WorldWideScience

Sample records for pipeline leak detection

  1. Leak detection in pipelines using cepstrum analysis

    Science.gov (United States)

    Taghvaei, M.; Beck, S. B. M.; Staszewski, W. J.

    2006-02-01

    The detection and location of leaks in pipeline networks is a major problem and the reduction of these leaks has become a major priority for pipeline authorities around the world. Although the reasons for these leaks are well known, some of the current methods for locating and identifying them are either complicated or imprecise; most of them are time consuming. The work described here shows that cepstrum analysis is a viable approach to leak detection and location in pipeline networks. The method uses pressure waves caused by quickly opening and closing a solenoid valve. Due to their simplicity and robustness, transient analyses provide a plausible route towards leak detection. For this work, the time domain signals of these pressure transients were obtained using a single pressure transducer. These pressure signals were first filtered using discrete wavelets to remove the dc offset, and the low and high frequencies. They were then analysed using a cepstrum method which identified the time delay between the initial wave and its reflections. There were some features in the processed results which can be ascribed to features in the pipeline network such as junctions and pipe ends. When holes were drilled in the pipe, new peaks occurred which identified the presence of a leak in the pipeline network. When tested with holes of different sizes, the amplitude of the processed peak was seen to increase as the cube root of the leak diameter. Using this method, it is possible to identify leaks that are difficult to find by other methods as they are small in comparison with the flow through the pipe.

  2. Leak Detection in Offshore Pipelines of Conveying Fluid

    Institute of Scientific and Technical Information of China (English)

    李俊花; 崔莉

    2004-01-01

    Leakage from pipelines has caused serious environmental pollution and economic losses. Usually, leak detection can reduce the damage. The paper mainly discusses a hydraulic gradient-based leak detection method. The basic idea is outlined first, followed by a description of a laboratory experiment in a water pipeline. Several pressure curves are established based on different leak locations under the condition of a constant total flow rate. It is demonstrated that the leak of a large leak quantity can be detected reliably by the hydraulic gradient method.

  3. Detection of interstate liquids pipeline leaks: Feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.N.; Senum, G.I.

    1998-10-20

    The approximately 200,000-mile fuel pipeline system in the US operates at flow rates up to 2.5 {times} 10{sup 6} gallons per hour (GPH). Most commercial technologies only provide on-line leak detection at about 0.3% of flow rate, i.e., about 7,500 GPH or larger. Detection of leaks at about 1 GPH or so is desirable both from a regulatory and leak-prevention standpoint. Brookhaven`s commercially-accepted perfluorocarbon tracer (PFT) technology for underground leak detection of utility industry dielectric fluids at leak rates less than 0.1 GPH, with new enhancements, will be able to cost-effectively detect fuel pipeline system leaks to about 1 GPH--3 orders-of-magnitude better than any on-line system. The magnitude of detected leaks would be calculable as well. Proposed mobile surveys (such as those used periodically in the gas pipeline industry) at about 110 to 120 miles per day would allow such small leaks to be detected at 10-ppb tagging levels (less than $1,500 of PFT for a 48-hour tag at the maximum transport rate) under worst-case meteorological dispersion conditions. Smaller leaks could be detected by proportionately larger tagging concentrations. Leaks would be pinpointed by subsequent conventional barholing and vapor analyses. There are no health nor safety issues associated with the use of the proposed technological approach nor any consequential environmental impacts associated with the proposed magnitudes of PFT tagging.

  4. Fluid pipeline leak detection and location with miniature RF tags

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Timothy J.

    2017-05-16

    Sensors locate troublesome leaks in pipes or conduits that carry a flowing medium. These sensors, through tailored physical and geometric properties, preferentially seek conduit leaks or breaches due to flow streaming. The sensors can be queried via transceivers outside the conduit or located and interrogated inside by submersible unmanned vehicle to identify and characterize the nature of a leak. The sensors can be functionalized with other capabilities for additional leak and pipeline characterization if needed. Sensors can be recovered from a conduit flow stream and reused for future leak detection activities.

  5. DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION.

    Energy Technology Data Exchange (ETDEWEB)

    DIETZ,R.N.

    1998-10-20

    The approximately 200,000-mile fuel pipeline system in the U.S. operates at flow rates up to 2.5 x 10{sup 6}gallons per hour (GPH). Most commercial technologies only provide on-line leak detection at about 0.3% of flow rate, i.e., about 7,500 GPH or larger. Detection of leaks at about 1 GPH or so is desirable both from a regulatory and leak-prevention standpoint. Brookhaven's commercially-accepted perfluorocarbon tracer (PFT) technology for underground leak detection of utility industry dielectric fluids at leak rates less than 0.1 GPH, with new enhancements, will be able to cost-effectively detect fuel pipeline system leaks to about 1 GPH--3 orders-of-magnitude better than any on-line system. The magnitude of detected leaks would be calculable as well. Proposed mobile surveys (such as those used periodically in the gas pipeline industry) at about 110 to 120 miles per day would allow such small leaks to be detected at 10-ppb tagging levels (less than $1,500 of PFT for a 48-hour tag at the maximum transport rate) under worst-case meteorological dispersion conditions. Smaller leaks could be detected by proportionately larger tagging concentrations. Leaks would be pinpointed by subsequent conventional barholing and vapor analyses. There are no health nor safety issues associated with the use of the proposed technological approach nor any consequential environmental impacts associated with the proposed magnitudes of PFT tagging.

  6. Detection of leaks in buried rural water pipelines using thermal infrared images

    Science.gov (United States)

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  7. Leak Detection Modeling and Simulation for Oil Pipeline with Artificial Intelligence Method

    Directory of Open Access Journals (Sweden)

    Pudjo Sukarno

    2007-05-01

    Full Text Available Leak detection is always interesting research topic, where leak location and leak rate are two pipeline leaking parameters that should be determined accurately to overcome pipe leaking problems. In this research those two parameters are investigated by developing transmission pipeline model and the leak detection model which is developed using Artificial Neural Network. The mathematical approach needs actual leak data to train the leak detection model, however such data could not be obtained from oil fields. Therefore, for training purposes hypothetical data are developed using the transmission pipeline model, by applying various physical configuration of pipeline and applying oil properties correlations to estimate the value of oil density and viscosity. The various leak locations and leak rates are also represented in this model. The prediction of those two leak parameters will be completed until the total error is less than certain value of tolerance, or until iterations level is reached. To recognize the pattern, forward procedure is conducted. The application of this approach produces conclusion that for certain pipeline network configuration, the higher number of iterations will produce accurate result. The number of iterations depend on the leakage rate, the smaller leakage rate, the higher number of iterations are required. The accuracy of this approach is clearly determined by the quality of training data. Therefore, in the preparation of training data the results of pressure drop calculations should be validated by the real measurement of pressure drop along the pipeline. For the accuracy purposes, there are possibility to change the pressure drop and fluid properties correlations, to get the better results. The results of this research are expected to give real contribution for giving an early detection of oil-spill in oil fields.

  8. 75 FR 4134 - Pipeline Safety: Leak Detection on Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-01-26

    ... safety study on pipeline Supervisory Control and Data Acquisition (SCADA) systems (NTSB/SS-05/02). The... indications of a leak on the SCADA interface was the impetus for this study. The NTSB examined 13 hazardous... large pipeline breaks. The line balance processes incorporating SCADA or other technology are geared...

  9. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  10. Whole new ball game : pipeline leak detection system undergoes first field trial

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2007-07-15

    This article described an innovative and portable technology that detects leaks in oil and gas pipelines. Pure Technologies Ltd. completed the first field trial of its SoundPrint SmartBall, a free-swimming foam ball with an embedded sensor in an aluminum core that detects leaks as the ball moves through the pipe. The technology is based on the premise that sound is released when a pressurized fluid is escaping. The field trial was performed over 18 kilometres of a 10-inch crude oil pipeline in Texas. The SmartBall was first sent through a pipeline without any artificial leaks. It was then sent through a pipeline with an artificial leak constructed at one of the block valves. The SmartBall was able to detect the artificial leak from hundreds of metres away. The device was deployed and retrieved without incident by pipeline operations personnel using existing pigging infrastructure. It was determined that the device can detect leaks of less than 3.78 litres per minute at an operating pressure of 8.6 bars. The size of the SmartBall is generally between 50 to 80 per cent of the diameter of the pipeline and depends on other factors such as location of in-line vales, the size of the appurtenances through which the ball is inserted and retrieved and the presence of other lateral lines. The device records acoustic information as it travels in the pipe. Alternatively, transducers that emit an acoustic pulse can be installed on pipe appurtenances. The leaks can be located by analyzing the relative arrival time of pulses. The device can operate for up to 40 hours, enough to travel 100 kilometres in a single deployment. Pure Technologies is now working on getting this new technology accepted by the industry. 2 figs.

  11. New Sensor Cable for the Detection and Location of Leaks in Pipelines for Transportation of Hydrocarbons

    Directory of Open Access Journals (Sweden)

    E.Orduña-Reyes

    2012-08-01

    Full Text Available At present, hydrocarbon leaks, generated mainly by corrosion of pipelines, cause large economic losses for Mexico.These leaks constitute a problem of serious consequences in Mexico and in other countries in the world. This workdescribes the results of the tests conducted on a new sensor cable for the detection and location of leaks in pipelinesfor transportation of hydrocarbons. When a liquid or gas enters in contact with the wall of the sensor cable, it causes ashort circuit in the wires; changing the measurement of the resistance may detect and locate the leak. The new sensorcable that is presented in this article has advantages over cables with similar characteristic made in other countries.The use of this sensor cable in pipelines of PEMEX will avoid economic losses, environmental damage and risks ofpossible explosions to the population. The experimental results demonstrate these advantages.

  12. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  13. Leak detection in gas pipeline by acoustic and signal processing - A review

    Science.gov (United States)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  14. Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines

    Directory of Open Access Journals (Sweden)

    Tung-Ching Su

    2014-05-01

    Full Text Available As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically identified through closed circuit television (CCTV inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED, to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO and closing bottom-hat operation (CBHO, were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines.

  15. The CMEKF Method for Sub-Sea Pipeline Monitoring and Leak Detection

    Institute of Scientific and Technical Information of China (English)

    白莉; 岳前进; 崔莉; 李洪升; 金兆玉; 王庆国

    2004-01-01

    A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model (RTTM). The characteristic method (CM) of transient simulation is coupled with the Extended Kalman Filter(EKF) to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes ( 1.5% ~ 57% of inlet flow rate) and has a low average relative error of leak location(<5%).

