor's growth, and the selection of the appropriate combination of targeted agents in the near future

  5. Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina.

    Science.gov (United States)

    Pham, Mai; Schideman, Lance; Scott, John; Rajagopalan, Nandakishore; Plewa, Michael J

    2013-02-19

    Hydrothermal liquefaction (HTL) is an attractive method for converting wet biomass into petroleum-like biocrude oil that can be refined to make petroleum products. This approach is advantageous for conversion of low-lipid algae, which are promising feedstocks for sustainable large-scale biofuel production. As with natural petroleum formation, the water in contact with the produced oil contains toxic compounds. The objectives of this research were to: (1) identify nitrogenous organic compounds (NOCs) in wastewater from HTL conversion of Spirulina; (2) characterize mammalian cell cytotoxicity of specific NOCs, NOC mixture, and the complete HTL wastewater (HTL-WW) matrix; and (3) investigate mitigation measures to reduce toxicity in HTL-WW. Liquid-liquid extraction and nitrogen-phosphorus detection was used in conjunction with gas chromatography-mass spectrometry (GC-MS), which detected hundreds of NOCs in HTL-WW. Reference materials for nine of the most prevalent NOCs were used to identify and quantify their concentrations in HTL-WW. Mammalian cell cytotoxicity of the nine NOCs was quantified using a Chinese hamster ovary (CHO) cell assay, and the descending rank order for cytotoxicity was 3-dimethylamino-phenol > 2,2,6,6-tetramethyl-4-piperidone > 2,6-dimethyl-3-pyridinol > 2-picoline > pyridine > 1-methyl-2-pyrrolidinone > σ-valerolactam > 2-pyrrolidinone > ε-caprolactam. The organic mixture extracted from HTL-WW expressed potent CHO cell cytotoxic activity, with a LC(50) at 7.5% of HTL-WW. Although the toxicity of HTL-WW was substantial, 30% of the toxicity was removed biologically by recycling HTL-WW back into algal cultivation. The remaining toxicity of HTL-WW was mostly eliminated by subsequent treatment with granular activated carbon.

  6. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    Science.gov (United States)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  7. Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ...

    African Journals Online (AJOL)

    Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ( Mangifera indica ) and Bush Mango ( Irvingia gabonensis ) Kernels. ... Nigerian Food Journal ... Phenolic constituents (total phenols, flavonoids, tannins, and anthocyanins), comparative antiradical potency and cytotoxicity of processed mango (Mangifera ...

  8. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model.

    Science.gov (United States)

    Khoh-Reiter, Su; Jessen, Bart A

    2009-07-28

    Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 microL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic solutions are not likely to cause

  9. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    Directory of Open Access Journals (Sweden)

    Jessen Bart A

    2009-07-01

    Full Text Available Abstract Background Benzalkonium chloride (BAC is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC and olopatadine (0.01% BAC was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T cell cultures, expression levels (mRNA and protein of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC

  10. Anti-inflammatory and cytotoxic activities of five Veronica species.

    Science.gov (United States)

    Harput, U Sebnem; Saracoglu, Iclal; Inoue, Makoto; Ogihara, Yukio

    2002-04-01

    Biological activities of five Veronica species (Scrophulariaceae), V. cymbalaria, V. hederifolia, V. pectinata var. glandulosa, V. persica and V. polita were studied for their anti-inflammatory and cytotoxic activities. Their methanol extracts showed both the inhibitory activity of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated macrophages and cytotoxic activity against KB epidermoid carcinoma and B16 melanoma. When the methanol extracts were fractionated between water and chloroform, water fractions significantly inhibited NO production without any cytotoxicity, while chloroform fractions showed cytotoxicity dose-dependently. When the radical scavenging activity was determined using 2,2-diphenyl-1-picryl-hydrazyl (DPPH), water fractions of the five Veronica species scavenged free radicals effectively, suggesting that the inhibitory effect of this species on NO production was due to their radical scavenging activity. On the other hand, chloroform fractions of Veronica species except for V. cymbalaria showed similar cytotoxic activity against KB and B16 melanoma cells.

  11. A fluorescence-based rapid screening assay for cytotoxic compounds

    International Nuclear Information System (INIS)

    Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E.; Garza, Kristine; Aguilera, Renato J.

    2004-01-01

    A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death

  12. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    Cytotoxic effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on human myeloid leukemia (HL-60) cell line. ... The cytotoxic effect of betulinic acid (BA), isolated from Melaleuca cajuput a Malaysian plant and its four synthetic derivatives were tested for their cytotoxicity in various cell line or ...

  13. Cytotoxic activity of plants from East Azarbaijan province, Iran

    Directory of Open Access Journals (Sweden)

    M. Irani

    2017-11-01

    Full Text Available Background and objectives: Due to the high cancer mortality rates and side effects of different types of cancer treatments, discovering effective treatments without or with fewer side effects is the main purpose of many researchers all around the world. Plants play an important role in the discovery of new drugs. Iran owns rich and varied vegetation but the majority of these plants have not yet undergone chemical, pharmacological and toxicological studies. In the present study, some species from East Azarbaijan province of Iran were evaluated for cytotoxicity effects. Methods: Total methanol extract of 29 plants from 18 families were screened for their cytotoxic activities. The inhibition of cell growth for these extracts was evaluated against MCF-7, A-549, Hep-G2, HT-29 and MDBK cell lines. Their 50% inhibitions of growth (IC50 were determined by MTT assay. Moreover, cytotoxic evaluation of different fractions (ether de petrol, chloroform and methanol of the most potent species was performed. Results: Total extracts and fractions of Bryonia aspera, Centaurea salicifolia, Cuscuta chinensis, Ecbalium elaterium, Gypsophila ruscifolia, Ononis spinosa exhibited potent cytotoxic activity against one or more of the cell lines. Three of the mentioned total extracts presented cytotoxicity effects exclusively against HT-29 cells. Also three fractions (one ether de petrol and two chloroform fractions demonstrated selective cytotoxicity effects against MCF-7cells. Conclusion: It was concluded that these 6 potent species were proper candidates for identification and isolation of active ingredients with cytotoxic effects  and further studies about these species are recommended.

  14. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    that had maximum bactericidal activity against all the tested isolates, but showed < 30 % host cell cytotoxicity. Conclusion: The lysate of Acacia nilotica ... cytotoxic effects on human cells. EXPERIMENTAL. Plant material. Acacia nilotica Lam .... a detergent that permeabilizes eukaryotic cells and results in HBMEC damage.

  15. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation

    Directory of Open Access Journals (Sweden)

    Tiago Henrique Honorato Gatti

    2018-06-01

    Full Text Available Abstract Mucoadhesive nanoparticles are particularly interesting for delivery through nasal or pulmonary routes, as an approach to overcome the mucociliary clearance. Moreover, these nanoparticles are attractive for peptide and protein delivery, particularly for insulin to treat diabetes, as an alternative to conventional parenteral administration. Thus, chitosan, a cationic mucoadhesive polysaccharide found in shells of crustaceans, and the negatively-charged dextran sulfate are able to form nanoparticles through ionic condensation, representing a potential insulin carrier. Herein, chitosan/dextran sulfate nanoparticles at various ratios were prepared for insulin loading. Formulations were characterized for particle size, zeta potential, encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry, and in vitro drug release. Moreover, the interaction with mucin and the cytotoxicity against a lung cell line were studied, which altogether have not been addressed before. Results evidenced that a proper selection of polyelectrolytes is necessary for smaller particle size formation and also the composition and zeta potential impact encapsulation efficiency, which is benefited by the positive charge of chitosan. Insulin remained stable after encapsulation as evidenced by calorimetric assays, and was released in a sustained manner in the first 10 h. Positively-charged nanoparticles based on chitosan/dextran-sulfate at the ratio of 6:4 successfully interacted with mucin, which is a prerequisite for delivery to mucus-containing tissues. Finally, insulin-loaded nanoparticles displayed no cytotoxicity effect against lung cells at tested concentrations, suggesting the potential for further in vivo studies.

  17. Cytotoxic triterpenoid saponins from Clematis tangutica.

    Science.gov (United States)

    Zhao, Min; Da-Wa, Zhuo-Ma; Guo, Da-Le; Fang, Dong-Mei; Chen, Xiao-Zhen; Xu, Hong-Xi; Gu, Yu-Cheng; Xia, Bing; Chen, Lei; Ding, Li-Sheng; Zhou, Yan

    2016-10-01

    Eight previously undescribed oleanane-type triterpenoid saponins, clematangoticosides A-H, together with eight known saponins, were isolated from the whole plants of Clematis tangutica (Maxim.) Korsh. Their structures were elucidated by extensive spectroscopic analysis, in combination with chemical methods (acid hydrolysis and mild alkaline hydrolysis). Clematangoticosides D-G were found to be unusual 23, 28-bidesmosidic glycosides. The cytotoxic activities of all of the isolated saponins were evaluated against the four human cancer cell lines SGC-7901, HepG2, HL-60 and U251MG. Clematoside S, sapindoside B, kalopanax saponin A, and koelreuteria saponin A exhibited cytotoxicity against all of the test cancer cell lines with IC50 values in the range of 1.88-27.20 μM, while clematangoticoside D and F showed selective cytotoxicity against SGC-7901 with IC50 values of 24.22 and 21.35 μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Correlation of initiating potency of skin carcinogens with potency to induce resistance to terminal differentiation in cultured mouse keratinocytes

    International Nuclear Information System (INIS)

    Kilkenny, A.E.; Morgan, D.; Spangler, E.F.; Yuspa, S.H.

    1985-01-01

    The induction by chemical carcinogens of resistance to terminal differentiation in cultured mouse keratinocytes has been proposed to represent a cellular change associated with the initiation phase of skin carcinogenesis. Previous results with this culture model indicated that the number of differentiation-resistant foci was correlated with the dose and known potency for several chemical carcinogens. Assay conditions were optimized to provide quantitative results for screening a variety of carcinogens for their potency as inducers of foci resistant to terminal differentiation. Eight skin initiators of varying potency and from different chemical classes and ultraviolet light were studied for their activity to induce this alteration in cultured epidermal cells from newborn BALB/c mice. There was an excellent positive correlation for the potency of these agents as initiators in vivo and as inducers of altered differentiation in vitro. The induction of resistant foci was independent of the relative cytotoxic effects of each agent except where cytotoxicity was extensive and reduced the number of foci. The results support the hypothesis that initiation of carcinogenesis in skin results in an alteration in the program of epidermal cell differentiation. The results also suggest that the assay is useful for identifying relative potency classes (strong, moderate, weak) of initiating agents

  19. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    Science.gov (United States)

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  20. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  1. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells

    Science.gov (United States)

    Ge, Gaoyuan; Wu, Hengfang; Xiong, Fei; Zhang, Yu; Guo, Zhirui; Bian, Zhiping; Xu, Jindan; Gu, Chunrong; Gu, Ning; Chen, Xiangjian; Yang, Di

    2013-05-01

    One major obstacle for successful application of nanoparticles in medicine is its potential nanotoxicity on the environment and human health. In this study, we evaluated the cytotoxicity effect of dimercaptosuccinic acid-coated iron oxide (DMSA-Fe2O3) using cultured human aortic endothelial cells (HAECs). Our results showed that DMSA-Fe2O3 in the culture medium could be absorbed into HAECs, and dispersed in the cytoplasm. The cytotoxicity effect of DMSA-Fe2O3 on HAECs was dose-dependent, and the concentrations no more than 0.02 mg/ml had little toxic effect which were revealed by tetrazolium dye assay. Meanwhile, the cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without DMSA-Fe2O3). However, the endocrine function for endothelin-1 and prostacyclin I-2, as well as the urea transporter function, was altered even without obvious evidence of cell injury in this context. We also showed by real-time PCR analysis that DMSA-Fe2O3 exposure resulted in differential effects on the expressions of pro- and anti-apoptosis genes of HAECs. Meanwhile, it was noted that DMSA-Fe2O3 exposure could activate the expression of genes related to oxidative stress and adhesion molecules, which suggested that inflammatory response might be evoked. Moreover, we demonstrated by in vitro endothelial tube formation that even a small amount of DMSA-Fe2O3 (0.01 and 0.02 mg/ml) could inhibit angiogenesis by the HAECs. Altogether, these results indicate that DMSA-Fe2O3 have some cytotoxicity that may cause side effects on normal endothelial cells.

  2. Synthesis of molybdenum and tungsten modified composite systems based on bisorbent from rice husk

    Directory of Open Access Journals (Sweden)

    Duisek Haisagalievich Kamysbaev

    2017-12-01

    Full Text Available The article presents results of the synthesis of a new composite material modified with polyvalent metals. Rice husk was chosen as a raw material for obtaining a carrier – a bisorbent consisting of carbon and amorphous silicon oxide. The sorption material was obtained from the products of thermal decomposition of rice husks. Further it was modified with ammonium salts of molybdenum and tungsten: (NH46Mo7O24·4H2O and (NH42O·12WO3·5H2O in Mo/W ratios: 5/5 wt. %, 10/5 wt. % and reducted by heating in a stream of hydrogen. The registration of the voltammetric curves in the medium of 1-methyl-4-piperidone was carried out in various background electrolytes: 0.2 M Li2SO4, pH = 6.36 and 0.1 M KOH, pH = 13, 2,5·10–2 M K2HPO4 + 2,5·10–2 M NaH2PO4, pH = 6.86. Differential voltammetric curves were analyzed. The electrochemical activity of the obtained modified composites in the potential range from -1.2 V to 0.5 V was determinated. The mechanism of the proceeding electrochemical processes on these modified electrode materials has been studied. The possibility of further use of synthesized composite systems based on bisorbents from the rice husk for the electrochemical reduction of 1-methyl-4-piperidone was shown.

  3. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  4. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation.

    Science.gov (United States)

    Mori, Tadashi; Hidaka, Masafumi; Ikuji, Hiroko; Yoshizawa, Ibuki; Toyohara, Haruhiko; Okuda, Toru; Uchida, Chiyoko; Asano, Tomoichiro; Yotsu-Yamashita, Mari; Uchida, Takafumi

    2014-01-01

    The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.

  5. Cytotoxicity potentials of eleven Bangladeshi medicinal plants.

    Science.gov (United States)

    Khatun, Amina; Rahman, Mahmudur; Haque, Tania; Rahman, Md Mahfizur; Akter, Mahfuja; Akter, Subarna; Jhumur, Afrin

    2014-01-01

    Various forms of cancer are rising all over the world, requiring newer therapy. The quest of anticancer drugs both from natural and synthetic sources is the demand of time. In this study, fourteen extracts of different parts of eleven Bangladeshi medicinal plants which have been traditionally used for the treatment of different types of carcinoma, tumor, leprosy, and diseases associated with cancer were evaluated for their cytotoxicity for the first time. Extraction was conceded using methanol. Phytochemical groups like reducing sugars, tannins, saponins, steroids, gums, flavonoids, and alkaloids were tested using standard chromogenic reagents. Plants were evaluated for cytotoxicity by brine shrimp lethality bioassay using Artemia salina comparing with standard anticancer drug vincristine sulphate. All the extracts showed potent to moderate cytotoxicity ranging from LC50 2 to 115 µg/mL. The highest toxicity was shown by Hygrophila spinosa seeds (LC50 = 2.93 µg/mL) and the lowest by Litsea glutinosa leaves (LC50 = 114.71 µg/mL) in comparison with standard vincristine sulphate (LC50 = 2.04 µg/mL). Among the plants, the plants traditionally used in different cancer and microbial treatments showed highest cytotoxicity. The results support their ethnomedicinal uses and require advanced investigation to elucidate responsible compounds as well as their mode of action.

  6. Evaluation of the Cytotoxicity of Structurally Correlated p-Menthane Derivatives

    Directory of Open Access Journals (Sweden)

    Luciana Nalone Andrade

    2015-07-01

    Full Text Available Compounds isolated from essential oils play an important role in the prevention and treatment of cancer. Monoterpenes are natural products, and the principal constituents of many essential oils. The aim of this study was to investigate the cytotoxic potential of p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with known anticancer activity, were evaluated to identify the molecular characteristics which contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 human tumor cell lines, using the MTT assay. The results of this study showed that (−-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation (GI = 96.32%–99.89%. Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%, while (+-limonene 1,2-epoxide (GI = 58.48%–93.10%, (−-perillaldehyde (GI = 59.28%–83.03%, and (−-8-hydroxycarvotanacetone (GI = 61.59%–94.01% showed intermediate activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except (−-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg. In general, replacement of C-C double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, and analogues of perillyl alcohol.

  7. Elevated HbA1c levels and the accumulation of differentiated T cells in CMV+ individuals

    NARCIS (Netherlands)

    Rector, J.L.; Thomas, G.N.; Burns, V.E.; Dowd, J.B.; Herr, R.M.; Moss, P.A.; Jarczok, M.N.; Hoffman, K.; Fischer, J.E.; Bosch, J.A.

    2015-01-01

    Aims/hypothesis: Biological ageing of the immune system, or immunosenescence, predicts poor health and increased mortality. A hallmark of immunosenescence is the accumulation of differentiated cytotoxic T cells (CD27−CD45RA+/−; or dCTLs), partially driven by infection with the cytomegalovirus (CMV).

  8. Cytotoxic activity of Agave lechuguilla Torr | Casillas | African ...

    African Journals Online (AJOL)

    The cytotoxic activity of extract and isolated saponin from leaves of Agave lechuguilla was investigated. Ethanol extract from leaves of A. lechuguilla exhibited cytotoxic activity against HeLa cells in vitro (50% inhibitory concentration (IC50) = 89 μg/ml). Bioassay-guided fractionation of this extract had led to the isolation of 5-β ...

  9. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line

    Science.gov (United States)

    Lv, Min; Zhang, Yujie; Liang, Le; Wei, Min; Hu, Wenbing; Li, Xiaoming; Huang, Qing

    2012-06-01

    Graphene oxide (GO), has created an unprecedented opportunity for development and application in biology, due to its abundant functional groups and well water solubility. Recently, the potential toxicity of GO in the environment and in humans has garnered more and more attention. In this paper, we systematically studied the cytotoxicity of GO nanosheets via examining the effect of GO on the morphology, viability and differentiation of a human neuroblastoma SH-SY5Y cell line, which was an ideal model used to study neuronal disease in vitro. The results suggested that GO had no obvious cytotoxicity at low concentration (cells exhibited dose- and time-dependent decreases at high concentration (>=80 μg mL-1). Moreover, GO did not induce apoptosis. Very interestingly, GO significantly enhanced the differentiation of SH-SY5Y induced-retinoic acid (RA) by evaluating neurite length and the expression of neuronal marker MAP2. These data provide a promising application for neurodegenerative diseases.

  10. Discovery of novel inducers of cellular differentiation using HL-60 promyelocytic cells.

    Science.gov (United States)

    Mata-Greenwood, E; Ito, A; Westenburg, H; Cui, B; Mehta, R G; Kinghorn, A D; Pezzuto, J M

    2001-01-01

    Non-physiological inducers of terminal differentiation have been used as novel therapies for the prevention and therapy of cancer. We have used cultured HL-60 promyelocytic cells to monitor differentiation, proliferation and cell death events as induced by a large set of extracts derived from plants. Screening of more than 1400 extracts led to the discovery of 34 with potent activity (ED50 Petiveria alliacea, and desmethylrocaglamide from Aglaia ponapensis. Zapotin demonstrated the most favorable biological profile in that induction of differentiation correlated with proliferation arrest, and a lack of cytotoxicity. We conclude that the HL-60 cell model is a useful system for the discovery of novel pharmacophores with potential to suppress the process of carcinogenesis, and that flavonoids may be especially useful in this capacity.

  11. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunyoung [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of); Kim, Hyoung-June [Basic Research and Innovation Division, AmorePacific Corporation R& D Center, Yongin, Gyeounggi-do 17074 (Korea, Republic of); Lee, Moonyoung [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Jin, Sun Hee; Hong, Soo Hyun; Ahn, Seyeon; Kim, Sae On [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of); Shin, Dong Wook [Basic Research and Innovation Division, AmorePacific Corporation R& D Center, Yongin, Gyeounggi-do 17074 (Korea, Republic of); Lee, Seung-Taek [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722 (Korea, Republic of); Noh, Minsoo, E-mail: minsoonoh@snu.ac.kr [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-01

    Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μM formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR

  12. In vitro determination of cytotoxic drug response in ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csóka, K; Tholander, B; Gerdin, E; de la Torre, M; Larsson, R; Nygren, P

    1997-09-17

    The fluorometric microculture cytotoxicity assay (FMCA), a short-term in vitro assay based on the concept of total tumor cell kill, was used for testing the cytotoxic drug sensitivity of tumor cells from patients with ovarian carcinoma. A total of 125 fresh specimens was obtained, 98 (78%) of which were analyzed successfully. Data from 45 patients were available for clinical correlations. The FMCA appeared to yield clinically relevant cytotoxic drug sensitivity data for ovarian carcinoma as indicated by a comparison with tumor samples obtained from patients with non-Hodgkin's lymphoma or kidney carcinoma. Considering the most active single agent in vitro actually given in vivo, and using the median drug activity among all ovarian carcinoma samples as a cut-off, the sensitivity of the assay and its specificity were 75 and 52%, respectively. Cross-resistance in vitro was frequently observed between standard drugs but not between standard drugs and Taxol. Ten percent of the specimens showed an extreme resistance for at least 4 of 6 of the drugs investigated.

  13. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    Science.gov (United States)

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-02-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  14. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  15. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  16. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  17. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    International Nuclear Information System (INIS)

    Boyd, Jessica M.; Huang, Li; Xie Li; Moe, Birget; Gabos, Stephan; Li Xingfang

    2008-01-01

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC 50 ) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC 50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC 50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC 50 . Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  18. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Jessica M [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Huang, Li [Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Li, Xie; Moe, Birget [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Gabos, Stephan [Public Health Surveillance and Environmental Health, Alberta Health and Wellness, 10025 Jasper Avenue, Box 1360, Edmonton, Alberta, T5J 2N3 (Canada); Xingfang, Li [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada)], E-mail: xingfang.li@ualberta.ca

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC{sub 50}) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC{sub 50} values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC{sub 50} concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC{sub 50}. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPh

  19. Cytotoxicity Potentials of Eleven Bangladeshi Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Amina Khatun

    2014-01-01

    Full Text Available Various forms of cancer are rising all over the world, requiring newer therapy. The quest of anticancer drugs both from natural and synthetic sources is the demand of time. In this study, fourteen extracts of different parts of eleven Bangladeshi medicinal plants which have been traditionally used for the treatment of different types of carcinoma, tumor, leprosy, and diseases associated with cancer were evaluated for their cytotoxicity for the first time. Extraction was conceded using methanol. Phytochemical groups like reducing sugars, tannins, saponins, steroids, gums, flavonoids, and alkaloids were tested using standard chromogenic reagents. Plants were evaluated for cytotoxicity by brine shrimp lethality bioassay using Artemia salina comparing with standard anticancer drug vincristine sulphate. All the extracts showed potent to moderate cytotoxicity ranging from LC50 2 to 115 µg/mL. The highest toxicity was shown by Hygrophila spinosa seeds (LC50=2.93 µg/mL and the lowest by Litsea glutinosa leaves (LC50=114.71 µg/mL in comparison with standard vincristine sulphate (LC50=2.04 µg/mL. Among the plants, the plants traditionally used in different cancer and microbial treatments showed highest cytotoxicity. The results support their ethnomedicinal uses and require advanced investigation to elucidate responsible compounds as well as their mode of action.

  20. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  1. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  2. Permeation of cytotoxic formulations through swatches from selected medical gloves.

    Science.gov (United States)

    Klein, Michael; Lambov, Nikolai; Samev, Nikola; Carstens, Gerhard

    2003-05-15

    The permeability of selected medical glove materials to various cytotoxic agents is described. Fifteen cytotoxic agents were prepared at the highest concentrations normally encountered by hospital personnel. Four single-layer and two double-layer glove systems made of two materials--latex and neoprene--were exposed to the drugs for 30, 60, 90, 120, 150, and 180 minutes. Circular sections of the glove material were cut from the cuff and evaluated without any pretreatment. Permeability tests were conducted in an apparatus consisting of a donor chamber containing the cytotoxic solution and a collection chamber filled with water (the acceptor medium). The two sections were separated by the glove material. Permeating portions, collected in water as the acceptor medium, were analyzed by either ultraviolet-visible light spectrophotometry or high-performance liquid chromatography (HPLC). Permeation rates were calculated on the basis of the concentration of the cytotoxic agent in the acceptor medium. Spectrophotometric measurements were taken every 30 minutes, and HPLC analysis was performed at the end of the three-hour period. Average permeation rates for 14 drugs were low (materials. All glove materials tested were impermeable to most of the cytotoxic agents over a period of three hours. Carmustine was the only agent that substantially permeated single-layer latex glove materials. Permeation of most tested cytotoxic formulations was low through swatches of material from various medical gloves.

  3. Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csoka, K; Larsson, R; Tholander, B; Gerdin, E; de la Torre, M; Nygren, P

    1994-08-01

    The automated fluorometric microculture cytotoxicity assay (FMCA) is based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein by viable cells after a 72-hr culture period in microtiter plates. The FMCA was adopted for chemosensitivity testing of tumor cells from patients with ovarian carcinoma. Thirty-seven samples of solid tumors and malignant effusions were obtained from 35 patients at diagnosis or relapse. Tumor cells from solid samples and effusions were prepared by enzymatic digestion and centrifugation, respectively, followed by Percoll or Ficoll purification. The fluorescence was proportional to the number of cells/well and considerably higher in tumor cells than in contaminating normal cells. The effect of up to 19 cytotoxic drugs was successfully assessed in 70% of the samples and there was a good correlation between drug sensitivity data reported by the FMCA and the DiSC assay performed in parallel. The overall drug sensitivity pattern in vitro corresponded well to the clinical experience. The effect of cisplatin varied considerably between patients and resistance was found also in cases not previously exposed to cytotoxic drugs. The FMCA is a rapid and simple method that seems to report clinically relevant cytotoxic drug sensitivity data in ovarian carcinomas. In the future, this method may contribute to optimizing chemotherapy by assisting in individualized drug selection and new drug development.

  4. Differential cytotoxicity induced by the Titanium(IV)Salan complex Tc52 in G2-phase independent of DNA damage

    International Nuclear Information System (INIS)

    Pesch, Theresa; Schuhwerk, Harald; Wyrsch, Philippe; Immel, Timo; Dirks, Wilhelm; Bürkle, Alexander; Huhn, Thomas; Beneke, Sascha

    2016-01-01

    Chemotherapy is one of the major treatment modalities for cancer. Metal-based compounds such as derivatives of cisplatin are in the front line of therapy against a subset of cancers, but their use is restricted by severe side-effects and the induction of resistance in treated tumors. Subsequent research focused on development of cytotoxic metal-complexes without cross-resistance to cisplatin and reduced side-effects. This led to the discovery of first-generation titanium(IV)salan complexes, which reached clinical trials but lacked efficacy. New-generation titanium (IV)salan-complexes show promising anti-tumor activity in mice, but their molecular mechanism of cytotoxicity is completely unknown. Four different human cell lines were analyzed in their responses to a toxic (Tc52) and a structurally highly related but non-toxic (Tc53) titanium(IV)salan complex. Viability assays were used to reveal a suitable treatment range, flow-cytometry analysis was performed to monitor the impact of dosage and treatment time on cell-cycle distribution and cell death. Potential DNA strand break induction and crosslinking was investigated by immunostaining of damage markers as well as automated fluorometric analysis of DNA unwinding. Changes in nuclear morphology were analyzed by DAPI staining. Acidic beta-galactosidase activity together with morphological changes was monitored to detect cellular senescence. Western blotting was used to analyze induction of pro-apoptotic markers such as activated caspase7 and cleavage of PARP1, and general stress kinase p38. Here we show that the titanium(IV)salan Tc52 is effective in inducing cell death in the lower micromolar range. Surprisingly, Tc52 does not target DNA contrary to expectations deduced from the reported activity of other titanium complexes. Instead, Tc52 application interferes with progression from G2-phase into mitosis and induces apoptotic cell death in tested tumor cells. Contrarily, human fibroblasts undergo senescence in a

  5. Cytotoxic activity of some medicinal plants from hamedan district of iran.

    Science.gov (United States)

    Behzad, Sahar; Pirani, Atefeh; Mosaddegh, Mahmoud

    2014-01-01

    Medicinal plants have been investigated for possible anti-cancer effects. The aim of the present study was to examine the cytotoxic activity of several medicinal plants on different tumor cell lines. 11 selected plant species which have been used in folkloric prescriptions were collected from different sites of Hamedan district of Iran. The methanolic extracts of the plants were prepared and their cytotoxic effects on four human cancer cell lines (A549, human lung adenocarcinoma; MCF7, human breast adenocarcinoma; HepG2, hepatocellular carcinoma and HT-29, human colon carcinoma) and one normal cell line (MDBK, bovine kidney) were examined using the MTT assay. Three of these were exhibited antiproliferative activity against one or more of the cell lines. The extract from Primula auriculata demonstrated the highest cytotoxicity with IC50 of 25.79, 35.79 and 43.34 μg.mL-1 against MCF7, HepG2 and HT- 29 cells, respectively. For some of the plants, their traditional use was correlated with the cytotoxic results, whereas for others the results may support the non-cytotoxicity of species used traditionally as natural remedies. The cytotoxic species could be considered as potential of anticancer compounds.

  6. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Differentiation of human lymphocytes into nuclear vlimata by meiosis. The cytotoxic effect of calcium-activated neutral proteinase inhibitor

    OpenAIRE

    Logothetou-Rella, H.

    1994-01-01

    Phytohaemagglutinin (PHA)-activated lymphocytes differentiated into nuclear vlimata (NVs) in vitro. Lymphocyte attachment was followed by formation and extrusion of cytoplasmic vesicles. nuclear elongation and fragmentation into NVs. NVs and cytoplasmic vesicles were detached and organized into large cell nodules in suspension. Immunocytochemistry showed that T-lymphocytes differentiated mainly to NVs while B-lymphocytes to buds. During differentiation ther...

  8. Effect of varying incubation periods on cytotoxicity and virucidal ...

    African Journals Online (AJOL)

    Backgrounds: Justicia gendarussa Burm.f. has an anti-HIV activity. This study was conducted to evaluate the effects of incubation periods on the cytotoxicity and virucidal activities of the J. gendarussa leaves extract on MOLT-4 cells. Materials and Methods: The cytotoxicity assay was evaluated by using the WST-1 test with ...

  9. Comparing two polymeric biguanides: chemical distinction, antiseptic efficacy and cytotoxicity of polyaminopropyl biguanide and polyhexamethylene biguanide.

    Science.gov (United States)

    Rembe, Julian-Dario; Fromm-Dornieden, Carolin; Schäfer, Nadine; Böhm, Julia K; Stuermer, Ewa K

    2016-08-01

    In this study, polyaminopropyl biguanide (PAPB) was compared to the molecularly closely related polyhexamethylene biguanide (PHMB) with respect to chemical relationship, antiseptic efficacy and cytotoxicity in vitro. Cytotoxicity for human keratinocytes (HaCaTs) and murine fibroblasts (L929) was determined according to ISO EN 10993-5 for both substances. Antimicrobial efficacy tests were performed via determination of the MBC, quantitative suspension method for substances and investigation of two PAPB- or PHMB-containing dressings against Staphyloccoccus aureus, Escherichia coli and Pseudomonas aeruginosa, according to international standards. Prior mass spectrometry was performed for chemical differentiation of the investigated substances. PHMB showed high toxicity even in low concentrations for both tested cell lines and a high antimicrobial efficacy against S. aureus and E. coli. In the case of PAPB, no or only low cytotoxicity was detected after 72 h, whilst comparable antibacterial features are lacking, as PAPB showed no relevant antimicrobial effects. Even though chemically closely related, PAPB proved to be ineffective in bacterial eradication, whilst PHMB showed a high efficacy. The discovery and establishment of safe and effective alternative antiseptics are important issues for the treatment of infected wounds. In particular, rising bacterial resistances to established agents, as well as ongoing discussions of potential toxic or carcinogenic effects emphasize this necessity. Nevertheless, the presented results highlight that even small changes in the chemical structure of related agents such as PHMB and PAPB can dramatically affect their efficacy and, therefore, need to be carefully distinguished and assessed side by side.

  10. Effects of the EVCAM chemical validation library on differentiation using marker gene expression in lmouse embryonic stem cells

    Science.gov (United States)

    The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...

  11. Analysis of cytotoxic effects of nickel on human blood lymphocytes.

    Science.gov (United States)

    Zarei, Mohammad Hadi; Hosseini Shirazi, Seyed Farshad; Aghvami, Marjan; Salimi, Ahmad; Pourahmad, Jalal

    2018-02-01

    Nickel compounds possess many applications in different industrial processes. Human beings are exposed to nickel commonly through occupational exposure and food. Although a few studies so far have investigated the effects of nickel compounds on human lymphocytes, the complete mechanism of cytotoxicity of this metal on human lymphocytes is yet to be determined. The intention of this paper was to determine the cytotoxicity mechanism of water soluble NiCl 2 toward human lymphocytes using the accelerated cytotoxicity mechanisms screening (ACMS) technique. Human lymphocytes were isolated from the blood of healthy subjects based on Ficoll-Paque PLUS standard method. For the assessment of cell viability, lymphocytes were incubated with 0.05-1 mM NiCl 2 for 12 h. Determination of mechanistic parameters was performed 2, 4 and 6 h after treatment of cells with ½ EC50 12h , EC50 12h and 2EC50 12h of NiCl 2 . Our results demonstrate that cytotoxicity of NiCl 2 on human lymphocytes is associated with increased ROS formation, mitochondrial membrane potential collapse, glutathione depletion, lysosomal membrane damage, cellular proteolysis and activation of caspase-3 before cytotoxicity ensued.

  12. Cytotoxic diterpenoids from Jatropha curcas cv. nigroviensrugosus CY Yang Roots.

    Science.gov (United States)

    Liu, JieQing; Yang, YuanFeng; Xia, JianJun; Li, XuYang; Li, ZhongRong; Zhou, Lin; Qiu, MingHua

    2015-09-01

    An investigation of phytochemicals from the roots of Jatropha curcas cv. nigroviensrugosus resulted in the isolation of twenty diterpenoids, including lathyranlactone, an unusual diterpenoid lactone possessing a 5/13/3 tricyclic skeleton, jatrocurcasenones A-E and jatrophodiones B-E, as well as 10 known analogues. All isolates were evaluated for cytotoxicity against the HL-60, SMMC-772, A-549, MCF-7 and SW480 human tumor cell lines using the MTS viability assay. Four of the known analogues showed cytotoxic activity in these cell lines, with IC50 values ranging from 2.0 to 23.0 μM. Moreover, the assessment of their cytotoxic structure-activity relationships showed the epoxy ring between C-5 and C-6 and the hydroxyl group at C-2 were the key functionalities for cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Lindhagen, Elin; Nygren, Peter; Larsson, Rolf

    2008-01-01

    The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.