  16. ANALYSIS OF FIRST TRANSIENT PRESSURE OSCILLATION FOR LEAK DETECTION IN A SINGLE PIPELINE

    Institute of Scientific and Technical Information of China (English)

    GUO Xin-lei; YANG Kai-lin; LI Fu-tian; WANG Tao; FU hui

    2012-01-01

    The leak detection is of great importance in the reliable operation and management of a pipeline system.Recently,attention is shifted to the use of the time domain or frequency domain methods based on the transient analysis.These methods sometimes require accurate pressure signals obtained during the transient period or by creating ideal conditions in testing.This paper proposes a method that does not require transient simulations over the whole or an extended period of time,but uses the first transient pressure oscillation to detect leaks.The method considers the propagation of the pressure oscillation wave created from a tast valve closure and the reflected damp wave from the leak.A leak in the pipe gives rise to reflected waves which in turn create discontinuities in the observed signal at the measurement section.The timing of the reflected damp wave and the magnitude represent the location and the size of the leak,respectively.An analytical expression is derived based on the Method Of Characteristic (MOC) for the relationship between the leakage and the reflected magnitude.The leak detection procedure based on the method is also given.Then the reliability of the method is tested on numerically simulated pressure signals and experimental pressure signals with calibrated leak parameters,and the results indicate a successful application and the promising features of the method.

  17. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  18. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines

    Directory of Open Access Journals (Sweden)

    Ali M. Sadeghioon

    2014-02-01

    Full Text Available Asset monitoring, specifically infrastructure monitoring such as water distribution pipelines, is becoming increasingly critical for utility owners who face new challenges due to an aging network. In the UK alone, during the period of 2009–2010, approximately 3281 mega litres (106 of water were wasted due to failure or leaks in water pipelines. Various techniques can be used for the monitoring of water distribution networks. This paper presents the design, development and testing of a smart wireless sensor network for leak detection in water pipelines, based on the measurement of relative indirect pressure changes in plastic pipes. Power consumption of the sensor nodes is minimised to 2.2 mW based on one measurement every 6 h in order to prolong the lifetime of the network and increase the sensor nodes’ compatibility with current levels of power available by energy harvesting methods and long life batteries. A novel pressure sensing method is investigated for its performance and capabilities by both laboratory and field trials. The sensors were capable of measuring pressure changes due to leaks. These pressure profiles can also be used to locate the leaks.

  19. Comparative study of instantaneous frequency based methods for leak detection in pipeline networks

    Science.gov (United States)

    Ghazali, M. F.; Beck, S. B. M.; Shucksmith, J. D.; Boxall, J. B.; Staszewski, W. J.

    2012-05-01

    Methods of pressure transient analysis can be seen as a promising, accurate and low-cost tool for leak and feature detection in pipelines. Various systems have been developed by several groups of researchers in recent years. Such techniques have been successfully demonstrated under laboratory conditions but are not yet established for use with real field test data. The current paper presents a comparative study of instantaneous frequency analysis techniques based on pressure transients recorded within a live distribution network. The instantaneous frequency of the signals are analysed using the Hilbert transform (HT), the Normalised Hilbert transform (NHT), Direct Quadrature (DQ), Teager Energy Operator (TEO) and Cepstrum. This work demonstrates the effectiveness of the instantaneous frequency analysis in detecting a leaks and other features within the network. NHT and DQ allowed for the identification of the approximate location of leaks. The performance TEO is moderate, with Cepstrum being the worst performing method.

  20. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    Science.gov (United States)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  1. Deciding between compensated volume balance and real time transient models for pipeline leak detection system

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br

    2000-07-01

    This paper describes a technical procedure to assess a software based leak detection system (LDS), by deciding between a simpler low cost, less effective product, having a fast installation and tuning, and a complex one with high cost and efficiency, which however takes a long time to be properly installed. This is a common decision among the pipeline operating companies, considering that the majority of the lines are short, with single phase liquid flow (which may include batches), basic communication system and instrumentation. Service companies offer realistic solutions for liquid flow, but usually designed to big pipeline networks, flowing multiple batches and allowing multiple fluid entrances and deliveries. Those solutions are sometimes impractical to short pipelines, due to its high cost, as well as long tuning procedures, complex instrumentation, communication and computer requirements. It is intended to approach here the best solution according to its cost. In a practical sense, it means to differentiate the various LDS techniques. Those techniques are available in a considerable number, and they are still spreading, according to the different scenarios. However, two most known and worldwide implemented techniques hold the majority of the market: the Compensated Volume Balance (CVB), which is less accurate, reliable and robust, but cheaper, simpler and faster to install, and the Real Time Transient Model (RTTM), which is very reliable, accurate and robust, but expensive and complex. This work will describe a way to define whether one can use or not a CVB in a pipeline. (author)

  2. 77 FR 6857 - Pipeline Safety: Notice of Public Meetings on Improving Pipeline Leak Detection System...

    Science.gov (United States)

    2012-02-09

    ... and Research 5:45 p.m. Wrap-Up/Next Steps 6 p.m. Adjournment Preliminary Agenda for the Public Meeting... Pipelines 12:30 p.m. Lunch 2 p.m. Panel 3: Valve Capabilities, Limitations and Research 4 p.m. Wrap-Up/Next... Administrator for Pipeline Safety. BILLING CODE 4910-60-P...

  3. Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha

    2012-01-01

    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry

  4. A survey on the state-of-the-technique on software based pipeline leak detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br

    2000-07-01

    This paper describes a general technical survey on software based leak detection systems (LDS), approaching its main technological features, the operational situations where they are feasible, and the scenarios within the Brazilian pipeline network. The decision on what LDS to choose for a given pipeline is a matter of cost, suitability and feasibility. A simpler low cost, less effective product, but with a fast installation and tuning procedure, may be more suitable for a given operational site (pipeline configuration, kind of fluid, quality of instrumentation and communication), than a complex, high cost, efficient product, but taking a long time to be properly installed. Some other may really have a level of complexity that will require a more sophisticated system. A few number of them will simply not be suitable to have a LDS: it may be caused by the poor quality or absence of instrumentation, or, the worst case, due to the lack of technology to approach that specific case, e. g., multiphase flow lines, or those lines that commonly operates in slack condition. It is intended to approach here the general state-of-the-technique and make some initial comments on the costs. (author)

  5. Intelligent leak detection system for oil pipelines; Sistema inteligente para deteccao de vazamentos em dutos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Ricardo Dantas Gadelha de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    One of the most challenging tasks in an oil field is implementation of a software-based leak detection system on a multi-phase flow pipeline. This paper will discuss implementation of a leak detection system in a particular oil field using state-of-the-art signal processing techniques to apply to the data collected in a oil pipeline. This leak detection system is still in development and uses a more practical approach to the problem than traditional methods and was implemented on a PC under the Windows operating system. Windowing, joint time-frequency analysis and wavelets were considered to develop methods of detecting leaks by watching for the wavefront. The idea behind these techniques is to cut the signal of interest into several parts and then analyze the parts separately. It is impossible to know the exact frequency and the exact time of occurrence of the leak frequency in a signal. In other words, a leak signal can simply not be represented as a point in the time-frequency space. It is very important how one cuts the signal to implement the analysis. The wavelet transform or wavelet analysis is probably the most recent solution to overcome the shortcomings of the Fourier transform. So, this paper shows some tests and how these techniques are being implementing during the development of the system. (author)

  6. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  7. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  8. The genetic-algorithm-enhanced blind system identification for water distribution pipeline leak detection

    Science.gov (United States)

    Yang, Jin; Wen, Yumei; Li, Ping

    2007-07-01

    The conventional leak location is based on the correlation of leak acoustic signals acquired spatially separately. By correlation, the time lag is estimated for localizing the leakage. In these methods, the detection distance is a prerequisite that has to be known beforehand. However, in practice, this prerequisite is not always satisfied. In this case, the correlation-based methods are not feasible. Actually, the acquired signals contain the characteristics related to the acoustic propagation channels; thus the blind system identification strategy is applied to estimate the transmission performances of acoustic channels. Then the times due to the propagation of the leak source signal travelling from the leak point to sensors are determined. In this way, for leak location, the detection distance is no longer a prerequisite. In blind system identification, due to the long impulse responses of the leak acoustic channels, the channels are inevitably ill conditioned and sensitive to the initial values. To overcome the ill conditions, the overlap-save and cross-correlation fitting techniques are utilized to identify the long impulse sequences under a built constraint. In order to avoid converging to the local minima, the genetic algorithm is used to minimize the cost functions. The practical detection results show the validity of the proposed scheme.

  9. DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA

    Energy Technology Data Exchange (ETDEWEB)

    SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

    2010-12-02

    Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

  10. Natural gas pipeline leaks across Washington, DC.

    Science.gov (United States)

    Jackson, Robert B; Down, Adrian; Phillips, Nathan G; Ackley, Robert C; Cook, Charles W; Plata, Desiree L; Zhao, Kaiguang

    2014-01-01

    Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. To reduce pipeline leakage and increase consumer safety, we deployed a Picarro G2301 Cavity Ring-Down Spectrometer in a car, mapping 5893 natural gas leaks (2.5 to 88.6 ppm CH4) across 1500 road miles of Washington, DC. The δ(13)C-isotopic signatures of the methane (-38.2‰ ± 3.9‰ s.d.) and ethane (-36.5 ± 1.1 s.d.) and the CH4:C2H6 ratios (25.5 ± 8.9 s.d.) closely matched the pipeline gas (-39.0‰ and -36.2‰ for methane and ethane; 19.0 for CH4/C2H6). Emissions from four street leaks ranged from 9200 to 38,200 L CH4 day(-1) each, comparable to natural gas used by 1.7 to 7.0 homes, respectively. At 19 tested locations, 12 potentially explosive (Grade 1) methane concentrations of 50,000 to 500,000 ppm were detected in manholes. Financial incentives and targeted programs among companies, public utility commissions, and scientists to reduce leaks and replace old cast-iron pipes will improve consumer safety and air quality, save money, and lower greenhouse gas emissions.

  11. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    Qiyang Xiao

    2016-12-01

    Full Text Available In this study, a small leak detection method based on variational mode decomposition (VMD and ambiguity correlation classification (ACC is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF, an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM and back propagation neural network (BP methods.

  12. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines.

    Science.gov (United States)

    Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo

    2016-12-13

    In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.