  14. Synthesis of Chromonylthiazolidines and Their Cytotoxicity to Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Hoang Le Tuan Anh

    2015-01-01

    Full Text Available Nine new chromonylthiazolidine derivatives were successfully semi-synthesized from paeonol. All of the compounds, including starting materials, the intermediate compound and products, were evaluated for their cytotoxic effects toward eight human cancer cell lines. The synthesized chromonylthiazolidines displayed weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compounds 3a and 3b showed the most selective cytotoxic effects against human epidermoid carcinoma (IC50 44.1 ± 3.6 μg/mL and breast cancer (IC50 32.8 ± 1.4 μg/mL cell lines, respectively. The results suggest that chromoylthiazolidines are potential low-cost, and selective anticancer agents.

  15. Cytotoxic compounds from the leaves of Combretum paniculatum Vent

    African Journals Online (AJOL)

    It is used locally in the treatment of carcinomous tumors. The cytotoxic activity of pheophorbide a and pheophorbide a-methyl ester isolated from the leaves of C. paniculatum were investigated. In vitro cytotoxicity of the compounds were evaluated against HT-29, MCF-7 and HeLa cancer cell lines using the methyl thiazolyl ...

  16. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging.

    Science.gov (United States)

    Soenen, Stefaan J; Manshian, Bella B; Aubert, Tangi; Himmelreich, Uwe; Demeester, Jo; De Smedt, Stefaan C; Hens, Zeger; Braeckmans, Kevin

    2014-06-16

    The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. In order to overcome this problem, several strategies have been tested, such as the generation of cadmium-free QDots. In the present study, two types of cadmium-free QDots, composed of ZnSe/ZnS (QDotZnSe) and InP/ZnS (QDotInP), were studied with respect to their cytotoxicity and cellular uptake in a variety of cell types. A multiparametric cytotoxicity approach is used, where the QDots are studied with respect to cell viability, oxidative stress, cell morphology, stem cell differentiation, and neurite outgrowth. The data reveal slight differences in uptake levels for both types of QDots (maximal for QDotZnSe), but clear differences in cytotoxicity and cell functionality effects exist, with highest toxicity for QDotZnSe. Differences between cell types and between both types of QDots can be explained by the intrinsic sensitivity of certain cell types and chemical composition of the QDots. At concentrations at which no toxic effects can be observed, the functionality of the QDots for fluorescence cell visualization is evaluated, revealing that the higher brightness of QDotZnSe overcomes most of the toxicity issues compared to that of QDotInP. Comparing the results obtained with common Cd2+-containing QDots tested under identical conditions, the importance of particle functionality is demonstrated, revealing that cadmium-free QDots tested in this study are not significantly better than Cd2+-containing QDots for long-term cell imaging and that more work needs to be performed in optimizing the brightness and surface chemistry of cadmium-free QDots for them to replace currently used Cd2+-containing QDots.

  17. CYTOTOXICITY AND MUTAGENESIS METHODS FOR EVALUATING TOXICITY REMOVAL FROM WASTEWATERS

    Science.gov (United States)

    This project was a feasibility study of the effectiveness of a mammalian cell cytotoxicity assay and a mammalian cell mutagenesis assay for monitoring the toxicity and mutagenicity of influent and effluent wastewater at treatment plants. In the cytotoxicity assay, ambient samples...

  18. RELATIONS BETWEEN INVITRO CYTOTOXICITY AND CROSS-LINKED DERMAL SHEEP COLLAGENS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    Collagen-based biomaterials have found various applications in the biomedical field. However, collagen-based biomaterials may induce cytotoxic effects. This study evaluated possible cytotoxic effects of (crosslinked) dermal sheep collagen (DSC) using a 7-d-methylcellulose cell culture with human

  19. Analysis of the Effects of Cell Stress and Cytotoxicity on In ...

    Science.gov (United States)

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g

  20. Tumor specific cytotoxicity of arctigenin isolated from herbal plant Arctium lappa L.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Itokazu, Yukiyoshi; Nago, Mariko; Taira, Naoyuki; Saitoh, Seikoh; Oku, Hirosuke

    2012-10-01

    The effectiveness of cancer chemotherapy is often limited by the toxicity to other tissues in the body. Therefore, the identification of non-toxic chemotherapeutics from herbal medicines remains to be an attractive goal to advance cancer treatments. This study evaluated the cytotoxicity profiles of 364 herbal plant extracts, using various cancer and normal cell lines. The screening found occurrence of A549 (human lung adenocarcinoma) specific cytotoxicity in nine species of herbal plants, especially in the extract of Arctium lappa L. Moreover, purification of the selective cytotoxicity in the extract of Arctium lappa L. resulted in the identification of arctigenin as tumor specific agent that showed cytotoxicity to lung cancer (A549), liver cancer (HepG2) and stomach cancer (KATO III) cells, while no cytotoxicity to several normal cell lines. Arctigenin specifically inhibited the proliferation of cancer cells, which might consequently lead to the induction of apoptosis. In conclusion, this study found that arctigenin was one of cancer specific phytochemicals, and in part responsible for the tumor selective cytotoxicity of the herbal medicine.

  1. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  2. The in vitro effect of gefitinib ('Iressa' alone and in combination with cytotoxic chemotherapy on human solid tumours

    Directory of Open Access Journals (Sweden)

    Knight Louise A

    2004-11-01

    change observed. Conclusion The in vitro model suggests that gefitinib may have differential effects in response to concomitant cytotoxic chemotherapy with the agents tested during this study. The mechanism involved may relate to the effect of TKIs on growth rate versus their effect on the ability of the cell to survive the stimulus to apoptosis produced by chemotherapy.

  3. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  4. Tumor-Selective Cytotoxicity of Nitidine Results from Its Rapid Accumulation into Mitochondria

    Directory of Open Access Journals (Sweden)

    Hironori Iwasaki

    2017-01-01

    Full Text Available We identified a nitidine- (NTD- accumulating organelle and evaluated the net cytotoxicity of accumulated NTD. To evaluate tumor cell selectivity of the drug, we evaluated its selective cytotoxicity against 39 human cancer cell lines (JFCR39 panel, and the profile was compared with those of known anticancer drugs. Organelle specificity of NTD was visualized using organelle-targeted fluorescent proteins. Real-time analysis of cell growth, proliferation, and cytotoxicity was performed using the xCELLigence system. Selectivity of NTD in the JFCR39 panel was evaluated. Mitochondria-specific accumulation of NTD was observed. Real-time cytotoxicity analysis suggested that the mechanism of NTD-induced cell death is independent of the cell cycle. Short-term treatment indicated that this cytotoxicity only resulted from the accumulation of NTD into the mitochondria. The results from the JFCR39 panel indicated that NTD-mediated cytotoxicity resulted from unique mechanisms compared with those of other known anticancer drugs. These results suggested that the cytotoxicity of NTD is only induced by its accumulation in mitochondria. The drug triggered mitochondrial dysfunction in less than 2 h. Similarity analysis of the selectivity of NTD in 39 tumor cell lines strongly supported the unique tumor cell specificity of NTD. Thus, these features indicate that NTD may be a promising antitumor drug for new combination chemotherapies.

  5. Stimulatory effect of undecylenic acid on mouse osteoblast differentiation.

    Science.gov (United States)

    Kim, Myung Hee; Shim, Ki Shuk; Lee, Su-Ui; Kim, Young Sup; Min, Yong Ki; Kim, Seong Hwan

    2010-04-01

    Natural compounds with bone-forming (or anabolic) activity have been recently focused on in bone research. The present study investigated the effect of undecylenic acid (UA) on osteoblast differentiation in mouse osteoblastic MC3T3-E1 subclone 4 cells and primary mouse calvarial cells. Low concentrations of UA (up to 5 microM) exhibited no cytotoxicity and significantly increased the expression and activity of alkaline phosphatase (early differentiation marker of osteoblast) and calcium deposition with the induction of expression of the osteocalcin gene in both cells. Interestingly, at low concentration of UA, the induction of NF-kappaB p65 translocation into nucleus and the up-regulation of AP-1 and NFATc1 transcript levels were also observed, suggesting that the stimulatory effect of UA on osteoblast differentiation could be mediated through the activation of transcription factors. Additionally, although the patterns of UA-induced activation of MAP kinases (JNK and p38) were not completely consistent with the increase of both ALP activity and calcium deposition by UA, MAP kinases might be partially involved in the biological function of UA during the early and late stages of osteoblast differentiation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  6. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  7. Supplementary Material for: Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.; Contreras, Maria F.; Vidal, Enrique Vilanova; Felix Servin, Laura P.; Margineanu, Michael B.; Luongo, Giovanni; Porter, Alexandra E.; Dunlop, Iain E.; Ravasi, Timothy; Kosel, Jü rgen

    2016-01-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis, and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage, and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 μm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  8. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  9. Effect of Light Irradiation and Sex Hormones on Jurkat T Cells: 17β-Estradiol but Not Testosterone Enhances UVA-Induced Cytotoxicity in Jurkat Lymphocytes

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2005-04-01

    Full Text Available In Eastern cultures, such as India, it is traditionally recommended that women but not men cover their heads while working in the scorching sun. The purpose of this pilot study was to determine whether there was any scientific basis for this cultural tradition. We examined the differential cytotoxic effects of ultraviolet A light (UVA on an established T cell line treated with female and male sex hormones. CD4+ Jurkat T cells were plated in 96 well plates at 2 x 106 cells/ml and treated with 17β-estradiol (EST or testosterone (TE. These cells were irradiated by UVA light with an irradiance of 170 J/cm2 for 15min at a distance of 6 cm from the surface of the 96-well plate. Controls included cells not treated with hormones or UVA. The effects of EST and TE were investigated between 1 and 20 ng/mL. Cytotoxicity by fluorescein-diacetate staining and COMET assay generating single strand DNA cleavage, tail length and tail moment measurements were examined. The effect of estrogen (5ng/mL on apoptosis and its mediators was further studied using DNA laddering and western blotting for bcl-2 and p53. We found that EST alone, without UVA, enhanced Jurkat T cell survival. However, EST exhibited a dose-related cytotoxicity in the presence of UVA; up to 28% at 20 ng/ml. TE did not alter UVA-induced cytotoxicity. Since TE did not alter cell viability in the presence of UVA further damaging studies were not performed. COMET assay demonstrated the harmful effects of EST in the presence of UVA while EST without UVA had no significant effect on the nuclear damage. Apoptosis was not present as indicated by the absence of DNA laddering on agarose gel electrophoresis at 5ng/ml EST or TE ± UVA. Western blot showed that estrogen down regulated bcl-2 independently of UVA radiation while p53 was down regulated in the presence of UVA treatment. EST and TE have differential effects on UVA-induced cytotoxicity in Jurkat T-lymphocyte which suggested that women

  10. Cytotoxicity of an 125I-labelled DNA ligand

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [ 125 I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125 I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125 I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  11. Cytotoxic CD4 T Cells—Friend or Foe during Viral Infection?

    Science.gov (United States)

    Juno, Jennifer A.; van Bockel, David; Kent, Stephen J.; Kelleher, Anthony D.; Zaunders, John J.; Munier, C. Mee Ling

    2017-01-01

    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections. PMID:28167943

  12. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    International Nuclear Information System (INIS)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee; Jun, Do Youn; Kim, Young Ho

    2010-01-01

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC 50 values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively

  13. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of); Jun, Do Youn; Kim, Young Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2010-04-15

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC{sub 50} values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively.

  14. Cytotoxicity of p-chloroamphetamine in dimethylhydrazine-induced carcinomata of rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1979-01-01

    Previous studies have shown that several serotonin-related compounds are cytotoxic to dimethylhydrazine-induced carcinomata of the colon of rat. This paper reports the cytotoxicity of another serotonin-related compound, p-chloroamphetamine.

  15. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis.

    Directory of Open Access Journals (Sweden)

    G Hodge

    Full Text Available Bronchiectasis (BE in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin and inflammatory (IFNγ and TNFα mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.

  16. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  17. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  18. Comparative cytotoxicity of periodontal bacteria

    International Nuclear Information System (INIS)

    Stevens, R.H.; Hammond, B.F.

    1988-01-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species

  19. PHA-induced cytotoxicity of human lymphocytes against adherent hela-cells

    NARCIS (Netherlands)

    Huges-Law, G.; de Gast, G. C.; The, T. Hauw

    The conditions for a phytohaemagglutinin(PHA)-induced cytotoxicity test of human peripheral blood lymphocytes were investigated. [3H]thymidine prelabelled HeLa cells were used as target cells. Stimulation with 10 μl PHA/ml during 24 h gave the best measure of lymphocyte cytotoxic capacity.

  20. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Gowda, Aruna; Ramanunni, Asha; Cheney, Carolyn; Rozewski, Darlene; Kindsvogel, Wayne; Lehman, Amy; Jarjoura, David; Caligiuri, Michael; Byrd, John C; Muthusamy, Natarajan

    2010-01-01

    CD4(+) CD25(+) regulatory T cells are expanded in solid and hematological malignancies including chronic lymphocytic leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin (IL)-21 on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory T cell (Treg) induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4(+)CD25(High) regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory T cells or induced expression of Foxp3 in CD4(+)CD25(Intermediate) or CD4(+)CD25(Dim/-) T cells in whole blood derived from CLL patients. Interestingly, in contrast to their differential effects on expansion of the CD4(+)CD25(+)Foxp3(+)T cells, IL-2 and IL-21 exhibited a redundant role in Treg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.

  1. Cytotoxicity of Phenol Red in Toxicity Assays for Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2012-09-01

    Full Text Available To explore the novel properties of carbon nanoparticles (CNPs in nanotoxicity assays, the adsorption of phenol red (a pH indicator for culture medium by multi-walled carbon nanotubes (MWNTs and three kinds of carbon blacks (CBs with nanosize, and its effects on cytotoxicity were studied. Results indicated that the phenol red adsorbed and delivered into cells by CBs was responsible for the toxicity to Hela cells in the medium without serum. The cellular uptake of phenol red was verified using 125I-labeling techniques. The size-dependent cytotoxicity of CBs was found to closely correlate to adsorption of phenol red, cellular uptake of phenol red-CB complexes and the amount of phenol red delivered into the cells by CBs. Although the CBs were either nontoxic or slightly toxic, as vehicles of phenol red, they played an essential role in the cytotoxicity induced by phenol red. However, MWNTs showed an intrinsic cytotoxicity independent of phenol red. The implications associated with these findings are discussed.

  2. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    Science.gov (United States)

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  3. Cytotoxic active constituents of essential oils of Curcuma longa and Curcuma zanthorrhiza.

    Science.gov (United States)

    Schmidt, Erich; Ryabchenko, Boris; Wanner, Juergen; Jäger, Walter; Jirovetz, Leopold

    2015-01-01

    The polar and apolar fractions of Curcuma longa and C. zanthorriza enriched by ar-turmerone, ar-curcumene and xanthorrizol were screened for cytotoxic activity against the HeLa cell line. Actinomycin D and curcumin were used as reference samples, both known for their cytotoxic properties. Amongst all fractions tested, the xanthorrizol fraction (CC50: 26.1 ± 1.9 μM) showed the strongest cytotoxic properties similar to those of curcumin (CC50: 8.1 ± 1.7 μM). Further studies also revealed that the cytotoxic effects of the extracts and pure compounds are caused by apoptosis induction identified by the cleaved form of PARP protein.

  4. IgM-mediated opsonization and cytotoxicity in the shark.

    Science.gov (United States)

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  5. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo

    NARCIS (Netherlands)

    Moschetta, A.; vanBerge-Henegouwen, G. P.; Portincasa, P.; Renooij, W. L.; Groen, A. K.; van Erpecum, K. J.

    2001-01-01

    The hepatocyte canalicular membrane outer leaflet contains both phosphatidylcholine (PC) and sphingomyelin (SM). Normally, PC is the exclusive phospholipid in bile. We examined effects of bile salt hydrophobicity on cytotoxicity and on differential SM and PC distribution between detergent-resistant

  6. Evaluation of the Cytotoxic Effects of CAM Therapies: An In Vitro Study in Normal Kidney Cell Lines

    Directory of Open Access Journals (Sweden)

    Shagun Arora

    2014-01-01

    Full Text Available The purpose of this current study was to justify the incorporation of complementary and alternate medicine (CAM in current cancer treatments. The major drawback of anticancer drugs is their nonselective killing, which ultimately leads to attrition of normal cells. Keeping this as the foundation of our study, we made an effort to compare the cytotoxicity associated with a known chemotherapeutic drug 5-Fluorouracil (5-FU, with certain CAM therapies previously reported to have anticancer activity. The parameters chosen for the study were based on antiproliferative and cytotoxic effects on normal, kidney epithelial cells (NRK-52E. The MTT assay, colony formation assay, DNA fragmentation, and differential staining using AO/EB, following treatment with either 5-FU or CAM therapies, were performed. The CAM therapies under study were various extracts of wheatgrass, roots of Achyranthes aspera (AA, mushroom extracts (Pleurotus ostreatus, Macrolepiota procera, and Auricularia polytricha, and a homeopathic drug, Ruta graveolens (Ruta. The results showed that treatment of normal cells with the CAM therapies led to minimum cell damage in comparison to 5-FU. This evidence-based study will lead to greater acceptance of alternative therapies against cancer.

  7. Cystatin F as a regulator of immune cell cytotoxicity.

    Science.gov (United States)

    Kos, Janko; Nanut, Milica Perišić; Prunk, Mateja; Sabotič, Jerica; Dautović, Esmeralda; Jewett, Anahid

    2018-05-10

    Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

  8. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    Science.gov (United States)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  9. Antimicrobial and cytotoxic potentials of Buddleja polystachya extracts

    Directory of Open Access Journals (Sweden)

    Ghada Ahmed Fawzy

    2013-06-01

    Full Text Available Most of the species of Buddleja have found applications in folk medicine. This study aimed to evaluate the in vitro antimicrobial and cytotoxic potentials of B. polystachya extracts. Four extracts were prepared A-D (dichloromethane, ethyl acetate, n-butanol, and aqueous extracts, respectively. The antimicrobial activity was evaluated using the broth micro-dilution assay for minimum inhibitory concentrations (MIC. The crystal violet staining method (CVS was used for the evaluation of the cytotoxic activity on HepG-2, MCF-7 and HCT-116 human cell lines. Results showed that the highest antimicrobial activity was given by the ethyl acetate extract followed by the dichloromethane extract, while the n-butanol revealed moderate activity against gram positive bacteria only with no activity against the rest of tested microorganisms. The aqueous extract was totally ineffective against all tested microorganisms at 20 mg/ml. Among the four extracts tested, dichloromethane and ethyl acetate extracts showed the highest cytotoxic activity on all three human cell lines.

  10. Cytotoxicity of arctigenin and matairesinol against the T-cell lymphoma cell line CCRF-CEM.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-09-01

    Arctigenin and matairesinol possess a diversity of bioactivities. Here we investigated the cytotoxicity of arctigenin and matairesinol against a T-cell lymphoma cell line CCRF-CEM and the underlying mechanisms that have not been explored before. The cytotoxic activity was investigated using MTT assay. The cell cycle arrest and reactive oxygen species (ROS) accumulation were determined by flow cytometric analysis. The apoptosis induction was assessed using Annexin V/Propidium Iodide assay. The gene quantification analysis was measured through real-time polymerase chain reaction. Arctigenin and matairesinol exhibited significant antiproliferative activity against CCRF-CEM cells after 72 h treatment with IC50 values of 1.21 ± 0.15 μm and 4.27 ± 0.41 μm, respectively. In addition, both lignans arrest CCRF-CEM cells in the S phase. Furthermore, they could induce apoptosis in CCRF-CEM cells in a concentration- and time-dependent manner. Interestingly, the lignans differentially regulated the expression of several key genes involved in apoptosis pathways, including Bax, Bad and caspase-9. Moreover, both lignans could increase ROS levels in CCRF-CEM cells. Our study provides an insight into the potential of arctigenin and matairesinol as good candidates for the development of novel agents against T-cell lymphoma. © 2015 Royal Pharmaceutical Society.

  11. Toxicity of jet fuel aliphatic and aromatic hydrocarbon mixtures on human epidermal Keratinocytes: evaluation based on in vitro cytotoxicity and interleukin-8 release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen-Hung (Chung-Shan Medical University Hospital, Department of Dermatology, Taichung, Taiwan, R.O.C); Lee, Chia-Hue; Tsang, Chau-Loong [National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan); Monteiro-Riviere, Nancy A.; Riviere, Jim E. [North Carolina State University, Center for Chemical Toxicology Research and Pharmacokinetics (CCTRP), Raleigh, NC (United States); Chou, Chi-Chung [National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan); National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan)

    2006-08-15

    Jet fuels are complex mixtures of aliphatic (ALI) and aromatic (ARO) hydrocarbons that vary significantly in individual cytotoxicity and proinflammatory activity in human epidermal keratinocytes (HEK). In order to delineate the toxicological interactions among individual hydrocarbons in a mixture and their contributions to cutaneous toxicity, nine ALI and five ARO hydrocarbons were each divided into five (high/medium/low cytotoxic and strong/weak IL-8 induction) groups and intra/inter-mixed to assess for their mixture effects on HEK mortality and IL-8 release. Addition of single hydrocarbon to JP-8 fuel was also evaluated for their changes in fuel dermatotoxicity. The results indicated that when hydrocarbons were mixed, HEK mortality and IL-8 release were not all predictable by their individual ability affecting these two parameters. The lowest HEK mortality (7%) and the highest IL-8 production were induced with mixtures including high cytotoxic and weak IL-8 inductive ARO hydrocarbons. Antagonistic reactions not consistently correlated with ALI carbon chain length and ARO structure were evident and carried different weight in the overall mixture toxicities. Single addition of benzene, toluene, xylene or ethylbenzene for up to tenfold in JP-8 did not increase HEK mortality while single addition of ALI hydrocarbons exhibited dose-related differential response in IL-8. In an all ALI environment, no single hydrocarbon is the dominating factor in the determination of HEK cytotoxicity while deletion of hexadecane resulted in a 2.5-fold increase in IL-8 production. Overall, decane, undecane and dodecane were the major hydrocarbons associated with high cytotoxicity while tetradecane, pentadecane and hexadecane were those which had the greatest buffering effect attenuating dermatotoxicity. The mixture effects must be considered when evaluating jet fuel toxicity to HEK. (orig.)

  12. Response rate of fibrosarcoma cells to cytotoxic drugs on the expression level correlates to the therapeutic response rate of fibrosarcomas and is mediated by regulation of apoptotic pathways

    International Nuclear Information System (INIS)

    Lehnhardt, Marcus; Mueller, Oliver; Klein-Hitpass, Ludger; Kuhnen, Cornelius; Homann, Heinz Herbert; Daigeler, Adrien; Steinau, Hans Ulrich; Roehrs, Sonja; Schnoor, Laura; Steinstraesser, Lars

    2005-01-01

    Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a fibrosarcoma cell line to clinically used cytostatic agents on the level of gene expression. HT1080 fibrosarcoma cells were exposed to the chemotherapeutic agents doxorubicin, actinomycin D or vincristine. Total RNA was isolated and the gene expression patterns were analyzed by microarray analysis. Expression levels for 46 selected candidate genes were validated by quantitative real-time PCR. The analysis of the microarray data resulted in 3.309 (actinomycin D), 1.019 (doxorubicin) and 134 (vincristine) probesets that showed significant expression changes. For the RNA synthesis blocker actinomycin D, 99.4% of all differentially expressed probesets were under-represented. In comparison, probesets down-regulated by doxorubicin comprised only 37.4% of all genes effected by this agent. Closer analysis of the differentially regulated genes revealed that doxorubicin induced cell death of HT1080 fibrosarcoma cells mainly by regulating the abundance of factors mediating the mitochondrial (intrinsic) apoptosis pathway. Furthermore doxorubicin influences other pathways and crosstalk to other pathways (including to the death receptor pathway) at multiple levels. We found increased levels of cytochrome c, APAF-1 and members of the STAT-family (STAT1, STAT3), while Bcl-2 expression was decreased. Caspase-1, -3, -6, -8, and -9 were increased indicating that these proteases are key factors in the execution of doxorubicin mediated apoptosis. This study demonstrates that chemotherapy regulates the expression of apoptosis-related factors in fibrosarcoma cells. The number and the specific pattern of the genes depend on the used cytotoxic drug

  13. Cytotoxic and phytotoxic actions of Heliotropium strigosum.

    Science.gov (United States)

    Shah, Syed Majid; Hussain, Sajid; Khan, Arif-Ullah; Shah, Azhar-Ul-Haq Ali; Khan, Haroon; Ullah, Farhat; Barkatullah

    2015-05-01

    This study describes the cytotoxic and phytotoxic activities of the crude extract of Heliotropium strigosum and its resultant fractions. In brine shrimp toxicology assays, profound cytotoxicity was displayed by ethyl acetate (LD50 8.3 μg/ml) and chloroform (LD50 8.8 μg/ml) fractions, followed by relatively weak crude methanolic extract of H. strigosum (LD50 909 μg/ml) and n-hexane fraction (LD50 1000 μg/ml). In case of phytotoxicity activity against Lemna acquinoctialis, highest phytotoxic effect was showed by ethyl acetate fraction (LD50 91.0 μg/ml), while chloroform fraction, plant crude extract and n-hexane, respectively, caused 50%, 30.76 ± 1.1% and 30.7 ± 1.1% inhibitory action at maximum concentration used, that is, 1000 μg/ml. These data indicates that H. strigosum exhibits cytotoxic and phytotoxic potential, which explore its use as anticancer and herbicidal medicine. The ethyl acetate and chloroform fractions were more potent for the evaluated toxicity effects, thus recommended for isolation and identification of the active compounds. © The Author(s) 2012.

  14. Cytotoxic constituents of Soymida febrifuga from Myanmar.

    Science.gov (United States)

    Awale, Suresh; Miyamoto, Tatsuya; Linn, Thein Zaw; Li, Feng; Win, Nwet Nwet; Tezuka, Yasuhiro; Esumi, Hiroyasu; Kadota, Shigetoshi

    2009-09-01

    The 70% ethanol extract of Soymida febrifuga was found to kill PANC-1 human pancreatic cancer cells preferentially under nutrition-deprived conditions at a concentration of 10 microg/mL. Phytochemical investigation led to the isolation of 27 compounds including four new compounds [(3R)-6,4'-dihydroxy-8-methoxyhomoisoflavan (1), (2R)-7,4'-dihydroxy-5-methoxy-8-methylflavan (2), 7-hydroxy-6-methoxy-3-(4'-hydroxybenzyl)coumarin (3), and 6-hydroxy-7-methoxy-3-(4'-hydroxybenzyl)coumarin (4)]. 2',4'-Dihydroxychalcone (8) displayed the most potent preferential cytotoxicity (PC(50) 19.0 microM) against PANC-1 cells. In addition, the cytotoxic activity against colon 26-L5 carcinoma (colon 26-L5), B16-BL6 melanoma (B16-BL6), lung A549 adenocarcinoma (A549), cervix HeLa adenocarcinoma (HeLa), and HT-1080 fibrosarcoma (HT-1080) cell lines and their structure-activity relationship are discussed. The cytotoxic activity of 4'-hydroxy-3,5-dimethoxystilbene (6) against colon 26-L5 (IC(50) 2.96 microM) was found to be stronger than the positive control, doxorubicin, at IC(50) 3.12 microM.

  15. Metabolic and physiologic studies of nonimmune lymphoid cells cytotoxic for fibroblastic cells in vitro

    International Nuclear Information System (INIS)

    Mayhew, E.; Bennett, M.

    1974-01-01

    An in vitro reaction between mouse lymphoid cells and target fibroblastic cells in wells of microtest plates, which appears to simulate the in vivo rejection of hemopoietic allografts, has been analyzed for metabolic and physiologic requirements. Protein synthesis was required for only the first few hours of culture. Inhibition of RNA synthesis and alteration of cell surface charge with various agents were without obvious effects. Metabolic slowing at 4 0 C or deviation of the pH of the culture medium suppressed the reaction. Thymus cells, which are not cytotoxic in this system, significantly but not completely inhibited the cytotoxicity of lymph node cells. Antiserum directed against target cells specifically protected them from the cytotoxic lymphoid cells in the absence of complement. Precursors of cytotoxic lymphoid cells were radiosensitive, unlike the cytotoxic cells themselves. BALB/c anti-C57BL/6 spleen cell serum and 89 Sr both are able to prevent rejection of marrow allografts in vivo. Lymphoid cells incubated with this antiserum plus complement lost much of their cytotoxicity but were still effective at high ratios of aggressor to target cells. Lymphoid cells of mice treated with 89 Sr were effectively cytotoxic but lost practically all of their cytotoxicity after incubation with the antiserum plus complement. Thus, it appears that this reaction detects two different cytotoxic lymphoid cells, either of which can function in vitro. Both cell types may need to cooperate in vivo during marrow allograft rejections

  16. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp.

    Science.gov (United States)

    Basholli-Salihu, Mimoza; Schuster, Roswitha; Hajdari, Avni; Mulla, Dafina; Viernstein, Helmut; Mustafa, Behxhet; Mueller, Monika

    2017-12-01

    Inflammation and cell differentiation lead to a number of severe diseases. In the recent years, various studies focused on the anti-inflammatory and anticancer activity of essential oils (EOs) of numerous plants, including different Pinus species. The phytochemical composition, anti-inflammatory and cytotoxic activity of EOs from needles and twigs of Pinus heldreichii Christ (Pinaceae) and P. peuce Griseb., and from needles, twigs and cones of P. mugo Turra were determined. For separation and identification of the EOs, gas chromatography/flame ion detector (GC/FID) and GC/mass spectrometry were performed. The amount of secreted IL-6 in a lipopolysaccharide (LPS)-stimulated macrophage model was quantified (concentration of oils: 0.0001-0.2%, 3 h incubation). Cytotoxicity on the cancer cell lines HeLa, CaCo-2 and MCF-7 were determined using a MTT (Thiazolyl Blue Tetrazolium Bromide) assay (concentration of oils: 0.001-0.1%, 24 h incubation). The most prominent members in the oils include: δ-3-carene, α-pinene and linalool-acetate (P. mugo); α-pinene, β-phellandrene and β-pinene (P. peuce); limonene, α-pinene and (E)-caryophyllene (P. heldreichii). EOs showed significant cytotoxic effects on cancer cell lines (IC 50 0.007 to >0.1%), with a reduction in cell viability with up to 90% at a concentration of 0.1%, and anti-inflammatory activity (IC 50 0.0008-0.02%) with a reduction of IL-6 secretion with up to 60% at a concentration of 0.01%. The EOs of needles and twigs from P. peuce and P. heldreichii as well as of needles, twigs and cones of P. mugo can be considered as promising agents for anticancer and anti-inflammatory drugs.

  17. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-01-01

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF. PMID:29507676

  18. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-02-06

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.

  19. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    Directory of Open Access Journals (Sweden)

    Baek NH

    2016-07-01

    Full Text Available NamHuk Baek,1,* Ok Won Seo,1,* Jaehwa Lee,1 John Hulme,2 Seong Soo A An2 1Department of Research and Development, NanoEntek Inc., Seoul, 2Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea *These authors contributed equally to this work Abstract: Three-dimensional (3D cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II or CDDP, on adenosine triphosphate (ATP generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145, testis (F9, embryonic fibroblast (NIH-3T3, muscle (C2C12, embryonic kidney (293T, neuroblastoma (SH-SY5Y, adenocarcinomic alveolar basal epithelial cell (A549, cervical cancer (HeLa, HeLa contaminant (HEp2, pituitary epithelial-like cell (GH3, embryonic cell (PA317, and osteosarcoma (U-2OS cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 µM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be

  20. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Regarding the traditional utilization of Sambucus ebulus, Iranian native botany and its active ingredients (e.g. ebulitin and ebulin 1), cytotoxicity of ethyl acetate ... cytotoxic agent on liver and colon cancer cells and suggest that vitamins C and E may protect normal cells, when SEE were used in cancer therapy in future.

  1. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Madhurima Sarkar

    Full Text Available Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP, a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.

  2. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  3. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  4. Cytotoxicity detection of poly(lactic-co-glycolic acid/tricalcium phosphate

    Directory of Open Access Journals (Sweden)

    Meng SUN

    2011-12-01

    Full Text Available Objective To detecte the cytotoxicity of the PLGA/TCP(poly(lactic-co-glycolic acid/Tricalcium phosphate composite that based on the precedent experiments conducted in Tsinghua University.Methods Compared with the PLGA scaffold material,observated the surface and interior structure of the PLGA/TCP scaffold material by SEM(scanning electron microscope,the surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.And which selected rat L929 cell strain,and detected the cytotoxicity of the PLGA/TCP composite in vitro by MTT method.Results The surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.On rat L929 cell strain,used MTT Method to detect the cytotoxicity of the composite PLGA/ TCP in vitro,the result showed that the cytotoxicity of the PLGA/TCP composite was level I,according to the criterion,it can be considered as non cytotoxic.Conclusion This research has proved that the PLGA/TCP compound scaffold material has a more homogeneous structure,with the vesicular interior and the structure of PLGA/TCP composite is similar to natural bone trabecula,PLGA/TCP is non cytotoxicity,which satisfy the basic requirement of biological material application and provides a good experimental foundation for repairing autologous bone defect in the near future.

  5. CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    OpenAIRE

    Malchiodi-Albedi, Fiorella; Paradisi, Silvia; Di Nottia, Michela; Simone, Daiana; Travaglione, Sara; Falzano, Loredana; Guidotti, Marco; Frank, Claudio; Cutarelli, Alessandro; Fabbri, Alessia; Fiorentini, Carla

    2012-01-01

    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are stri...

  6. Identification of a cytotoxic molecule in heat-modified citrus pectin.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cambier, Pierre; El Bkassiny, Sandy; Tikad, Abdellatif; Dieu, Marc; Vincent, Stéphane P; Van Cutsem, Pierre; Michiels, Carine

    2016-02-10

    Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Gohari

    2015-06-01

    Full Text Available Inula aucheriana DC is a member of the family Asteraceae which is known to produce cytotoxic secondary metabolites noted as sesquiterpene lactones. In the present study, sesquiterpene lactones inuchinenolide B, 6-deoxychamissonolide (stevin and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were isolated from I. aucheriana. Inuchinenolide B and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were further evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay to demonstrate cytotoxic activity with IC50 values of (56.6, 19.0, (39.0, 11.8, and (55.7, 15.3 μg/mL against HepG-2, MCF-7 and A-549 cells, respectively. The cytotoxic activity of the two evaluated sesquiterpene lactones partly explains the cytotoxic activity that was previously observed for the extracts of Inula aucheriana. The isolated compounds could be further investigated in cancer research studies.

  8. Iodine-125-labelled tamoxifen is differentially cytoxic to cells containing oestrogen receptors

    International Nuclear Information System (INIS)

    Bloomer, W.D.; McLaughlin, W.H.; Weichselbaum, R.R.