  13. 49 CFR 195.444 - CPM leak detection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false CPM leak detection. 195.444 Section 195.444... PIPELINE Operation and Maintenance § 195.444 CPM leak detection. Each computational pipeline monitoring (CPM) leak detection system installed on a hazardous liquid pipeline transporting liquid in...

  14. FUZZY INFERENCE BASED LEAK ESTIMATION IN WATER PIPELINES SYSTEM

    Directory of Open Access Journals (Sweden)

    N. Lavanya

    2015-01-01

    Full Text Available Pipeline networks are the most widely used mode for transporting fluids and gases around the world. Leakage in this pipeline causes harmful effects when the flowing fluid/gas is hazardous. Hence the detection of leak becomes essential to avoid/minimize such undesirable effects. This paper presents the leak detection by spectral analysis methods in a laboratory pipeline system. Transient in the pressure signal in the pipeline is created by opening and closing the exit valve. These pressure variations are captured and power spectrum is obtained by using Fast Fourier Transform (FFT method and Filter Diagonalization Method (FDM. The leaks at various positions are simulated and located using these methods and the results are compared. In order to determine the quantity of leak a 2 × 1 fuzzy inference system is created using the upstream and downstream pressure as input and the leak size as the output. Thus a complete leak detection, localization and quantification are done by using only the pressure variations in the pipeline.

  15. Investigating vegetation spectral reflectance for detecting hydrocarbon pipeline leaks from multispectral data

    Science.gov (United States)

    Adamu, Bashir; Tansey, Kevin; Bradshaw, Michael J.

    2013-10-01

    The aim of this paper is to analyse spectral reflectance data from Landsat TM of vegetation that has been exposed to hydrocarbon contamination from oil spills from pipelines. The study is undertaken in an area of mangrove and swamp vegetation where the detection of an oil spill is traditionally difficult to make. We used a database of oil spill records to help identify candidate sites for spectral analysis. Extracted vegetation spectra were compared between polluted and nonpolluted sites and supervised (neural network) classification was carried out to map hydrocarbon (HC) contaminated sites from the sample areas. Initial results show that polluted sites are characterised by high reflectance in the visible (VIS) 0.4μm - 0.7μm, and a lower reflectance in the near-infrared (NIR) 0.7μm - 1.1μm. This suggests that the vegetation is in a stressed state. Samples taken from pixels surrounding polluted sites show similar spectral reflectance values to that of polluted sites suggesting possible migration of HC to the wider environment. Further work will focus on increasing the sample size and investigating the impact of an oil spill on a wider buffer zone around the spill site.

  16. Leaks in gas pipelines. Leak detection with the aid of GIS and GPS; Leckstellen in Gasrohrnetzen. Aufspueren mit Unterstuetzung durch GIS und GPS

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Detlef; Berteld, Michael [Industrielle Werke Basel (Switzerland)

    2009-12-15

    The GPS technology has made gas leak detection more efficient. By linking it with the documentation of the Geographic Information System (GIS), gas grid monitoring, long-term planning and also maintenance can be optimized considerably. After successful testing, Industrielle Werke Basel (IWB) introduced the system for their whole gas grid. Apart from cost savings, there was also a significant quality improvement in gas leak detection. (orig.)

  17. Leak detection technologies for oil and gas pipelines; Tecnologias para deteccao e localizacao de vazamento em dutos de oleo e ou gas

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio R. [MTT Aselco Automacao Ltda., Sao Paulo, SP (Brazil)

    2005-07-01

    Two concepts are available for leak detection in oil and/or gas pipelines: On-line leak detection system and off-line leak detection technique. The off-line leak detection technique is, usually, portable and does net configure a 'system'. This technique includes hydro-test, acoustic emission of high frequency, tracer of chemical substances, ultrasonic flow meter (UT), thermographic infra-red mapping, electromagnetic offset registration, etc. Since most of those methods requests stop of the system or depend on direct and detailed inspection of the whole monitored piping they are limited to the off-line inspection. In the current days there are only two technologies applied to detect and locate leaks on-line: The acoustic Leak Detection System and the modeling of computerized simulation also called as RTM (Real Time Modeling), RTTM or Mass Balance. There are still other techniques in the market, as acoustic emission, pressure analysis (PPA) beyond other rough techniques, without good results. Even some of these techniques are working without success, they are still used to accomplish with government standards. (author)

  18. 49 CFR 195.134 - CPM leak detection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false CPM leak detection. 195.134 Section 195.134... PIPELINE Design Requirements § 195.134 CPM leak detection. This section applies to each hazardous liquid... computational pipeline monitoring (CPM) leak detection system and each replaced component of an existing...

  19. Fundamental study on leak detection of underground gas pipeline using passive acoustic method; Judogata onkyo keisoku ni yoru maisetsu gas dokan hason kasho no kenshutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Jinguji, M.; Imaizumi, H.; Kunimatsu, S.; Isei, T. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-05-27

    With an objective to detect gas leaking from an underground gas pipeline, discussions have been given on a method which utilizes acoustic characteristics of leakage. On leaking sound generated from damaged portions, the form of damaging was hypothesized as pinholes, and spectra of leaking sounds from holes with different diameters were measured. The dominant frequency decreases as the hole diameter increases, while it is in a region of relatively high frequency of 1 kHz or higher. However, detection from the ground surface was impossible when cover soil has thickness from 0.5 to 1.5 m. In an experiment to measure leaking sound inside the pipe, pressure in the pipe was adjusted to 0.02 atm which is a standard pressure for a low-pressure pipe, and the sound was measured when the hole diameters were varied. In any of the results obtained by varying the hole diameter, spectra having the dominant frequency in the region of 1 kHz or higher were measured. In addition, it was found that sound pressure difference of as much as 50 dB at maximum is generated as compared with a case of no sound leakage. The above results verified that monitoring the high frequency of 1 kHz or higher is effective in detecting leakage from small damages. 2 refs., 4 figs.

  20. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    Science.gov (United States)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  1. Aspects of leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

    1997-04-01

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

  2. Leak detection/verification

    Energy Technology Data Exchange (ETDEWEB)

    Krhounek, V.; Zdarek, J.; Pecinka, L. [Nuclear Research Institute, Rez (Czech Republic)

    1997-04-01

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute.

  3. Research on leak fault intelligent detection method for fluid pipeline based on fuzzy classification%基于模糊分类的流体管道泄漏故障智能检测方法研究

    Institute of Scientific and Technical Information of China (English)

    刘金海; 冯健

    2011-01-01

    本文针对基于负压波法管道泄漏实时检测系统误报高和灵敏度低的问题提出一种流体管道泄漏故障智能检测方法,该方法首先给出管道运行参数的确定模型,然后结合模糊算子给出流体管道状态模糊模型,进而利用该模型实现管道故障分类.以这种智能检测方法为核心设计流体管道故泄漏故障智能诊断系统(leak intelligent diagnosis system for fluid pipeline,LIDSFP),通过对某成品油管道实例仿真和在流体管道测试系统上的试验研究,给出了LIDSFP性能指标,进一步分析表明该系统可以有效完成流体管道的泄漏故障诊断.%A leak fault intelligent detection method for fluid pipeline based on fuzzy classifier is proposed, which can decrease false alarms and improve leak detection sensitivity. To complete real-time and exact fault diagnosis of fluid pipeline, a fuzzy classifier for operation states is designed according to the framework of fuzzy expert system. A leak fault intelligent diagnosis system for fluid pipeline ( LIDSFP) was designed with this intelligent method; simulation was carried out to detect faults from the historic operation data of certain petrolatum product fluid pipeline in China.Test study was also carried out on the proposed system and the performance specification of the system is given. Simulation and test results show that the proposed diagnosis system has good performance.

  4. Leak in spiral weld in a 16 inches gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo G.; Bona, Jeremias de [GIE S.A., Mar del Plata (Argentina); Otegui, Jose L. [University of Mar del Plata (Argentina)

    2009-07-01

    This paper discusses a failure analysis after a leak in the spiral weld of a 16 inches natural gas pipeline, in service since 1974. The leak was the result of the coalescence of two different defects, on each surface of the pipe wall, located in the center of the inner cord of the helical DSAW weld. Fractographic and metallographic studies revealed that the leak was a combination of three conditions. During fabrication of the pipe, segregation in grain boundary grouped in mid weld. During service, these segregations underwent a process of selective galvanic corrosion. One of these volumetric defects coincided with a tubular pore in the outer weld. Pigging of the pipeline in 2005 for cleaning likely contributed to the increase of the leak flow, when eliminating corrosion product plugs. Although these defects are likely to repeat, fracture mechanics shows that a defect of this type is unlikely to cause a blowout. (author)

  5. Towards aerial natural gas leak detection system based on TDLAS

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  6. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  7. 分布式光纤油气长输管道泄漏检测及预警技术%Distributed fiber oil and gas pipeline leak detection and warning technology

    Institute of Scientific and Technical Information of China (English)

    张富斌

    2015-01-01

    管道用于油气运输有着独特的优势,因此成为了运输油气的主要手段。在实际油气的运输过程中因为人为因素和自然因素等原因,经常会导致运输油气的管道发生泄漏事故,这不仅造成环境污染,而且会威胁到人们的生命财产安全。本文介绍了分布式光纤油气长输管道泄漏检测及预警技术在油田的应用。%For oil and gas transportation pipeline has a unique advantage, it became the primary means of transportation of oil and gas. In the actual transportation of oil and gas, man-made and natural factors and other reasons often resulted the transport of oil and gas pipeline leak accident, which not only affected environmental pollution, but also threatened people’s life and property safety.This article introduced distributed fiber oil and gas pipeline leak detection and warning technology.

  8. Sensors for Fluid Leak Detection

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares Martinsanz

    2015-02-01

    Full Text Available Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international regulations with different degrees of severity regarding environmental conservation.[...

  9. Development Actualities of Pipeline Leak-detection Technologies at Home and Abroad%国内外油气管道泄漏检测技术的发展现状

    Institute of Scientific and Technical Information of China (English)

    夏海波; 张来斌; 王朝辉

    2001-01-01

    介绍了国内外用于油气管道泄漏的十几种检测方法,包括气体检测法、压力分布法、负压波检测法、质量平衡法、检测元件法、声波法、分段试压法、压力点分析法、压力波阵面检测法以及示踪剂检测法等。分析了各种管道泄漏检测技术的原理和各方法的优缺点。认为在现代计算机技术的支持下,那些基于快速算法的实时管道泄漏检测技术将显示其优越性。%In this paper,some oil and gas pipeline leak-detectiontechnologies at home and abroad are introduced,including gas detection method,pressure distribution method,negative pressure wave detection method,testing element method,acoustic wave method,parts testing pressure method,pressure point analysis,pressure wave front detection,tracer detection methods,radioactivity detection and pipeline instantaneous model method.The advantages and weaknesses of all detection methods are analyzed.The authors considers that in the support of modern computer technology,those real-time pipeline leak detection technologies on the basis of fast algorithm will demonstrate their advantages.