    1980-01-01

    Tamoxifen, a non-steroidal anti-oestrogen competes with 17 - oestradiol for oestrogen receptor protein and is translocated to the nucleus. Carrier-free 125 I-TAM was tested for cytotoxicity in oestrogen receptor rich (human breast cancer MCF-7) and poor (V-79 Chinese hamster) cells. 125 I-TAM was differentially cytotoxic to MCF-7 cells. The D 37 values for MCF-7 and V-79 cells were 0.5 and 1.5 pCi/cell respectively. No radiotoxicity was observed with Na 125 I at doses equal to 125 I-TAM; iodide was effectively excluded from both cell lines and remained in the extracellular space. Also, nonradioactive 127 I-TAM and TAM were both non-toxic when tested at levels comparable to 125 I-TAM. It is suggested that the marked cytotoxicity in MCF-7 cells results from close approximation of 125 I with the genetic apparatus as a result of direct charging of specific nuclear receptors and/or translocation of 125 I-TAM receptor complexes from the cytoplasm to the nucleus, and that the minimal toxicity in V-79 cells reflects transmitted cytoplasmic radiation effects, limited direct nuclear charging and/or limited nuclear translocation resulting from the relative paucity of oestrogen in the cells. (U.K.)

  9. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance

    International Nuclear Information System (INIS)

    Kandasamy, Karthikeyan; Kim, Sanghyo; Choi, Cheol Soo

    2010-01-01

    In the emerging nanotechnology field, there is an urgent need for the development of a significant and sensitive method that can be used to analyse and compare the cytotoxicities of nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs), since such materials can be applied as contrast agents or drug delivery carriers. The bioimpedance system possesses great potential in many medical research fields including nanotechnology. Electric cell-substrate impedance sensing (ECIS) is a particular bioimpedance system that offers a real-time, non-invasive, and quantitative measurement method for the cytotoxicity of various materials. The present work compared the cytotoxicity of AuNPs to that of purchased single-walled carbon nanotubes (SWCNTs). The size-controlled and monodispersed AuNPs were synthesized under autoclaved conditions and reduced by ascorbic acid (AA) whereas the purchased SWCNTs were used without any surface modifications. Bioimpedance results were validated by conventional WST-1 and trypan blue assays, and transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) were performed to examine nanomaterials inside the VERO cells. This research evaluates the ability of the ECIS system compared to those of conventional methods in analyzing the cytotoxicity of AuNPs and SWCNTs with higher sensitivity under real-time conditions.

  10. Antiviral and cytotoxic activities of some Indonesian plants.

    Science.gov (United States)

    Lohézic-Le Dévéhat, F; Bakhtiar, A; Bézivin, C; Amoros, M; Boustie, J

    2002-08-01

    Ten methanolic extracts from eight Indonesian medicinal plants were phytochemically screened and evaluated for antiviral (HSV-1 and Poliovirus) and cytotoxic activities on murine and human cancer lines (3LL, L1210, K562, U251, DU145, MCF-7). Besides Melastoma malabathricum (Melastomataceae), the Indonesian Loranthaceae species among which Elytranthe tubaeflora, E. maingayi, E. globosa and Scurrula ferruginea exhibited attractive antiviral and cytotoxic activities. Piper aduncum (Piperaceae) was found active on Poliovirus. S. ferruginea was selected for further studies because of its activity on the U251 glioblastoma cells.

  11. Inhibitory effects of various oxygenated sterols on the differentiation and function of tumor-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Spangrude, G.J.; Sherris, D.; Daynes, R.A.

    1982-01-01

    Irradiation of skin with ultraviolet light (UVL) is capable of causing many biological and biochemical changes in this complex organ. One early consequence is the oxidation of epidermal plasma membrane cholesterol, causing the induction of a wide variety of photoproducts. It is well recognized that some oxygenated sterols possess potent biological activity on mammalian cells by their ability to inhibit endogeneous mevalonate and cholesterol biosynthesis. In the few immunological systems that have been studied, there is general agreement that lymphocyte function is lacking, as both afferent and efferent blockades have been suggested. These studies were undertaken to determine the effect of various oxygenated sterols (representing a number of known cholesterol-derived photoproducts) on the generation (afferent) and function (efferent) of cytotoxic T lymphocytes (CTLs). Cell-mediated immune responses which result in the generation of both alloantigen-specific and syngeneic tumor-specific CTLs were evaluated

  12. Cytotoxicity of poly(p-phenylenediamine)

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Rejmontová, P.; Humpolíček, P.; Kašpárková, V.; Bober, Patrycja; Sáha, P.; Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 367-372 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cytotoxicity * poly(p-phenylenediamine) * mouse embryonic fibroblasts Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  13. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  14. Identification of differentially expressed genes in childhood asthma.

    Science.gov (United States)

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  15. Annona muricata leaves have strongest cytotoxic activity against breast cancer cells

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2014-12-01

    Full Text Available Background Plant-derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. Plants have been the basis of traditional medicine throughout the world for thousands of years and are providing mankind with new remedies. The objective of this study was to determine the cytotoxicity of soursop (Anona muricata Linn leaves and pearl grass (Hedyotis corymbosa (L. Lam. on the hormone-dependent human breast carcinoma Michigan Cancer Foundation-7 (MCF-7 cell line. Methods This study used two types of solvents (water and ethanol in the extraction process and two incubation times (24 hours and 48 hours in the MTT assays to analyze the cytotoxic effects of both plants. Results Preliminary results showed that the ethanolic extract of soursop leaves (SE displayed cytotoxic effects against MCF-7 on 24- and 48-hour incubation times with IC50 values of 88.788 ìg/ml and 14.678 mg/ml, respectively. Ethanolic pearl grass extract (PE showed similar results, with IC50 values of 65.011 mg/ml on 24-hour incubation time and 52.329 mg/ml on 48-hour incubation time against MCF-7 cell line. However, the water extract of both plants displayed lower cytotoxic effect against MCF-7 cell line. Conclusion The ethanolic extract of both plants displayed cytotoxic effect against MCF-7. Soursop (Anona muricata Linn leaves have the strongest cytotoxic activity against MCF-7 breast cancer cell line.

  16. Annona muricata leaves have strongest cytotoxic activity against breast cancer cells

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-12-01

    Full Text Available BACKGROUND Plant-derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. Plants have been the basis of traditional medicine throughout the world for thousands of years and are providing mankind with new remedies. The objective of this study was to determine the cytotoxicity of soursop (Anona muricata Linn leaves and pearl grass (Hedyotis corymbosa (L. Lam. on the hormone-dependent human breast carcinoma Michigan Cancer Foundation-7 (MCF-7 cell line. METHODS This study used two types of solvents (water and ethanol in the extraction process and two incubation times (24 hours and 48 hours in the MTT assays to analyze the cytotoxic effects of both plants. RESULTS Preliminary results showed that the ethanolic extract of soursop leaves (SE displayed cytotoxic effects against MCF-7 on 24- and 48-hour incubation times with IC50 values of 88.788 μg/ml and 14.678 μg/ml, respectively. Ethanolic pearl grass extract (PE showed similar results, with IC50 values of 65.011 μg/ ml on 24-hour incubation time and 52.329 μg/ml on 48-hour incubation time against MCF-7 cell line. However, the water extract of both plants displayed lower cytotoxic effect against MCF-7 cell line. CONCLUSION The ethanolic extract of both plants displayed cytotoxic effect against MCF-7. Soursop (Anona muricata Linn leaves have the strongest cytotoxic activity against MCF-7 breast cancer cell line.

  17. Flavonoids of Calligonum polygonoides and their cytotoxicity.

    Science.gov (United States)

    Ahmed, Hayam; Moawad, Abeer; Owis, Asmaa; AbouZid, Sameh; Ahmed, Osama

    2016-10-01

    Context Calligonum polygonoides L. subsp. comosum L' Hér. (Polygonaceae), locally known as "arta", is a slow-growing small leafless desert shrub. Objective Isolation, structure elucidation and evaluation of cytotoxic activity of flavonoids from C. polygonoides aerial parts. Materials and methods Flavonoids in the hydroalcoholic extract of the of C. polygonoides were isolated and purified using column chromatography and preparative HPLC. The structures of the isolated flavonoids were elucidated on the basis of spectroscopic data including 2D NMR techniques. The cytotoxic activity of the isolated flavonoids (6.25, 25, 50 and 100 μg/mL) was evaluated against liver HepG2 and breast MCF-7 cancer cell lines using sulphorhodamine-B assay. Results A new flavonoid, kaempferol-3-O-β-D-(6″-n-butyl glucuronide) (1), and 13 known flavonoids, quercetin 3-O-β-D-(6″-n-butyl glucuronide) (2), kaempferol-3-O-β-D-(6″-methyl glucuronide) (3), quercetin-3-O-β-D-(6″-methyl glucuronide) (4), quercetin-3-O-glucuronide (5), kaempferol-3-O-glucuronide (6), quercetin-3-O-α-rhamnopyranoside (7), astragalin (8), quercetin-3-O-glucopyranoside (9), taxifolin (10), (+)-catechin (11), dehydrodicatechin A (12), quercetin (13), and kaempferol (14), were isolated from the aerial parts of C. polygonoides. Quercetin showed significant cytotoxic activity against HepG2 and MCF-7 cell lines with IC50 values of 4.88 and 0.87 μg/mL, respectively. Structure-activity relationships were analyzed by comparing IC50 values of several pairs of flavonoids differing in one structural element. Discussion and conclusion The activity against breast cancer cell lines decreased by glycosylation at C-3. The presence of 2,3-double bond in ring C, carbonyl group at C-4 and 3',4'-dihydroxy substituents in ring B are essential structural requirements for the cytotoxic activity against breast cancer cells.

  18. Fulltext PDF

    Indian Academy of Sciences (India)

    Abstract. The fluorinated and non-fluorinated dibenzylidene-4-piperidones were ... the ability of hydrogen bond donors and acceptors for forming interactions, in general and competitive situ- ..... Lommerse J P M, Price S L and Taylor R 1997 J.

  19. Synthesis of 4-substituted tetrahydropyridines by cross-coupling of enol phosphates

    DEFF Research Database (Denmark)

    Larsen, U.S.; Martiny, L.; Begtrup, M.

    2005-01-01

    Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved....

  20. Activity-guided isolation of cytotoxic bis-bibenzyl constituents from Dumortiera hirsuta.

    Science.gov (United States)

    Toyota, Masao; Ikeda, Risa; Kenmoku, Hiromichi; Asakawa, Yoshinori

    2013-01-01

    Activity-guided fractionation of the ether extract of Dumortiera hirsute (Japanese liverwort), using cytotoxicity testing with cultured HL 60 and KB cells, resulted in the isolation of a new cytotoxic bis-bibenzyl compound, along with the two known bis-bibenzyls: isomarchantin C and isoriccardin C. The structural determination of the new bis-bibenzyl through extensive NMR spectral data indicated a derivative of marchantin A, which has been isolated from the liverwort Marchantia polymorpha. The cytotoxicity of the bis-bibenzyls was evaluated by the MTT (3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using cultured HL 60 and KB cells.

  1. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    Science.gov (United States)

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  2. In vitro cytotoxicity testing of Ubiquicidin 29-41-99mTc

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Dias, Luis Alberto Pereira; Higa, Olga Z.; Silva, Fabiana M. da; Vieira, Daniel P.; Passos, Priscila; Esteves-Pedro, Natalia M.

    2015-01-01

    The work carried out cytotoxicity tests using a radiopharmaceutical compound produced at IPEN/CNEN-SP to certify its safety through in vitro cytotoxicity tests. Since 2009, the Brazilian regulatory agency (ANVISA) requires that such tests have to be carried out following good laboratory practices (GLP) and in according to the OECD (Organisation for Economic Co-operation and Development) guidelines in order to certify its safety for medical use. Those guidelines comprises series of technical recommendations performed to assure quality of experiments. The study chose Ubiquicidin 29-41, an antimicrobial peptide used to discriminate bacterial infection foci from inflammatory sites. Amounts of UBI 29-41 were conjugated or not to 99m Tc and diluted to equivalent concentrations of 10, 100 and 1000% of the maximum dose (or activity) administered in adults. Possible cytotoxic effects were evaluated in comparison to untreated controls as well as positive and negative damage controls. Both full (radioactive) radiopharmaceuticals, as their precursors (only molecules without conjugation to isotopes) showed no significant cytotoxic effect (cytotoxicity ≤ 10%). The study was conducted for the first time in the country comprising preclinical testing of this radiopharmaceutical in accordance with internationally accepted quality parameters, ensuring the safety of its use and enabling inclusion in the pharmaceutical regulatory agenda. (author)

  3. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity.

    Science.gov (United States)

    Menezes, Camila Braz; Frasson, Amanda Piccoli; Meirelles, Lucia Collares; Tasca, Tiana

    2017-02-01

    Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand

    2005-10-01

    To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.

  5. Factors influencing the vaccinia-specific cytotoxic response of thymocytes from normal and chimeric mice

    International Nuclear Information System (INIS)

    Doherty, P.C.; Schwartz, D.H.; Bennink, J.R.; Korngold, R.

    1981-01-01

    Following adoptive transfer into irradiated recipients, thymocytes can be induced to respond strongly to vaccinia virus. High levels of cytotoxic T-lymphocyte (CTL) activity may be generated from thymus, but not from spleen, of 3-day-old mice. The capacity of thymocytes to differentiate into effector CTL tends to be lost with age. Some of this loss may reflect positive suppression: a single, low dose of cyclophosphamide allows the reemergence of responsiveness in at least one mouse strain. Thymocytes from [A leads to (A x B)F1] and [(A x B)F1 leads to A] chimeras show the response patterns that would by predicted from previous studies of lymph node and spleen cells. However, thymic function seems to be rapidly lost in the [A leads to (A x B)F1] Chimeras

  6. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-04-01

    Full Text Available Astaxanthin, a kind of photosynthetic pigment, was employed for gold nanoparticle formation. Nanoparticles were characterized using Ulteraviolet-Visible (UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction, and the possible presence of astaxanthin functional groups were analyzed by Fourier transform infrared spectroscopy (FTIR. The cytotoxic effect of synthesized nanoparticles was evaluated against MDA-MB-231 (human breast cancer cells using a tetrazolium-based assay, and synthesized nanoparticles exhibited dose-dependent toxicity. The morphology upon cell death was differentiated through fluorescent microscopy using different stains that predicted apoptosis. The synthesized nanoparticles were applied in ultrasound-coupled photoacoustic imaging to obtain good images of treated cells. Astaxanthin-reduced gold nanoparticle has the potential to act as a promising agent in the field of photo-based diagnosis and therapy.

  7. CYTOTOXIC AND ANTIOXIDANT ACTIVITY OF BUCKWHEAT HULL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Martina Danihelová

    2013-02-01

    Full Text Available Buckwheat contains many prophylactic compounds that are concentrated mainly in outer layers of buckwheat grain. The aim of this study was to prepare buckwheat hull extracts. Ten buckwheat cultivars were screened for their antioxidant and anticancer properties. Total polyphenol content was determined using Folin-Ciocalteau's reagent. Antioxidant activity was established by the method of binding free radical DPPH. Cytotoxic properties were measured on human cervical cancer cells HeLa using mitochondrial cytotoxic test (MTT. Total polyphenol content ranged from 166.67 to 635.31 mg GAE/100 g DW. The highest content displayed tartary buckwheat cultivar Madawaska (0.64% of hulls weight. Among common buckwheat the richest in polyphenols were cultivars Bamby and KASHO-2. The best free radical binding antioxidant activity was found for cultivars with highest polyphenol content. This relationship was not observed for cytotoxic action on human cervical cancer cells. The best growth inhibitory activity on HeLa cancer cells displayed common buckwheat cultivars Bamby and KASHO-2 (up to 50%, extract concentration 100 µg/ml. This was not found for tartary buckwheat cultivar Madawaska.

  8. Modification of the cytotoxic activity of mitomycin C

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1985-01-01

    Utilizing a system in which oxygen levels could be altered and monitored during acute drug exposures, the authors have begun to characterize the cellular and molecular damage produced by MMC in CHO cells. The cytotoxic activity of MMC decreases sharply from 0 to 0.1% oxygen in solution, while from 0.1 to 20.0% there is little change. DNA crosslinking in cells was examined under these conditions by alkaline elution and found to be directly correlated with cell killing. While hypoxia increased crosslinking, significant levels were still observed under aerobic conditions. A cell-free assay for alkylation confirmed that overall levels increase in the absence of oxygen; however, negligible alkylation was observed under aerobic conditions. It was also noted that ascorbic acid present in the exposure medium (0.284 mM) increased the aerobic cytotoxicity without altering the hypoxic cytotoxicity. The present data suggest that MMC can be activated to an alkylating species by two mechanisms, one oxygen sensitive and one oxygen insensitive and that these two mechanisms may be independently modified

  9. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Cortizo

    2016-01-01

    Full Text Available Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation. In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering.

  10. Preparation, characterization and cytotoxic evaluation of bovine serum albumin nanoparticles encapsulating 5-methylmellein: A secondary metabolite isolated from Xylaria psidii.

    Science.gov (United States)

    Arora, Divya; Kumar, Amit; Gupta, Prasoon; Chashoo, Gousia; Jaglan, Sundeep

    2017-12-01

    In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95 ± 4.44 nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26 ± 4.48% and 7.09 ± 0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl) Leaves

    International Nuclear Information System (INIS)

    Katrin, E.; Winarno, H.; Selvie

    2011-01-01

    Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC 50 ) value of 10.3 μg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC 50 value of 1.9 μg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC) spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1) on HPLC chromatograms decreased with increasing the

  12. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa Scheff. Boerl Leaves

    Directory of Open Access Journals (Sweden)

    E. Katrin1

    2011-04-01

    Full Text Available Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC50 value of 10.3 µg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC50 value of 1.9 µg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1 on HPLC chromatograms decreased with increasing

  13. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  14. Fulltext PDF

    Indian Academy of Sciences (India)

    A series of fifteen diversified N-benzylpiperidin-4-one oximes were synthesized and characterized ... Someshwar D Dindulkar et al. N. O ...... Cremer and Pople and Nardelli.14,15 For the piperidone ..... Parkin D M 2006 Int. J. Cancer 118 3030.

  15. Immunomodulatory, Cytotoxicity, and Antioxidant Activities of Roots of Ziziphus mauritiana

    OpenAIRE

    Afzal, Samina; Batool, Murium; Ch, Bashir Ahmad; Ahmad, Ashfaq; Uzair, Muhammad; Afzal, Khurram

    2017-01-01

    Aims: The study is conducted to evaluate the immunomodulatory, cytotoxicity, and antioxidant potential of Ziziphus mauritiana (Rhamnaceae). Phytochemical analysis of Z. mauritiana revealed the presence of alkaloids, anthraquinone glycoside, cardiac glycoside, saponin, tannin, and flavonoids. Methodology: The cytotoxicity of the plant Z. mauritiana was evaluated by brine shrimp lethality test. Antioxidant parameters such as superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and ma...

  16. The Transcription Factor Hobit Identifies Human Cytotoxic CD4(+) T Cells

    NARCIS (Netherlands)

    Oja, Anna E.; Vieira Braga, Felipe A.; Remmerswaal, Ester B. M.; Kragten, Natasja A. M.; Hertoghs, Kirsten M. L.; Zuo, Jianmin; Moss, Paul A.; van Lier, René A. W.; van Gisbergen, Klaas P. J. M.; Hombrink, Pleun

    2017-01-01

    The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4(+) T cells that

  17. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Niggemann Bernd

    2009-12-01

    Full Text Available Abstract Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells.

  18. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  19. Cytotoxicity of Poly(Alkyl Cyanoacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Einar Sulheim

    2017-11-01

    Full Text Available Although nanotoxicology has become a large research field, assessment of cytotoxicity is often reduced to analysis of one cell line only. Cytotoxicity of nanoparticles is complex and should, preferentially, be evaluated in several cell lines with different methods and on multiple nanoparticle batches. Here we report the toxicity of poly(alkyl cyanoacrylate nanoparticles in 12 different cell lines after synthesizing and analyzing 19 different nanoparticle batches and report that large variations were obtained when using different cell lines or various toxicity assays. Surprisingly, we found that nanoparticles with intermediate degradation rates were less toxic than particles that were degraded faster or more slowly in a cell-free system. The toxicity did not vary significantly with either the three different combinations of polyethylene glycol surfactants or with particle size (range 100–200 nm. No acute pro- or anti-inflammatory activity on cells in whole blood was observed.

  20. Cytotoxic Components Against Human Oral Squamous Cell Carcinoma Isolated from Andrographis paniculata.

    Science.gov (United States)

    Suzuki, Ryuichiro; Matsushima, Yasuaki; Okudaira, Noriyuki; Sakagami, Hiroshi; Shirataki, Yoshiaki

    2016-11-01

    The 5-year survival rate of patients with oral cancer has remained approximately 50% during the past 30 years, possibly due to the poor tumor selectivity of conventional anticancer drugs. This prompted us to search for new candidates for anticancer drugs that have higher cytotoxicity and tumor selectivity. Dried leaves of Andrographis paniculata were supplied from a market in Shanghai. The methanolic fraction of A. paniculata was further fractionated to identify cytotoxic principles by spectroscopic analysis and comparison with literature values. Viable cell number was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method, and tumor specificity was calculated by relative cytotoxicity against oral squamous cell carcinoma cell lines compared to that against normal oral cells. Apoptosis induction was detected by cleaved poly (ADP-ribose) polymerase and caspase-3 on western blot analysis. Major cytotoxicity in the methanol extract of a leaf of A. paniculata was recovered by partitioning with EtOAc, followed by silica gel chromatography. Further purification with reversed-phase high-performance liquid chromatography led to isolation of four known cytotoxic compounds, 14-deoxyandrographolide, andrographolide, neoandrographolide and deoxyandrographiside. Among them, andrographolide had the greatest cytotoxicity and tumor specificity, also inducing caspase-3 activation of HSC-2 oral squamous cell carcinoma cells. The present study identified andrographolide as a major antitumor principle in the methanolic extract of leaves of A. paniculata. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    Science.gov (United States)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  2. Mycotoxins’ Activity at Toxic and Sub-Toxic Concentrations: Differential Cytotoxic and Genotoxic Effects of Single and Combined Administration of Sterigmatocystin, Ochratoxin A and Citrinin on the Hepatocellular Cancer Cell Line Hep3B

    Directory of Open Access Journals (Sweden)

    Nikolia Αnninou

    2014-02-01

    Full Text Available Food safety organizations indicate the likelihood of constant human and animal exposure to mycotoxin mixtures as a possible negative public health impact. Risk assessment demonstrates that certain mycotoxins of Aspergillus and Penicillium spp. are toxic and hold a significant genotoxic efficacy at nanomolar concentrations. The aim of the current study was to investigate the potential cytogenetic effects of sterigmatocystin (STER, ochratoxin A (OTA and citrinin (CTN alone or in combination, at pM to μΜ concentrations, on the human hepatocellular cancer cell line Hep3B. MTT reduction, mitotic divisions, cell cycle delays and sister chromatid exchange rates (SCE were determined as endpoints of metabolic activity, cytotoxicity, cytostaticity, and genotoxicity, respectively. All mycotoxin treatments induce SCE rates from 10−12 M, while their cytotoxic and cytostatic potential varies. In PRI and MI assays, but not at MTT, STER alone or in combination with OTA + CTN appeared cytostatic and cytotoxic, even at 10−12 M, while CTN alone and all other combinations displayed substantial cellular survival inhibition in doses ≥ 10−8 M. Co-administration of STER + OTA or STER + CTN in concentrations ≤ 10−1 M, increased the MI and MTT activity, while it did not affect the PRI. Mycotoxin co-treatments revealed in general similar-to-additive or antagonistic genotoxic and cytotoxic effects. Our results for the first time describe that STER alone or in combination with OTA and/or CTN share a cytotoxic and cytogenetic potential even at picoMolar concentrations on human hepatoma cells in vitro.

  3. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    Science.gov (United States)

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.

  4. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  5. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    Science.gov (United States)

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-05-06

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  6. Cytotoxic Components of Pereskia bleo (Kunth DC. (Cactaceae Leaves

    Directory of Open Access Journals (Sweden)

    Sri Nurestri Abdul Malek

    2009-05-01

    Full Text Available Dihydroactinidiolide (1 and a mixture of sterols [campesterol (2, stigmasterol (3 and β-sitosterol (4], together with the previously isolated individual compounds β-sitosterol (4, 2,4-di-tert-butylphenol (5, α-tocopherol (6, phytol (7 were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth DC. (Cactaceae leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB, human cervical carcinoma cell line (CasKi, human colon carcinoma cell line (HCT 116, human hormone-dependent breast carcinoma cell line (MCF7 and human lung carcinoma cell line (A549; and non-cancer human fibroblast cell line (MRC-5 were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC50 value of 0.81µg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  7. Cytotoxic bibenzyl dimers from the stems of Dendrobium fimbriatum Hook.

    Science.gov (United States)

    Xu, Feng-Qing; Xu, Fang-Cheng; Hou, Bo; Fan, Wei-Wei; Zi, Cheng-Ting; Li, Yan; Dong, Fa-Wu; Liu, Yu-Qing; Sheng, Jun; Zuo, Zhi-Li; Hu, Jiang-Miao

    2014-11-15

    The bioassay-guided chemical investigation of the stems of Dendrobium fimbriatum Hook led to the isolation of seven first reported bibenzyl dimers with a linkage of a methylene moiety, fimbriadimerbibenzyls A-G (1-7), together with a new dihydrophenanthrene derivative (S)-2,4,5,9-tetrahydroxy-9,10-dihydrophenanthrene (8) and thirteen known compounds (9-21). The structure of the new compound was established by spectroscopic analysis. Biological evaluation of bibenzyl derivatives against five human cell lines indicated that seven of those compounds exhibited broad-spectrum and cytotoxic activities with IC50 values ranging from 2.2 to 21.2 μM. Those rare bibenzyl dimers exhibited cytotoxic activities in vitro and the cytotoxicity decreased as the number of oxygen-containing groups in the structure decreases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  9. Isotope release cytotoxicity assay applicable to human tumors: the use of 111-indium

    Energy Technology Data Exchange (ETDEWEB)

    Frost, P; Wiltrout, R; Maciorowski, Z; Rose, N R

    1977-01-01

    We have demonstrated that human tumors can be labelled efficiently with the 111indium-oxine chelate. Subsequently, this isotope can be released by cytotoxic lymphoid cells. Both natural and induced cytotoxicity can be demonstrated utilizing this isotope release method. Because of the slow spontaneous release of 111indium and its efficient labelling of human tumor cells, this isotope release assay can be utilized in long-term cytotoxic assays in the study of human tumor immunology.

  10. DNA and factor VII-activating protease protect against the cytotoxicity of histones

    NARCIS (Netherlands)

    Marsman, Gerben; von Richthofen, Helen; Bulder, Ingrid; Lupu, Florea; Hazelzet, Jan; Luken, Brenda M.; Zeerleder, Sacha

    2017-01-01

    Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize

  11. Enhancement of the cytotoxicity of radiosensitizers by modest hyperthermia: the electron-affinity relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rajaratnam, S.; Adams, G.E.; Stratford, I.J.; Clarke, C.

    1982-01-01

    The cytotoxicity of 3 electron-affinic radiosensitizers has been studied in Chinese hamster V-79 cells as a function of pH and modest hyperthermia. When equitoxic concentrations were used and temperature was increased from 34 to 41/sup 0/C metronidazole, the compound with the lowest electron affinity showed the greatest enhancement of hypoxic-cell toxicity, and nitrofurantoin, the compound with the highest electron affinity, the least. The results can be explained if the mechanisms of toxicity involves a redox reaction, since it would be expected that the least toxic compound (lowest electron affinity) would have the largest activation energy and hence the greatest temperature effect. This appears to hold for these 3 compounds. Experiments also showed that nitrofurantoin which exhibits no increase in toxicity when the temperature was increased from 37 to 41/sup 0/C at pH 7.4, showed an increase in toxicity for the same temperature change at the pH of 7.0 and 6.6. Under aerobic conditions only metronidazole showed significant toxicity at 41/sup 0/C, where the differential between aerobic and hypoxic cell toxicity was minimal, both at pH 7.4, and at the low pH values of 7.0 and 6.6. In the clinical setting there is evidence that tumor cells are at a lower pH than their surrounding normal tissues. Hypoxic-cell cytotoxicity is enhanced at low pH, and even further enhanced at low pH in combination with a temperature of 41/sup 0/C. However, this finding correlates conversely with electron affinity.

  12. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.

    Science.gov (United States)

    Jevprasesphant, Rachaneekorn; Penny, Jeffrey; Attwood, David; McKeown, Neil B; D'Emanuele, Antony

    2003-10-01

    To evaluate the cytotoxicity, permeation, and transport mechanisms of PAMAM dendrimers and surface-modified cationic PAMAM dendrimers using monolayers of the human colon adenocarcinoma cell line, Caco-2. Cytotoxicity was determined using the MTT assay. The effect of dendrimers on monolayer integrity was determined from measurements of transepithelial electrical resistance (TEER) and [14C]mannitol apparent permeability coefficient (Papp). The Papp of dendrimers through monolayers was measured in both the apical (A)-to-basolateral (B) and B --> A directions at 4 degrees C and 37 degrees C and also in the presence and absence of ethylenediamine tetraacetic acid (EDTA) and colchicine. The cytotoxicity and permeation of dendrimers increased with both concentration and generation. The cytotoxicity of cationic dendrimers (G2, G3, G4) was greater than that of anionic dendrimers (G2.5, G3.5) but was reduced by conjugation with lauroyl chloride: the least cytotoxic conjugates were those with six attached lauroyl chains. At 37 degrees C the Papp of cationic dendrimers was higher than that of anionic dendrimers and, in general, increased with the number of attached lipid chains. Cationic dendrimers decreased TEER and significantly increased the Papp of mannitol. Modified dendrimers also reduced TEER and caused a more marked increase in the Papp of mannitol. The Papp values of dendrimers and modified dendrimers were higher in the presence of EDTA, lower in the presence of colchicine, and lower at 4 degrees C than at 37 degrees C. The properties of dendrimers may be significantly modified by surface engineering. Conjugation of cationic PAMAM dendrimers with lauroyl chloride decreased their cytotoxicity and increased their permeation through Caco-2 cell monolayers. Both PAMAM dendrimers and lauroyl-PAMAM dendrimer conjugates can cross epithelial monolayers by paracellular and transcellular pathways.

  13. Cytotoxicity of Cerastes cerastes snake venom: Involvement of imbalanced redox status.

    Science.gov (United States)

    Kebir-Chelghoum, Hayet; Laraba-Djebari, Fatima

    2017-09-01

    Envenomation caused by Cerastes cerastes snake venom is characterized by a local and a systemic tissue damage due to myonecrosis, hemorrhage, edema and acute muscle damage. The present study aimed to evaluate the relationship between the pro/anti-oxidants status and the cytotoxicity of C. cerastes snake venom. The in vivo cytotoxicity analysis was undertaken by the injection of C. cerastes venom (48μg/20g body weight) by i.p. route, mice were then sacrificed at 3, 24 and 48h post injection, organs were collected for further analysis. In vitro cytotoxicity analysis was investigated on cultured PBMC, hepatocytes and isolated liver. The obtained results showed a significant cell infiltration characterized by a significant increase of myeloperoxidase (MPO) and eosinoperoxidase (EPO) activities. These results showed also a potent oxidative activity of C. cerastes venom characterized by increased levels of residual nitrites and lipid peroxidation associated with a significant decrease of glutathione and catalase activity in sera and tissues (heart, lungs, liver and kidneys). The in vitro cytotoxicity of C. cerastes venom on PBMC seems to be dose-dependent (IC50 of 21μg/ml/10 6 cells) and correlated with an imbalanced redox status at high doses of venom. However, in the case of cultured hepatocytes, the LDH release and oxidative stress were observed only at high doses of the venom. The obtained results of in vivo study were confirmed by the culture of isolated liver. Therefore, these results suggest that the venom induces a direct cytotoxic effect which alters the membrane integrity causing a leakage of the cellular contents. This cytotoxic effect can lead indirectly to inflammatory response and oxidative stress. These data suggest that an early anti-inflammatory and antioxidant treatment could be useful in the management of envenomed victims. Copyright © 2017. Published by Elsevier B.V.

  14. Cytotoxicity of graphene: recent advances and future perspective.

    Science.gov (United States)

    Zhou, Ruhong; Gao, Huajian

    2014-01-01

    Graphene, a unique two-dimensional single-atom-thin nanomaterial with exceptional structural, mechanical, and electronic properties, has spurred an enormous interest in many fields, including biomedical applications, which at the same time ignites a growing concern on its biosafety and potential cytotoxicity to human and animal cells. In this review, we present a summary of some very recent studies on this important subject with both experimental and theoretical approaches. The molecular interactions of graphene with proteins, DNAs, and cell membranes (both bacteria and mammalian cells) are discussed in detail. Severe distortions in structures and functions of these biomacromolecules by graphene are identified and characterized. For example, the graphene is shown to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules directly. More interestingly, this cytotoxicity has been shown to have implications in de novo design of nanomedicine, such as graphene-based band-aid, a potential 'green' antibiotics due to its strong physical-based (instead of chemical-based) antibacterial capability. These studies have provided a better understanding of graphene nanotoxicity at both cellular and molecular levels, and also suggested therapeutic potential by using graphene's cytotoxicity against bacteria cells. © 2014 Wiley Periodicals, Inc.

  15. Cytotoxic diterpenoids from the roots of Salvia lachnocalyx

    Directory of Open Access Journals (Sweden)

    Hossein Hadavand Mirzaei

    Full Text Available ABSTRACT Salvia lachnocalyx Hedge, Lamiaceae, is an endemic sage which grows naturally in the Fars Province of Iran. The phytochemical analyses of the roots of S. lachnocalyx led to the isolation of five known diterpenoids: ferruginol (1, taxodione (2, sahandinone (3, 4-dehydrosalvilimbinol (4 and labda-7,14-dien-13-ol (5. Their chemical structures were elucidated using one (1H and 13C and two dimensional (COSY, HSQC and HMBC NMR spectroscopic data as well as electron impact mass spectra. The cytotoxicity of the purified compounds was evaluated against three human cancer cell lines; MOLT-4 (acute lymphoblastic leukemia, HT-29 (colorectal adenocarcinoma and MCF7 (breast adenocarcinoma and all of the isolated compounds showed considerable cytotoxic activity against these cell lines. Compounds 2 and 3 (IC50 range: 0.41–3.87 µg/ml with endocyclic α,β-unsaturated carbonyl functional group, exhibited the highest cytotoxic activities compared to the other compounds (IC50 range: 6.85–17.23 µg/ml. In conclusion, compounds 2 and 3 are presented as compounds that deserve further investigation of their biological activities.

  16. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    Science.gov (United States)

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  17. New steroidal saponins from the rhizomes of Paris delavayi and their cytotoxicity.