  10. Leak Isolation in Pressurized Pipelines using an Interpolation Function to approximate the Fitting Losses

    Science.gov (United States)

    Badillo-Olvera, A.; Begovich, O.; Peréz-González, A.

    2017-01-01

    The present paper is motivated by the purpose of detection and isolation of a single leak considering the Fault Model Approach (FMA) focused on pipelines with changes in their geometry. These changes generate a different pressure drop that those produced by the friction, this phenomenon is a common scenario in real pipeline systems. The problem arises, since the dynamical model of the fluid in a pipeline only considers straight geometries without fittings. In order to address this situation, several papers work with a virtual model of a pipeline that generates a equivalent straight length, thus, friction produced by the fittings is taking into account. However, when this method is applied, the leak is isolated in a virtual length, which for practical reasons does not represent a complete solution. This research proposes as a solution to the problem of leak isolation in a virtual length, the use of a polynomial interpolation function in order to approximate the conversion of the virtual position to a real-coordinates value. Experimental results in a real prototype are shown, concluding that the proposed methodology has a good performance.

  11. Modal analysis of acoustic leak signal in pipelines using time-frequency analysis

    Institute of Scientific and Technical Information of China (English)

    JIAO Jing-pin; FEI Ren-yuan; HE Cun-fu; WU Bin

    2006-01-01

    It is important to analyze the propagation characteristics of guided waves in acoustic leak location in pipelines.In this paper,the acoustic leak signal is analyzed in the time-frequency domain.Based on the relation of time-frequency distribution of the acoustic leak signal and the dispersion curves of guided waves,the mode components of acoustic leak signals were obtained.The research can provide a guideline for the mode selection in pipeline leak location,and help improve the accuracy of leak location.

  12. Rapid, Vehicle-Based Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks.

    Science.gov (United States)

    von Fischer, Joseph C; Cooley, Daniel; Chamberlain, Sam; Gaylord, Adam; Griebenow, Claire J; Hamburg, Steven P; Salo, Jessica; Schumacher, Russ; Theobald, David; Ham, Jay

    2017-04-04

    Information about the location and magnitudes of natural gas (NG) leaks from urban distribution pipelines is important for minimizing greenhouse gas emissions and optimizing investment in pipeline management. To enable rapid collection of such data, we developed a relatively simple method using high-precision methane analyzers in Google Street View cars. Our data indicate that this automated leak survey system can document patterns in leak location and magnitude within and among cities, even without wind data. We found that urban areas with prevalent corrosion-prone distribution lines (Boston, MA, Staten Island, NY, and Syracuse, NY), leaked approximately 25-fold more methane than cities with more modern pipeline materials (Burlington, VT, and Indianapolis, IN). Although this mobile monitoring method produces conservative estimates of leak rates and leak counts, it can still help prioritize both leak repairs and replacement of leak-prone sections of distribution lines, thus minimizing methane emissions over short and long terms.

  13. 基于RBF神经网络的天然气管道泄漏检测技术研究%The natural gas pipeline leak detection technology based on RBF neural network research

    Institute of Scientific and Technical Information of China (English)

    高丙坤; 郑仁谦; 尹淑欣; 张莉; 岳武峰

    2016-01-01

    为了正确判断管道是否发生泄漏,本文采用混合学习方法对网络进行训练学习。通过将管道运行参数作为神经网络的输入,管道运行状态作为神经网络的输出,实现两者的非线性映射,以此来判断输入信号是否为泄漏信号,并选用K-means聚类方法和递推最小二乘法来确定网络参数。通过用天然气管道运行的实测数据对RBF神经网络进行了训练和测试,得到结果误差在可接受的范围内,从而证明RBF神经网络的方法可用于天然气管道泄漏检测的研究。%In order to correctly determine whether pipeline leakage occurs, this paper adopts a hybrid learning method for network training. We set the pipeline operation parameters as the input of neural network and running status of the pipe as the neural network output, realizing the two nonlinear mapping, in order to determine whether the input signal is leakage signal , and select K-means clustering method and the recursive least square method to determine the network parameters. With the measurements of the gas pipeline operation on training and testing the RBF neural network, we get the results in an acceptable error range, which prove that the method of RBF neural network can be used for natural gas pipeline leak detection.

  14. Leak detection capability in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  15. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  16. Recent Progress in Technology of Leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. K.; Kim, S. H.; Cho, J. W.; Joo, Y. S.; Yang, D. J

    2005-07-15

    It is very important to check for leakage points of fluids and gases on primary pressure boundary of nuclear power plants in order to maintain and manage various structures safely. Even though much investigation has been performed by a number of researchers, there are a lot of problems to detect the leakage under some areas to which people can not approach. In particular, it is certainly necessary to find the leakage point in order to repair and replace the pressure boundaries. In this report, the basic principle and application situations for the development of the leak detection system which can detect micro-leaks are introduced. As the technologies and performances of recent sensors have been improving, the application range of leak detection has been increasing steadily. Therefore the sensor technologies written in this report will be able to contribute to nuclear safety to detect the leakage rate and the leakage point with an on-line monitoring system in the near future.

  17. DETECCIÓN DE PÉRDIDAS EN TUBERÍAS DE AGUA: PROPUESTA BASADA EN UN BANCO DE FILTROS LEAK DETECTION IN WATER PIPELINES: PROPOSAL BASED ON A BANK OF FILTERS

    Directory of Open Access Journals (Sweden)

    Lucía Castro Burgos

    2009-12-01

    Full Text Available Actualmente la detección de pérdidas (DP en tuberías de agua es un área de investigación activa, y con un creciente interés, debido a la importancia del transporte seguro del vital elemento. Este trabajo considera el problema de DP en tuberías de agua por medio de redundancia analítica, basada en un modelo matemático y utilizando técnicas de estimación de estados, teniendo por objetivo principal estudiar, proponer, implementar y aplicar algoritmos eficientes que permitan abordar de manera general el problema de DP. Para lograr esto se propone y evalúa un banco de filtros, implementados con filtros de Kalman (FK y filtros de partículas (FP. Con esto se busca contribuir conceptualmente a la formulación del problema de DP, de manera modular, permitiendo que en un estudio futuro otras técnicas puedan ser utilizadas para resolver el problema. Además, obtener algoritmos eficientes y confiables, basados en un estimador de estados capaces de responder a requerimientos industriales, tales como: entregar, a partir de medidas de entrada y salida disponibles, una estimación fiable del estado del proceso, esto con independencia de la dinámica lineal o no lineal, asimismo, ser de fácil manejo y fácil configuración. La simulación computacional y los resultados experimentales muestran la efectividad de combinar FP con FK, para el caso básico de dos pérdidas secuenciales en una tubería, presentando ventajas de rápida convergencia y reducción del error de estimación, factores importantes en el problema de DP en ductos hídricos.Currently leak detection (LD in water pipelines is an active area of research that is attracting increasing interest due to the importance of the safe transport of this vital resource. This work considers the problem of LD in water pipes by means of analytical redundancy, based on a mathematical model and using state estimation techniques. The main aim of this work is to research, propose, implement and apply

  18. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  19. Hydrocarbon Leak Detection Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  20. Natural Gas Pipeline Replacement Programs Reduce Methane Leaks and Improve Consumer Safety

    Science.gov (United States)

    Jackson, R. B.

    2015-12-01

    From production through distribution, oil and natural gas infrastructure provide the largest source of anthropogenic methane in the U.S. and the second largest globally. To examine the prevalence of natural gas leaks downstream in distribution systems, we mapped methane leaks across 595, 750, and 247 road miles of three U.S. cities—Durham, NC, Cincinnati, OH, and Manhattan, NY, respectively—at different stages of pipeline replacement of cast iron and other older materials. We compare results with those for two cities we mapped previously, Boston and Washington, D.C. Overall, cities with pipeline replacement programs have considerably fewer leaks per mile than cities without such programs. Similar programs around the world should provide additional environmental, economic, and consumer safety benefits.

  1. Implementation of an energy-efficient scheduling scheme based on pipeline flux leak monitoring networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Peng; YAO JiangHe; PEI JiuLing

    2009-01-01

    Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects,an energy-efficient real-time scheduling scheme is designed extensively used in pipeline leak monitoring.The proposed scheme can adaptively adjust the network rate in real-time and reduce the cell loss rate,so that it can efficiently avoid the traffic congestion.The recent evolution of wireless sensor networks has yielded a demand to improve energy-efficient scheduling algorithms and energy-efficient medium access protocols.This paper proposes an energy-efficient real-time scheduling scheme that reduces power consumption and network errors on pipeline flux leak monitoring networks.The proposed scheme is based on a dynamic modulation scaling scheme which can scale the number of bits per symbol and a switching scheme which can swap the polling schedule between channels.Built on top of EDF scheduling policy,the proposed scheme enhances the power performance without violating the constraints of real-time streams.The simulation results show that the proposed scheme enhances fault-tolerance and reduces power consumption.Furthermore,that Network congestion avoidance strategy with an energy-efficient real-time scheduling scheme can efficiently improve the bandwidth utilization,TCP friendliness and reduce the packet drop rate in pipeline flux leak monitoring networks.

  2. Functionalized multi-walled carbon nanotube based sensors for distributed methane leak detection

    Science.gov (United States)

    This paper presents a highly sensitive, energy efficient and low-cost distributed methane (CH4) sensor system (DMSS) for continuous monitoring, detection and localization of CH4 leaks in natural gas infrastructure such as transmission and distribution pipelines, wells, and produc...

  3. Small-target leak detection for a closed vessel via infrared image sequences

    Science.gov (United States)

    Zhao, Ling; Yang, Hongjiu

    2017-03-01

    This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.

  4. Detecting abnormalities in gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Smati, A. (Institut National des Hydrocarbures et de la Chimie, Bournerdes (Azerbaijan))

    1994-12-01

    The results of the measurement of the principal operating parameters can contain precious information on the condition of gas pipelines. This article explains how statistical tests may be useful in detecting anomalies that can occur on lines and in compressor stations. (author). 6 refs., 3 tabs., 1 fig.