    Science.gov (United States)

    Liu, Yang; Tian, Xiangrong; Hua, Dong; Cheng, Guang; Wang, Kaixing; Zhang, Lihan; Tang, Haifeng; Wang, Minchang

    2016-06-01

    Four new furostanol saponins, named padelaosides C-F (1-4), together with four known spirostanol saponins 5-8 were isolated from the rhizomes of Paris delavayi Franchet. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical evidences. The discovery of the new compounds 1-4 extended the diversity and complexity of this furostanol saponin family. The cytotoxicity of all the saponins was evaluated for their cytotoxicity against human glioblastoma U87MG and human hepatocellular carcinoma Hep-G2 cell lines. The known spirostanol saponins 7 and 8 exhibited notable cytotoxicity against the two tumor cell lines with IC50 values of 1.13 and 3.42μM, respectively, while the new furostanol saponins 3 and 4 showed moderate cytotoxicity with IC50 values of 15.28 to 16.98μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  19. Natural cytolytic activity in mice with natural or induced cellular defects. I. Differential ability of in vitro interleukin-2 addition to augment natural cytolytic function

    International Nuclear Information System (INIS)

    Ades, E.W.; Hinson, A.; Butler, L.D.

    1986-01-01

    The ability of in vitro addition of recombinant interleukin 2 (rIL-2) to differentially enhance natural cytotoxicity was assessed using cells from mice with natural and induced cellular defects. In vivo treatment with most immunosuppressive or cytoreductive agents, anti-asialo-GM1 antibody, or gamma irradiation dramatically reduced in vitro cytotoxicity against natural killer (NK) sensitive targets by direct reduction in either percentage specific lysis or lytic units per spleen. In most cases, in vitro addition of rIL-2 (at concentrations causing augmented NK function in cells from naive Balb/C mice) enhanced cytotoxic activity of cells from treatment groups to a normal value but not within the rIL-2-enhanced range of nontreated animals. Additionally, cytotoxic activity of cells from animals treated with certain drugs or gamma irradiation could be augmented by rIL-2 when measured by percentage lysis but not lytic units per spleen. In vivo treatment with cyclosporin A did not affect natural cytotoxic activity and addition of rIL-2 augmented the NK activity in a similar fashion to the profile of naive cells. In experiments using cells from beige (C57Bl/6-bg) mice which have a natural defect in NK activity against YAC-1 targets, addition of rIL-2 (at concentrations causing augmented natural cytotoxic function in cells from C57Bl/6 mice) could not effectively enhance in vitro natural cytotoxic function

  20. Natural cytolytic activity in mice with natural or induced cellular defects. I. Differential ability of in vitro interleukin-2 addition to augment natural cytolytic function

    Energy Technology Data Exchange (ETDEWEB)

    Ades, E.W.; Hinson, A.; Butler, L.D.

    1986-08-01

    The ability of in vitro addition of recombinant interleukin 2 (rIL-2) to differentially enhance natural cytotoxicity was assessed using cells from mice with natural and induced cellular defects. In vivo treatment with most immunosuppressive or cytoreductive agents, anti-asialo-GM1 antibody, or gamma irradiation dramatically reduced in vitro cytotoxicity against natural killer (NK) sensitive targets by direct reduction in either percentage specific lysis or lytic units per spleen. In most cases, in vitro addition of rIL-2 (at concentrations causing augmented NK function in cells from naive Balb/C mice) enhanced cytotoxic activity of cells from treatment groups to a normal value but not within the rIL-2-enhanced range of nontreated animals. Additionally, cytotoxic activity of cells from animals treated with certain drugs or gamma irradiation could be augmented by rIL-2 when measured by percentage lysis but not lytic units per spleen. In vivo treatment with cyclosporin A did not affect natural cytotoxic activity and addition of rIL-2 augmented the NK activity in a similar fashion to the profile of naive cells. In experiments using cells from beige (C57Bl/6-bg) mice which have a natural defect in NK activity against YAC-1 targets, addition of rIL-2 (at concentrations causing augmented natural cytotoxic function in cells from C57Bl/6 mice) could not effectively enhance in vitro natural cytotoxic function.

  1. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  2. Three New Cytotoxic ent-Kaurane Diterpenes from Isodon excisoides

    Directory of Open Access Journals (Sweden)

    Li-Ping Dai

    2015-09-01

    Full Text Available Three types of ent-kaurane diterpenoids were isolated from the aerial parts of Isodon excisoides, including three new diterpenoids, 1α,7α,14β-trihydroxy-20-acetoxy-ent-kaur-15-one (1; 1α,7α,14β,18-tetrahydroxy-20-acetoxy-ent-kaur-15-one (2; and 1α-acetoxy-14β-hydroxy-7α,20-epoxy-ent-kaur-16-en-15-one (3; together with six known diterpenes henryin (4; kamebanin (5; reniformin C (6; kamebacetal A (7; kamebacetal B (8; and oridonin (9. The structures of the isolated compounds were elucidated by means of nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry in conjunction with published data for their analogs, as well as their fragmentation patterns. Compounds 5 and 9 were isolated from Isodon excisoides for the first time. To explore the structure-activity relationships of the isolated compounds, they were tested for their cytotoxic effects against five human cancer cell lines: HCT-116, HepG2, A2780, NCI-H1650, and BGC-823. Most of the isolated compounds showed certain cytotoxic activity against the five cancer cell lines with IC50 values ranging from 1.09–8.53 µM. Among the tested compounds, compound 4 exhibited the strongest cytotoxic activity in the tested cell lines, with IC50 values ranging from 1.31–2.07 µM. Compounds 1, 6, and 7 exhibited selective cytotoxic activity.

  3. Combinatorial Chemistry of Piperidine Based Carbohydrate Mimics

    DEFF Research Database (Denmark)

    Byrgesen, Elisabeth Vang; Nielsen, John; Willart, Marianne

    1997-01-01

    Piperidine carboxylic acids and 4-hydroxypiperidine-3-carboxylic acid, the latter obtained from bakers yeast reduction of the corresponding piperidone, were coupled in solid-phase synthesis to form simplified oligosaccharide analogues. A split-and-mix synthesis approach was used to create small c...

  4. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Science.gov (United States)

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bioassay-Guided Isolation of Cytotoxic Isocryptoporic Acids from Cryptoporus volvatus

    Directory of Open Access Journals (Sweden)

    Ling-Yun Zhou

    2016-12-01

    Full Text Available The present work constitutes a contribution to the phytochemical investigation of Cryptoporus volvatus aiming to search for effective cytotoxic constituents against tumor cell lines in vivo. Bioassay-guided separation of the ethylacetate extract of C. volvatus afforded four new isocryptoporic acid (ICA derivatives, ICA-B trimethyl ester (1, ICA-E (2, ICA-E pentamethyl ester (3, and ICA-G (4, together with nine known cryptoporic acids. These isocryptoporic acids are isomers of the cryptoporic acids with drimenol instead of albicanol as the terpenoid fragment; their structures were elucidated on the basis of spectroscopic evidences (UV, IR, HRMS, and NMR and comparison with literature values. All isolates show certain cytotoxic activities against five tumor cell lines. Among them, compound 4 showed an comparable activity to that of the positive control cis-platin, while other compounds exhibited weak cytotoxic activities.

  6. In vitro cytotoxicity testing of Ubiquicidin 29-41-{sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, Ivette Z.; Okazaki, Kayo; Dias, Luis Alberto Pereira; Higa, Olga Z.; Silva, Fabiana M. da; Vieira, Daniel P., E-mail: dpvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Passos, Priscila; Esteves-Pedro, Natalia M., E-mail: fabiana@biosintesis.com.br [Laboratorio Biosintesis Ltda, Sao Paulo, SP (Brazil)

    2015-07-01

    The work carried out cytotoxicity tests using a radiopharmaceutical compound produced at IPEN/CNEN-SP to certify its safety through in vitro cytotoxicity tests. Since 2009, the Brazilian regulatory agency (ANVISA) requires that such tests have to be carried out following good laboratory practices (GLP) and in according to the OECD (Organisation for Economic Co-operation and Development) guidelines in order to certify its safety for medical use. Those guidelines comprises series of technical recommendations performed to assure quality of experiments. The study chose Ubiquicidin 29-41, an antimicrobial peptide used to discriminate bacterial infection foci from inflammatory sites. Amounts of UBI{sub 29-41} were conjugated or not to {sup 99m}Tc and diluted to equivalent concentrations of 10, 100 and 1000% of the maximum dose (or activity) administered in adults. Possible cytotoxic effects were evaluated in comparison to untreated controls as well as positive and negative damage controls. Both full (radioactive) radiopharmaceuticals, as their precursors (only molecules without conjugation to isotopes) showed no significant cytotoxic effect (cytotoxicity ≤ 10%). The study was conducted for the first time in the country comprising preclinical testing of this radiopharmaceutical in accordance with internationally accepted quality parameters, ensuring the safety of its use and enabling inclusion in the pharmaceutical regulatory agenda. (author)

  7. Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lee

    2017-03-01

    Full Text Available Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05. In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05. Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility.

  8. Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus

    OpenAIRE

    Martins, Rosário F.; Ramos, Miguel F.; Herfindal, Lars; Sousa, José A.; Skærven, Kaja; Vasconcelos, Vitor M.

    2008-01-01

    Aqueous extracts and organic solvent extracts of isolated marine cyanobacteria strains were tested for antimicrobial activity against a fungus, Gram-positive and Gram-negative bacteria and for cytotoxic activity against primary rat hepatocytes and HL-60 cells. Antimicrobial activity was based on the agar diffusion assay. Cytotoxic activity was measured by apoptotic cell death scored by cell surface evaluation and nuclear morphology. A high percentage of apoptotic cells were observed for HL-60...

  9. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer: Decreased LAK cytotoxicity caused by a low incidence of CD56+ and CD57+ mononuclear blood cells

    International Nuclear Information System (INIS)

    Hermann, G.G.; Petersen, K.R.; Steven, K.; Zeuthen, J.

    1990-01-01

    The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51 Cr-release assays. The PBMC subsets were analyzed using monoclonal antibodies against T cells, natural killer (NK) -cells, monocytes, and activation markers. The cytotoxicities of US-PBMC, PS-PBMC, and LAK cells were all significantly lower in the cancer patients than in the controls (P less than 0.05). The percentages of PBMC positive for the NK-cell markers CD56 and CD57 were lowest in the patients and were correlated to the decrease in cytotoxicity. Depletion of CD56+ or CD57+ cells from PBMC prior to or after 2 days stimulation with IL-2 demonstrated that these cells are the major source of LAK-cell cytotoxicity and showed that the reduced ability of bladder cancer patient PBMC to develop LAK-cell cytotoxicity is a result of a low incidence of CD56+ and CD57+ cells in the blood. These findings indicate that IL-2 therapy alone might not be a sufficient therapy of bladder cancer patients

  10. SYNTHESIS AND CYTOTOXICITY OF NOVEL LIGNANS

    NARCIS (Netherlands)

    Middel, O; Woerdenbag, H.J.; van Uden, W.; van Oeveren, A.; Jansen, J.F.G.A.; Feringa, B.L.; Konings, A.WT; Pras, N.; Kellogg, R.M

    1995-01-01

    In this study the syntheses of 11 novel lignans are described. Their cytotoxicities are studied in GLC(4), a human small cell lung carcinoma cell line, using the microculture tetrazolium (MTT) assay. Ten of these compounds were substituted with a menthyloxy group on the 5-position of the lactone.

  11. Toxin content and cytotoxicity of algal dietary supplements

    Energy Technology Data Exchange (ETDEWEB)

    Heussner, A.H.; Mazija, L. [Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz (Germany); Fastner, J. [Federal Environmental Agency, Section II 3.3—Drinking-water resources and treatment, Berlin (Germany); Dietrich, D.R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz (Germany)

    2012-12-01

    Blue-green algae (Spirulina sp., Aphanizomenon flos-aquae) and Chlorella sp. are commercially distributed as organic algae dietary supplements. Cyanobacterial dietary products in particular have raised serious concerns, as they appeared to be contaminated with toxins e.g. microcystins (MCs) and consumers repeatedly reported adverse health effects following consumption of these products. The aim of this study was to determine the toxin contamination and the in vitro cytotoxicity of algae dietary supplement products marketed in Germany. In thirteen products consisting of Aph. flos-aquae, Spirulina and Chlorella or mixtures thereof, MCs, nodularins, saxitoxins, anatoxin-a and cylindrospermopsin were analyzed. Five products tested in an earlier market study were re-analyzed for comparison. Product samples were extracted and analyzed for cytotoxicity in A549 cells as well as for toxin levels by (1) phosphatase inhibition assay (PPIA), (2) Adda-ELISA and (3) LC–MS/MS. In addition, all samples were analyzed by PCR for the presence of the mcyE gene, a part of the microcystin and nodularin synthetase gene cluster. Only Aph. flos-aquae products were tested positive for MCs as well as the presence of mcyE. The contamination levels of the MC-positive samples were ≤ 1 μg MC-LR equivalents g{sup −1} dw. None of the other toxins were found in any of the products. However, extracts from all products were cytotoxic. In light of the findings, the distribution and commercial sale of Aph. flos-aquae products, whether pure or mixed formulations, for human consumption appear highly questionable. -- Highlights: ► Marketed algae dietary supplements were analyzed for toxins. ► Methods: Phosphatase inhibition assay (PPIA), Adda-ELISA, LC-MS/MS. ► Aph. flos-aquae products all tested positive for microcystins. ► Products tested negative for nodularins, saxitoxins, anatoxin-a, cylindrospermopsin. ► Extracts from all products were cytotoxic.

  12. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    Directory of Open Access Journals (Sweden)

    Azade Taheri

    2011-01-01

    Full Text Available Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide HCl (EDC to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37∘C and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC. Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate.

  13. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    International Nuclear Information System (INIS)

    Taheri, A.; Atyabi, F.; Nouri, F.S.; Ahadi, F.; Derakhshan, M.A.; Dinarvand, R.; Atyabi, F.; Ghahremani, M.H.; Ostad, S.N.; Dinarvand, R.; Amini, M.; Ghahremani, M.H.; Ostad, S.N.; Mansoori, P.

    2011-01-01

    Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC) to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90 150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37 degree C) and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of cross linker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the cross linker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC). Nanoparticles were more cytotoxic on T 47 D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the C50 value of methotrexate on T 47 D cells in comparison with free methotrexate.

  14. Cytotoxicity of latex and pharmacobotanical study of leaves and stem of Euphorbia umbellata (Janaúba

    Directory of Open Access Journals (Sweden)

    Lívia E.C. Luz

    Full Text Available AbstractIn southern Brazil, the bottled latex of Synadenium grantii Hook f., Euphorbiaceae, is popularly used as a treatment of all types of cancer. Similarly, Synadenium umbellatum Pax. is used in the central western region of Brazil for the same purpose and in the same manner of use. Both plants are popularly known as janaúba or leitosinha. The objectives of this study were to use pharmacobotanical analysis to verify whether these two species, which are considered to be distinct, are actually the same to determine anatomical markers; to assist in the identification and differentiation of other Euphorbia; and to evaluate the cytotoxic activity of the latex in relation to HeLa and HRT-18 cells. Leaves and stems of the species were collected in Goiânia and Ponta Grossa and were investigated using scanning electron microscopy and optical microscopy techniques. The latex was also collected and analyzed in relation to its cytotoxic effect by employing MTT and NR techniques. The pharmacobotanical study of the specimens in both localities showed that they were the same species, namely Euphorbia umbellata (Pax Bruyns, which is the scientific nomenclature accepted and confirmed by an expert taxonomist who specializes in Euphorbia. The pharmacobotanical characteristics highlighted in this study can assist in the identification of the taxon and contribute to the control of the quality of this plant drug. The evaluation of the latex in relation to HRT-18 cells demonstrated action after 48 h of experiment. In contrast, in relation to HeLa cells its induced cytotoxicity in all times and a dose-dependent manner. The IC50 values (72 h observed were 252.58 ± 18.51 µg/ml and 263.42 ± 15.92 µg/ml to MTT experiment and 250.18 ± 19.48 µg/ml and 430.56 ± 19.71 µg/ml to NR experiment for the HeLa and HRT-18 cells, respectively.

  15. Spermatogenesis, sperm DNA integrity, and testicular hormonal function are differentially affected following cytotoxic therapy

    International Nuclear Information System (INIS)

    Constine, L.S.; Schwartz, C.; Hobbie, W.; Evenson, D.; Hinkle, A.; Palisca, M.; Smudzin, T.; Centola, G.

    1997-01-01

    Purpose: Males treated with irradiation (RT) or certain chemotherapeutic (CT) agents are at risk for testicular damage in the form of germ cell injury and hormonal dysfunction. Sperm DNA structural defects or immaturity may affect reproductive potential both in terms of the likelihood for conception and early fetal loss. Preclinical data provoked our hypothesis that patients with subnormal sperm counts due to cytotoxic therapy could be demonstrated to have defective sperm chromatin; we also questioned whether structural abnormalities might be found in the sperm of patients with normal counts. Although the RT dose threshold for ablation of spermatogenesis is known to be below that for hormonal dysfunction, the relative effects of CT are unclear, which suggested the second component of our investigation. Methods: Eligibility criteria included treatment with CT including an alkylating agent, and/or RT with scattered dose to the testes for a cancer not involving the testes, and remission duration of at least 3 years. Of the 15 study patients, 12 received CT (including cyclophosphamide in 7) and 12 received RT (with peripheral testicular doses of 0-169 cGy, and including 4 also treated to the whole brain with doses below that associated with impaired gonadotropin secretion). Sperm number, motility, morphology and pattern of movement were assessed by computer-assisted spermanalysis, and for chromatin structural integrity and maturation using dual parameter flow cytometric (FC) analysis of acid-induced DNA denaturation. The mean age at tumor diagnosis was 14.4 yrs (range 6.5-36; 12 patients were ≤ 19 years old), and at testing was 25.5 yrs (range 18-46), with a mean interval of 9.7 yrs (range 3-21). Results: Only 3 patients (20%) had normal sperm counts (> 20 million/ml), 2 of whom had not received an alkylating agent but had scattered RT testes doses of 41 cGy and 169 cGy, respectively. These 2 patients had impaired sperm motility (13% and 32%, respectively), and the

  16. A hyaluronan-based nerve guide : in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat

    NARCIS (Netherlands)

    Jansen, K; van Wachem, PB; Nicolai, JPA; de Leij, LFMH; van Luyn, MJA; van der Werf, J.F.A.

    We investigated possible cytotoxic effects, biocompatibility, and degradation of a hyaluronan-based conduit for peripheral nerve repair. We subjected the conduits to an in vitro fibroblast cytotoxicity test and concluded that the conduits were not cytotoxic. Subsequently, we implanted the conduits

  17. Development and cytotoxicity evaluation of SiAlONs ceramics

    International Nuclear Information System (INIS)

    Santos, C.; Ribeiro, S.; Daguano, J.K.M.F.; Rogero, S.O.; Strecker, K.; Silva, C.R.M.

    2007-01-01

    SiAlONs are ceramics with high potential as biomaterials due to their chemical stability, associated with suitable mechanical properties, such as high fracture toughness and fracture resistance. The objective of this work was to investigate the mechanical properties and the cytotoxicity of these ceramic materials. Three different compositions were prepared, using silicon nitride, aluminum nitride and a rare earth oxide mixture as starting powders, yielding Si 3 N 4 -SiAlON composites or pure SiAlON ceramics, after hot-pressing at 1750 deg. C, for 30 min. The sintered samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Furthermore, hardness and fracture toughness were determined using the Vicker's indentation method. The biological compatibility was evaluated by in vitro cytotoxicity tests. Ceramic with elevated hardness, ranging between 17 and 21 GPa, and high fracture toughness of 5 to 6 MPa m 1/2 were obtained. Since a nontoxic behavior was observed in the cytotoxicity tests, it may be assumed that SiAlON-based ceramics are viable materials for clinical applications

  18. Cytotoxic human CD4(+) T cells

    NARCIS (Netherlands)

    van de Berg, Pablo J.; van Leeuwen, Ester M.; ten Berge, Ineke J.; van Lier, Rene

    2008-01-01

    The induction of adaptive immune responses critically depends on helper signals provided by CD4(+) T cells. These signals not only license antigen presenting cells (APC) to activate naïve CD8(+) T cells leading to the formation of vast numbers of cytotoxic T lymphocytes but also support the

  19. Cytotoxicity of extracts of spices to cultured cells.

    Science.gov (United States)

    Unnikrishnan, M C; Kuttan, R

    1988-01-01

    The cytotoxicity of the extracts from eight different spices used in the Indian diet was determined using Dalton's lymphoma ascites tumor cells and human lymphocytes in vitro and Chinese Hamster Ovary cells and Vero cells in tissue culture. Alcoholic extracts of the spices were found to be more cytotoxic to these cells than their aqueous extracts. Alcoholic extracts of several spices inhibited cell growth at concentrations of 0.2-1 mg/ml in vitro and 0.12-0.3 mg/ml in tissue culture. Ginger, pippali (native to India; also called dried catkins), pepper, and garlic showed the highest activity followed by asafetida, mustard, and horse-gram (native to India). These extracts also inhibited the thymidine uptake into DNA.

  20. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  1. Effect of citral on the cytotoxicity of doxorubicin in human B-lymphoma cells.

    Science.gov (United States)

    Dangkong, Darinee; Limpanasithikul, Wacharee

    2015-02-01

    Doxorubicin is a chemotherapy agent used in non-Hodgkin's lymphoma but side effects limit its use. Citral is a mixture of neral and geranial found in essential oils of lemon grass. We evaluated the activity of citral, doxorubicin, and combination on cytotoxicity, apoptosis, and anti-proliferative effects using human lymphoma Ramos cells. Cells were treated with doxorubicin alone or in combination with citral (10, 20, and 40 μM). Cytotoxic and apoptosis studies were done after 24 and 18 h incubations, respectively. Cytotoxic effects of citral on normal human peripheral blood mononuclear cells (PBMCs) were also investigated for its safety. Changes in the expression of BCL-2 family genes were analyzed by quantitative RT-PCR. Citral had cytotoxicity on cells with an IC50 value of 77.19 ± 4.95 µM. Citral at concentrations of 10, 20, and 40 µM additively increased the cytotoxic and apoptotic effects of doxorubicin, leading to decreased IC50 (µM) of the drug from 2.50 ± 0.01 to 2.16 ± 0.03, 1.90 ± 0.04, and 1.23 ± 0.04, respectively. Enhanced cytotoxicity was not observed in normal human PBMCs. Citral (40 µM) in combination with doxorubicin (1.5 µM) increased the expression of pro-apoptotic protein BAK but significantly decreased the expression of anti-apoptotic protein BCL-XL to 5.26-fold compared with doxorubicin-treated cells. It did not change the anti-proliferative activity of drug. Citral potentiated cytotoxicity of doxorubicin by increasing apoptotic effects. We conclude that citral may have beneficial effects in patients with B cell lymphoma treated with chemotherapy.

  2. Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Min; Xia Zhidao; Glyn-Jones, Sion; Beard, David; Gill, Harinderjit S; Murray, David W, E-mail: young-min.kwon@ndos.ox.ac.u [Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford OX3 7LD (United Kingdom)

    2009-04-15

    Despite the satisfactory short-term implant survivorship of metal-on-metal hip resurfacing arthroplasty, periprosthetic soft-tissue masses such as pseudotumours are being increasingly reported. Cytotoxic effects of cobalt or chromium have been suggested to play a role in its aetiology. The aim of this study was to investigate the effects of clinically relevant metal nanoparticles and ions on the viability of macrophages in vitro. A RAW 264.7 murine macrophage cell line was cultured in the presence of either: (1) cobalt, chromium and titanium nanoparticles sized 30-35 nm; or (2) cobalt sulphate and chromium chloride. Two methods were used to quantify cell viability: Alamar Blue assay and Live/Dead assay. The cytotoxicity was observed only with cobalt. Cobalt nanoparticles and ions demonstrated dose-dependent cytotoxic effects on macrophages in vitro: the cytotoxic concentrations of nanoparticles and ions were 1 x 10{sup 12} particles ml{sup -1} and 1000 {mu}M, respectively. The high concentration of cobalt nanoparticles required for cytotoxicity of macrophages in vitro suggests that increased production of cobalt nanoparticles in vivo, due to excessive MoM implant wear, may lead to local adverse biological effects. Therefore, cytotoxicity of high concentrations of metal nanoparticles phagocytosed by macrophages located in the periprosthetic tissues may be an important factor in pathogenesis of pseudotumours.

  3. Cytotoxic Properties of Three Isolated Coumarin-hemiterpene Ether Derivatives from Artemisia armeniaca Lam.

    Science.gov (United States)

    Mojarrab, Mahdi; Emami, Seyed Ahmad; Delazar, Abbas; Tayarani-Najaran, Zahra

    2017-01-01

    Considering multiple reports on cytotoxic activity of the Artemisia genus and its phytochemicals, in the current study A. armeniaca Lam. and the three components isolated from the plant were subjected to cytotoxic studies. Analytical fractionation of A. armeniaca aerial parts for the first time was directed to the isolation of 7-hydroxy-8-(4-hydroxy-3-methylbutoxy) comarin (armenin), 8-hydroxy-7-(4-hydroxy-3-methylbutoxy) comarin (isoarmenin) and deoxylacarol. Cytotoxicity assessed with alamalBlue® assay and apoptosis was detected by PI staining and western blot analysis of Bax and PARP proteins. Extracts and all compounds exhibited cytotoxic activity against apoptosis-proficient HL-60 and apoptosis-resistant K562 cells, with the lowest cytotoxic activity on J774 cell line as non-malignant cell. Armenin as the most potent component decreased the viability of cell with IC50 of 22.5 and 71.1 µM for K562 and HL-60 cells respectively and selected for further mechanistic study. Armenin increased the sub-G1 peak in flow cytometry histogram of HL-60 and K562 treated cells and increase in the amount of Bax protein and the cleavage of PARP in comparison with the control after treatment for 48 h in K562 treated cells verified the apoptotic activity of the armenin. Taken together, according to the finding of this study armenin was introduced as a novel cytotoxic compound with apoptotic activity, which is encouraging for further mechanistic and clinical studies.

  4. Cytotoxicity effect of Zataria multiflora Boiss. on two human colon carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    F. Sharififar

    2017-10-01

    Full Text Available Background and objectives: Natural products are one of the major sources for investigations of novel medicines. Zataria multiflora Boiss (ZM has shown pharmacological activities especially in gastrointestinal tract; however, there are limited studies about its cytotoxicity effects. In this study, the effect of Zataria multiflora was examined on two colon cancer cell lines (SW-48 and HT-29. Methods: Hydro-alcoholic extract of ZM and its fractions including chloroform, petroleum ether and methanol extract were prepared by warm maceration method. Different concentrations were prepared and examined on SW-48 and HT-29 cell lines using 2-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay. Results: The results of the present study have shown the cytotoxic effect of some fractions of ZM. The most considerable cytotoxic effect was shown against HT-29 cell line. Also, total ZM extract and the petroleum ether fraction demonstrated cytotoxic effects with IC50 values of 44.22 and 33.42 µg/ml on SW-48 and HT-29 cell lines, respectively. Conclusion: Zataria multiflora was cytotoxic to against colon cancer cell lines HT-29 and SW-48.

  5. Bicarbonate Plays a Critical Role in the Generation of Cytotoxicity during SIN-1 Decomposition in Culture Medium

    Directory of Open Access Journals (Sweden)

    Kyo Shirai

    2012-01-01

    Full Text Available 3-Morpholinosydnonimine (SIN-1 is used as a donor of peroxynitrite (ONOO− in various studies. We demonstrated, however, that, the cell-culture medium remains cytotoxic to PC12 cells even after almost complete SIN-1 decomposition, suggesting that reaction product(s in the medium, rather than ONOO−, exert cytotoxic effects. Here, we clarified that significant cytotoxicity persists after SIN-1 decomposes in bicarbonate, a component of the culture medium, but not in NaOH. Cytotoxic SIN-1-decomposed bicarbonate, which lacks both oxidizing and nitrosating activities, degrades to innocuous state over time. The extent of SIN-1 cytotoxicity, irrespective of its fresh or decomposed state, appears to depend on the total number of initial SIN-1 molecules per cell, rather than its concentration, and involves oxidative/nitrosative stress-related cell damage. These results suggest that, despite its low abundance, the bicarbonate-dependent cytotoxic substance that accumulates in the medium during SIN-1 breakdown is the cytotoxic entity of SIN-1.

  6. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kerzig, Christoph; Kramell, Annemarie E; Csuk, René

    2017-02-15

    Triterpenoic acids 1-6 exhibited very low or no cytotoxicity at all, but their corresponding 2,3-di-O-acetyl-piperazinyl amides 13-18 showed low EC 50 values for several human tumor cell lines. Their cytotoxicity, however, was also high for the non-malignant mouse fibroblasts NIH 3T3. A significant improvement was achieved by preparing the rhodamine B derivatives 19-24. While rhodamine B is not cytotoxic (up to a concentration of 30μM - cut-off of the assay), the triterpenoid piperazine-spacered rhodamine B derivatives were cytotoxic in nano-molar concentration. Compound 24 (a diacetylated maslinic acid derivative) was most toxic for several human tumor cell lines but less toxic for mouse fibroblasts NIH 3T3. Staining and double-staining experiments revealed 24 to act as a mitocan. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  8. Model-based optimization of G-CSF treatment during cytotoxic chemotherapy.

    Science.gov (United States)

    Schirm, Sibylle; Engel, Christoph; Loibl, Sibylle; Loeffler, Markus; Scholz, Markus

    2018-02-01

    Although G-CSF is widely used to prevent or ameliorate leukopenia during cytotoxic chemotherapies, its optimal use is still under debate and depends on many therapy parameters such as dosing and timing of cytotoxic drugs and G-CSF, G-CSF pharmaceuticals used and individual risk factors of patients. We integrate available biological knowledge and clinical data regarding cell kinetics of bone marrow granulopoiesis, the cytotoxic effects of chemotherapy and pharmacokinetics and pharmacodynamics of G-CSF applications (filgrastim or pegfilgrastim) into a comprehensive model. The model explains leukocyte time courses of more than 70 therapy scenarios comprising 10 different cytotoxic drugs. It is applied to develop optimized G-CSF schedules for a variety of clinical scenarios. Clinical trial results showed validity of model predictions regarding alternative G-CSF schedules. We propose modifications of G-CSF treatment for the chemotherapies 'BEACOPP escalated' (Hodgkin's disease), 'ETC' (breast cancer), and risk-adapted schedules for 'CHOP-14' (aggressive non-Hodgkin's lymphoma in elderly patients). We conclude that we established a model of human granulopoiesis under chemotherapy which allows predictions of yet untested G-CSF schedules, comparisons between them, and optimization of filgrastim and pegfilgrastim treatment. As a general rule of thumb, G-CSF treatment should not be started too early and patients could profit from filgrastim treatment continued until the end of the chemotherapy cycle.

  9. Genome-wide identification of genetic determinants for the cytotoxicity of perifosine

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2008-09-01

    Full Text Available Abstract Perifosine belongs to the class of alkylphospholipid analogues, which act primarily at the cell membrane, thereby targeting signal transduction pathways. In phase I/II clinical trials, perifosine has induced tumour regression and caused disease stabilisation in a variety of tumour types. The genetic determinants responsible for its cytotoxicity have not been comprehensively studied, however. We performed a genome-wide analysis to identify genes whose expression levels or genotypic variation were correlated with the cytotoxicity of perifosine, using public databases on the US National Cancer Institute (NCI-60 human cancer cell lines. For demonstrating drug specificity, the NCI Standard Agent Database (including 171 drugs acting through a variety of mechanisms was used as a control. We identified agents with similar cytotoxicity profiles to that of perifosine in compounds used in the NCI drug screen. Furthermore, Gene Ontology and pathway analyses were carried out on genes more likely to be perifosine specific. The results suggested that genes correlated with perifosine cytotoxicity are connected by certain known pathways that lead to the mitogen-activated protein kinase signalling pathway and apoptosis. Biological processes such as 'response to stress', 'inflammatory response' and 'ubiquitin cycle' were enriched among these genes. Three single nucleotide polymorphisms (SNPs located in CACNA2DI and EXOC4 were found to be correlated with perifosine cytotoxicity. Our results provided a manageable list of genes whose expression levels or genotypic variation were strongly correlated with the cytotoxcity of perifosine. These genes could be targets for further studies using candidate-gene approaches. The results also provided insights into the pharmacodynamics of perifosine.

  10. In vitro study of cell differentiation by two type mouse embryo stem cells on mono- and multilayer nanocarbon tubes

    Science.gov (United States)

    Imai, Koichi; Akasaka, Tsukasa; Watari, Fumio; Tanoue, Akito; Nakamura, Kazuaki; Suese, Kazuhiko; Takashima, Hiromasa; Nishikawa, Tetsunari; Tanaka, Akio; Takeda, Shoji

    2012-09-01

    The effects of nanomaterials on human reproduction and development remain unknown. The risks of nanomaterials for future generations should be elucidated. Thus, it is important to establish an experimental method to accurately examine embryotoxicity. We previously investigated the myocardial cell differentiation of ES-D3 cells using monolayer (SWCNTs) and multilayer (MWCNTs) nanocarbon tubes. As a result, in spite of having the same carbon composition, the effects on the cell differentiation levels differed between the tubes. We investigated their cell differentiation and cytotoxic effects on EL M3 and ES-R1-EGFP B2/EGFP cells, which require feeder cells. As a result, myocardial pulse rates differed between the presence of SWCNTs and MWCNTs even when feeder cells existed between the samples and cells. The different surface structures of SWCNTs and MWCNTs may have influenced ES cell differentiation.

  11. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  12. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Yasushi [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  13. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    International Nuclear Information System (INIS)

    Kashiwagi, Yasushi

    2000-01-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  14. Cytotoxic diterpenes from Scoparia dulcis.

    Science.gov (United States)

    Ahsan, Monira; Islam, S K N; Gray, Alexander I; Stimson, William H

    2003-07-01

    Four new labdane-derived diterpenes, iso-dulcinol (1), 4-epi-scopadulcic acid B (2), dulcidiol (4), and scopanolal (5), together with two known diterpenes, dulcinol/scopadulciol (3) and scopadiol (6), were isolated from the aerial parts of Scoparia dulcis. The structures were determined by extensive NMR studies. The crude extracts as well as the pure diterpenes showed cytotoxicity against a panel of six human stomach cancer cell lines.

  15. Real-time cell toxicity profiling of Tox21 10K compounds reveals cytotoxicity dependent toxicity pathway linkage.

    Directory of Open Access Journals (Sweden)

    Jui-Hua Hsieh

    Full Text Available Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2 using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo while the other evaluates cell membrane integrity (i.e., cell death, flor. Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our

  16. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

    KAUST Repository

    Luxenhofer, Robert; Sahay, Gaurav; Schulz, Anita; Alakhova, Daria; Bronich, Tatiana K.; Jordan, Rainer; Kabanov, Alexander V.