  5. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.

  6. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients. This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.

  7. Leakage detection in galvanized iron pipelines using ensemble empirical mode decomposition analysis

    Science.gov (United States)

    Amin, Makeen; Ghazali, M. Fairusham

    2015-05-01

    There are many numbers of possible approaches to detect leaks. Some leaks are simply noticeable when the liquids or water appears on the surface. However many leaks do not find their way to the surface and the existence has to be check by analysis of fluid flow in the pipeline. The first step is to determine the approximate position of leak. This can be done by isolate the sections of the mains in turn and noting which section causes a drop in the flow. Next approach is by using sensor to locate leaks. This approach are involves strain gauge pressure transducers and piezoelectric sensor. the occurrence of leaks and know its exact location in the pipeline by using specific method which are Acoustic leak detection method and transient method. The objective is to utilize the signal processing technique in order to analyse leaking in the pipeline. With this, an EEMD method will be applied as the analysis method to collect and analyse the data.

  8. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  9. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, Kayle D. [Washington River Protection Solutions, LLC (United States); Engeman, Jason K. [Washington River Protection Solutions, LLC (United States); Gunter, Jason R. [Washington River Protection Solutions, LLC (United States); Joslyn, Cameron C. [Washington River Protection Solutions, LLC (United States); Vazquez, Brandon J. [Washington River Protection Solutions, LLC (United States); Venetz, Theodore J. [Washington River Protection Solutions, LLC (United States); Garfield, John S. [AEM Consulting (United States)

    2014-01-20

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

  10. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    Energy Technology Data Exchange (ETDEWEB)

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  11. Implementation of leak detection techniques in ducts with critical regimen multiphase flow; Implementacao de tecnicas de deteccao de vazamentos em dutos em regime de escoamento multifasico critico

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Rodrigo S.; Maitelli, Andr L.; Doria Neto, Adriao D.; Salazar, Andres O. [Rio Grande do Norte Univ., Natal, RN (Brazil)

    2005-07-01

    This paper presents signals processing techniques and artificial neural networks to identify leaks in multiphase flow pipeline. The greatest difficulty on traditional methods of leak detection (volume balance, pressure point analysis, etc) is that they are insufficient to design an adequate profile for the real conditions of oil pipeline transport. These difficult conditions goes since unevenly soil, that cause columns or vacuum throughout pipelines, until the presence of multi phases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network multilayer perceptron (MLP) to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from 1/2'' to 1'' of diameter to simulate leaks and, this way, it was possible to detect leaks with a time window of two minutes. The result show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks. (author)

  12. Active acoustic leak detection for LMFBR steam generators. Pt. 7. Potential for small leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-05-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. Previous studies have revealed that the active acoustic method can detect bubbles of 10 l/s (equivalence water leak rate about 10 g/s) within 10 seconds in practical steam generators. In order to prevent the expansion of damage to neighboring tubes, however, it is necessary to detect smaller leakage of water from heat transfer tubes. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver sound and the detection method for leakage within 1 g/s are investigated experimentally, using an SG full-sector model that simulates the actual SGs. A typical result shows that detection of 0.4 l/s air bubbles (equivalent water leak rate about 0.4 g/s) takes about 80 seconds, which is shorter than the propagation time of damage to neighboring tubes. (author)

  13. Acoustic valve leak detection: Initial program development, implementation & experience

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, G.L. [Baltimore Gas and Electric Company, Baltimore, MD (United States)

    1996-07-01

    Acoustic valve leak detection is one of the many test techniques employed in modern power plants with active predictive maintenance programs. In 1994, a valve leak detection program was implemented within Baltimore Gas and Electric`s Fossil Energy Division. Within two years, the program resulted in energy savings in excess of one million dollars. The leak detection program has become an essential technology that has reduced plant heat rate losses, prevented unnecessary valve maintenance and increased plant awareness of potential losses. This paper describes program development, implementation and test methodology of Baltimore Gas and Electric`s acoustic leak detection program. Key topics include equipment description, program measurements, methodology and leak identification methods. The paper also will include discussion on the practical approach of equipment selection and program philosophies.

  14. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Science.gov (United States)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  15. Leak detection in pipelines based on inverse transient analysis and mixed integer nonlinear programming[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Shamloo, H.; Haghighi, A. [K.N. Toosi Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering

    2009-07-01

    The flow properties of pipes are affected by leaks. Leak detection methods based on hydraulic modelling and real data records aim to find a pipe's leak parameters including their number, location and size. Inverse Transient Analysis (ITA), generally in time domain, is a powerful approach to develop leak detection methods with considerable benefits. This paper introduced an ITA based leak detection method along with a numerical model developed for direct transient analysis of leaks in pipes using method of characteristics (MOC). Transient state flow was generated in pipe and the pressure fluctuations were sampled only at the end valve location. To minimize the effects of unsteadiness and uncertainties due to the numerical modeling and also practical problems caused by water hammer, the downstream end valve was considered to be closed gradually within a long enough time. Then, using the sampled data and a direct transient analysis model, a mixed integer nonlinear program was developed. A mixed genetic algorithm was used in which the binary chromosomes were decoded as mixed integer leak locations and real leak areas. In order to find unknown leak parameters in a pipe, an objective function was defined using the least squares criterion of differences between observed and calculated pressure heads at the valve location. The genetic algorithm was found to be a powerful and easy to use optimization tool to solve complicated mixed integer nonlinear program (MINLP) problems in leak detection. 24 refs., 1 tab., 7 figs.

  16. Detecting gas leaks by ultrasonic emission

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo; Henriksen, Eigil

    1997-01-01

    The emission of noise in the frequency range 10 kHz to 25.6 kHz from an experimental gas leak in a flanged joint has been experimentally investigated. The overall conclusion is that the emitted noise is almost frequency independent in level within the considered frequency range.A small PC program...

  17. Distributed Leak Detection System Using Structure-Borne Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned spacecraft are vulnerable to air leaks caused by micrometeorite and space debris impact. The ability to detect and quickly locate and mitigate a pressure...

  18. Distributed Leak Detection System Using Structure-Borne Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned spacecraft are vulnerable to air leaks caused by micrometeoroid and space debris impact. The ability to detect and quickly locate and mitigate a pressure...

  19. Local Leak Detection and Health Monitoring of Pressurized Tanks

    Science.gov (United States)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  20. Color Changing Material for Hydrogen Leak Detection

    Science.gov (United States)

    Victor, Megan E.

    2014-01-01

    Kennedy Space Center scientists developed a hydrogen leak sensor utilizing a combination of chemochromic pigment and polymer that can be molded or fiber spun into rigid or flexible shapes such as tape. The sensor turns a dark color when exposed to hydrogen gas. This sensor has proven to be very effective for pinpointing the exact location of leaks in hydrogen gas lines and fittings at launch pads. Kennedy Space Center exclusively licensed this technology to the University of Central Florida (UCF), who also holds patents that are complimentary to KSC's. UCF has bundled the patents and exclusively licensed the portfolio to HySense Technology LLC, a startup company founded by a UCF professor who supports the UCF Florida Solar Energy Center (FSEC). HySense has fully developed its product (known as Intellipigment"TM"), and currently has five commercial customers. The company recently won the $100,000 first-place award at the CAT5 innovation competition at the Innovation Concourse of the Southeast: Safety & Manufacturing event in Orlando, FL. Commercial production and sales of this technology by HySense Technology will make this leak sensor widely available for use by NASA, DoD, and industries that utilize hydrogen gas.

  1. Imaging spectrometer for fugitive gas leak detection

    Science.gov (United States)

    Hinnrichs, Michele

    1999-12-01

    Under contract to the U.S. Air Force and Navy, Pacific Advanced Technology has developed a very sensitive infrared imaging spectrometer that can perform remote imaging and spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of smoke stack emissions and fugitive leaks. To date remote continuous emission monitoring (CEM) systems have not been approved by the EPA, however, they are under consideration. If the remote sensing technology is available with the sensitivity to monitor emission at the required levels and man portable it can reduce the cost and improve the reliability of performing such measurements. Pacific Advanced Technology (PAT) believes that it currently has this technology available to industry. This paper will present results from a field test where gas vapors during a refueling process were imaged and identified. In addition images of propane from a leaking stove will be presented. We at PAT have developed a real time image processing board that enhances the signal to noise ratio of low contrast gases and makes them easily viewable using the Image Multispectral Sensing (IMSS) imaging spectrometer. The IMSS imaging spectrometer is the size of a camcorder. Currently the data is stored in a Notebook computer thus allowing the system to be easily carried into power plants to look for fugitive leaks. In the future the IMSS will have an embedded processor and DSP and will be able to transfer data over an Ethernet link.

  2. A spectral-geophysical approach for detecting pipeline leakage

    Science.gov (United States)

    van der Meijde, M.; van der Werff, H. M. A.; Jansma, P. F.; van der Meer, F. D.; Groothuis, G. J.

    2009-02-01

    Leakage of hydrocarbon has a large economic and environmental impact. Traditional methods for investigating leakage and resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an alternative that is non-destructive and has been been tested extensively for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, a leaking pipeline is investigated through field reflectance spectrometry and the findings are validated with traditional drilling and geophysical measurements. The measurements show a significant increase of vegetation anomalies on the pipeline with respect to areas further away. The observed anomalies are positively related to hydrocarbon pollution through chemical analysis of drillings. Subsurface geophysical measurements show a large correlation with observed surface vegetation stress, enhancing the identification of hydrocarbon-related vegetation stress through spectroscopy.

  3. 340 Facility secondary containment and leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  4. Leak detection in medium density polyethylene (MDPE) pipe using pressure transient method

    Science.gov (United States)

    Amin, M. M.; Ghazali, M. F.; PiRemli, M. A.; Hamat, A. M. A.; Adnan, N. F.

    2015-12-01

    Water is an essential part of commodity for a daily life usage for an average person, from personal uses such as residential or commercial consumers to industries utilization. This study emphasizes on detection of leaking in medium density polyethylene (MDPE) pipe using pressure transient method. This type of pipe is used to analyze the position of the leakage in the pipeline by using Ensemble Empirical Mode Decomposition Method (EEMD) with signal masking. Water hammer would induce an impulse throughout the pipeline that caused the system turns into a surge of water wave. Thus, solenoid valve is used to create a water hammer through the pipelines. The data from the pressure sensor is collected using DASYLab software. The data analysis of the pressure signal will be decomposed into a series of wave composition using EEMD signal masking method in matrix laboratory (MATLAB) software. The series of decomposition of signals is then carefully selected which reflected intrinsic mode function (IMF). These IMFs will be displayed by using a mathematical algorithm, known as Hilbert transform (HT) spectrum. The IMF signal was analysed to capture the differences. The analyzed data is compared with the actual measurement of the leakage in term of percentage error. The error recorded is below than 1% and it is proved that this method highly reliable and accurate for leak detection.