    2011-01-01

    The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high

  17. Antimycobacterial and cytotoxic activities of extracts from fungal ...

    African Journals Online (AJOL)

    Antimycobacterial and cytotoxic activities of extracts from fungal isolates of Lake Magadi. Keno David Kowanga, Joan John Eliona Munissi, Rose Masalu, Stephen Samwel Nyandoro, Pax Masimba, Erastus Gatebe ...

  18. In vitro study of cytotoxicity by U.V. radiation and differential sensitivity in combination with alkylating agents on established cell systems

    International Nuclear Information System (INIS)

    Ramudu, K.

    1991-01-01

    The effect of U.V. radiation or alkylating agents, such as actinomycin-D, cycloheximide and mitomycin-C (MMC), was studied on CHO, BHK and HeLa cells. U.V. radiation caused DNA ssb and dsb and were prevented by cycloheximide and actinomycin-D. MMC is known to be cytotoxic in CHO/BHK cells by forming free radical generation. MMC in combination with U.V. radiation enhanced DNA ssb ampersand dsb in these cell types. However, HeLa cells were insensitive to U.V. radiation. This insensitivity to U.V. radiation could be ascribed to the presence of glutathione transferase which is absent in CHO/BHK cell line

  19. Tropism, Cytotoxicity, and Inflammatory Properties of Two Envelope Genes of Murine Leukemia Virus Type-Endogenous Retroviruses of C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Young-Kwan Lee

    2011-01-01

    Full Text Available Envelope (env proteins of certain endogenous retroviruses (ERVs participate in various pathophysiological processes. In this study, we characterized pathophysiologic properties of two murine leukemia virus-type ERV (MuLV-ERV env genes cloned from the ovary of C57BL/6J mice. The two env genes (named ENVOV1 and ENVOV2, with 1,926\\,bp coding region, originated from two MuLV-ERV loci on chromosomes 8 and 18, respectively. ENVOV1 and ENVOV2 were ~75 kDa and predominantly expressed on the cell membrane. They were capable of producing pseudotype murine leukemia virus virions. Tropism trait and infectivity of ENVOV2 were similar to the polytropic env; however, ENVOV1 had very low level of infectivity. Overexpression of ENVOV2, but not ENVOV1, exerted cytotoxic effects and induced expression of COX-2, IL-1β, IL-6, and iNOS. These findings suggest that the ENVOV1 and ENVOV2 are capable of serving as an env protein for virion assembly, and they exert differential cytotoxicity and modulation of inflammatory mediators.

  20. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-κB

    International Nuclear Information System (INIS)

    Lin, R.-W.; Chen, C.-H.; Wang, Y.-H.; Ho, M.-L.; Hung, S.-H.; Chen, I.-S.; Wang, G.-J.

    2009-01-01

    People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-κB in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 μM) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cells and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-κB transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-κB.

  1. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.

    Science.gov (United States)

    Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong

    2010-01-01

    The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.

  2. In vitro Cytotoxic Activity of Four Plants Used in Persian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2013-08-01

    Full Text Available Purpose: The aim of this study was to investigate in vitro cytotoxic activity of four methanolic crude plant extracts against panel cell lines. Methods: Methanolic extracts were tested for their possible antitumor activity and cytotoxicity using the 3-(4,5-dimetylthiazol-2-yl-2,5- diphenyltetrazolium bromide (MTT assay on six cancer cell lines; non-Hodgkin’s B-cell lymphoma (Raji, human leukemic monocyte lymphoma (U937, human acute myelocytic leukemia (KG-1A, human breast carcinoma (MCF-7 cells, human Prostate Cancer (PC3 and mouse fibrosarcoma (WEHI-164 cell lines and one normal cell line; Human Umbilical Vein Endothelial Cells (HUVEC. Results: All species showed dose dependent inhibition of cell proliferation. IC50 values ranging from 25.66±1.2 to 205.11±1.3 μg/ml. The highest cytotoxic activity Chelidonium majus L> Ferulago Angulata DC> Echinophora platyloba DC> Salvia officinalis L, respectively. Conclusion: all extracts demonstrate promising cytotoxicity activity as a natural resource for future bio-guided fractionation and isolation of potential antitumor agents.

  3. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    Science.gov (United States)

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  4. Circumvention of inherent or acquired cytotoxic drug resistance in vitro using combinations of modulating agents.

    Science.gov (United States)

    Cadagan, David; Merry, Stephen

    2013-10-01

    Modulating agents are used to circumvent drug resistance in the clinical setting. However achievable serum concentrations are often lower than those which are optimal in vitro. Combination of modulating agents with non-overlapping toxicities may overcome this obstacle. We have investigated combinations of three modulating agents (quinine, verapamil, and cinnarizine) to circumvent inherent or acquired resistance to the cytotoxic drugs doxorubicin, vincristine and paclitaxel. Dose-response curves to cytotoxic drugs in the presence/absence of modulating agents were determined using colony formation and cell proliferation assays. Doxorubicin accumulation into cell monolayers was measured by fluorescence spectrophotometry. Greater (1.9-fold) sensitisation to particular cytotoxic drugs was observed for certain combinations of modulating agents compared to individual effects. The most effective combination was quinine-plus-verapamil with the cytotoxic drug doxorubicin. This increase in sensitivity was associated with increased doxorubicin accumulation. Such enhanced activity was, however, not observed for all combinations of modulating agents or for all studied cytotoxic drugs. The findings of the present study suggest certain combinations of modulating agents to have a clinical role in circumventing drug resistance. Particular combinations of modulating agents must be carefully chosen to suit particular cytotoxic drug treatments.

  5. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    Science.gov (United States)

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  6. Suppression of natural killer cell cytotoxicity in postpartum women: time course and potential mechanisms.

    Science.gov (United States)

    Groer, Maureen W; El-Badri, Nagwa; Djeu, Julie; Williams, S Nicole; Kane, Bradley; Szekeres, Karoly

    2014-07-01

    Little is known about the recovery of the immune system from normal pregnancy and whether the postpartum period is a uniquely adapted immune state. This report extends previous observations from our group of decreased natural killer (NK) cell cytotoxicity in the postpartum period. NK cytotoxicity was measured from 1 week through 9 months postpartum. In addition, NK cytotoxicity was assayed in the presence or absence of pooled plasmas collected from either postpartum or nonpostpartum women. Samples of cells were stained for inhibitory receptors and analyzed by flow cytometry. NK cytotoxicity remained decreased in postpartum women compared to controls through the first 6 postpartum months, returned to normal levels by 9 months, and remained normal at 12 months. NK cytotoxicity during the first 6 months was further inhibited by the addition of pooled plasma to NK cultures from postpartum women, but the addition of pooled plasma from the control group did not affect that group's NK cultures. There were differences in inhibitory receptor staining between the two groups, with decreased CD158a and CD158b and increased NKG2A expression on postpartum NK cells during the first 3 postpartum months. These data suggest that NK cytotoxicity postpartum inhibition lasts 6 months and is influenced by unidentified postpartum plasma components. The effect may also involve receptors on NK cells. © The Author(s) 2013.

  7. Cytotoxicity and Apoptotic Activity of Ficus pseudopalma Blanco ...

    African Journals Online (AJOL)

    Blanco Leaf Extracts Against Human Prostate Cancer Cell. Lines ... Keywords: Ficus pseudopalma, Cytotoxicity, Apopotic, human prostate PRST2 cancer cell, Lupeol,. Quercetin. ..... apoptosis through Fas-receptor mediated pathway in a ...

  8. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  9. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  10. Cytotoxic activity of methanol extracts from Basidiomycete mushrooms on murine cancer cell lines.

    Science.gov (United States)

    Tomasi, S; Lohézic-Le Dévéhat, F; Sauleau, P; Bézivin, C; Boustie, J

    2004-04-01

    Crude methanol extracts of 58 mushroom species were screened for their cytotoxic activities against two murine cancer cell lines, L1210 and 3LL, using the tetrazolium assay. A majority of extracts (74%) exhibited IC50 > 100 microg/ml against both cell lines. A most marked activity against one of the cell lines was noted for nine species (14% of the tested species). While Amanitales and Russulales tested were not found active, Polyporales and Boletales gave better results. Four species exhibited a significant cytotoxic activity (IC50 Suillus granulatus, S. luteus). The last one had never been investigated for its cytotoxic compounds before.

  11. Enhancement of human natural cytotoxicity by Plasmodium falciparum antigen activated lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Pedersen, B K; Bygbjerg, I C

    1987-01-01

    Mononuclear cells (MNC) isolated from malaria immune donors and from donors never exposed to malaria were stimulated in vitro with soluble purified Plasmodium falciparum antigens (SPag) or PPD. After 7 days of culture the proliferative response and the cytotoxic activity against the natural killer...... were preincubated with interleukin 2 (IL-2) for one hour before the start of the cytotoxic assay. SPag activation did not enhance the cytotoxic activity of MNC which did not respond to the antigen in the proliferation assay, and preincubation of these cells with IL-2 did not increase the activity. PPD...

  12. Degradation of cytotoxic agent in soap and detergent wastewater by advanced oxidation processes

    International Nuclear Information System (INIS)

    Iqbal, M.; Bhatti, I.A.; Nisar, J.

    2017-01-01

    Wastewater from soap and detergent industries is a source of high pollution and contamination for water sheds. In present investigation, cytotoxic profiling was documented from Faisalabad, Sargodha and Gujranwala cities, Pakistan, followed by advanced oxidation processes (AOPs) treatments (UV and gamma radiation). The cytotoxicity was evaluated by Allium cepa, haemolytic and brine shrimp bioassays. Independent variables such as gamma radiation absorbed dose, H2O2, TiO2 concentrations, reaction time, pH and shaking speed were optimized using statistical techniques. The raw soap and detergent wastewater showed cytotoxicity up to high extent. At optimized conditions, > 94% degradation was achieved both in case of UV (exposure time 100 min, TiO2 concentration 5.93 g/L, H2O2 4.39%, pH 6.50 and shaking speed 110 rpm) and gamma radiation (12.69 kGy absorbed dose in the presence of 4.65% H2O2) treated samples and water quality parameters (WQP) also improved significantly. The cytotoxicity reduced sharply as a result of AOPs treatment at optimized conditions. From the results, it is evident that AOPs under investigation could be used for the degradation and cytotoxicity reduction of soap and detergent wastewater. (author)

  13. Cytotoxic Activity of Coagulase-Negative Staphylococci in Bovine Mastitis

    Science.gov (United States)

    Zhang, Songlin; Maddox, Carol W.

    2000-01-01

    Secreted toxins play important roles in the pathogenesis of bacterial infections. In this study, we examined the presence of secreted cytotoxic factors of coagulase-negative staphylococci (CoNS) from bovine clinical and subclinical mastitis. A 34- to 36-kDa protein with cell-rounding cytotoxic activity was found in many CoNS strains, especially in Staphylococcus chromogenes strains. The protein caused cell detachment and cell rounding in several cell lines, including HEp-2, Int 407, CHO-K1, and Y-1 cells. Native protein recovered from nondenatured polyacrylamide gel electrophoresis showed both cytotoxic activity and casein hydrolysis activity. The purified protein had a pH optimal at 7.2 to 7.5 and a pI of 5.1 and was heat labile. The proteolytic activity could be inhibited by zinc and metal specific inhibitors such as 1,10-phenanthroline and EDTA, indicating that it is a metalloprotease. Protein mass analysis and peptide sequencing indicated that the protein is a novel metalloprotease. Different bacterial strains expressed variable levels of 34- to 36-kDa protease, which may provide an indication of strain virulence. PMID:10678913

  14. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    Science.gov (United States)

    Hatipoglu, Manolya Kukut; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  15. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  16. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  17. Metastatic melanoma: results of 'classical' second-line treatment with cytotoxic chemotherapies.

    Science.gov (United States)

    Perrin, Christophe; Pracht, Marc; Talour, Karen; Adamski, Henri; Cumin, Isabelle; Porneuf, Marc; Talarmin, Marie; Mesbah, Habiba; Audrain, Odile; Moignet, Aline; Lefeuvre-Plesse, Claudia; Lesimple, Thierry

    2014-10-01

    Metastatic melanoma is one of the most aggressive tumours, with a median survival that does not exceed 12 months. None of the cytotoxic first-line therapies have shown survival benefit in randomised clinical trials. To describe clinical benefit of second-line cytotoxic chemotherapy in the second line of treatment for metastatic melanoma. In a retrospective study, we analyse the outcome of patients with metastatic melanoma who had received two lines or more of cytotoxic treatments in four French dermato-oncology departments between 1999 and 2009. We describe the outcomes for 109 patients. Most of these patients received dacarbazine for the first line of chemotherapy and fotemustine for the second line of chemotherapy (67.0 and 64.2%, respectively). A clinical benefit was observed in 24.1% of the patients and overall survival was 4.1 months after the second-line treatment. At least 23.8% of patients suffered from grade 3 or 4 toxicities. The presence of more than two sites of metastasis and an M1c staging according to the AJCC classification represented negative predictive factors of clinical benefit. This study shows the modest benefit of a second line of cytotoxic chemotherapy in a nonselected population. If eligible, these patients should be proposed for ongoing clinical trials or for targeted therapies.

  18. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  19. Effect of Cytotoxicity of Pegylated Liposomal Recombinant Human ...

    African Journals Online (AJOL)

    drug release pattern were evaluated spectrophotometrically. The cytotoxicity effect of pegylated nanoliposomal ... encapsulating a broad range of drugs can be used as drug .... addition, PEG helps to increase pharmacokinetic properties and ...

  20. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  1. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary.

    Directory of Open Access Journals (Sweden)

    Lori L Tortorella

    Full Text Available Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(F(v-PE38, are proposed to traffic to the trans-Golgi network (TGN and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity - presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.

  2. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  3. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  4. Cytotoxicity of Nanoliposomal Cisplatin Coated with Synthesized ...

    African Journals Online (AJOL)

    Purpose: To evaluate the cytotoxicity of pegylated nanoliposomal cisplatin on human ovarian cancer cell line A2780CP. Methods: Synthesized methoxypolyethylene glycol (mPEG) propionaldehyde was characterized by 1Hnuclear magnetic resonance (1H-NMR) and Fourier transform infrared spectroscopy (FTIR) and used ...

  5. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    Tarchonanthus camphoratus (camphor bush) has been widely used for numerous medicinal purposes. The aim of the present study was to evaluate the antioxidant properties, cytotoxicity and monoamine oxidase inhibition activities of the crude dichloromethane leaf extract of T. camphoratus. The antioxidant activities were ...

  6. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale

    Directory of Open Access Journals (Sweden)

    Sanjib Bhakta

    2012-04-01

    Full Text Available Phenolic compounds are widely distributed in Nature and act as pharmacologically active constituents in many herbal medicines. They have multiple biological properties, most notably antioxidant, antibacterial and cytotoxic activities. In the present study an attempt to correlate the phenolic composition of leaf, flower and wood extracts of Piper imperiale, with antioxidant, antitubercular and cytotoxic activities was undertaken. The total phenol content ranged from 1.98 to 6.94 mg GAE/gDW among ethanolic extracts, and gallic acid, catechin, epicatechin, ferulic acid, resveratrol and quercetin were identified and quantified by HPLC. DPPH and ABTS assays showed high antioxidant activity of the leaf extract (EC50ABTS = 15.6 µg/mL, EC50DPPH = 27.3 µg/mL with EC50 in the same order of magnitude as the hydroxyquinone (EC50ABTS = 10.2 µg/mL, EC50DPPH = 15.7 µg/mL. The flower extract showed strong antimicrobial activity against Mycobacterium tuberculosis H37Rv. All the extracts exhibited dose-dependent cytotoxic effects against MCF-7 cancer cells. This is the first time that a Piper extract has been found to be highly active against M. tuberculosis. This study shows the biological potential of Piper imperiale extracts and gives way to bio-guided studies with well-defined biological activities.

  7. Quantitative structure-cytotoxicity relationship of piperic acid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-09-01

    A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability.

    Science.gov (United States)

    Gundogdu, Evren; Karasulu, Hatice Yesim; Koksal, Cinel; Karasulu, Ercüment

    2013-01-01

    The objective of this study was to formulate imatinib (IM) loaded to water-in-oil (w/o) microemulsions as an alternative formulation for cancer therapy and to evaluate the cytotoxic effect of microemulsions Caco-2 and MCF-7. Moreover, permeability studies were also performed with Caco-2 cells. W/o microemulsion systems were developed by using pseudo-ternary phase diagram. According to cytotoxicity studies, all formulations did not exert a cytotoxic effect on Caco-2 cells. Furthermore, all formulations had a significant cytotoxic effect on MCF-7 cells and the cytotoxic effect of M3IM was significantly more than that of other microemulsions and IM solution (p < 0.05). The permeability studies of IM across Caco-2 cells showed that permeability value from apical to basolateral was higher than permeability value of other formulations. In conclusion, the microemulsion formulations as a drug carrier, especially M3IM formulation, may be used as an effective alternative breast cancer therapy for oral delivery of IM.

  9. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro

    DEFF Research Database (Denmark)

    Labanauskiene, J; Gehl, J; Didziapetriene, J

    2007-01-01

    14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest...... tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT....... Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4...

  10. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Michel

    Full Text Available Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1 in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay, oxidative stress (H2DCF-DA assay, and metabolic activity (MTT assay were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤ 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i. natural mineral particles can be cytotoxic to gill epithelial cells, (ii. their cytotoxic potential differs between mineral

  11. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  12. Calcium Contributes to the Cytotoxic Interaction Between Diclofenac and Cytokines.

    Science.gov (United States)

    Maiuri, Ashley R; Breier, Anna B; Turkus, Jonathan D; Ganey, Patricia E; Roth, Robert A

    2016-02-01

    Diclofenac (DCLF) is a widely used non-steroidal anti-inflammatory drug that is associated with idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanisms of DCLF-induced liver injury are unknown; however, patients with certain inflammatory diseases have an increased risk of developing IDILI, which raises the possibility that immune mediators play a role in the pathogenesis. DCLF synergizes with the cytokines tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN) to cause hepatocellular apoptosis in vitro by a mechanism that involves activation of the endoplasmic reticulum (ER) stress response pathway and of the mitogen-activated protein kinases, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). DCLF also causes an increase in intracellular calcium (Ca(++)) in hepatocytes, but the role of this in the cytotoxic synergy between DCLF and cytokines is unknown. We tested the hypothesis that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy. Treatment of HepG2 cells with DCLF led to an increase in intracellular Ca(++) at 6 and 12 h, and this response was augmented in the presence of TNF and IFN at 12 h. The intracellular Ca(++) chelator BAPTA/AM reduced cytotoxicity and caspase-3 activation caused by DCLF/cytokine cotreatment. BAPTA/AM also significantly reduced DCLF-induced activation of the ER stress sensor, protein kinase RNA-like ER kinase (PERK), as well as activation of JNK and ERK. Treatment of cells with an inositol trisphosphate receptor antagonist almost completely eliminated DCLF/cytokine-induced cytotoxicity and decreased DCLF-induced activation of PERK, JNK, and ERK. These findings indicate that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy by promoting activation of the ER stress-response pathway and JNK and ERK. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes

    NARCIS (Netherlands)

    Donatus, I A; Sardjoko,; Vermeulen, N P

    1990-01-01

    The cytoprotective effect of curcumin, a natural constituent of Curcuma longa, on the cytotoxicity of paracetamol in rat hepatocytes was studied. Paracetamol was selected as a model-toxin, since it is known to be bioactivated by 3-methylcholanthrene inducible cytochromes P450 presumably to

  14. Reprint of: Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Pröfrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  15. Reprint of: Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-12-15

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  16. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  17. Cytotoxicity and Radiosensitising Activity of Synthesized Dinitrophenyl Derivatives of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Khosrou Abdi

    2012-07-01

    Full Text Available Background and the purpose of the study: Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In thepresent investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide,and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions wasinvestigated.Methods: 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substitutedbenzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking,group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively.Results and major conclusion: Findings of the present study showed that

  18. Effect of radiotherapy on lymphocyte cytotoxicity against allogeneic lung cancer cells in patients with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Toyohira, Ken; Yasumoto, Kosei; Manabe, Hideo; Ohta, Mitsuo; Terashima, Hiromi

    1979-01-01

    Cytotoxicity of peripheral blood lymphocytes against allogeneic target cells of bronchogenic carcinoma was examined by a microcytotoxicity test before, during, and after radiotherapy in primary lung cancer patients. Before the treatment, cytotoxicity was depressed only slightly in patients in stage III and strikingly in those in stage IV, as compared to the values in patients at earlier stages of lung cancer such as stages I and II. Local irradiation scarcely affected cytotoxicity at stages II and III, but augmented remarkably at stage IV. The number of peripheral blood lymphocytes decreased profoundly during and after radiotherapy in all cases of stages II, III, and IV. Although radiotherapy exhibited various effects on the cytotoxic activity of lymphocytes and the number of peripheral blood lymphocytes, only the cytotoxic activity at the end of radiotherapy correlated well with the reduction in tumor size. (author)

  19. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  20. Cytotoxic and antibacterial activity of the mixture of olive oil and lime cream in vitro conditions.

    Science.gov (United States)

    Sumer, Zeynep; Yildirim, Gulay; Sumer, Haldun; Yildirim, Sahin

    2013-01-01

    The mixture of olive oil and lime cream has been traditionally used to treat external burns in the region of Hatay/Antakya and middle Anatolia. Olive oil and lime cream have been employed by many physicians to treat many ailments in the past. A limited number of studies have shown the antibacterial effect of olive oil and that it does not have any toxic effect on the skin. But we did not find any reported studies on the mixture of olive oil and lime cream. The aim of this paper is to investigate the cytotoxic and antibacterial activity of olive oil and lime cream individually or/and in combination in vitro conditions, by using disk-diffusion method and in cell culture. The main purpose in using this mixture is usually to clear burns without a trace. Agar overlay, MTT (Cytotoxicity assay) and antibacterial susceptibility tests were used to investigate the cytotoxic and antibacterial activity of olive oil and lime cream. We found that lime cream has an antibacterial activity but also cytotoxic on the fibroblasts. On the other hand olive oil has limited or no antibacterial effect and it has little or no cytotoxic on the fibroblasts. When we combined lime cream and olive oil, olive oil reduced its cytotoxic impact. These results suggest that mixture of olive oil and lime cream is not cytotoxic and has antimicrobial activity.

  1. Cytotoxicity and cytokine expression induced by silorane and methacrylate-based composite resins.

    Science.gov (United States)

    Longo, Daniele Lucca; Paula-Silva, Francisco Wanderley Garcia; Faccioli, Lucia Helena; Gatón-Hernández, Patrícia Maria; Queiroz, Alexandra Mussolino de; Silva, Léa Assed Bezerra da

    2016-01-01

    The aim of this study was to evaluate cytotoxicity and cytokine production induced by light-cured or non-light-cured methacrylate-based and silorane composite resins in RAW 264.7 macrophages. Cells were stimulated with the extracts from light-cured or non-light-cured composite resins. After incubation for 24 h, cytotoxicity was assessed with the lactate dehydrogenase (LDH) and methyl thiazolyl tetrazolium (MTT) assays, and total protein was quantified using the Lowry method. TNF-α detection was examined with an enzyme-linked immunosorbent assay (ELISA) conducted with cell supernatants after cell stimulation for 6, 12, and 24 h. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's post hoc test (α=0.05). KaloreTM and FiltekTM Silorane were cytotoxic with or without light curing (p0.05). However, after 24 h FiltekTM Silorane inhibited the production of TNF-α (p<0.05). KaloreTM and FiltekTM Silorane were cytotoxic regardless of light curing. The extract obtained from KaloreTM after 15 days of incubation stimulated the production of TNF-α, unlike that obtained from FiltekTM Silorane.

  2. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Abbasi Atiya

    2010-09-01

    Full Text Available Abstract Background There has been a long standing interest in the identification of medicinal plants and derived natural products for developing cancer therapeutics. Our study focuses upon pancreatic cancer, due to its high mortality rate, that is attributed in part to the lack of an effective chemotherapeutic agent. Previous reports on the use of medicinal plant extracts either alone or alongside conventional anticancer agents in the treatment of this cancer have shown promising results. This work aims to investigate the therapeutic properties of a library of medicinal plants from Bangladesh. Methods 56 extracts of 44 unique medicinal plants were studied. The extracts were screened for cytotoxicity against the pancreatic adenocarcinoma cell line Panc-1, using a label-free biosensor assay. The top cytotoxic extracts identified in this screen were tested on two additional pancreatic cancer cell lines (Mia-Paca2 and Capan-1 and a fibroblast cell line (Hs68 using an MTT proliferation assay. Finally, one of the most promising extracts was studied using a caspase-3 colorimetric assay to identify induction of apoptosis. Results Crude extracts of Petunia punctata, Alternanthera sessilis, and Amoora chittagonga showed cytotoxicity to three cancer cell lines with IC50 values ranging between 20.3 - 31.4 μg/mL, 13.08 - 34.9 μg/mL, and 42.8 - 49.8 μg/mL, respectively. Furthermore, treatment of Panc-1 cells with Petunia punctata was shown to increase caspase-3 activity, indicating that the observed cytotoxicity was mediated via apoptosis. Only Amoora chittagonga showed low cytotoxicity to fibroblast cells with an IC50 value > 100 μg/mL. Conclusion Based upon the initial screening work reported here, further studies aimed at the identification of active components of these three extracts and the elucidation of their mechanisms as cancer therapeutics are warranted.

  3. Limited transplantation of antigen-expressing hematopoietic stem cells induces long-lasting cytotoxic T cell responses.

    Directory of Open Access Journals (Sweden)

    Warren L Denning

    2011-02-01

    Full Text Available Harnessing the ability of cytotoxic T lymphocytes (CTLs to recognize and eradicate tumor or pathogen-infected cells is a critical goal of modern immune-based therapies. Although multiple immunization strategies efficiently induce high levels of antigen-specific CTLs, the initial increase is typically followed by a rapid contraction phase resulting in a sharp decline in the frequency of functional CTLs. We describe a novel approach to immunotherapy based on a transplantation of low numbers of antigen-expressing hematopoietic stem cells (HSCs following nonmyeloablative or partially myeloablative conditioning. Continuous antigen presentation by a limited number of differentiated transgenic hematopoietic cells results in an induction and prolonged maintenance of fully functional effector T cell responses in a mouse model. Recipient animals display high levels of antigen-specific CTLs four months following transplantation in contrast to dendritic cell-immunized animals in which the response typically declines at 4-6 weeks post-immunization. Majority of HSC-induced antigen-specific CD8+ T cells display central memory phenotype, efficiently kill target cells in vivo, and protect recipients against tumor growth in a preventive setting. Furthermore, we confirm previously published observation that high level engraftment of antigen-expressing HSCs following myeloablative conditioning results in tolerance and an absence of specific cytotoxic activity in vivo. In conclusion, the data presented here supports potential application of immunization by limited transplantation of antigen-expressing HSCs for the prevention and treatment of cancer and therapeutic immunization of chronic infectious diseases such as HIV-1/AIDS.

  4. Immunomodulatory Effect of Rhaphidophora korthalsii on Natural Killer Cell Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2012-01-01

    Full Text Available The in vivo immunomodulatory effect of ethanolic extracts from leaves of Rhaphidophora korthalsii was determined via immune cell proliferation, T/NK cell phenotyping, and splenocyte cytotoxicity of BALB/c mice after 5 consecutive days of i.p. administration at various concentrations. Splenocyte proliferation index, cytotoxicity, peripheral blood T/NK cell population, and plasma cytokine (IL-2 and IFN-γ in mice were assessed on day 5 and day 15. High concentration of extract (350 μg/mice/day for 5 consecutive days was able to stimulate immune cell proliferation, peripheral blood NK cell population, IL-2, and IFN- γ cytokines, as well as splenocyte cytotoxicity against Yac-1 cell line. Unlike rIL-2 which degraded rapidly, the stimulatory effect from the extract managed to last until day 15. These results suggested the potential of this extract as an alternative immunostimulator, and they encourage further study on guided fractionation and purification to identify the active ingredients that contribute to this in vitro and in vivo immunomodulatory activity.

  5. Cytotoxic Flavones from the Stem Bark of Bougainvillea spectabilis Willd.

    Science.gov (United States)

    Do, Lien T M; Aree, Thammarat; Siripong, Pongpun; Vo, Nga T; Nguyen, Tuyet T A; Nguyen, Phung K P; Tip-Pyang, Santi

    2018-01-01

    Five new flavones possessing a fully substituted A-ring with C-6 and C-8 methyl groups, bougainvinones I - M (1: -5: ), along with three known congeners, 2'-hydroxydemethoxymatteucinol (6: ), 5,7,3',4'-tetrahydroxy-3-methoxy-6,8-dimethylflavone (7: ) and 5,7,4'-trihydroxy-3-methoxy-6,8-dimethylflavone (8: ), were isolated from the EtOAc extract of the stem bark of Bougainvillea spectabilis . Their structures were established by means of spectroscopic data (ultraviolet, infrared, high-resolution electrospray ionization mass spectrometry, and one-dimensional and two-dimensional nuclear magnetic resonance) and single-crystal X-ray crystallographic analysis. The in vitro cytotoxicity of all isolated compounds against five cancer cell lines (KB, HeLa S-3, MCF-7, HT-29, and HepG2) was evaluated. Compound 5: showed promising cytotoxic activity against the KB and HeLa S-3 cell lines, with IC 50 values of 7.44 and 6.68 µM. The other compounds exhibited moderate cytotoxicity against the KB cell line. Georg Thieme Verlag KG Stuttgart · New York.

  6. Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Leo L. Chan

    2011-01-01

    Full Text Available Chemotherapeutic agents for cancer are highly toxic to healthy tissues and hence alternative medicine avenues are widely researched. Majority of the recent studies on alternative medicine suggested that Amoora rohituka possesses considerable antitumor and antibacterial properties. In this work, rohituka and chittagonga, fractionated with petroleum ether, dichloromethane, and ethanol, were explored for their anticancer potential against two breast cancer (MCF-7 and HTB-126 and three pancreatic cancer (Panc-1, Mia-Paca2, and Capan1. The human foreskin fibroblast, Hs68, was also included. Cytotoxicity of each extract was analyzed using the MTT assay and label-free photonic crystal biosensor assay. A concentration series of each extract was performed on the six cell lines. For MCF-7 cancer cells, the chittagonga (Pet-Ether and CH2Cl2 and rohituka (Pet-Ether extracts induced cytotoxicity; the chittagonga (EtoAC and rohituka (MeOH extracts did not induce cytotoxicity. For HTB126, Panc-1, Mia-Paca2, and Capan-1 cancer cells, only the chittagonga CH2Cl2 extract showed a significant cytotoxic effect. The extracts were not cytotoxic to normal fibroblast Hs68 cells, which may be correlated to the specificity of Amoora extracts in targeting cancerous cells. Based on these results, further examination of the potential anticancer properties Amoora species and the identification of the active ingredients of these extracts is warranted.

  7. Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona

    2017-08-01

    Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (pessential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  8. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    Keywords: Acacia nilotica, ESBLs, MRSA, E. coli, Klebsiella, Antibacterial resistance, Cytotoxicity. Received: ... infectious diseases, is an age-long practice, especially ... used in a variety of infections. ... E. coli K1 [14] and MRSA [15] were used.

  9. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    Science.gov (United States)

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  10. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays.

    Science.gov (United States)

    Fischer, Janine; Prosenc, Marc H; Wolff, Martin; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2010-05-01

    Magnesium (Mg) alloys are promising materials for the development of biodegradable implants. However, the current in vitro test procedures for cytotoxicity, cell viability and proliferation are not always suitable for this class of materials. In this paper we show that tetrazolium-salt-based assays, which are widely used in practice, are influenced by the corrosion products of Mg-based alloys. Corroded Mg converts tetrazolium salts to formazan, leading to a higher background and falsifying the results of cell viability. Tetrazolium-based assays are therefore not a useful tool for testing the cytotoxicity of Mg in static in vitro assays. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. [Cytotoxic effect of Vibrio cholerae non-O1 on Vero cells].

    Science.gov (United States)

    Figueroa-Arredondo, P; García-Lozano, H; Gutiérrez-Cogco, L; Valdespino-Gómez, J L

    1994-01-01

    At the present time there is still in Mexico a diarrhoeal outbreak due to Vibrio cholerae O1. In INDRE we have isolated from the same outbreak last year (jan-apr), 70 strains of Vibrio cholerae Non-O1. These were isolated from patients with a diarrhoeal illness different from cholera. Patients were of different ages and sex, and from various geographic areas. The isolated strains were confirmed by serological agglutination test with polyclonal antisera, and they neither belong to O1 serogroup or O139. We assayed all the 70 strains in Vero cells, searching for cytotoxic effect, probably attributed to cholera toxin, or any other toxin. The strains were screened by PCR for cholera toxin gene detection, and negative results were obtained. We have found only one CT-producer strain, but it was a rough one so, we are not able to affirm that is not a V. cholerae O1 serotype. Vibrio cholerae Non-O1 strains, tested in Vero cells assay, produced cytotoxic effect within 24 h. It was found that 48/70 strains (66.6%), had cytotoxic activity, showing rounding and then lysis of cells. From our results we concluded that this cytotoxic effect, is not cholera toxin related, instead we propose it could be due to an unknown virulence factor, probably a different toxin in mexican Vibrio cholerae Non-O1 strains.

  12. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  13. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  14. In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging.

    Science.gov (United States)

    Bal, Bilge Turhan; Yilmaz, Handan; Aydin, Cemal; Karakoca, Seçil; Yilmaz, Sükran

    2009-04-01

    The purpose of this in vitro study was to evaluate the cytotoxicity of three maxillofacial silicone elastomers at 24, 48, and 72 h on L-929 cells and to determine the effect of accelerated aging on the cytotoxicity of these silicone elastomers. Disc-shaped test samples of maxillofacial silicone elastomers (Cosmesil, Episil, Multisil) were fabricated according to manufacturers' instructions under aseptic conditions. Samples were then divided into three groups: (1) not aged; (2) aged for 150 h with an accelerated weathering tester; and (3) aged for 300 h. Then the samples were placed in Dulbecco's Modified Eagle Medium/Ham's F12 (DMEM/F12) for 24, 48, and 72 h. After the incubation periods, cytotoxicity of the extracts to cultured fibroblasts (L-929) was measured by MTT assay. The degree of cytotoxicity of each sample was determined according to the reference value represented by the cells with a control (culture without sample). Statistical significance was determined by repeated measurement ANOVA (p test (p test materials in each group demonstrated high survival rates in MTT assay (Episil; 93.84%, Multisil; 88.30%, Cosmesil; 87.50%, respectively); however, in all groups, Episil material demonstrated significantly higher cell survival rate after each of the experimental incubation periods (p Accelerated aging for 150 and 300 h had no significant effect on the biocompatibility of maxillofacial silicone elastomers tested (p > 0.05).

  15. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    Directory of Open Access Journals (Sweden)

    Mahmuda Nasrin

    2015-02-01

    Full Text Available Objectives: Grewia paniculata (Family: Malvaceae has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB and ethanol fraction of bark (EFB (400 μg/disc exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and  23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.