  5. Leak Detection for Potable Water Lines at Fort Hood: Final Report on Project AR-F-313 for FY05

    Science.gov (United States)

    2007-06-01

    cables, gas lines, etc., sometimes run close to water pipelines , and it is important to be certain that digging will not cause damage to these...sensors to find leaks in the potable water pipelines of West Fort Hood has been demon- strated to be quite good. Two leaks were discovered during the...the Army consider installing PermaLog permanent leak sensors at other installations where potable water pipelines run in sel- dom traveled areas. The

  6. Are Optical Gas Imaging Technologies Effective For Methane Leak Detection?

    Science.gov (United States)

    Ravikumar, Arvind P; Wang, Jingfan; Brandt, Adam R

    2017-01-03

    Concerns over mitigating methane leakage from the natural gas system have become ever more prominent in recent years. Recently, the U.S. Environmental Protection Agency proposed regulations requiring use of optical gas imaging (OGI) technologies to identify and repair leaks. In this work, we develop an open-source predictive model to accurately simulate the most common OGI technology, passive infrared (IR) imaging. The model accurately reproduces IR images of controlled methane release field experiments as well as reported minimum detection limits. We show that imaging distance is the most important parameter affecting IR detection effectiveness. In a simulated well-site, over 80% of emissions can be detected from an imaging distance of 10 m. Also, the presence of "superemitters" greatly enhance the effectiveness of IR leak detection. The minimum detectable limits of this technology can be used to selectively target "superemitters", thereby providing a method for approximate leak-rate quantification. In addition, model results show that imaging backdrop controls IR imaging effectiveness: land-based detection against sky or low-emissivity backgrounds have higher detection efficiency compared to aerial measurements. Finally, we show that minimum IR detection thresholds can be significantly lower for gas compositions that include a significant fraction nonmethane hydrocarbons.

  7. Leak detection utilizing analog binaural (VLSI) techniques

    Science.gov (United States)

    Hartley, Frank T. (Inventor)

    1995-01-01

    A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.

  8. Methane Leak Detection and Emissions Quantification with UAVs

    Science.gov (United States)

    Barchyn, T.; Fox, T. A.; Hugenholtz, C.

    2016-12-01

    Robust leak detection and emissions quantification algorithms are required to accurately monitor greenhouse gas emissions. Unmanned aerial vehicles (UAVs, `drones') could both reduce the cost and increase the accuracy of monitoring programs. However, aspects of the platform create unique challenges. UAVs typically collect large volumes of data that are close to source (due to limited range) and often lower quality (due to weight restrictions on sensors). Here we discuss algorithm development for (i) finding sources of unknown position (`leak detection') and (ii) quantifying emissions from a source of known position. We use data from a simulated leak and field study in Alberta, Canada. First, we detail a method for localizing a leak of unknown spatial location using iterative fits against a forward Gaussian plume model. We explore sources of uncertainty, both inherent to the method and operational. Results suggest this method is primarily constrained by accurate wind direction data, distance downwind from source, and the non-Gaussian shape of close range plumes. Second, we examine sources of uncertainty in quantifying emissions with the mass balance method. Results suggest precision is constrained by flux plane interpolation errors and time offsets between spatially adjacent measurements. Drones can provide data closer to the ground than piloted aircraft, but large portions of the plume are still unquantified. Together, we find that despite larger volumes of data, working with close range plumes as measured with UAVs is inherently difficult. We describe future efforts to mitigate these challenges and work towards more robust benchmarking for application in industrial and regulatory settings.

  9. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  10. Optoelectronic leak detection system for monitoring subsea structures

    Science.gov (United States)

    Moodie, D.,; Costello, L.; McStay, D.

    2010-04-01

    Leak detection and monitoring on subsea structures is an area of increasing interest for the detection and monitoring of production and control fluids for the oil and gas industry. Current techniques such as capacitive (dielectric) based measurement or passive acoustic systems have limitations and we report here an optoelectronic solution based upon fluorescence spectroscopy to provide a permanent monitoring solution. We report here a new class of optoelectronic subsea sensor for permanent, real time monitoring of hydrocarbon production systems. The system is capable of detecting small leaks of production or hydraulic fluid (ppm levels) over distances of 4-5 meters in a subsea environment. Ideally systems designed for such applications should be capable of working at depths of up to 3000m unattended for periods of 20+ years. The system uses advanced single emitter LED technology to meet the challenges of lifetime, power consumption, spatial coverage and delivery of a cost effective solution. The system is designed for permanent deployment on Christmas tree (XT), subsea processing systems (SPS) and associated equipment to provide enhanced leak detection capability.

  11. Leak detection, monitoring, and mitigation technology trade study update

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  12. The pipeline still leaks and more than you think: a status report on gender diversity in biomedical engineering.

    Science.gov (United States)

    Chesler, Naomi C; Barabino, Gilda; Bhatia, Sangeeta N; Richards-Kortum, Rebecca

    2010-05-01

    While the percentage of women in biomedical engineering is higher than in many other technical fields, it is far from being in proportion to the US population. The decrease in the proportion of women and underrepresented minorities in biomedical engineering from the bachelors to the masters to the doctoral levels is evidence of a still leaky pipeline in our discipline. In addition, the percentage of women faculty members at the assistant, associate and full professor levels remain disappointingly low even after years of improved recruitment of women into biomedical engineering at the undergraduate level. Worse, the percentage of women graduating with undergraduate degrees in biomedical engineering has been decreasing nationwide for the most recent three year span for which national data are available. Increasing diversity in biomedical engineering is predicted to have significant research and educational benefits. The barriers to women's success in biomedical engineering and strategies for overcoming these obstacles-and fixing the leaks in the pipeline-are reviewed.

  13. Electrical detection of liquid lithium leaks from pipe jointsa)

    Science.gov (United States)

    Schwartz, J. A.; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R.

    2014-11-01

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  14. PRACTICAL IMPLICATIONS OF USING INDUCED TRANSIENTS FOR LEAK DETECTION

    Directory of Open Access Journals (Sweden)

    Marko V. Ivetic

    2007-01-01

    Full Text Available This paper deals with practical problems of leak detection by methods based on hydraulic transient analysis. Controlled and safe transients can be generated and the response of the network, with the relevant information, can be monitored and analysed. Information about leaks, contained in the monitored pressure signal, cannot be easily retrieved, due to reflections, noise etc. On the basis of numerical experiments on a simple network, merits and limitations of several methods for signal analysis (time domain analysis, spectral density function and wavelet transform have been examined. Certain amount of information can be extracted from the time history of the pressure signal, assuming the first reflection of the pressure wave is captured with very high time resolution and accuracy. Only relatively large leaks can be detected using this methodology. As a way to increase the sensitivity of this method it is suggested that transforms in frequency domain and, especially, wavelet transforms, are used. The most promising method for leakage location and quantification seems to be based on wavelet analysis.

  15. PRACTICAL IMPLICATIONS OF USING INDUCED TRANSIENTS FOR LEAK DETECTION

    Directory of Open Access Journals (Sweden)

    Marko V. Ivetic

    2007-06-01

    Full Text Available This paper deals with practical problems of leak detection by methods based on hydraulic transient analysis. Controlled and safe transients can be generated and the response of the network, with the relevant information, can be monitored and analysed. Information about leaks, contained in the monitored pressure signal, cannot be easily retrieved, due to reflections, noise etc. On the basis of numerical experiments on a simple network, merits and limitations of several methods for signal analysis (time domain analysis, spectral density function and wavelet transform have been examined. Certain amount of information can be extracted from the time history of the pressure signal, assuming the first reflection of the pressure wave is captured with very high time resolution and accuracy. Only relatively large leaks can be detected using this methodology. As a way to increase the sensitivity of this method it is suggested that transforms in frequency domain and, especially, wavelet transforms, are used. The most promising method for leakage location and quantification seems to be based on wavelet analysis.

  16. Leak detector PIG for oil pipelines; PIG detector de vazamentos em oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, Daniel Almeida; Weid, Jean Pierre von der [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Centro de Estudos em Telecomunicacoes; Camerini, Claudio Soligo; Maia, Carlos Eduardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    The leakage detector pig was created with the purpose of detect and locate leakages in a preventive way. The fast detection of small leakages decreases the probability of larger leakages. By means of a differential pressure system based on pressure data acquired through the pig's running, using pressure sensors installed on the pig's vessel, small leakages are identified and its positions registered. This allows a quick intervention at the identified location. The working principle is based on the pressure difference caused by the leakage, which is read by the sensors. The polyurethane cups responsible by the pig's propulsion are of a special kind capable of sealing a constant volume of product among them. So, when the pig passes through a leakage, the pressure in the middle drops compared to those in front and hear, generating a characteristic signal thus permit identification. The first prototype was tested intensively at laboratory facilities, and in a test pipeline showing excellent results locating precisely all the simulated leakages. Defects from different sizes with different flow where simulated and measured. This work has the objective to present the tool, its potential, the test results, to discuss its efficiency in detect and locate leakages and the possibilities for the future. (author)

  17. 77 FR 19414 - Pipeline Safety: Public Comment on Leak and Valve Studies Mandated by the Pipeline Safety...

    Science.gov (United States)

    2012-03-30

    ... Studies Mandated by the Pipeline Safety, Regulatory Certainty, and Job Creation Act of 2011 AGENCY..., Regulatory Certainty, and Job Creation Act of 2011 has called for several commissioned studies and reports to... controls, automation, supervisory control and data acquisition systems, and valve spacing. Also to...