  16. Cytotoxic and radioprotective effects of Podophyllum hexandrum.

    Science.gov (United States)

    Shukla, Sandeep Kumar; Chaudhary, Pankaj; Prem Kumar, Indracanti; Afrin, Farhat; Puri, Satish Chandra; Qazi, Ghulam Nabi; Sharma, Rakesh Kumar

    2006-07-01

    Podophyllum hexandrum, a herb thriving in Himalayas has already been reported to exhibit antitumor and radioprotective properties. Present study was undertaken to unravel the possible mechanism responsible for the cytotoxic and radioprotective properties of REC-2001, a fraction isolated from the rhizome of P. hexandrum using murine peritoneal macrophages and plasmid DNA as model systems. Cell death, levels of intracellular reactive oxygen species (ROS) and apoptosis were studied employing trypan blue exclusion assay, dichlorofluorescein diacetate and DNA fragmentation assay, respectively. Superoxide anions, hydroxyl radicals and DNA damage were estimated following nitroblue tetrazolium, 2-deoxyribose degradation and plasmid DNA relaxation assays, respectively. Pre-irradiation administration of REC-2001 to peritoneal macrophages in the concentration range of 25-200μg/ml significantly reduced radiation induced ROS generation, DNA damage, apoptosis and cell killing in comparison to radiation control group indicating radioprotective potential. Studies with plasmid DNA indicated the ability of REC-2001 to inhibit 20Gy induced single and double strand breaks further supporting the antioxidative potential. However, REC-2001 in a dose-dependent fashion induced cell death, ROS and DNA fragmentation indicating the cytotoxic nature. REC-2001, in presence of 100μM copper sulfate, generated significant amount of hydroxyl radicals and superoxide anions indicating ability to act as a pro-oxidant in presence of metal ions. The superoxide anion generation was found to be sensitive to metal chelators like EDTA and deferoxamine mesylate (DFR). These results suggest that the ability of REC-2001 to act as a pro-oxidant in presence of metal ions and antioxidant in presence of free radicals might be responsible for cytotoxic and radioprotective properties.

  17. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Pierre Sujobert

    2015-06-01

    Full Text Available AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.

  18. Calcein AM release-based cytotoxic cell assay for fish leucocytes.

    Science.gov (United States)

    Iwanowicz, Luke R; Densmore, Christine L; Ottinger, Christopher A

    2004-02-01

    A non-specific cytotoxic cell assay for fish is presented that is based on the release of the activated fluorochrome calcein AM from lysed carp epithelioma papulosum cyprini (EPC) cells. To establish the suitability of treating EPC cells with calcein AM the uptake and spontaneous release of the calcein AM by the EPC cells was evaluated. Incubation of 5 microM calcein AM in culture medium with 1x10(5)EPC cells well(-1)for a minimum of 3 h provided sufficient labelling. Spontaneous release of fluorescence from the labelled EPC cells during 10 h of post labelling incubation ranged from 30 to 39% of the total observed fluorescence. Cytotoxic activity of trout leucocytes was evaluated at three leucocyte to target cell ratios (10:1, 2:1 and 1:1) following incubation (4, 6, 8, and 10 h) with calcein AM-labelled EPC cells at 15 degrees C. In some instances, the monoclonal antibody specific for the NCC surface receptor NCCRP-1 (MAb5C.6) was included in the cultures. The activity of NCC cells was significantly inhibited in the presence of 0.25 microg well(-1)of MAb5C.6 relative to no antibody (Pcytotoxic cell activity of approximately 18% was observed following 8 h of incubation at the 2:1 and 1:1 leucocyte to target cell ratios. Percent cytotoxic cell activity using calcein AM was similar to values reported for rainbow trout leucocytes using the 51Cr-release assay.

  19. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    Science.gov (United States)

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evaluation of the Cytotoxic Effect of the Brittle Star (Ophiocoma Erinaceus) Dichloromethane Extract and Doxorubicin on EL4 Cell Line.

    Science.gov (United States)

    Afzali, Mahbubeh; Baharara, Javad; Nezhad Shahrokhabadi, Khadijeh; Amini, Elaheh

    2017-01-01

    Leukemia is a blood disease that creates from inhibition of differentiation and increased proliferation rate. The nature has been known as a rich source of medically useful substances. High diversity of bioactive molecules, extracted from marine invertebrates, makes them as ideal candidates for cancer research. The study has been done to investigate cytotoxic effects of dichloromethane brittle star extract and doxorubicin on EL4 cancer cells. Blood cancer EL4 cells were cultured and treated at different concentrations of brittle star ( Ophiocoma erinaceus ) dichloromethane extract at 24, 48 and 72 h. Cell toxicity was studied using MTT assay. Cell morphology was examined using an invert microscope. Further, apoptosis was examined using Annexin V-FITC, propodium iodide, DAPI, and Acridine orange/propodium iodide staining. Eventually, the apoptosis pathways were analyzed using measurement of Caspase-3 and -9 activity. The statistical analysis was performed using SPSS, ANOVA software, and Tukey's test. P EL4 proliferation as IC 50 =32 µg/mL. All experiments related to apoptosis analysis confirmed that dichloromethane brittle star extract and doxorubicin have a cytotoxic effect on EL4 cells inIC 50 concentration. The study showed that dichloromethane brittle star extract is as an adjunct to doxorubicin in treatment of leukemia cells.

  1. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Patrícia Mathias Döll-Boscardin

    2012-01-01

    Full Text Available Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential.

  2. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    Science.gov (United States)

    Döll-Boscardin, Patrícia Mathias; Sartoratto, Adilson; Sales Maia, Beatriz Helena Lameiro de Noronha; Padilha de Paula, Josiane; Nakashima, Tomoe; Farago, Paulo Vitor; Kanunfre, Carla Cristine

    2012-01-01

    Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene) on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential. PMID:22645627

  3. Cytotoxic Activities of Several Geranyl-Substituted Flavanones

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, K.; Svačinová, Jana; Šlapetová, T.; Schneiderová, K.; Dall’Acqua, S.; Innocenti, G.; Závalová, V.; Kollár, P.; Chudík, S.; Marek, R.; Julínek, O.; Urbanová, M.; Kartal, M.; Csöllei, M.; Doležal, Karel

    2010-01-01

    Roč. 73, č. 4 (2010), s. 568-572 ISSN 0163-3864 R&D Projects: GA MŠk(CZ) LC06030; GA ČR GD522/08/H003 Institutional research plan: CEZ:AV0Z50380511 Keywords : flavanones * geranyl * cytotoxicity Subject RIV: BO - Biophysics Impact factor: 2.872, year: 2010

  4. Positive control for cytotoxicity evaluation of dental vinyl polysiloxane impression materials using sodium lauryl sulfate.

    Science.gov (United States)

    Kwon, Jae-Sung; Lee, Sang-Bae; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-11-01

    Vinyl polysiloxane (VPS) is elastomeric dental impression material which, despite having very few reports of adverse reactions, has shown high levels of cytotoxicity that is difficult to be interpreted without referencing to the positive control material. Therefore, in this study, positive control VPS was developed using sodium lauryl sulfate (SLS) for the reference of cytotoxicity test. The positive control VPS with SLS was formed with a different proportion of SLS (0, 1, 2, 4, 8 and 16 wt%) added to the base. The cytotoxicity test was then carried out using the extractions or dilutions of the extractions from each of the test samples using murine fibroblast cells (L929). The final product of positive control VPS behaved similar to commercially available VPS; being initially liquid-like and then becoming rubber-like. Ion chromatography showed that the level of SLS released from the product increased as the proportion of added SLS increased, consequently resulting in an increased level of cytotoxicity. Also, the commercially available VPS was less cytotoxic than the positive control VPS with more or equal to 2 wt% of SLS. However, even the VPS with the highest SLS (16 wt%) did not cause oral mucosa irritation during the animal study. The positive control VPS was successfully produced using SLS, which will be useful in terms of providing references during in vitro cytotoxicity testing.

  5. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    Science.gov (United States)

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  6. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials

    International Nuclear Information System (INIS)

    Byeon, Jeong Hoon; Park, Jae Hong; Peters, Thomas M.; Roberts, Jeffrey T.

    2015-01-01

    Highlights: • The cytotoxicity of model welding particles was modulated through in situ passivation. • Model welding particles were incorporated with chitosan nanoparticles for passivation. • In vitro assay revealed that the passivated particles had a lower cytotoxicity. • Passivation with chitosan adhesive or graphite paste could also reduce cytotoxicity. • This method would be suitable for efficient reduction of inhalable toxic components. - Abstract: The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled

  7. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Jeong Hoon, E-mail: postjb@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Park, Jae Hong; Peters, Thomas M. [Department of Occupational and Environmental Health, University of Iowa, IA 52242 (United States); Roberts, Jeffrey T., E-mail: jtrob@purdue.edu [Department of Chemistry, Purdue University, IN 47907 (United States)

    2015-07-15

    Highlights: • The cytotoxicity of model welding particles was modulated through in situ passivation. • Model welding particles were incorporated with chitosan nanoparticles for passivation. • In vitro assay revealed that the passivated particles had a lower cytotoxicity. • Passivation with chitosan adhesive or graphite paste could also reduce cytotoxicity. • This method would be suitable for efficient reduction of inhalable toxic components. - Abstract: The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled.

  8. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2002-01-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  9. Methods for Assessing Basic Particle Properties and Cytotoxicity of Engineered Nanoparticles

    Directory of Open Access Journals (Sweden)

    Olga-Ioanna Kalantzi

    2014-03-01

    Full Text Available The increasing penetration of materials and products containing engineered nanoparticles (ENPs to the market is posing many concerns regarding their environmental impacts. To assess these impacts, there is an urgent need of techniques for determining the health-related properties of ENPs and standards for assessing their toxicity. Although a wide number of systems for characterizing nanoparticles in different media (i.e., gases and liquids is already commercially available, the development of protocols for determining the cytotoxicity of ENPs is still at an infant stage, drawing upon existing knowledge from general toxicology. In this regard, differences in the preparation of ENP-containing solutions for cytotoxicity testing, as well as in the steps involved in the tests can result in significant deviations and inconsistencies between studies. In an attempt to highlight the urgent need for assessing the environmental impacts of nanotechnology, this article provides a brief overview of the existing methods for determining health-related properties of ENPs and their cytotoxicity.

  10. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2011-12-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  11. Detection of tumor-specific cytotoxic drug activity in vitro using the fluorometric microculture cytotoxicity assay and primary cultures of tumor cells from patients.

    Science.gov (United States)

    Nygren, P; Fridborg, H; Csoka, K; Sundström, C; de la Torre, M; Kristensen, J; Bergh, J; Hagberg, H; Glimelius, B; Rastad, J

    1994-03-01

    The semi-automated fluorometric microculture cytotoxicity assay (FMCA), based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) by viable cells, was employed for cytotoxic drug sensitivity testing of tumor cells from patients with hematological or solid tumors. In total, 390 samples from 20 diagnoses were tested with up to 12 standard cytotoxic drugs. The technical success rate for different tumor types ranged from 67 to 95%. Fluorescence was linearly related to cell number but variably steep depending on tumor type. Samples from most solid tumors thus showed higher signal-to-noise ratios than hematological samples. A wide spectrum of in vitro drug activity was obtained, with acute leukemias and non-Hodgkin's lymphomas being sensitive to almost all tested drugs, whereas renal and adrenocortical carcinomas were essentially totally resistant. Between these extremes were samples of breast and ovarian carcinomas and sarcomas. When in vitro response was compared with known clinical response patterns, a good correspondence was observed. The results indicate that the FMCA is a rapid and efficient method for in vitro measurement of tumor-specific drug activity both in hematological and in solid tumors. The assay may be suitable for new drug development and direction of phase-2 trials to suitable patients.

  12. Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons.

    Science.gov (United States)

    Witt, Barbara; Ebert, Franziska; Meyer, Sören; Francesconi, Kevin A; Schwerdtle, Tanja

    2017-11-01

    In the general population exposure to arsenic occurs mainly via diet. Highest arsenic concentrations are found in seafood, where arsenic is present predominantly in its organic forms including arsenolipids. Since recent studies have provided evidence that arsenolipids could reach the brain of an organism and exert toxicity in fully differentiated human neurons, this work aims to assess the neurodevelopmental toxicity of arsenolipids. Neurodevelopmental effects of three arsenic-containing hydrocarbons (AsHC), two arsenic-containing fatty acids (AsFA), arsenite and dimethylarsinic acid (DMA V ) were characterized in pre-differentiated human neurons. AsHCs and arsenite caused substantial cytotoxicity in a similar, low concentration range, whereas AsFAs and DMA V were less toxic. AsHCs were highly accessible for cells and exerted pronounced neurodevelopmental effects, with neurite outgrowth and the mitochondrial membrane potential being sensitive endpoints; arsenite did not substantially decrease those two endpoints. In fully differentiated neurons, arsenite and AsHCs caused neurite toxicity. These results indicate for a neurodevelopmental potential of AsHCs. Taken into account the possibility that AsHCs might easily reach the developing brain when exposed during early life, neurotoxicity and neurodevelopmental toxicity cannot be excluded. Further studies are needed in order to progress the urgently needed risk assessment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Kinetin (N -furfuryladenine): Cytotoxicity against MCF-7 breast ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was ... Medium (DMEM) containing 10% FBS, 2 mM glutamine, 100 units/ml ..... apoptosis of human myeloid leukemia cells by cytokinins and cytokinin ...

  14. Cytotoxicity and genotoxicity of clothianidin in human lymphocytes with or without metabolic activation system.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Şekeroğlu, Vedat; Uçgun, Ebru; Kontaş Yedier, Seval; Aydın, Birsen

    2018-02-26

    Clothianidin (CHN) is a broad-spectrum neonicotinoid insecticide. Limited studies have been carried out on the cytotoxic and genotoxic effects of both CHN using different genotoxicity tests in human cells with or without human metabolic activation system (S9 mix). Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of CHN and its metabolites on human lymphocyte cultures with or without S9 mix using chromosomal aberration (CA) and micronucleus (MN) tests. The cultures were treated with 25, 50, and 100 µg/ml of CHN in the presence (3 h treatment) and absence (48 h treatment) of S9 mix. Dimethyl sulfoxide (DMSO) was used as a solvent control. CHN showed cytotoxic and genotoxic effects due to significant decreases in mitotic index (MI) and nuclear division index (NDI), and significant increases in the CAs, aberrant cells, and MN formation in the absence of S9 mix when compared with solvent control. However, CHN did not significantly induce cytotoxicity and genotoxicity in the presence of S9 mix. Our results indicated that CHN has cytotoxic, cytostatic, and genotoxic potential on human peripheral blood lymphocyte cultures, but not its metabolites under the experimental conditions.

  15. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  16. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence.

    Science.gov (United States)

    Radunovic, Milena; De Colli, Marianna; De Marco, Patrizia; Di Nisio, Chiara; Fontana, Antonella; Piattelli, Adriano; Cataldi, Amelia; Zara, Susi

    2017-08-01

    Collagen membranes are used in oral surgery for bone defects treatment acting as a barrier that does not allow the invasion of soft tissue into the growing bone. To improve biocompatibility collagen membranes were coated with graphene oxide (GO), a graphene derivative. The aim of this study was to investigate the biocompatibility of GO coated collagen membranes on human dental pulp stem cells (DPSCs) focusing on biomaterial cytotoxicity, ability to promote DPSCs differentiation process and to control inflammation event induction. DPSCs were cultured on uncoated membranes and on both 2 and 10 μg mL -1 GO coated membranes up to 28 days. Alamar blue and LDH cytotocicity assay, PGE2 ELISA assay, real time RT-PCR for RUNX2, BMP2, SP7, TNFα and COX2 genes expression were performed. Proliferation is higher on GO coated membranes at days 14 and 28. LDH assay evidences no cytotoxicity. BMP2 and RUNX2 expression is higher on coated membranes, BMP2 at early and RUNX2 and SP7 at late experimental times. PGE2 levels are lower on GO coated membranes at days 14 and 28, both TNFα and COX2 expression is significantly decreased when GO is applied. GO coated membranes are not toxic for DPSCs, induce a faster DPSCs differentiation into odontoblasts/osteoblasts and may represent good alternative to conventional membranes thus ensuring more efficient bone formation and improving the clinical performance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2312-2320, 2017. © 2017 Wiley Periodicals, Inc.

  17. Cytotoxic Effect and Antioxidant Activity of Bioassay- guided ...

    African Journals Online (AJOL)

    ... were investigated for their in vitro cytotoxic effect against various cancer cell lines using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- ... In MTT assay, fractions 1, 2 and 4 from methanol extract showed the ... plant is used as antitumourigenic, antioxidant,.

  18. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Pha-induced T-cell cytotoxity. Mechanism and application in haemodialysis and renal transplant patients.

    NARCIS (Netherlands)

    Huges-Wirawan, Gladys Ratna Widhi Indrati

    1978-01-01

    This thesis describes a method to measure PHA-incluced cytotoxicity of human lymphocytes (nonspecific T-cell cytotoxicity), using 3H-thymidine prelabelled target cells (HeLa cells). The method has some advantages over the widely used 51Cr-release assay. Its application in two clinical conditions is

  20. Cytotoxicity Testing: Cell Experiments

    Science.gov (United States)

    Grünert, Renate; Westendorf, Aron; Buczkowska, Magdalena; Hänsch, Mareike; Grüunert, Sybil; Bednarski, Patrick J.

    Screening for new anticancer agents has traditionally been done with in vitro cell culture methods. Even in the genomic era of target-driven drug design, screening for cytotoxic activity is still a standard tool in the search for new anticancer agents, especially if the mode of action of a substance is not yet known. A wide variety of cell culture methods with unique end-points are available for testing the anticancer potential of a substance. Each has its advantages and disadvantages, which must be weighed in the decision to use a particular method. Often several complementary methods are used to gain information on the mode of action of a substance.

  1. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  2. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang

    2009-01-01

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with γ-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent

  3. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with {gamma}-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent.

  4. Discovery of DNA Topoisomerase I Inhibitors with Low-Cytotoxicity Based on Virtual Screening from Natural Products

    Directory of Open Access Journals (Sweden)

    Lan-Ting Xin

    2017-07-01

    Full Text Available Currently, DNA topoisomerase I (Topo I inhibitors constitute a family of antitumor agents with demonstrated clinical effects on human malignancies. However, the clinical uses of these agents have been greatly limited due to their severe toxic effects. Therefore, it is urgent to find and develop novel low toxic Topo I inhibitors. In recent years, during our ongoing research on natural antitumor products, a collection of low cytotoxic or non-cytotoxic compounds with various structures were identified from marine invertebrates, plants, and their symbiotic microorganisms. In the present study, new Topo I inhibitors were discovered from low cytotoxic and non-cytotoxic natural products by virtual screening with docking simulations in combination with bioassay test. In total, eight potent Topo I inhibitors were found from 138 low cytotoxic or non-cytotoxic compounds from coral-derived fungi and plants. All of these Topo I inhibitors demonstrated activities against Topo I-mediated relaxation of supercoiled DNA at the concentrations of 5–100 µM. Notably, the flavonoids showed higher Topo I inhibitory activities than other compounds. These newly discovered Topo I inhibitors exhibited structurally diverse and could be considered as a good starting point for the development of new antitumor lead compounds.

  5. Cytotoxicity and radiosensitising activity of synthesized dinitrophenyl derivatives of 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Khoshayand Mohammad

    2012-07-01

    Full Text Available Abstract Background and the purpose of the study Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In the present investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions was investigated. Methods 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substituted benzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29 cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively. Results and major conclusion Findings of the present study

  6. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys

    International Nuclear Information System (INIS)

    Zhen, Zhen; Liu, Xiaoli; Huang, Tao; Xi, TingFei; Zheng, Yufeng

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg 2+ concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl 2 and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg 2+ reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg 2+ (< 100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg 2+ (> 300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg 2+ concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg 2+ . The Mg extract culture media caused no cytotoxicity, with pH = 8.44 and 47.80 μg/mL Mg 2+ . It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. - Highlights: • Mg 2+ and pH have been tested for hemolysis and cytotoxicity of biomedical Mg. • Even 1000 μg/ml Mg 2+ cannot cause hemolysis, but hemolysis reaches 53.8% when pH > 11. • Mg 2+ > 300 μg/mL induces death of L929 and slight alkaline improves the proliferation. • Pure Mg in normal saline induces high hemolysis, but in PBS causes no hemolysis. • True reason

  7. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    . Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs...

  8. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia.

    Science.gov (United States)

    Mah, Siau Hui; Teh, Soek Sin; Ee, Gwendoline Cheng Lian

    2017-12-01

    Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation. This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time. S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC 50 values. GC-MS analysis was carried out on the n-hexane extract. The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC 50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC 50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol. The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

  9. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    International Nuclear Information System (INIS)

    Roberts, Joan E.; Wielgus, Albert R.; Boyes, William K.; Andley, Usha; Chignell, Colin F.

    2008-01-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 μM. Exposure to either UVA or visible light in the presence of > 5 μM fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 μM lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein α-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C 60 (OH) 22-26 is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo

  10. Cytotoxicity and genotoxicity of intravitreal adalimumab administration in rabbit retinal cells

    Directory of Open Access Journals (Sweden)

    Álcio Coutinho de Paula

    2015-04-01

    Full Text Available Purpose: To assess the cytotoxicity and genotoxicity of intravitreal adalimumab treatment in an animal experimental model using cytological and molecular techniques. Methods: Eighteen rabbits were randomly assigned to three groups: control, adalimumab treatment, and placebo. Cytotoxicity on retinal cells was evaluated using flow cytometry assays to determine the level of apoptosis and necrosis. Genotoxicity was evaluated by comet assays to assess DNA damage, and quantitative real-time polymerase chain reaction (qPCR was used to evaluate expression of apoptosis-inducing caspases (8 and 3. Results: No cytotoxicity or genotoxicity was observed in any of the two treatment groups (adalimumab and placebo following intravitreal administration compared with the control group. Flow cytometry analysis revealed that more than 90% of the cells were viable, and only a low proportion of retinal cells presented apoptotic (~10% or necrotic (<1% activity across all groups. Molecular damage was also low with a maximum of 6.4% DNA degradation observed in the comet assays. In addition, no increase in gene expression of apoptosis-inducing caspases was observed on retinal cells by qPCR in both the adalimumab and placebo groups compared with the control group. Conclusion: The use of adalimumab resulted in no detectable cytotoxicity or genotoxicity on retinal cells for up to 60 days upon administration. These results therefore indicate that adalimumab may be a safe option for intravitreal application to treat ocular inflammatory diseases in which TNF-α is involved.

  11. Cytotoxicity of topical antimicrobial agents used in burn wounds in Australasia.

    Science.gov (United States)

    Fraser, John F; Cuttle, Leila; Kempf, Margit; Kimble, Roy M

    2004-03-01

    Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical antimicrobial agents has helped improve the survival of these patients. Silvazine (Sigma Pharmaceuticals, Melbourne, Australia) (1% silver sulphadiazine and 0.2% chlorhexidine digluconate) is used exclusively in Australasia, and there is no published study on its cytotoxicity. This study compared the relative cytotoxicity of Silvazine with 1% silver sulphadiazine (Flamazine (Smith & Nephew Healthcare, Hull, UK)) and a silver-based dressing (Acticoat (Smith & Nephew Healthcare, Hull, UK)). Dressings were applied to the centre of culture plates that were then seeded with keratinocytes at an estimated 25% confluence. The plates were incubated for 72 h and culture medium and dressings then removed. Toluidine blue was added to stain the remaining keratinocytes. Following removal of the dye, the plates were photographed under standard conditions and these digital images were analysed using image analysis software. Data was analysed using Student's t-test. In the present study, Silvazine is the most cytotoxic agent. Seventy-two hour exposure to Silvazine in the present study results in almost no keratinocyte survival at all and a highly statistically significant reduction in cell survival relative to control, Acticoat and Flamazine (Pstudy comparing Acticoat, Silvazine and Flamazine, Silvazine shows an increased cytotoxic effect, relative to control, Flamazine and Acticoat. An in-vivo study is required to determine whether this effect is carried into the clinical setting.

  12. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants

    Science.gov (United States)

    Alves, Celha Borges Costa; Segurado, Márcio Nunes; Dorta, Miriam Cristina Leandro; Dias, Fátima Ribeiro; Lenza, Maurício Guilherme; Lenza, Marcos Augusto

    2016-01-01

    ABSTRACT Objective: To evaluate and compare in vitro cytotoxicity and corrosion resistance of mini-implants from three different commercial brands used for orthodontic anchorage. Methods: Six mini-implants (Conexão(tm), Neodent(tm) and SIN(tm)) were separately immersed in artificial saliva (pH 6.76) for 30 and 60 days. The cytotoxicity of the corrosion extracts was assessed in L929 cell cultures using the violet crystal and MTT assays, as well as cell morphology under light microscopy. Metal surface characteristics before and after immersion in artificial saliva were assessed by means of scanning electron microscopy (SEM). The samples underwent atomic absorption spectrophotometry to determine the concentrations of aluminum and vanadium ions, constituent elements of the alloy that present potential toxicity. For statistical analysis, one-way ANOVA/Bonferroni tests were used for comparisons among groups with p corrosion. The extracts assessed by means of atomic absorption spectrophotometry presented concentrations of aluminum and vanadium ions below 1.0 µg/mL and 0.5 µg/mL, respectively. Conclusion: Orthodontic mini-implants manufactured by Conexão(tm), Neodent(tm) and SIN(tm) present high corrosion resistance and are not cytotoxic. PMID:27901227

  13. Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications.

    Science.gov (United States)

    Grossenbacher, Jonas; Gullo, Maurizio R; Dalcanale, Federico; Blugan, Gurdial; Kuebler, Jakob; Lecaudé, Stéphanie; Tevaearai Stahel, Hendrik; Brugger, Juergen

    2015-11-01

    Ceramics are known to be chemically stable, and the possibility to electrically dope polymer-derived ceramics makes it a material of interest for implantable electrode applications. We investigated cytotoxic characteristics of four polymer-derived ceramic candidates with either electrically conductive or insulating properties. Cytotoxicity was assessed by culturing C2C12 myoblast cells under two conditions: by exposing them to material extracts and by putting them directly in contact with material samples. Cell spreading was optically evaluated by comparing microscope observations immediately after the materials insertion and after 24 h culturing. Cell viability (MTT) and mortality (LDH) were quantified after 24-h incubation in contact with the materials. Comparison was made with biocompatible positive references (alumina, platinum, biocompatible stainless steel 1.4435), negative references (latex, stainless steel 1.4301) and controls (no material present in the culture wells). We found that the cytotoxic properties of tested ceramics are comparable to established reference materials. These ceramics, which are reported to be very stable, can be microstructured and electrically doped to a wide range of conductivity and are thus excellent candidates for implantable electrode applications including pacemakers. © 2015 Wiley Periodicals, Inc.

  14. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkuviene, Aida [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Kaseta, Vytautas [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Voronovic, Jaroslav [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Ramanauskaite, Giedre; Biziuleviciene, Gene [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Ramanaviciene, Almira [NanoTechnas–Center of Nanotechnology and Material Science at Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius (Lithuania); Ramanavicius, Arunas, E-mail: Arunas.Ramanavicius@chf.vu.lt [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Laboratory of BioNanoTechnology, Department of Materials Science and Electronics, Institute of Semiconductor Physics, State Scientific Research Institute Centre for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2013-04-15

    Highlights: ► Polypyrrole nanoparticles synthesized by environmentally friendly polymerization at high concentrations are cytotoxic. ► Primary mouse embryonic fibroblast, mouse hepatoma and human T lymphocyte Jurkat cell lines were treated by Ppy nanoparticles. ► Polypyrrole nanoparticles at high concentrations inhibit cell proliferation. -- Abstract: Polypyrrole (Ppy) is known as biocompatible material, which is used in some diverse biomedical applications and seeming to be a very promising for advanced biotechnological applications. In order to increase our understanding about biocompatibility of Ppy, in this study pure Ppy nanoparticles (Ppy-NPs) of fixed size and morphology were prepared by one-step oxidative polymerization and their cyto-compatibility was evaluated. The impact of different concentration of Ppy nanoparticles on primary mouse embryonic fibroblasts (MEF), mouse hepatoma cell line (MH-22A), and human T lymphocyte Jurkat cell line was investigated. Cell morphology, viability/proliferation after the treatment by Ppy nanoparticles was evaluated. Obtained results showed that Ppy nanoparticles at low concentrations are biocompatible, while at high concentrations they became cytotoxic for Jurkat, MEF and MH-22A cells, and it was found that cytotoxic effect is dose-dependent.

  15. Putrescine-Dependent Re-Localization of TvCP39, a Cysteine Proteinase Involved in Trichomonas vaginalis Cytotoxicity

    OpenAIRE

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity...

  16. Study of Cytotoxic Effects of Benzonitrile Pesticides

    Science.gov (United States)

    Lovecka, Petra; Thimova, Marketa; Grznarova, Petra; Lipov, Jan; Knejzlik, Zdenek; Stiborova, Hana; Nindhia, Tjokorda Gde Tirta; Demnerova, Katerina; Ruml, Tomas

    2015-01-01

    The benzonitrile herbicides bromoxynil, chloroxynil, dichlobenil, and ioxynil have been used actively worldwide to control weeds in agriculture since 1970s. Even though dichlobenil is prohibited in EU since 2008, studies addressing the fate of benzonitrile herbicides in the environment show that some metabolites of these herbicides are very persistent. We tested the cytotoxic effects of benzonitrile herbicides and their microbial metabolites using two human cell lines, Hep G2 and HEK293T, representing liver and kidneys as potential target organs in humans. The cell viability and proliferation were determined by MTT test and RTCA DP Analyzer system, respectively. The latter allows real-time monitoring of the effect of added substances. As the cytotoxic compounds could compromise cell membrane integrity, the lactate dehydrogenase test was performed as well. We observed high toxic effects of bromoxynil, chloroxynil, and ioxynil on both tested cell lines. In contrast, we determined only low inhibition of cell growth in presence of dichlobenil and microbial metabolites originating from the tested herbicides. PMID:26339609

  17. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  18. Evaluation of cytotoxicity and degree of conversion of orthodontic adhesives over different time periods

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2010-06-01

    Full Text Available As new orthodontic resin adhesives continue to be marketed, rapid and sensitive tests for examining their toxic effects at the ' cell and tissue level ' are needed because patient safety has been identifi ed as a legal concept. The objective of the present study was to evaluate the cytotoxicity and degree of monomer conversion of orthodontic adhesives over different time periods. Seven adhesives: Transbond® XT, Transbond® Color Change, Quick Cure, EagleBond, Orthobond®, Fill Mágic® and Biofix® were evaluated for their cytotoxicity in L929 fibroblastic cells and for their degree of monomer conversion over different time periods. Three control groups were also analysed: Positive control (C+, consisting of Tween 80 cell detergent; Negative control (C-, consisting of PBS; and cell control (CC, consisting of cells exposed to any material. The dye-uptake technique that involves the absorption of a neutral red dye in viable cells was used for the cytotoxicity evaluation and the degree of conversion was evaluated using spectroscopy with infrared. The results showed the cytotoxicity of the adhesives at 24, 48, 72 and 168 hours. At these times, the viability values presented for these materials were statistically different from the groups CC and C- (p 0.05. In the monomer conversions there was a percentage increase of monomer conversion from 24 to 72 hours. A direct correlation could be observed between cytotoxicity and monomer conversions. From this work it can be concluded that all adhesives evaluated are cytotoxic at the times of 24, 48 and 72 hours. Monomers continued conversion even after photopolymerization had stopped.

  19. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation

    Directory of Open Access Journals (Sweden)

    Paula A. Baldión

    2018-01-01

    Full Text Available Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1, and OLC expanded after trypsinization (EXP-21 were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry.

  20. Cytotoxicity and phytochemical analyses of Orthosiphon stamineus leaves and flower extracts

    Science.gov (United States)

    Alwahid, Alaa Abd; Yusoff, Wan Mohtar Wan; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2015-09-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with many ethnobotanical uses including antifungal and antibacterial activities. This study is aimed to determine the cytotoxicity and phytochemical content of O. stamineus leaves and flower using ethanol and water as solvents. The cytotoxicity of the extracts towards Vero cell was determined by MTT assay. The CC50 values were between 3.4-7.4 mg/ml and can be considered as nontoxic. Phytochemical screening revealed terpenes, alkaloid and phenolic were present in the leaves and flower of O. stamineus that might pose as the bioactive compound.

  1. In vitro cytotoxic screening of selected Saudi medicinal plants.

    Science.gov (United States)

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  2. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    Science.gov (United States)

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  3. Poly (D,L-lactide-co-glycolide nanoparticles: Uptake by epithelial cells and cytotoxicity

    Directory of Open Access Journals (Sweden)

    J. H. Hamman

    2014-03-01

    Full Text Available Nanoparticles as drug delivery systems offer benefits such as protection of the encapsulated drug against degradation, site-specific targeting and prolonged blood circulation times. The aim of this study was to investigate nanoparticle uptake into Caco-2 cell monolayers, their co-localization within the lysosomal compartment and their cytotoxicity in different cell lines. Rhodamine-6G labelled poly(D,L-lactide-co-glycolide (PLGA nanoparticles were prepared by a double emulsion solvent evaporation freeze-drying method. Uptake and co-localisation of PLGA nanoparticles in lysosomes were visualized by confocal laser scanning microscopy. The cytotoxicity of the nanoparticles was evaluated on different mammalian cells lines by means of Trypan blue exclusion and the MTS assay. The PLGA nanoparticles accumulated in the intercellular spaces of Caco-2 cell monolayers, but were also taken up transcellularly into the Caco-2 cells and partially co-localized within the lysosomal compartment indicating involvement of endocytosis during uptake. PLGA nanoparticles did not show cytotoxic effects in all three cell lines. Intact PLGA nanoparticles are therefore capable of moving across epithelial cell membranes partly by means of endocytosis without causing cytotoxic effects.

  4. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip

    International Nuclear Information System (INIS)

    Zheng Xiannuo; Weng Lixing; Tian Jing; Wang Lianhui; Wu Lei; Jin Qinghui; Zhao Jianlong

    2012-01-01

    There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core–shell QDs, and CdTe/CdS/ZnS core–shell–shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events. (paper)

  5. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip

    Science.gov (United States)

    Zheng, Xiannuo; Tian, Jing; Weng, Lixing; Wu, Lei; Jin, Qinghui; Zhao, Jianlong; Wang, Lianhui

    2012-02-01

    There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core-shell QDs, and CdTe/CdS/ZnS core-shell-shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events.

  6. Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles

    Science.gov (United States)

    Jalava, Pasi I.; Salonen, Raimo O.; Nuutinen, Kati; Pennanen, Arto S.; Happo, Mikko S.; Tissari, Jarkko; Frey, Anna; Hillamo, Risto; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2010-05-01

    Residential heating is an important local source of fine particles and may cause significant exposure and health effects in populations. We investigated the cytotoxic and inflammatory activity of particulate emissions from normal (NC) and smouldering (SC) combustion in one masonry heater. The PM 1-0.2 and PM 0.2 samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the PM-samples for 24 h. Inflammatory mediators, (IL-6, TNFα and MIP-2), and cytotoxicity (MTT-test), were measured. Furthermore, apoptosis and cell cycle of macrophages were analyzed. The HVCI particulate samples were characterized for ions, elements and PAH compounds. Assays of elemental and organic carbon were conducted from parallel low volume samples. All the samples displayed mostly dose-dependent inflammatory and cytotoxic activity. SC samples were more potent than NC samples at inducing cytotoxicity and MIP-2 production, while the order of potency was reversed in TNFα production. SC-PM 1-0.2 sample was a significantly more potent inducer of apoptosis than the respective NC sample. After adjustment for the relative toxicity with emission factor (mg MJ -1), the SC-PM emissions had clearly higher inflammatory and cytotoxic potential than the NC-PM emissions. Thus, operational practice in batch burning of wood and the resultant combustion condition clearly affect the toxic potential of particulate emissions.

  7. Evaluation of the cytotoxicity of selected conventional glass ionomer cements on human gingival fibroblasts.

    Science.gov (United States)

    Marczuk-Kolada, Grażyna; Łuczaj-Cepowicz, Elżbieta; Pawińska, Małgorzata; Hołownia, Adam

    2017-10-01

    Dentistry materials are the most frequently used substitutes of human tissues. Therefore, an assessment of dental filling materials should cover not only their chemical, physical, and mechanical characteristics, but also their cytotoxicity. To compare the cytotoxic effects of 13 conventional glass ionomer cements on human gingival fibroblasts. The assessment was conducted using the MTT test. Six samples were prepared for each material. Culture plates with cells and inserts with the materials were incubated at 37°C, 5% CO2, and 95% humidity for 24 h. Then the inserts were removed, 1 mL of MTT was added in the amount of 0.5 mg/1 mL of the medium, and the samples were incubated in the described conditions without light for 2 h. The optical density was measured with an absorption spectrophotometer at a wavelength of 560 nm. The cytotoxic effects of the Argion Molar was significantly stronger than the Fuji Triage (p = 0.007), Chemfil Molar (p cements from the low cytotoxicity group were significantly more toxic vs materials whose presence resulted in fibroblast growth (p < 0.001). The research conducted indicates that, although the materials studied may belong to the same group, they are characterized by low, yet not uniform, cytotoxicity on human gingival fibroblasts. The toxic effects should not be assigned to a relevant group of materials, but each dentistry product should be evaluated individually.

  8. Andiroba Oil (Carapa guianensis Aublet Nanoemulsions: Development and Assessment of Cytotoxicity, Genotoxicity, and Hematotoxicity

    Directory of Open Access Journals (Sweden)

    Susana Suely Rodrigues Milhomem-Paixão

    2017-01-01

    Full Text Available Andiroba oil (AO is obtained from an Amazonian plant and is used in traditional medicine. We carried out a comparative study to test the cytotoxicity, genotoxicity, and hematotoxicity of the oil and its nanoemulsion (AN in vitro (fibroblasts, lineage NIH/3T3 and in vivo (Swiss mice. The AN was characterized by DLS/Zeta, and its stability was investigated for 120 days. The biological activity of AN was assessed in vitro by MTT test and cell morphology analyses and in vivo by micronucleus, comet, and hematotoxicity tests. The AN presented a hydrodynamic diameter (Hd of 142.5±3.0 and PDI of 0.272±0.007 and good stability at room temperature. The MTT test evidenced the cytotoxicity of AO and of AN only at their highest concentrations, but AN showed lower cytotoxicity than AO. A lower cytotoxicity of AN, when compared to AO, is in fact an interesting data suggesting that during therapeutic application there will be a lower impact in the cell viability of healthy cells. Cytotoxicity, genotoxicity, and hematotoxicity were not observed in vivo. These tests on the biological and toxicological effects of andiroba oil and nanostructured oil are still initial ones but will give a direction to future application in cosmetics and/or the development of new phytotherapics.

  9. Cytotoxicity and antibacterial studies of iridoids and phenolic ...

    African Journals Online (AJOL)

    The latex of Himatanthus sucuuba (Spruce) Woodson, used popularly in the Amazon for the treatment of tumors, gastritis, inflammations and infections, was evaluated for cytotoxicity and antibacterial activities. The iridoid lactones, plumericin and isoplumericin were isolated from latex by bioassay fractionation and were ...

  10. In Vitro Screening of Cytotoxic, Antimicrobial and Antioxidant ...

    African Journals Online (AJOL)

    Purpose: To evaluate the in vitro cytotoxic, antioxidant and antimicrobial activities of Clinacanthus nutans extracts and semi-fractions. Method: The plant was subjected to cold solvent extraction to produce petroleum ether, ethyl acetate and methanol crude extracts, followed by isolation using bioassay-guided fractionation.

  11. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    International Nuclear Information System (INIS)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-01

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  12. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: strontium.

    Science.gov (United States)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  13. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wu-Jang, E-mail: wjhuang@mail.npust.edu.tw [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Tang, Hsing-Chuan [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Lin, Kae-Long [Department of Environmental Engineering, National I-Lan University, 260 I-Lan, Taiwan (China); Liao, Ming-Huei [Department of Veterinary Medicine, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China)

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  14. Pokeweed Antiviral Protein: Its Cytotoxicity Mechanism and Applications in Plant Disease Resistance

    Directory of Open Access Journals (Sweden)

    Rong Di

    2015-03-01

    Full Text Available Pokeweed antiviral protein (PAP is a 29 kDa type I ribosome inactivating protein (RIP found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.

  15. Diuron metabolites and urothelial cytotoxicity: In vivo, in vitro and molecular approaches

    International Nuclear Information System (INIS)

    Da Rocha, Mitscheli S.; Arnold, Lora L.; Dodmane, Puttappa R.; Pennington, Karen L.; Qiu, Fang; De Camargo, João Lauro V.; Cohen, Samuel M.

    2013-01-01

    Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500 ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation

  16. Diuron metabolites and urothelial cytotoxicity: in vivo, in vitro and molecular approaches.

    Science.gov (United States)

    Da Rocha, Mitscheli S; Arnold, Lora L; Dodmane, Puttappa R; Pennington, Karen L; Qiu, Fang; De Camargo, João Lauro V; Cohen, Samuel M

    2013-12-15

    Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2005-01-01

    The lower sensitivity of in vitro cytotoxicity assays currently restricts their use as alternative to the fish acute toxicity assays for hazard assessment of chemicals in the aquatic environment. In vitro cytotoxic potencies mostly refer to nominal concentrations. The main objective of the present study was to investigate, whether a reduced availability of chemicals in vitro can account for the lower sensitivity of in vitro toxicity test systems. For this purpose, the bioavailable free fractions of the nominal cytotoxic concentrations (EC 50 ) of chemicals determined with a cytotoxicity test system using Balb/c 3T3 cells and the corresponding free cytotoxic concentrations (ECu 50 ) were calculated. The algorithm applied is based on a previously developed simple equilibrium distribution model for chemicals in cell cultures with serum-supplemented culture media. This model considers the distribution of chemicals between water, lipids and serum albumin. The algorithm requires the relative lipid volume of the test system, the octanol-water partition coefficient (K ow ) and the in vitro albumin-bound fraction of the chemicals. The latter was determined from EC 50 -measurements in the presence of different albumin concentrations with the Balb/c 3T3 test system. Organic chemicals covering a wide range of cytotoxic potency (EC 50 : 0.16-527000 μM) and lipophilicity (log K ow : -5.0-6.96) were selected, for which fish acute toxicity data (LC 50 -values) from at least one of the three fish species, medaka, rainbow trout and fathead minnow, respectively, were available. The availability of several chemicals was shown to be extensively reduced either by partitioning into lipids or by serum albumin binding, or due to both mechanisms. Reduction of bioavailability became more important with increasing cytotoxic potency. The sensitivity of the Balb/c 3T3 cytotoxicity assay and the correspondence between in vivo and in vitro toxic potencies were increased when the free cytotoxic

  18. The Antifungal Activity and Cytotoxicity of Silver Containing Denture ...

    African Journals Online (AJOL)

    2015-10-30

    Oct 30, 2015 ... Objective: Denture base materials are susceptible to fungal adhesion, which is an important .... (Shimadzu Corp., Kyoto, Japan) to achieve a wavelength ..... assay for detection of cytotoxicity and prediction of acute toxicity.

  19. Leishmanicidal and cytotoxic activity of extracts and saponins from ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... Purpose: To evaluate the leishmanicidal and cytotoxic activity of alcohol and non-alcohol extracts and .... each) in a percolator at room temperature and ..... nitric oxide-dependent mechanism.

  20. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin.

    Science.gov (United States)

    Masuda, Toshiya; Oyama, Yasuo; Yonemori, Shigetomo; Takeda, Yoshio; Yamazaki, Yuko; Mizuguchi, Shinichi; Nakata, Mami; Tanaka, Tomochika; Chikahisa, Lumi; Inaba, Yuzuru; Okada, Yoshihiko

    2002-06-01

    The cytotoxic activity of methanol extracts of leaves collected from 39 seashore plants in Iriomote Island, subtropical Japan was examined on human leukaemia cells (K562 cells) using a flow cytometer with two fluorescent probes, ethidium bromide and annexin V-FITC. Five extracts (10 microg/mL) from Hernandia nymphaeaefolia, Cerbera manghas, Pongamia pinnata, Morus australis var. glabra and Thespesia populnea greatly inhibited the growth of K562 cells. When the concentration was decreased to 1 microg/mL, only one extract from H. nymphaeaefolia still inhibited the cell growth. A cytotoxic compound was isolated from the leaves by bioassay-guided fractionation and was identified as (-)-deoxypodophyllotoxin (DPT). The fresh leaves of H. nymphaeaefolia contained a remarkably high amount of DPT (0.21 +/- 0.07% of fresh leaf weight), being clarified by a quantitative HPLC analysis. DPT at 70-80 pM started to inhibit the growth of K562 cells in an all-or-none fashion and at 100 pM or more it produced complete inhibition in all cases. Therefore, the slope of the dose-response curve was very steep. DPT at 100 pM or more decreased the cell viability to 50%-60% and increased the number of cells undergoing apoptosis (annexin V-positive cells). The results indicate that DPT contributes to the cytotoxic action of the extract from the leaves of H. nymphaeaefolia on K562 cells. Copyright 2002 John Wiley & Sons, Ltd.

  1. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A...

  2. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dongjun Lv

    2017-02-01

    Full Text Available A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY and allura red (AR, was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity.

  3. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    Science.gov (United States)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  4. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    International Nuclear Information System (INIS)

    Stoika, R; Boiko, N; Panchuk, R; Filyak, Y; Senkiv, Y; Finiuk, N; Shlyakhtina, Y; Bilyy, R; Kit, Y; Skorohyd, N; Klyuchivska, O; Zaichenko, A; Mitina, N; Ryabceva, A

    2013-01-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  5. Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship.

    Science.gov (United States)

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2009-12-01

    Thirteen cycloartane-type tritepenes (1-13) and four prenylated flavanones (14-17) isolated from propolis collected in Myanmar, were evaluated for their cytotoxic activity against a panel of six different cancer cell lines; three murine cancer cell lines (colon 26-L5 carcinoma, B16-BL6 melanoma, and Lewis lung carcinoma) and three human cancer cell lines (lung A549 adenocarcinoma, cervix HeLa adenocarcinoma and HT-1080 fibrosarcoma). Among them, a cycloartane-type triterpene, 3alpha,27-dihydroxycycloart-24E-en-26-oic acid (3), showed the most potent cytotoxicity against B16-BL6 cells with an IC(50) value of 5.91 microM, comparable to those of positive controls, doxorubicin (IC(50), 5.66 microM) and 5-fluorouracil (IC(50), 4.88 microM). In addition, (2S)-5,7-dihydroxy-4'-methoxy-8,3'-diprenylflavanone (14) exhibited strong cytotoxicity against all the tested cancer cell lines with the IC(50) values ranging from 14.0 to 26.4 microM. Based on the observed results, the structure-activity relationships are discussed.

  6. Control of CD56 expression and tumor cell cytotoxicity in human Vγ2Vδ2 T cells

    Directory of Open Access Journals (Sweden)

    Focaccetti Chiara

    2009-09-01

    Full Text Available Abstract Background In lymphocyte subsets, expression of CD56 (neural cell adhesion molecule-1 correlates with cytotoxic effector activity. For cells bearing the Vγ2Vδ2 T cell receptor, isoprenoid pyrophosphate stimulation leads to uniform activation and proliferation, but only a fraction of cells express CD56 and display potent cytotoxic activity against tumor cells. Our goal was to show whether CD56 expression was regulated stochastically, similar to conventional activation antigens, or whether CD56 defined a lineage of cells committed to the cytotoxic phenotype. Results Tracking individual cell clones defined by their Vγ2 chain CDR3 region sequences, we found that CD56 was expressed on precursor cytotoxic T cells already present in the population irrespective of their capacity to proliferate after antigen stimulation. Public T cell receptor sequences found in the CD56+ subset from one individual might appear in the CD56- subset of another donor. The commitment of individual clones to CD56+ or CD56- lineages was stable for each donor over a 1 year interval. Conclusion The ability to express CD56 was not predicted by TCR sequence or by the strength of signal received by the TCR. For γδ T cells, cytotoxic effector function is acquired when cytotoxic precursors within the population are stimulated to proliferate and express CD56. Expression of CD56 defines a committed lineage to the cytotoxic phenotype.

  7. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  8. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts

    Science.gov (United States)

    Abd Samad, Azman; Jamil, Shajarahtunnur

    2014-01-01

    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines. PMID:25574182

  9. Chemically dispersed oil is cytotoxic and genotoxic to sperm whale skin cells.

    Science.gov (United States)

    Wise, Catherine F; Wise, James T F; Wise, Sandra S; Wise, John Pierce

    2018-06-01

    Two major oil crises in United States history, the 1989 Exxon-Valdez oil spill in Alaska and the 2010 Deepwater Horizon Oil Rig explosion in the Gulf of Mexico, drew attention to the need for toxicological experiments on oil and chemically dispersed oil. We are still learning the effects these spills had on wildlife. However, little data is known about the toxicity of these substances in marine mammals. The objective of this study is to determine the toxicity of Alaskan oil, as well as chemically dispersed oil. Oil experiments were performed using the water accommodated fraction of Alaskan oil (WAF) and the chemically enhanced water accommodated fraction of Alaskan oil (CEWAF). The Alaskan WAF is not cytotoxic to sperm whale skin cells though it did induce chromosome damage; S9-mediated metabolism did not affect the cytotoxicity of WAF but did increase the levels of chromosome damage. Alaskan CEWAF is more cytotoxic and genotoxic than the WAF; S9 mediated metabolism increased both cytotoxicity and genotoxicity of CEWAF. Analysis of the PAH content of Alaskan WAF and CEWAF revealed a forty-fold increase in the total levels of PAHs in CEWAF compared to WAF. These findings show that chemically dispersed oil leads to higher levels of PAH exposure which are more toxic and likely to lead to longer and more persistent health effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils.

    Directory of Open Access Journals (Sweden)

    Bettina Löffler

    2010-01-01

    Full Text Available The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs, a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins, induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.

  11. In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae).

    Science.gov (United States)

    Santos, Francianne Oliveira; de Lima, Hélimar Gonçalves; de Souza Santos, Nathália Silva; Serra, Taiane Menezes; Uzeda, Rosângela Soares; Reis, Isabella Mary Alves; Botura, Mariana Borges; Branco, Alexsandro; Batatinha, Maria José Moreira

    2017-10-15

    This study aimed to evaluate the in vitro activity of D. insularis extracts and fractions against gastrointestinal nematodes of goats and its cytotoxicity on Vero cells. The egg hatch (EHT) and larval motility (LMT) tests were conducted to investigate the anthelmintic effects of the crude hydroethanolic (CH), ethyl acetate (EA), butanolic (BT) and residual hydroethanolic (RH) extracts. The elution of the active extract (EA) on column chromatography (SiO 2 ) using organic solvents furnished six fractions (FR1 to FR6), which were also tested. Cytotoxicity was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Trypan Blue exclusion assays. All extracts, FR2 and FR3, inhibited egg hatching in a concentration-dependent manner. The EHT led to EC 50 values (effective concentration 50%) of 0.64; 0.69; 0.77; 0.96; 0.27 and 0.65mg/mL for CH, EA, BT, RH, FR2 and FR3, respectively. However, the extracts exhibited low effect on the motility of L 3. In the cytotoxicity evaluation (MTT assay), the IC 50 (inhibitory concentration 50%) was 1.18 (EA), 1.65 (FR2) and 1.59mg/mL (FR3), which was relatively high (low toxicity) in comparison to the EC 50 values in EHT, mainly for FR2. The chemical analyses of most active fractions (FR2) by Liquid Chromatography coupled to Mass Spectrometry (LC-MS) led the characterization of the flavones tricin and diosmetin. These results showed the high anthelmintic effect and low cytotoxicity of D. insularis and also that the flavones can be probably responsible for the nematocidal activity of this plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Phytochemical Screening and Cytotoxicity of Crude Extracts of ...

    African Journals Online (AJOL)

    Thin–layer chromatography (TLC) and phytochemical screening were employed to identify the chemical constituents. Cytotoxicity was characterized by 50 % inhibition (IC50) of human breast cancer cell lines (MCF-7 and MDA-MB-468) using 3-(4,5-dimethylthaizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

  13. Changes in Actin Organization During the Cytotoxic Process

    NARCIS (Netherlands)

    Radosevic, K.; Radosevic, Katarina; van Leeuwen, Anne Marie T.; Segers-Nolten, Gezina M.J.; Figdor, Carl; de Grooth, B.G.; Greve, Jan

    1994-01-01

    Changes in organization of F-actin during the cytotoxic process between NK and K562 cells have been observed and studied using confpcal laser scanning microscopy and quantitative fluorescence microscopy. An increase in F-actin content and orientation of F-actin towards the target cell have been

  14. In vitro cytotoxicity of self-curing acrylic resins of different colors

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2014-08-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the in vitro cytotoxicity of acrylic resins of different colors over time. METHODS: Specimens were divided into 4 groups (n = 6 according to the color of the acrylic resin (Orto Class, Clássico, Campinas, São Paulo, Brazil: Group 1: clear acrylic resin; group 2: pink acrylic resin; group 3: blue acrylic resin and group 4: green acrylic resin. All specimens were fabricated according to the mass manipulation technique and submitted to mechanical polishing protocol. The control was performed with an amalgam specimen (C+, a glass specimen (C- and cell control (CC. Specimens were immersed in Minimum Eagle's Medium (MEM and incubated for 24 h at 37o C. The extracts from the experimental material were filtered and mixed with L929 fibroblast. Cytotoxicity was evaluated at 4 different times, 24, 48, 72 and 168 h. After contact, cells were incubated for 24 h and added to 100 µ of 0.01% neutral red dye. The cells were incubated for 3 h for pigment incorporation and fixed. Cells viability was determined by a spectroscopic (BioTek, Winooski, Vermont, USA with a 492-nm wavelength λ=492 nm. RESULTS: There were no statistical differences between the experimental groups and the CC and C- groups. CONCLUSION: Clear, pink, blue and green self-curing acrylic resins fabricated by means of the mass manipulation technique and mechanically polished are not cytotoxic. Neither the pigment added to the self-curing acrylic resin nor the factor of time influenced the cytotoxicity of the material.

  15. In vitro cytotoxicity of fungi spoiling maize silage

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Rasmussen, Peter Have; Larsen, Thomas Ostenfeld

    2011-01-01

    Penicillium roqueforti, Penicillium paneum, Monascus ruber, Alternaria tenuissima, Fusarium graminearum, Fusarium avenaceum, Byssochlamys nivea and Aspergillus fumigatus have previously been identified as major fungal contaminants of Danish maize silage. In the present study their metabolite....... roqueforti metabolites roquefortine C (48μg/mL), andrastin A (>50μg/mL), mycophenolic acid (>100μg/mL) and 1-hydroxyeremophil-7(11),9(10)-dien-8-one (>280μg/mL) were high. Fractionating of agar extracts identified PR-toxin as an important cytotoxic P. roqueforti metabolite, also detectable in maize silage....... The strongly cytotoxic B. nivea and P. paneum agar extracts contained patulin above the IC50 of 0.6μg/mL, however inoculated onto maize silage B. nivea and P. paneum did not produce patulin (>371μg/kg). Still B. nivea infected maize silage containing mycophenolic acid (∼50mg/kg), byssochlamic acid and other...

  16. Chemical constituents from Piper hainanense and their cytotoxicities.

    Science.gov (United States)

    Shi, Yan-Ni; Xin, Ying; Ling, Yi; Li, Xing-Cong; Hao, Chao-Yun; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2016-08-01

    Two new compounds, (Z,R)-1-phenylethylcinnamate (1) and (1R,2R,3R,6S)-pipoxide (2) were isolated from the aerial part of Piper hainanense, along with 12 known compounds, including nine benzene derivatives (4-11), one isobutylamide (12), and two polyoxygenated cyclohexene derivatives (13-14). Their structures were elucidated on the basis of the HRESIMS, 1D and 2D NMR spectroscopic analyses, and ECD in cases of 2 and 3. The absolute configuration of ellipeiopsol B (3) was determined for the first time. All these compounds 1-14 were reported from the titled plant for the first time. Most of the isolates were tested for their cytotoxicities against five human cancer cell lines. Four of which, 2, 3, 9, 14 showed moderate bioactivities. Among them, the new compound 2 showed potential cytotoxicity against SMMC-7721, MCF-7, and SW-480 with IC50 values of 9.7, 15.0, and 13.2 μM, respectively.

  17. Reducing ZnO nanoparticle cytotoxicity by surface modification.

    Science.gov (United States)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N; Martin, Lisandra L; Hughes, Anthony E; Wright, Paul F A; Turney, Terence W

    2014-06-07

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.

  18. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

    International Nuclear Information System (INIS)

    Park, Margriet V.D.Z.; Annema, Wijtske; Salvati, Anna; Lesniak, Anna; Elsaesser, Andreas; Barnes, Clifford; McKerr, George; Howard, C. Vyvyan; Lynch, Iseult; Dawson, Kenneth A.; Piersma, Aldert H.; Jong, Wim H. de

    2009-01-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 μg/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis.

  19. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    Science.gov (United States)

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. Moreover, T3 was found to up-modulate the level of cell sensitivity to parvovirus attack. These data suggest an interconnection between T3 signalling and NS cytotoxic pathways. Images PMID:8230488

  20. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-04-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  1. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-01-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  2. Synthesis and Cytotoxicity of Novel Hexahydrothienocycloheptapyridazinone Derivatives

    Directory of Open Access Journals (Sweden)

    Irene Marchesi

    2009-09-01

    Full Text Available Designed as a new group of tricyclic molecules containing the thienocycloheptapyridazinone ring system, a number of 2N-substituted-hexahydrothienocycloheptapyridazinone derivatives were synthesized and their biological activity evaluated. Among the synthesized compounds, derivatives 7d and 7h were found to possess cytotoxic activity against non-small cell lung cancer and central nervous system cancer cell lines, respectively.

  3. Antioxidant Capacity, Cytotoxicity, and Acute Oral Toxicity of Gynura bicolor

    Directory of Open Access Journals (Sweden)

    Wuen Yew Teoh

    2013-01-01

    Full Text Available Gynura bicolor (Compositae which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116, one human breast adenocarcinoma cell line (MCF7, and one human normal colon cell line (CCD-18Co were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay, possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor.

  4. In-vitro cytotoxicity of biosynthesized gold nanoparticles against ...

    African Journals Online (AJOL)

    The AuNPs were evaluated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) spectroscopy and transmission electron microscopy (TEM). They were also assessed for cytotoxicity against SW579 cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ...

  5. Effects of folic acid deficiency and MTHFRC677T polymorphisms on cytotoxicity in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Wu Xiayu; Liang Ziqing; Zou Tianning; Wang Xu

    2009-01-01

    Apoptosis (APO) and necrosis (NEC) are two different types of cell death occurring in response to cellular stress factors. Cells with DNA damage may undergo APO or NEC. Folate is an essential micronutrient associated with DNA synthesis, repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) regulates intracellular folate metabolism. Folate deficiency and MTHFR C677T polymorphisms have been shown to be related to DNA damage. To verify the cytotoxic effects of folate deficiency on cells with different MTHFR C677T genotypes, 15 human peripheral lymphocyte cases with different MTHFR C677T genotypes were cultured in folic acid (FA)-deficient and -sufficient media for 9 days. Cytotoxicity was quantified using the frequencies of APO and NEC as endpoints, the nuclear division index (NDI), and the number of viable cells (NVC). These results showed that FA is an important factor in reducing cytotoxicity and increasing cell proliferation. Lymphocytes with the TT genotype proliferated easily under stress and exhibited different responses to FA deficiency than lymphocytes with the CC and CT genotypes. A TT individual may accumulate more cytotoxicity under cytotoxic stress, suggesting that the effects of FA deficiency on cytotoxicity are greater than the effects in individuals with the other MTHFR C677T variants.

  6. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  7. Effects of Cytochrome P 450 Inhibitors on Itraconazole and Fluconazole Induced Cytotoxicity in Hepatocytes

    International Nuclear Information System (INIS)

    Somchit, N.; Ngee, C.S.; Yaakob, A.; Ahmad, Z.; Zakaria, Z.A.

    2009-01-01

    Itraconazole and fluconazole have been reported to induce hepatotoxicity in patients. The present study was designed to investigate the role of cytochrome P450 inhibitors, SKF 525A, and curcumin pretreatment on the cytotoxicity of antifungal drugs fluconazole and itraconazole. For 3 consecutive days, female rats were administered daily SKF 525A or curcumin (5 and 25?mg/kg). Control rats received an equivalent amount of dosed vehicle. The animals were anaesthetised 24 hours after receiving the last dose for liver perfusion. Hepatocytes were then exposed to various concentrations of antifungal drugs. In vitro incubation of hepatocytes with itraconazole revealed significantly lower viability when compared to fluconazole as assessed by lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase activities. The cytotoxicity of itraconazole was enhanced when incubated with hepatocytes pretreated with SKF 525A. SKF 525A had no effects on the cytotoxicity of fluconazole. Curcumin failed to either increase or decrease the cytotoxicity of both antifungal drugs. ATP levels also showed significant decrease in both itraconazole and fluconazole incubated hepatocytes. However, SKF 525A pretreated hepatocytes had significantly lower ATP levels after itraconazole incubations. Collectively, these results confirm the involvement of cytochrome P450 in the cytoprotection in itraconazole induced hepatocyte toxicity. Differences of the effects of SKF 525A on the cytotoxicity induced by itraconazole and fluconazole may be due to the differences on the metabolism of each antifungal drug in vivo.

  8. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    Science.gov (United States)

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of

  9. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Zhen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Liu, Xiaoli [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Huang, Tao [Department of Materials Science and Engineering, State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Xi, TingFei, E-mail: xitingfei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Biomedical Engineering Research Center, Shenzhen Institute, Peking University, Shenzhen 518057 (China); Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057 (China); Zheng, Yufeng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057 (China)

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg{sup 2+} concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl{sub 2} and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg{sup 2+} reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg{sup 2+} (< 100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg{sup 2+} (> 300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg{sup 2+} concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg{sup 2+}. The Mg extract culture media caused no cytotoxicity, with pH = 8.44 and 47.80 μg/mL Mg{sup 2+}. It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. - Highlights: • Mg{sup 2+} and pH have been tested for hemolysis and cytotoxicity of biomedical Mg. • Even 1000 μg/ml Mg{sup 2+} cannot cause hemolysis, but hemolysis reaches 53.8% when pH > 11. • Mg{sup 2+} > 300 μg/mL induces death of L929 and slight alkaline improves the proliferation. • Pure Mg in normal saline induces high

  10. Evaluation and SAR analysis of the cytotoxicity of tanshinones in colon cancer cells.

    Science.gov (United States)

    Wang, Lin; Liu, An; Zhang, Fei-Long; Yeung, John H K; Li, Xu-Qin; Cho, Chi-Hin

    2014-03-01

    This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA, and six derivatives of tanshinone IIA on normal and cancerous colon cells. Structure activity relationship (SAR) analysis was conducted to delineate the significance of the structural modifications of tanshinones for improved anti-cancer action. Tanshinone derivatives were designed and synthesized according to the literature. The cytotoxicity of different compounds on colon cancer cells was determined by the MTT assay. Apoptotic activity of the tanshinones was measured by flow cytometry (FCM). Tanshinone I and tanshinone IIA both exhibited significant cytotoxicity on colon cancer cells. They are more effective in p53(+/+) colon cancer cell line. It was also noted that the anti-cancer activity of tanshinone I was more potent and selective. Two of the derivatives of tanshinone IIA (N1 and N2) also exhibited cytotoxicity on colon cancer cells. The anti-colon cancer activity of tanshinone I was more potent and selective than tanshinone IIA, and is p53 dependent. The derivatives obtained by structural modifications of tanshinone IIA exhibited lower cytotoxicity on both normal and colon cancer cells. From steric and electronic characteristics point of view, it was concluded that structural modifications of ring A and furan or dihydrofuran ring D on the basic structure of tanshinones influences the activity. An increase of the delocalization of the A and B rings could enhance the cytotoxicity of such compounds, while a non-planar and small sized D ring region would provide improved anti-cancer activity. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, I-Lun; Huang, Yuh-Jeen, E-mail: yjhuang@mx.nthu.edu.tw [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences (China)

    2013-09-15

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum-in this case, fetal bovine serum-in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 {mu}m) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn{sup 2+} release contributes to cytotoxicity. Although more extracellular Zn{sup 2+} release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  12. Safe Handling of Cytotoxic Drugs and Risks of Occupational Exposure to Nursing Staffs

    Directory of Open Access Journals (Sweden)

    Somayeh Hanafi

    2016-05-01

    Full Text Available Background: Inherent toxicity of cytotoxic drugs is the basis for their potential adverse risks from occupational exposure to the nursing staff. In Iran, chemotherapy regimens are prescribed and administered according to the world updated protocols. But little is done regarding the protective standards in this field.Methods: An observational cross-sectional survey was conducted among nurses who work in three tertiary care teaching hospitals in Tehran, Iran in 2012. All participants worked in one of the hospital wards handling cytotoxic drugs (preparation and administration. A questionnaire was used for interviewing all subjects, and observing them preparing and administering the drugs. We examined all adverse effects associated with handling of antineoplastic drugs.Results: Totally 270 adverse reactions were reported. The most frequently reported adverse effects included headache and vertigo (40 cases, hair loss (36 cases, skin rashes and itching (31 cases, and burning sensation in eyes (31 cases. In all hospital wards, the standards were met in not more than 50% of the items.Conclusion: Monitoring the personnel who are directly involved in handling of cytotoxic drugs is of great importance. Furthermore, educating the personnel in the field of standards of cytotoxic drugs handling could increase the nursing staff’s knowledge regarding these drugs’ adverse reactions.

  13. Cytotoxic Activity of Selected Iranian Traditional Medicinal Plants on Colon, Colorectal and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Leila Mohammad Taghizadeh Kashani

    2014-11-01

    Full Text Available Background: Many natural products from plants have been recognized to exert anticancer activity. In this study, ethanolic extracts of selected medicinal herbs from Iranian flora including Alyssum homolocarpum Fisch. (from seeds, Urtica dioica L. (from aerial parts, Cichorium intybus L. (from roots and Solanum nigrum L. (from fruits, were evaluated for their cytotoxic effect on different cell lines.Methods: Cytotoxic effect of these extracts was studied on three different cancer cell lines; colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2 and breast ductal carcinoma (T47D. In addition, Swiss mouse embryo fibroblasts (NIH 3T3 were used as normal nonmalignant cells. MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide was utilized for calculating the cytotoxicity of extracts on cell lines.Results: Results showed the potent cytotoxic activity of U. dioica ethanolic extract against T47D cell line with IC50 value of 46.14±4.55 µg/ml. Other extracts showed poor activity with IC50>100 µg/ml.Conclusions: Cytotoxic activity recorded in the present study revealed high potential antiproliferative activity of U. dioica ethanolic extract against T47D cell line. The real IC50 values of this extract may be considerably lower than the IC50 measured in our study if its pharmacological active compounds become pure. The results emphasize the importance of studies on U. dioica ethanolic extract to characterize potential components as cytotoxic natural medicines.

  14. Cytotoxic isoferulic acidamide from Myricaria germanica (Tamaricaceae).

    Science.gov (United States)

    Nawwar, Mahmoud A; Swilam, Noha F; Hashim, Amani N; Al-Abd, Ahmed M; Abdel-Naim, Ashraf B; Lindequist, Ulrike

    2013-01-01

    Tamgermanitin, a unique N-trans-Isoferuloyltyramine, together with the hitherto unknown polyphenolics, 2,4-di-O-galloyl-(α/β)-glucopyranose and kaempferide 3,7-disulphate have been isolated from the leaf aqueous ethanol extract of the false tamarisk, Myricaria germanica DESV. In addition, 18 known phenolics were also separated and characterized. All structures were elucidated on the basis of detailed analysis of 1D- (1)H and (13)C NMR, COSY, HSQC, HMBC and HRFTESIMS spectral data. The extract, its chromatographic column fractions and the isolated isoferuloyltyramine, tamgermanetin demonstrated potential cytotoxic effect against three different tumor cell lines, namely liver (Huh-7), breast (MCF-7) and prostate (PC-3). The IC 50''s were found to be substantially low with low-resistance possibility. DNA flow-cytometic analysis indicated that column fractions and tamgermanetin enhanced pre-G apoptotic fraction. Both materials showed inhibiting activity against PARP enzyme activity. In conclusion, we report the isolation and identification of a novel compound, tamgermanitin, from the aqueous ethanol extract of Myricaria germanica leaves. Further, different fractions of the extract and tamgermanitin exhibit potent cytotoxic activities which warrant further investigations.

  15. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  16. Neonatal CD8+ T-cell differentiation is dependent on interleukin-12.

    LENUS (Irish Health Repository)

    McCarron, Mark J

    2012-02-01

    Neonatal CD8(+) T-cell activation is significantly impaired compared with that in adults. Recent studies have demonstrated that interleukin (IL)-12 is necessary as a third signal, in addition to antigen and co-stimulation, to authorize the differentiation of naive CD8(+) T cells. We examined whether human neonatal CD8(+) T cells, which possess an exclusively naive T-cell phenotype, required a third signal to authorize a productive T-cell response. IL-12 enhanced activated naive CD8(+) T-cell survival, expansion, CD25 expression, and IL-2 production. Activated CD8(+) T cells produced interferon-gamma and intracellular granzyme B and were cytotoxic only in the presence of IL-12. Sustained IL-12 signaling for 72 hours was required for optimal interferon-gamma production. IL-12, in concert with T cell receptor (TCR) stimulation, sustained late-stage (48-72 hours) intracellular phosphorylation and particularly total protein levels of the proximal TCR components, Lck, and CD3xi. The requirement for a third signal for productive human neonatal CD8(+) T-cell differentiation may have implications for neonatal vaccination strategies.