  18. Passive Leak Detection Using Commercial Hydrogen Colorimetric Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rivkin, Carl [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Element One, Inc. (www.elem.com), a small business with in Boulder, CO, has been developing hydrogen detection technology based upon a highly selective colorimetric indicator. In its native state, the indicator pigment is a pale gray color, but becomes black upon exposure to hydrogen. The colorimetric change can be readily observed by the naked eye without the need for supplemental electronics or other hardware. Recently, the colorimetric indicator was integrated into a pliable, self-adhesive tape that can readily wrap around pneumatic fittings to serve as a hydrogen leak detector. A prototype version of the Element One indicator tape was tested within an NREL hydrogen system and successfully identified the unexpected presence of a small leak; a summary document for this case study is presented in Appendix 1. The tape was subsequently configured into 10-foot rolls as a product prototype that has just recently been commercialized and marketed under the tradename DetecTape(R). Figure 1 shows the commercial version of DetecTape along with an indicator sample in its native state and one that had been exposed to hydrogen. DetecTape is a self-adhesive silicone-based tape impregnated with a proprietary hydrogen-sensitive indicator based on transition metal oxides. A length of the tape can be cut from the roll and stretched by a factor of two or three times around a fitting. Due to the self-adhesive property of the tape, this provides a tight seal around the fitting. The seal is not hermetic, and is not intended to prevent the release of a leaking gas. However, a portion of the hydrogen leaking from a wrapped fitting will pass through the tape and react with the active indicator impregnated within the tape, thereby inducing blackening.

  19. System for Steam Leak Detection by using CCTV Camera

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Lee, Min Soo; Choi, Hui Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Ki Sung; Jeon, Hyeong Seop [SAEAN.Co., Seoul (Korea, Republic of)

    2012-05-15

    There are many pipes in the secondary cooling systems of nuclear power plants and coal-fired power plants. In these pipes, high pressure fluids are moving with at high velocity, which can cause steam leakage due to pipe thinning. Steam leakage is one of the major issues for the structural fracture of pipes. Therefore, a method to inspect a large area of piping systems quickly and accurately is needed. Steam leakage is almost invisible, because the flow has very high velocity and pressure. Therefore, it is very difficult to detect a steam leakage. In this paper, we proposed the method for detecting steam leakage using image signal processing. Our basic idea comes from a heat shimmer, which shines with a soft light that looks as if it is being shaken slightly. To test the performance of this technique, experiments have been performed for a steam generator. Results show that the proposed technique is quite powerful for steam leak detection

  20. Corrosion Evaluation of Tank 40 Leak Detection Box

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.I.

    1999-07-29

    'Leak detection from the transfer lines in the tank farm has been a concern for many years because of the need to minimize exposure of personnel and contamination of the environment. The leak detection box (LDB) is one line of defense, which must be maintained to meet this objective. The evaluation of a failed LDB was one item from an action plan aimed at minimizing the degradation of LDBs. The Tank 40 LDB, which failed in service, was dug up and shipped to SRTC for evaluation. During a video inspection while in service, this LDB was found to have black tubercles on the interior, which suggested possible microbial involvement. The failure point, however, was believed to have occurred in the drain line from the transfer line jacket. Visual, metallurgical, and biological analyses were performed on the LDB. The analysis results showed that there was not any adverse microbiological growth or significant localized corrosion. The corrosion of the LDB was caused by exposure to aqueous environments and was typical of carbon steel pipes in soil environments.'

  1. Elevation profile influence at key contractual performance parameters for LDS (Leak Detection Systems) based on compensated volume balance

    Energy Technology Data Exchange (ETDEWEB)

    Liebenberg, Lieb [TRANSNET Pipeline, Durban (South Africa); Bueno, David; Passos, Rafaela [KANOPUS Consulting, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper describes and discusses procedures and correlations to estimate performance parameters for Leak Detection Systems based on Compensation Volume Balance, at the portions not usually covered by international standards (like, API RP 1130). These parameters include: minimum acceptable leakage to be detected, under steady state conditions, based on flow measurement uncertainty, observed for both pipeline head and tail; an actual flow rate uncertainty against the one informed by the flow meter manufacturer documentation; the reference flow rate for steady state conditions; and the sensitivity one may expect for the system against a given probability of false alarms (i.e., the ways to correlate reliability, the main performance parameter as per API RP 1130 and sensitivity, the second one). A question usually not considered is: how the elevation profile may affect some of these parameters. That is the second main objective addressed herein, with actual examples employed in a South African multi product pipeline. (author)

  2. 压力管道裂纹泄漏定量技术研究%Study on Crack Leak Quantification of Pressure Pipeline

    Institute of Scientific and Technical Information of China (English)

    何攀; 刘才学; 王瑶; 艾琼; 宋健

    2012-01-01

    Based on the analysis of attenuation characteristics of leak acoustic emission signals, the attenuation constant and the correlation with leak rate are obtained by the experiment of pipeline crack leak. The calculation method of crack leak rate for pressure pipeline is presented. The experiment shows that the method is effective for crack leak quantification of pressure pipeline.%在分析泄漏产生的声发射信号衰减特性的基础上,通过压力管道裂纹泄漏试验,标定出信号的距离衰减常数,建立泄漏的声发射信号与泄漏率的关系式.在此基础上,推导出压力管道裂纹泄漏定量计算方法.试验验证表明,该方法能对压力管道裂纹泄漏进行有效的定量估计.

  3. A hydrogen leak detection system for aerospace and commercial applications

    Science.gov (United States)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-10-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  4. Crack detection in pipelines using multiple electromechanical impedance sensors

    Science.gov (United States)

    Zuo, Chunyuan; Feng, Xin; Zhang, Yu; Lu, Lu; Zhou, Jing

    2017-10-01

    An extensive network of pipeline systems is used to transport and distribute national energy resources that heavily influence a nation’s economy. Therefore, the structural integrity of these pipeline systems must be monitored and maintained. However, structural damage detection remains a challenge in pipeline engineering. To this end, this study developed a modified electromechanical impedance (EMI) technique for crack detection that involves fusing information from multiple sensors. We derived a new damage-sensitive feature factor based on a pipeline EMI model that considers the influence of the bonding layer between the EMI sensors and pipeline. We experimentally validated the effectiveness of the proposed method. Finally, we used a damage index—root mean square deviation—to examine the degree and position of crack damage in a pipeline.

  5. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe

    2014-05-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  6. Leak Detection and H2 Sensor Development for Hydrogen Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L. [Los Alamos National Laboratory

    2012-07-10

    The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today

  7. Software development to estimate the leaked volume from ruptured submarine pipelines; Desenvolvimento de um software para estimativa do volume vazado a partir de dutos submarions rompidos

    Energy Technology Data Exchange (ETDEWEB)

    Quadri, Marintho B.; Machado, Ricardo A.F.; Nogueira, Andre L.; Lopes, Toni J. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Quimica; Baptista, Renan M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The considerable increasing in the world petroleum consumption as the exhaustion of onshore reserves in the last decades leads the companies to exploit petroleum in offshore reserves (both shallow and deep water). As in onshore operations, accidents may also occur in submarine exploration. Leaking from submarine pipelines arises from corrosion pit and from axial or radial breakage. In all these three situations, the leaking is divided in three steps: pipeline depressurization until the internal pressure becomes equal to the external one; advective migration in which the driven force is the difference in the physical properties of the fluids; oil spill movement in the sea surface. A great number of mathematical models are Also available for the first and third steps. For the second one and theoretically, the most important situation, there is a restricted number of works respected to the oil volume leaked. The present study presents a software that is capable to accurate simulate a leakage through the advective migration phenomena. The software was validated for situations for different holes radii located in the upper side of a horizontal pipeline. Model results presented very good agreement with experimental data. (author)

  8. Software development to estimate the leaked volume from ruptured submarine pipelines; Desenvolvimento de um software para estimativa do volume vazado a partir de dutos submarions rompidos

    Energy Technology Data Exchange (ETDEWEB)

    Quadri, Marintho B.; Machado, Ricardo A.F.; Nogueira, Andre L.; Lopes, Toni J. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Quimica; Baptista, Renan M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The considerable increasing in the world petroleum consumption as the exhaustion of onshore reserves in the last decades leads the companies to exploit petroleum in offshore reserves (both shallow and deep water). As in onshore operations, accidents may also occur in submarine exploration. Leaking from submarine pipelines arises from corrosion pit and from axial or radial breakage. In all these three situations, the leaking is divided in three steps: pipeline depressurization until the internal pressure becomes equal to the external one; advective migration in which the driven force is the difference in the physical properties of the fluids; oil spill movement in the sea surface. A great number of mathematical models are Also available for the first and third steps. For the second one and theoretically, the most important situation, there is a restricted number of works respected to the oil volume leaked. The present study presents a software that is capable to accurate simulate a leakage through the advective migration phenomena. The software was validated for situations for different holes radii located in the upper side of a horizontal pipeline. Model results presented very good agreement with experimental data. (author)

  9. Doppler method leak detection for LMFBR steam generators. Pt. 3. Investigation of detection sensitivity and method

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2001-04-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately any leakage of water from heat transfer tubes. Therefore, the Doppler method was developed. Previous studies have revealed that, in the SG full-sector model that simulates actual SGs, the Doppler method can detect bubbles of 0.4 l/s within a few seconds. However in consideration of the dissolution rate of hydrogen generated by a sodium-water reaction even from a small water leak, it is necessary to detect smaller leakages of water from the heat transfer tubes. The detection sensitivity of the Doppler method and the influence of background noise were experimentally investigated. In-water experiments were performed using the SG model. The results show that the Doppler method can detect bubbles of 0.01 l/s (equivalent to a water leak rate of about 0.01 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  10. Space Shuttle Main Engine Propellant Path Leak Detection Using Sequential Image Processing

    Science.gov (United States)

    Smith, L. Montgomery; Malone, Jo Anne; Crawford, Roger A.

    1995-01-01

    Initial research in this study using theoretical radiation transport models established that the occurrence of a leak is accompanies by a sudden but sustained change in intensity in a given region of an image. In this phase, temporal processing of video images on a frame-by-frame basis was used to detect leaks within a given field of view. The leak detection algorithm developed in this study consists of a digital highpass filter cascaded with a moving average filter. The absolute value of the resulting discrete sequence is then taken and compared to a threshold value to produce the binary leak/no leak decision at each point in the image. Alternatively, averaging over the full frame of the output image produces a single time-varying mean value estimate that is indicative of the intensity and extent of a leak. Laboratory experiments were conducted in which artificially created leaks on a simulated SSME background were produced and recorded from a visible wavelength video camera. This data was processed frame-by-frame over the time interval of interest using an image processor implementation of the leak detection algorithm. In addition, a 20 second video sequence of an actual SSME failure was analyzed using this technique. The resulting output image sequences and plots of the full frame mean value versus time verify the effectiveness of the system.

  11. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2004-05-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  12. Detection of bile duct leaks using MR cholangiography with mangfodipir trisodium (Teslascan).