  17. Cytotoxic Compounds from Aloe megalacantha

    Directory of Open Access Journals (Sweden)

    Negera Abdissa

    2017-07-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the roots of Aloe megalacantha led to the isolation of four new natural products—1,8-dimethoxynepodinol (1, aloesaponarin III (2, 10-O-methylchrysalodin (3 and methyl-26-O-feruloyl-oxyhexacosanate (4—along with ten known compounds. All purified metabolites were characterized by NMR, mass spectrometric analyses and comparison with literature data. The isolates were evaluated for their cytotoxic activity against a human cervix carcinoma cell line KB-3-1 and some of them exhibited good activity, with aloesaponarin II (IC50 = 0.98 µM being the most active compound.

  18. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K

    1988-01-01

    stimulated PBMC from malaria-immune donors by SPag and purified protein derivative (PPD) in culture for 7 days. The PBMC were then co-incubated with P. falciparum for 48 h, and parasitaemia was determined by microscopy. Parasite growth was only significantly impaired after incubation with PBMC stimulated...... by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were...... done both in the absence and the presence of immune serum. Neither fresh PBMC nor PBMC activated by SPag or PPD for 7 days prior to assay were cytotoxic, indicating that cytotoxic T cells, natural killer (NK) cells, and K cells did not possess cytotoxic activity directed against parasitized...

  19. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies

    International Nuclear Information System (INIS)

    Marcusson-Staahl, Maritha; Cederbrant, Karin

    2003-01-01

    A recent regulatory document for immunotoxicity testing of new pharmaceutical drugs includes cytotoxic natural killer (NK)-cell function as a required parameter in repeated dose toxicity studies. The classical 51 Cr-release assay is the conventional test for cytotoxicity testing but several drawbacks with this assay has increased the demand for new reliable test systems. Here, we describe the optimisation of a flow-cytometric cytotoxicity assay especially adapted for regulatory rat studies in drug development. The test principle is based on target cell labelling with 5-(6)-carboxy-fluorescein succinimidyl ester (CFSE) and subsequent DNA-labelling with propidium iodide (PI) for identification of target cells with compromised cell membranes. The results are expressed as percentage of dead targets on a cell-to-cell basis. The final format of the assay includes 0.5 ml peripheral blood, 1.25x10 5 effector cells per sample, and collection of 500 target events by flow-cytometry. When NKR-P1+ cells were removed from the effector cell population by magnetic depletion the relative proportion decreased from 6 to 0.08%. The corresponding cytotoxic activity decreased from 68 to 8%. Also, the cytotoxic activity showed a significant and positive correlation with the proportion of NK-cells present in the effector cell suspension. Thus, the cytotoxicity measured is almost exclusively exerted by NK-cells. The current flow-cytometric test benefits from using peripheral blood as a source for effector cells since it will not conflict with the use of spleen for histopathological investigations in repeated dose toxicity studies. Additionally, since only a minimal number of effector cells are required per sample repeated testing of the same animal is enabled

  20. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2015-03-01

    Full Text Available Premna serratifolia (Syn: Premna integrifolia is an important medicinal herb known as “Agnimantha” in Ayurveda and traditionally used for anticancer activity. The objective of present study was to isolate the cytotoxic phytoconstituents from the n-hexane soluble fraction of P. serratifolia leaf extract. Unsaponifiable portion of n-hexane soluble fraction was subjected to silica based column chromatography. The major constituents present in all the sub-fractions were identified by TLC and phytochemical tests. Two constituents were isolated and they were purified. Sub-fractions with isolates were tested for cytotoxic effect by BSL bioassay. Two isolates were found to be active and which were tested on cancer cell lines MCF-7 and HT-29 for their cytotoxicity. Among two isolates, one compound has shown significant cytotoxicity. From the results we conclude that the plant isolates showed cytotoxicity against selected human cancer cell lines.

  1. Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study.

    Science.gov (United States)

    Gomes Cornélio, Ana Lívia; Salles, Loise Pedrosa; Campos da Paz, Mariana; Cirelli, Joni Augusto; Guerreiro-Tanomaru, Juliane Maria; Tanomaru Filho, Mário

    2011-02-01

    The aim of this study was to investigate the cytotoxicity of white Portland cement (PC) alone or associated with bismuth oxide (PCBi), zirconium oxide (PCZir), and calcium tungstate (PCCa) in 2 cell lineages. Murine periodontal ligament cells (mPDL) and rat osteosarcoma cells (ROS 17/2.8) were exposed for 24 hours to specific concentrations of fresh PC and PC associations with radiopacifiers. Zinc oxide-eugenol cement and hydrogen peroxide treatment were applied as cytotoxic positive controls. Cell viability after incubation with the cements was assessed by mitochondrial dehydrogenase enzymatic assay. Cell morphology was microscopically analyzed by cresyl violet staining, and the mechanism of cell death was determined by acridine orange/ethidium bromide methodology. All data were analyzed statistically by analysis of variance and Tukey post hoc test (P cement elutes. PC alone was not cytotoxic, even at 100 mg/mL. Microscopic images showed that none of the PC formulations caused damage to any cell lines. Statistical analysis of apoptosis/necrosis data demonstrated that PC and PC plus radiopacifying agents promoted significant necrosis cell death only at 100 mg/mL. The mPDL cells were more sensitive than ROS17/2.8. The results showed that PC associated with bismuth oxide, zirconium oxide, or calcium tungstate is not cytotoxic to mPDL or ROS17/2.8. Zirconium oxide and calcium tungstate might be good alternatives as radiopacifying agents. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Phytochemical Analysis and Cytotoxicity Evaluation of Kelussia odoratissima Mozaff.

    Directory of Open Access Journals (Sweden)

    Amir Abbas Momtazi

    2017-06-01

    Conclusions: The present results suggest a direct cytotoxic activity of K. odoratissima leaf extract against human cancer cell lines. This activity of K. odoratissima may find application in combination with traditional herbal medicines to develop a new anticancer pharmacopuncture therapy.

  3. Cytotoxicity and Secondary Metabolites Production in Terrestrial Nostoc Strains, Originating From Different Climatic/Geographic Regions and Habitats: Is Their Cytotoxicity Environmentally Dependent?

    Czech Academy of Sciences Publication Activity Database

    Hrouzek, Pavel; Tomek, P.; Lukešová, Alena; Urban, J.; Voloshko, L.; Pushparaj, B.; Ventura, S.; Lukavský, Jaromír; Štys, D.; Kopecký, J.

    2011-01-01

    Roč. 26, č. 4 (2011), s. 345-358 ISSN 1520-4081 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60660521; CEZ:AV0Z50200510 Keywords : cytotoxicity * cyanobacteria * nostoc Subject RIV: EE - Microbiology, Virology Impact factor: 2.407, year: 2011

  4. Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    Science.gov (United States)

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  5. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrino, Milena T. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Silva, Letícia C.; Watashi, Carolina M. [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil); Haddad, Paula S. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Rodrigues, Tiago; Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil)

    2017-02-15

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL{sup −1} for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  6. Δ8-Tetrahydrocannabinol induces cytotoxicity in macrophage J774-1 cells: Involvement of cannabinoid receptor 2 and p38 MAPK

    International Nuclear Information System (INIS)

    Yamaori, Satoshi; Ishii, Hirosuke; Chiba, Kenzo; Yamamoto, Ikuo; Watanabe, Kazuhito

    2013-01-01

    Tetrahydrocannabinol (THC), a psychoactive component of marijuana, is known to exert cytotoxicity in immune cells. In the present study, we examined the cytotoxicity of Δ 8 -THC in mouse macrophage J774-1 cells and a possible involvement of cannabinoid receptors and stress-responsive mitogen-activated protein kinases (MAPKs) in the cytotoxic process. J774-1 cells were treated with Δ 8 -THC (0–20 μM) for up to 6 h. As measured by the MTT and LDH assays, Δ 8 -THC induced cell death of J774-1 cells in a concentration- and/or exposure time-dependent manner. Δ 8 -THC-induced cell damage was associated with vacuole formation, cell swelling, chromatin condensation, and nuclear fragmentation. The cytotoxic effect of Δ 8 -THC was significantly prevented by a caspase-1 inhibitor Ac-YVAD-cmk but not a caspase-3 inhibitor z-DEVD-fmk. The pretreatment with SR144528, a CB 2 receptor-selective antagonist, effectively suppressed Δ 8 -THC-induced cytotoxicity in J774-1 cells, which exclusively expressed CB 2 receptors as indicated by real-time polymerase chain reaction analysis. In contrast, AM251, a CB 1 receptor-selective antagonist, did not affect the cytotoxicity. Pertussis toxin and α-tocopherol significantly attenuated Δ 8 -THC-induced cytotoxicity suggesting that G i/o protein coupling signal transduction and oxidative stress are responsible for the cytotoxicity. Δ 8 -THC stimulated the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) in J774-1 cells, which were effectively antagonized by the pretreatment with SR144528. In addition, SB203580, a p38 MARK inhibitor, significantly attenuated the cytotoxic effect of Δ 8 -THC, whereas SP600125, a JNK inhibitor, significantly enhanced the cytotoxicity. These results suggest that the cytotoxicity of Δ 8 -THC to J774-1 cells is exerted mediated through the CB 2 receptor followed by the activation of p38 MAPK

  7. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    Science.gov (United States)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  8. The effect of heating temperature on cytotoxicity and α-mangostin yield: Mangosteen pericarp juice and mangosteen extract

    Science.gov (United States)

    Mulia, Kamarza; Hasanah, Fitria; Krisanti, Elsa A.

    2018-03-01

    The pericarp of mangosteen (Garcinia mangostana L.) contains bioactive xanthones, with α-mangostin being the major component, has been known to possess antitumor, antiviral, and other pharmacological activities. In this study, the effect of elevated temperature during the preparation step of fresh mangosteen pericarp juice and mangosteen extract, on their α-mangostin yield and cytotoxicities was investigated. The cytotoxicity activity of fresh juice and mangosteen extract was investigated using the brine shrimp test. Heating the fresh pericarp mangosteen in water at 65°C for 30 minutes prior to blending produced a juice with higher α-mangostin yield and cytotoxicity compared to the traditional way of blending the juice at room temperature. Increasing α-mangostin yield of 9%-w/w due to heating was also observed when mangosteen extract was heated at 65°C, consistent with the increased cytotoxicity in terms of LC50 value. It is concluded that the effect of temperature on α-mangostin yield was in line with the temperature effect on cytotoxicity activity in all samples of pericarp juice and mangosteen extract in ethyl acetate fraction.

  9. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Krotee, Pascal [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Rodriguez, Jose A. [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Sawaya, Michael R. [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Cascio, Duilio [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Reyes, Francis E. [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Shi, Dan [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Hattne, Johan [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Nannenga, Brent L. [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Oskarsson, Marie E. [Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Philipp, Stephan [Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States; Griner, Sarah [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States; Jiang, Lin [Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States; Brain Research Institute (BRI), University of California, Los Angeles, Los Angeles, United States; Glabe, Charles G. [Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Westermark, Gunilla T. [Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Gonen, Tamir [Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; Eisenberg, David S. [Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States

    2017-01-03

    hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic β-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19–29 S20G, forms pairs of β-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15–25 WT, forms non-toxic labile β-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19–29 S20G may serve as a model for the toxic spine of hIAPP.

  10. Kinetics of micronucleus induction and cytotoxicity caused by distinct antineoplastics and alkylating agents in vivo.

    Science.gov (United States)

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia

    2014-01-30

    This mini-review aims to compare the differences in the kinetics of the induction of micronucleated polychromatic erythrocytes (MN-PCE) and cytotoxicity by distinct antineoplastic and genotoxic agents in murine peripheral blood in vivo and to correlate these kinetics with the underlying processes. Comparisons were carried out using our previously obtained data with nominal doses causing similar levels of cytotoxicity, as measured in terms reduction of PCE. The aneuploidogens caused the most rapid induction of MN-PCEs and had the highest rates of cytotoxicity and genotoxicity. The promutagens cyclophosphamide and dimethylnitrosamine showed the most delayed responses and had the lowest genotoxic and cytotoxic efficiencies. DNA crosslinking agents had a similar delay of 4-5 h, greater than those of aneuploidogens, but differed in their cytotoxic and genotoxic efficiencies. Methylnitrosourea and 5-aza-cytidine caused greater delays than crosslinking agents. These delays can be due to the methylnitrosourea-mediated induction of formation of mono alkyl adducts which are interpreted as mismatches during DNA duplication, whereas 5-aza-cytidine requires incorporation into the DNA to induce breakage. This review allows us to conclude that the requirement for metabolic activation and the mechanisms of DNA breakage and of micronucleus induction are the main factors that affect the time of maximal MN-PCE induction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of Digestion and Storage of Human Milk on Free Fatty Acid Concentration and Cytotoxicity

    Science.gov (United States)

    Penn, Alexander H.; Altshuler, Angelina E.; Small, James W.; Taylor, Sharon F.; Dobkins, Karen R.; Schmid-Schönbein, Geert W.

    2014-01-01

    Objectives Fat is digested in the intestine into free fatty acids (FFAs), which are detergents and therefore toxic to cells at micromolar concentration. The mucosal barrier protects cells in the adult intestine, but this barrier may not be fully developed in premature infants. Lipase-digested infant formula, but not fresh human milk, has elevated FFAs and is cytotoxic to intestinal cells, and therefore could contribute to intestinal injury in necrotizing enterocolitis (NEC). But even infants exclusively fed breast milk may develop NEC. Our objective was to determine if stored milk and milk from donor milk banks (DM) could also become cytotoxic, especially after digestion. Methods We exposed cultured rat intestinal epithelial cells or human neutrophils to DM and milk collected fresh and stored at 4 or −20 °C for up to 12 weeks and then treated for 2 hours (37°C) with 0.1 or 1 mg/ml pancreatic lipase and/or trypsin and chymotrypsin. Results DM and milk stored 3 days (at 4 or −20 °C) and then digested were cytotoxic. Storage at −20 °C for 8 and 12 weeks resulted in an additional increase in cytotoxicity. Protease digestion decreased, but did not eliminate cell death. Conclusions Current storage practices may allow milk to become cytotoxic and contribute to intestinal damage in NEC. PMID:24840512

  12. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico); Gonzalez-Pozos, Sirenia [CINVESTAV-IPN, Unidad de Microscopia Electrónica (LaNSE) (Mexico); Velumani, Subramaniam [CINVESTAV-IPN, Departamento de Ingeniería Eléctrica (Mexico); Arreola-Mendoza, Laura [Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Departamento de Biociencias e Ingeniería (Mexico); Vizcaya-Ruiz, Andrea De, E-mail: avizcaya@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico)

    2016-04-15

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  13. Physico-chemical characterization and cytotoxicity studies of seed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... saponification values were 88.40 and 195.58, respectively. The peroxide and acid values were 4.6 and. 2.69, respectively. Brine shrimp lethality bioassay of petroleum ether and methanol extracts of the seeds showed that the extracts were moderately cytotoxic at high concentration. The LC50 values using.

  14. Differentiation of U937 cells induced by 5,8,11,14-eicosatetraynoic acid, a competitive inhibitor of arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Ondrey, F.; Anderson, K.; Hoeltgen, D.; Harris, J.

    1988-01-01

    5,8,11,14-Eicosatetraynoic acid, a competitive inhibitor of arachidonic acid metabolism, rapidly and reversibly inhibited DNA synthesis in U937 cells. This inhibition was not due to cytotoxicity, as judged by studies with trypan blue, release of 51 Cr-labeled proteins, and its reversibility. When cells were cultured in the presence of ETYA for several days, morphologic, enzymatic, and functional changes consistent with differentiation occurred. The cells enlarged, the ratio of cytoplasm to nuclei increased, secretory granules and vacuoles developed, the apparent activity of nonspecific esterase rose, and ingestion of latex particles increased. A morphology consistent with that of an immature monocyte was evident by electron microscopy. When cells differentiated by ETYA were cultured in media free of the inhibitor, DNA synthesis reinitiated and the cell number increased; differentiation was phenotypic and not genotypic. To examine whether ETYA-induced differentiation was obligatorily related to its suppression of DNA synthesis, cells were incubated in 50 μM hydroxyurea and DNA synthesis was inhibited for 24 to 36 h without morphologic evidence of cellular differentiation. However, addition of ETYA to cells prevented from dividing by hydroxyurea and subsequent culture for 72 h induced morphologic evidence of differentiation. The effects of ETYA on cell division and cell differentiation are closely related but can be dissociated

  15. A Study on Genetic Analysis and Extract Cytotoxicity of Scolopendra subspinipes multilans L. Koch

    Directory of Open Access Journals (Sweden)

    Kim Sung-Nam

    2006-06-01

    Full Text Available Objective : The purpose of this study is to investigate nucleotide sequence and extract cytotoxicity of Scolopendrae corpus. The nature and taste of Scolopendrae corpus is hot, Warm and toxic, and the effect of this is dispelling wind, anti-spasmodic action and detoxication so it has been used for C.V.A, facial palsy, sensory disorder at extremities, wounds and arthritis. Methods : Scolopendrae corpus were collected by locality on the market. They were morphologically classified. Their nucleotide sequence was investigated and compared among them. In addition, the water-alcohol extract cytotoxicity of them was studied by MTT-based cytotoxicity assay. Results : It was shown that the each Scolopendrae corpus by locality is almost identical at genetic result and is identified as Scolopendra subspinipes mutilans L. Koch. Nucleotide sequence of Scolopendra subspinipes mutilans L. Koch in this study will help to discriminate other species of Scolopendrae corpus. The water-alcohol extract of Scolopendra subspinipes mutilans L. Koch did not induce cytotoxicity on Hep G2, L929 cell and peritoneal macrophages. Besides, it did not influence nitrite production of peritoneal macrophages. These results can be used as basic data for genetic discrimination with another species of scolopendrae corpus.

  16. Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer

    Directory of Open Access Journals (Sweden)

    Choi Moon-Jeong

    2011-01-01

    Full Text Available Abstract Cytotoxicity is a severe problem for cadmium sulfide nanoparticles (CSNPs in biological systems. In this study, mercaptoacetic acid-coated CSNPs, typical semiconductor Q-dots, were synthesized in aqueous medium by the arrested precipitation method. Then, amino-terminated polyethylene glycol (PEG was conjugated to the surface of CSNPs (PCSNPs in order to introduce amino groups to the surface. Finally, insulin was immobilized on the surface of PCSNPs (ICSNPs to reduce cytotoxicity as well as to enhance cell compatibility. The presence of insulin on the surface of ICSNPs was confirmed by observing infrared absorptions of amide I and II. The mean diameter of ICSNPs as determined by dynamic light scattering was about 38 nm. Human fibroblasts were cultured in the absence and presence of cadmium sulfide nanoparticles to evaluate cytotoxicity and cell compatibility. The results showed that the cytotoxicity of insulin-immobilized cadmium sulfide nanoparticles was significantly suppressed by usage of PEG as a spacer. In addition, cell proliferation was highly facilitated by the addition of ICSNPs. The ICSNPs used in this study will be potentials to be used in bio-imaging applications.

  17. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  18. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells.

    Science.gov (United States)

    Feng, Xingmei; Lu, Xiaohui; Huang, Dan; Xing, Jing; Feng, Guijuan; Jin, Guohua; Yi, Xin; Li, Liren; Lu, Yuanzhou; Nie, Dekang; Chen, Xiang; Zhang, Lei; Gu, Zhifeng; Zhang, Xinhua

    2014-08-01

    A key aspect of cell replacement therapy in brain injury treatment is construction of a suitable biomaterial scaffold that can effectively carry and transport the therapeutic cells to the target area. In the present study, we created small 3D porous chitosan scaffolds through freeze-drying, and showed that these can support and enhance the differentiation of dental pulp stem cells (DPSCs) to nerve cells in vitro. The DPSCs were collected from the dental pulp of adult human third molars. At a swelling rate of ~84.33 ± 10.92 %, the scaffold displayed high porosity and interconnectivity of pores, as revealed by SEM. Cell counting kit-8 assay established the biocompatibility of the chitosan scaffold, supporting the growth and survival of DPSCs. The successful neural differentiation of DPSCs was assayed by RT-PCR, western blotting, and immunofluorescence. We found that the scaffold-attached DPSCs showed high expression of Nestin that decreased sharply following induction of differentiation. Exposure to the differentiation media also increased the expression of neural molecular markers Microtubule-associated protein 2, glial fibrillary acidic protein, and 2',3'-cyclic nucleotide phosphodiesterase. This study demonstrates that the granular 3D chitosan scaffolds are non-cytotoxic, biocompatible, and provide a conducive and favorable micro-environment for attachment, survival, and neural differentiation of DPSCs. These scaffolds have enormous potential to facilitate future advances in treatment of brain injury.

  19. In vitro cytotoxicity of the ternary PAMAM G3–pyridoxal–biotin bioconjugate

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2013-12-01

    Full Text Available Łukasz Uram, Magdalena Szuster, Krzysztof Gargasz, Aleksandra Filipowicz, Elżbieta Wałajtys-Rode, Stanisław Wołowiec Cosmetology Department, University of Information Technology and Management in Rzeszów, Rzeszów, Poland Abstract: A third-generation polyamidoamine dendrimer (PAMAM G3 was used as a macromolecular carrier for pyridoxal and biotin. The binary covalent bioconjugate of G3, with nine molecules of biotin per one molecule of G3 (G39B, and the ternary covalent bioconjugate of G3, with nine biotin and ten pyridoxal molecules (G39B10P, were synthesized. The biotin and pyridoxal residues of the bioconjugate were available for carboxylase and transaminase enzymes, as demonstrated in the conversion of pyruvate to oxaloacetate and alanine to pyruvate, respectively, by in vitro monitoring of the reactions, using 1H nuclear magnetic resonance spectroscopy. The toxicity of the ternary bioconjugate (BC-PAMAM was studied in vitro on BJ human normal skin fibroblasts and human squamous cell carcinoma (SCC-15 cell cultures in comparison with PAMAM G3, using three cytotoxicity assays (XTT, neutral red, and crystal violet and an estimation of apoptosis by confocal microscopy detection. The tests have shown that BC-PAMAM has significantly lower cytotoxicity compared with PAMAM. Nonconjugated PAMAM was not cytotoxic at concentrations up to 5 µM (NR and 10 µM (XTT, and BC-PAMAM was not cytotoxic up to 50 µM (both assays for both cell lines. It has been also found that normal fibroblasts were more sensitive than SCC to both PAMAM and BC-PAMAM. The effect of PAMAM and BC-PAMAM on the initiation of apoptosis (PAMAM in fibroblasts at 5 µM and BC-PAMAM at 10 µM in both cell lines corresponded with cytotoxicity assays for both cell lines. We concluded that normal fibroblasts are more sensitive to the cytotoxic effects of the PAMAM G3 dendrimer and that modification of its surface cationic groups by substitution with biologically active molecules

  20. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Wingett D

    2016-07-01

    Full Text Available Denise Wingett,1–3 Panagiota Louka,1 Catherine B Anders,2 Jianhui Zhang,4 Alex Punnoose2,41Department of Biological Sciences, 2Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 3Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 4Department of Physics, Boise State University, Boise, ID, USA Abstract: ZnO nanoparticles (NPs have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic

  1. Evidence of cytotoxic T and B immunoblasts in the thoracic duct of rats bearing tumor grafts

    International Nuclear Information System (INIS)

    Denham, S.; Wrathmell, A.B.; Alexander, P.

    1975-01-01

    Wistar rats were immunized with allogeneic or xenogeneic tumour before collection of their thoracic duct lymph. Specifically cytotoxic effector cells were found in the lymph between 3 and 8 days after immunization, and their occurrence coincided with an increased number of immunoblasts in the lymphocyte population. The immune response in lymph to allogeneic cells appeared to be affected solely by radiosensitive thymus-dependent lymphocytes; no complement-dependent killing was evident and cytotoxic cells failed to appear when immunized animals were deprived of thymus-dependent lymphocytes. In contrast, the response to immunization with xenogeneic cells elicited both complement-dependent and complement-independent cytotoxicity, but only the former could be detected in animals deprived of thymus-dependent lymphocytes. In normal animals and in animals deprived of thymus-dependent cells, the cytotoxic cells in the thoracic duct lymph appeared to be large lymphocytes or immunoblasts. (U.S.)

  2. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  3. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  4. Cytotoxic activity of water extracts of Trichilia hirta leaves on human tumor cells

    International Nuclear Information System (INIS)

    Hernandez Sosa, Edgar; Mora Gonzalez, Nestor; Morris Quevedo, Humberto J

    2013-01-01

    Trichilia hirta L. (Meliaceae) is traditionally used by patients suffering from cancer as an antitumoral resource. Therefore, the objectives of this study were to evaluate the cytotoxic activity of water extracts of Trichilia hirta leaves on tumour cells and identify through a phytochemical screening the principal families of phytocomponents contained in these extracts. The cytotoxic activity of these extracts was also evaluated on human melanoma cells (SK-mel-3) and human breast carcinoma (T-47D). The African green monkey kidney (AGMK) cells Cercopithecus aethiops (Vero) were used as a non-tumour cells control. The results showed the presence of triterpenes/steroids, saponins, coumarins, reductor sugars, phenols and tannins, flavonoids and carbohydrates/glycosides in the extracts. The water leaf extracts showed cytotoxic activity mainly on tumour cells, which contributes to explain the referred recovery by patients suffering form cancer that traditionally consume these extracts

  5. Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Ding-Kun Kang

    Full Text Available Abstract Background: Local anesthetics (LAs are generally considered as safe, but cytotoxicity has been reported for several local anesthetics used in humans, which is not well investigated. In the present study, the cytotoxicity of lidocaine, ropivacaine and the combination of lidocaine and ropivacaine were evaluated on human melanoma cell lines. Melphalan, a nitrogen mustard alkylating agent, was used as a control agent for comparison of cytotoxic activity. Methods: Melanoma cell lines, A375 and Hs294T, were exposed to 1 h to different concentrations of above agents. Cell-viability after exposure was determined by flow cytometry. Results: Investigated LAs showed detrimental cytotoxicity on studied melanoma cell lines in time- (p < 0.001, concentration- (p < 0.001, and agent dependant. In both A375 and Hs294T cell lines, minimum cell viability rates were found after 72 h of exposure to these agents. Lidocaine 2% caused a reduction of vital cells to 10% ± 2% and 14% ± 2% in A375 and Hs294T, respectively after 72 h of exposure. Ropivacaine 0.75% after 72 h reduced viable cells to 15% ± 3% and 25% ± 3% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to the combination was 10% ± 2% and 18% ± 2% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to melphalan was 8% ± 1% and 12% ± 2%, in A375 and Hs294T, respectively. Conclusion: LAs have cytotoxic activity on human melanoma cell lines in a time-, concentration- and agent-dependant manner. Apoptosis in the cell lines was mediated through activity of caspases-3 and caspases-8.

  6. Cytotoxicity testing of aqueous extract of bitter leaf (Vernonia ...

    African Journals Online (AJOL)

    Cytotoxicity testing of aqueous extract of bitter leaf (Vernonia amygdalina Del) and sniper. 1000EC (2,3 ... man and animals.1 It is estimated that 80% of the popula- ..... evaluation of waste, surface and ground water quality using the Allium test ...

  7. Activation of cytotoxic lymphocytes in patients with scrub typhus

    NARCIS (Netherlands)

    de Fost, Maaike; Chierakul, Wirongrong; Pimda, Kriangsak; Dondorp, Arjen M.; White, Nicholas J.; van der Poll, Tom

    2005-01-01

    Thai patients with scrub typhus caused by the intracellular pathogen Orientia tsutsugamushi displayed elevated plasma concentrations of granzymes A and B, interferon-gamma (IFN)-gamma-inducible protein 10, and monokine induced by IFN-gamma. These data suggest that activation of cytotoxic lymphocytes

  8. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay.

    Science.gov (United States)

    Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A

    2018-06-01

    High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.

  9. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by Vitamin E

    International Nuclear Information System (INIS)

    Guerbay, Aylin; Gonthier, Brigitte; Barret, Luc; Favier, Alain; Hincal, Filiz

    2007-01-01

    The aim of this study was to investigate the possible cytotoxic and oxidative stress inducing effects of ciprofloxacin (CPFX) on primary cultures of rat astrocytes. The cultured cells were incubated with various concentrations of CPFX (0.5-300 mg/l), and cytotoxicity was determined by neutral red (NR) and MTT assays. Survival profile of cells was biphasic in NR assay: CPFX did not cause any alteration at any concentration for 7 h, whereas ≤50 mg/l concentrations induced significant cell proliferation in incubation periods of 24, 48, 72, and 96 h. However, cell proliferation gradually decreased at higher concentrations, and 200 and 300 mg/l of CPFX exposure was found to be significantly (p < 0.05) cytotoxic at all time periods. With MTT assay, no alteration was noted for incubation period of 7 h, as observed with NR assay. But, cell viability decreased with ∼≥50 mg/l CPFX exposure in all other time periods. Cell proliferation was only seen in 24 h of incubation with 0.5 and 5 mg/l CPFX. Vitamin E pretreatment of cell cultures were found to be providing complete protection against cytotoxicity of 300 mg/l CPFX in 96 h incubation when measured with both NR and MTT assays. The SOD pretreatment was partially protective with NR assay, but no protection was noted when measured with MTT. A significant enhancement of lipid peroxidation was observed with the cytotoxic concentration of the drug, but total glutathione content and catalase activity of cells did not change. The data obtained in this study suggest that, in accordance with our previous results with fibroblast cells, CPFX-induced cytotoxicity is related to oxidative stress. And the biphasic effect of CPFX possibly resulted from the complex dose-dependent relationships between reactive oxygen species, cell proliferation, and cell viability

  10. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants.

    Science.gov (United States)

    Alves, Celha Borges Costa; Segurado, Márcio Nunes; Dorta, Miriam Cristina Leandro; Dias, Fátima Ribeiro; Lenza, Maurício Guilherme; Lenza, Marcos Augusto

    2016-01-01

    To evaluate and compare in vitro cytotoxicity and corrosion resistance of mini-implants from three different commercial brands used for orthodontic anchorage. Six mini-implants (Conexão(tm), Neodent(tm) and SIN(tm)) were separately immersed in artificial saliva (pH 6.76) for 30 and 60 days. The cytotoxicity of the corrosion extracts was assessed in L929 cell cultures using the violet crystal and MTT assays, as well as cell morphology under light microscopy. Metal surface characteristics before and after immersion in artificial saliva were assessed by means of scanning electron microscopy (SEM). The samples underwent atomic absorption spectrophotometry to determine the concentrations of aluminum and vanadium ions, constituent elements of the alloy that present potential toxicity. For statistical analysis, one-way ANOVA/Bonferroni tests were used for comparisons among groups with p < 0.05 considered significant. Statistical analysis was carried out with Graph Pad PRISM software Version 4.0. No changes in cell viability or morphology were observed. Mini-implants SEM images revealed smooth surfaces with no obvious traces of corrosion. The extracts assessed by means of atomic absorption spectrophotometry presented concentrations of aluminum and vanadium ions below 1.0 µg/mL and 0.5 µg/mL, respectively. Orthodontic mini-implants manufactured by Conexão(tm), Neodent(tm) and SIN(tm) present high corrosion resistance and are not cytotoxic.

  11. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  12. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  13. Study of Galfenol direct cytotoxicity and remote microactuation in cells.

    Science.gov (United States)

    Vargas-Estevez, Carolina; Blanquer, Andreu; Dulal, Prabesh; Pérez Del Real, Rafael; Duch, Marta; Ibáñez, Elena; Barrios, Leonardo; Murillo, Gonzalo; Torras, Núria; Nogués, Carme; Stadler, Bethanie J H; Plaza, José A; Esteve, Jaume

    2017-09-01

    Remote microactuators are of great interest in biology and medicine as minimally-invasive tools for cellular stimulation. Remote actuation can be achieved by active magnetostrictive transducers which are capable of changing shape in response to external magnetic fields thereby creating controlled displacements. Among the magnetostrictive materials, Galfenol, the multifaceted iron-based smart material, offers high magnetostriction with robust mechanical properties. In order to explore these capabilities for biomedical applications, it is necessary to study the feasibility of material miniaturization in standard fabrication processes as well as evaluate the biocompatibility. Here we develop a technology to fabricate, release, and suspend Galfenol-based microparticles, without affecting the integrity of the material. The morphology, composition and magnetic properties of the material itself are characterized. The direct cytotoxicity of Galfenol is evaluated in vitro using human macrophages, osteoblast and osteosarcoma cells. In addition, cytotoxicity and actuation of Galfenol microparticles in suspension are evaluated using human macrophages. The biological parameters analyzed indicate that Galfenol is not cytotoxic, even after internalization of some of the particles by macrophages. The microparticles were remotely actuated forming intra- and extracellular chains that did not impact the integrity of the cells. The results propose Galfenol as a suitable material to develop remote microactuators for cell biology studies and intracellular applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del [Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires (Argentina)

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  15. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    del Batlle Alcira M

    2002-03-01

    Full Text Available Abstract Background Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA and porphobilinogen (PBG. ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. Results We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  16. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    International Nuclear Information System (INIS)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations

  17. Urtica dioica Induces Cytotoxicity in Human Prostate Carcinoma ...

    African Journals Online (AJOL)

    Purpose: To evaluate the cytotoxic mechanisms of an extract from the leaves of the Urtica dioica (UD) plant in LNCaP prostate cancer cells. Methods: LNCaP cells were exposed to the UD extract for 24hrs and cell viability assessed using the MTT assay. Reactive oxygen species generation was assessed using the NBT ...

  18. Phytochemical screening, cytotoxicity and acute toxicity of Annona ...

    African Journals Online (AJOL)

    Phytochemical screening, cytotoxicity and acute toxicity of Annona vepretorum Mart (Annonaceae) leaf extracts. Mariana G e Silva, Ana P de Oliveira, Camila de S Araújo, Érica M de Lavor, Juliane C Silva, Rosemairy L Mendes, Cláudia do Ó Pessoa, Marcília P Costa, Jackson R G da S Almeida ...

  19. Chemical composition, cytotoxicity and antioxidant activities of the ...

    African Journals Online (AJOL)

    The species of the genus Citrus (Rutaceae) have been widely used in traditional medicine. In this study, the essential oil was extracted from the leaves of Citrus aurantium and its cytotoxicity effect on six tumor cell lines and a normal cell line was studied. Furthermore, antioxidant potential of the oil was tested by 2, ...

  20. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles ...

    African Journals Online (AJOL)

    The FT-IR spectrum of C. tamala leaf extract showed that the biomolecules were potentially involved in reduction processes. The negative zeta potential of -14 mV indicated that the NPs were stable and discrete while their crystalline nature was confirmed by XRD. Cytotoxicity analysis showed that the TiO2 NPs exhibit a ...