    Science.gov (United States)

    Vitellas, K M; El-Dieb, A; Vaswani, K; Bennett, W F; Fromkes, J; Steinberg, S; Bova, J G

    2001-01-01

    Mangafodipir trisodium (Teslascan), a hepatobiliary contrast agent, has the potential of providing functional biliary imaging similar to hepatobiliary scintigraphy. To our knowledge. the potential role of this biliary contrast agent in the detection of bile duct leaks has not been reported. In this case report, we report the first case of a bile duct leak diagnosed with enhanced MRI with mangafodipir trisodium in a patient following laparoscopic cholecystectomy. Our case illustrates that functional MR cholangiography images can be successfully acquired by using a post-mangafodipir fat-suppressed GRE technique and that bile duct leaks can be detected.

  13. Using Decision Trees to Detect and Isolate Leaks in the J-2X

    Data.gov (United States)

    National Aeronautics and Space Administration — Full title: Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine Mark Schwabacher, NASA Ames Research Center Robert Aguilar, Pratt...

  14. Development of microphone leak detection technology in Fugen Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shimanskiy, Sergey; Iijima, Takashi; Naoi, Yosuke [Japan Nuclear Cycle Development Inst., Fugen Nuclear Power Station, Tsuruga, Fukui (Japan)

    2002-06-01

    A method of leak detection, based on high-temperature resistant microphones, was originally developed in JNC to detect leakages with flow rates from 1 m{sup 3}/h to 500 m{sup 3}/h. The development performed in Fugen and reported here focuses on detection of a small leakage at an early stage by the same microphone method. Specifically, for the inlet feeder pipes the leak rate of 0.2 gpm (0.046 m{sup 3}/h) has been chosen as the target detection capability. Evaluation of detection sensitivity and leak localization accuracy was conducted based on various analysis methods in order to check the capability of the method to satisfy this requirement. The possibility of detecting and locating a small leakage has been demonstrated through the research. The probabilistic detection algorithm and multi-channel location-based detection are proposed in order to improve both the detection sensitivity and the localization accuracy. (author)

  15. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Science.gov (United States)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  16. 基于广义概念的城市燃气管道泄漏精确定位%The Precise Location of City Gas Pipeline Leak Based on the Generalized Concept

    Institute of Scientific and Technical Information of China (English)

    郝永梅; 徐明; 李秀中; 毛小虎; 严欣明; 岳云飞

    2016-01-01

    为了准确地检测城市燃气管道泄漏 ,提出了一种基于广义概念的管道泄漏检测定位方法.声发射技术对于管道泄漏的检测、定位是一个极好的工具 ,但由于泄漏源的传播容易受到周围背景噪声以及复杂工况的影响 ,其定位误差较大.基于时延估计的互相关信号处理方法被广泛用于管道泄漏检测定位 ,但由于泄漏应力波传播通道的动态特性 ,使得源信号在传播过程中会产生波形变化 ,给互相关函数峰值位置的确定带来困难.由此引入广义相关分析方法 ,通过对信号进行前置滤波 ,在一定程度上减少了传播通道动态特性因素对泄漏点定位的不利影响 ,得到了更为准确的时延估值.在此基础上 ,通过模拟实验 ,编写Matlab神经网络代码 ,构造GRNN模型 ,进一步预测定位.结果表明 ,GRNN预测的声发射检测值、互相关定位值以及广义相关定位值 ,相比之前定位精度分别得到提高 ,其中基于广义相关的延时估计方法定位最为精确 ,将该方法用于工程实际中 ,可以更加精确地定位出泄漏点.%In order to accurately detect leakage of city gas pipeline ,a method is proposed based on broad concept of leak detection and location of pipeline .Acoustic emission technique is an excellent tool for the pipeline leak detection and loca-tion ,but because the spread of the leak source is susceptible to the surrounding background noise and the impact of complex conditions ,its positioning error is greater .The methods based on delay estimation cross-correlation signal processing are widely used in pipeline leak detection and location ,but due to the dynamic characteristics of leakage stress wave propagation path ,the source signal in the communication process will produce changes in waveform and the peak position to cross-cor-relation function determination difficult .Thus the generalized correlation analysis is introduced .To a certain extent ,the

  17. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  18. Analytical study of the performance of a geomembrane leak detection system.

    Science.gov (United States)

    Lugli, Francesco; Mahler, Claudio Fernando

    2016-05-01

    The electrical detection of leaks in geomembranes is a method that allows identifying leakage of contaminants in lined facilities (e.g. sanitary landfills, pollutant ponds, etc.). The procedure in the field involves placing electrodes above and below the geomembrane, to generate an electrical current, which in turn engenders an electric potential distribution in the protective layer (generally a clayey soil). The electric potential will be greater in areas with higher current density, i.e. near leaks. In this study, we combined models from the literature to carry out a parametric analysis to identify the variables that most influence the amplitude of the electrical signals produced by leaks. The basic hypothesis is that the electrical conduction phenomena in a liner system could be depicted by a direct current circuit. After determining the value of the current at the leak, we calculated the electric potential distribution according to the model of Darilek and Laine. This enabled analysing the sensitivity of the parameters, which can be useful in the design of landfills and facilitate the location of leaks. This study showed that geomembranes with low electrical resistance (owing to low thickness, low resistivity, or extensive area) can hinder the leak detection process. In contrast, low thickness and high resistivity of the protection layer magnify the leak signal.

  19. Detection and Prevention of Sensitive Data From Data Leak Using Shingling and Rabin Filter

    Directory of Open Access Journals (Sweden)

    Sushma Vishwanath Gaikwad

    2016-10-01

    Full Text Available Data leak is a major problem in all the organization of any land. A deliberate risk to institution and private security is the disclosure of secure data in transmission and storage. To check content for exposed sensitive data is the main aim for exposed sensitive data. There are large numbers of data-leak cases but human flaws are one of the main reasons of data leak. This paper proposed a data-leak detection model for preventing accidental and intentional data leak in network. If someone succeed to steal some kind of data and send that data to outsider then data owner has obtain to use two methods to find out guilty employee or leaker. This work suggests use of shingling and rabin filter system performs Data Leak Detection (DLD and Prevention task. The results show that this approach can be effectively implemented in various organizations; however rigorous testing on various data division of such methods will be required to implement the same in sector of importance like defence and other even in large establishment. Keywords—  Information security; Data leak; network security; privacy.

  20. Technical basis for inner container leak detection sensitivity goals in 3013 DE surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-11

    Helium leak checking of 3013 inner container lids is under consideration for addition to DE Surveillance tasks as an improved means to detect any through-wall flaws that may have formed during storage. This white paper evaluates whether leak checking at DE could replace and improve upon the current method of comparing gas compositions and pressures within the inner and outer containers. We have used viscous and molecular flow equations in ANSI N14.5 to calculate what the measured standard helium leak rate would be for hypothetical leaks of three different sizes. For comparison, we have also calculated the effects on gas composition and pressure differences as a function of pre-DE storage time for the same three leak sizes, using molecular and viscous flow equations as well as diffusion equations to predict the relevant gas transport. For a hypothetical leak that would be measured at 1x10-7 std cc/sec, likely an achievable sensitivity using helium leak checking at DE, the calculations predict no measurable effect on pressure difference or gas composition as measured by DE gas analysis. We also calculate that it would take over 200 years for water vapor to diffuse through a 10-7 std cc/sec leak enough to raise the RH outer container to half the RH value in the inner container. A leak 100 times larger, which would be measured at 1x10-5 std cc/sec, the same water vapor diffusion would take at least 14 years. Our conclusion is that helium leak checking will be useful even at a sensitivity of 1x10-5 std cc/sec, and a significant improvement over current DE methods at a sensitivity of 1x10-7 std cc/sec.

  1. Spontaneous Intracranial Hypotension With Site of Leak Detected Only After 111In-DTPA Cisternogram.

    Science.gov (United States)

    Parsian, Sana; Matesan, Manuela C; Kumbhar, Sachin Shivaji; Lewis, David H

    2017-04-01

    A 54-year-old man with a 3-week history of orthostatic headache and acute on chronic subdural hematoma presented with imaging findings suggestive of spontaneous intracranial hypotension. Three myelograms were negative for leak, and nontargeted epidural blood patches did not result in symptom relief. A cerebrospinal fluid leak study using In-DTPA with SPECT/CT demonstrated a focal area of asymmetric activity at the left C2 nerve root. A left C2 root tie-off, targeted epidural blood patch, and Dura seal glue resulted in resolution of patient symptomatology highlighting the importance of fused SPECT/CT images in detection of an occult cerebral spinal fluid leak.

  2. Leak detection of thermal shield system in EAST cryostat%EAST装置大型低温杜瓦中内外冷屏系统的检漏

    Institute of Scientific and Technical Information of China (English)

    王雅婷; 王小明; 胡建生

    2015-01-01

    针对 EAST 装置大型低温杜瓦中内外冷屏系统存在的泄漏及对外真空室真空度的影响,采用氦质谱负压真空、正压真空及吸枪法相结合的方法,确定了多处泄漏点并分析了泄漏原因,通过修复使EAST外真空室低温运行时的压强﹤1×10-4Pa ,满足了EAST外真空室运行的需要。EAST内外冷屏系统的检漏方法和经验可以运用到大型、复杂的和具有狭小活动空间的真空系统检漏,尤其是对多管道、复杂材料的检漏具有一定的参考价值。%To solve the leakage of thermal shield system in EAST cryostat and its impact on pressure of cryogenic vacuum chamber, we adopted a combination method including vacuum leak detection, pressurized leak detection and sniffer leak detection. We found some leak parts and analyzed the cause of leakage. By mending the thermal shield system, the pressure of the cryogenic vacuum chamber is less than 1×10-4Pa at cryogenic state and meets the need of operation. The method and experience of EAST thermal shield system leak detection can be adopted to large-sized, complicated and narrow space vacuum system. Especially, the method and experience have a certain reference value in the leak detection of multi-pipeline and complicated material vacuum system.

  3. Electrometrical Methods Application for Detection of Heating System Pipeline Corrosion

    Science.gov (United States)

    Vetrov, A.; Ilyin, Y.; Isaev, V.; Rondel, A.; Shapovalov, N.

    2004-12-01

    Coated steel underground pipelines are widely used for the petroleum and gaze transportation, for the water and heat supply. The soils, where the pipelines are placed, are usually highly corrosive for pipe's metal. In the places of crippling of external coating the corrosion processes begin, and this can provoke a pipe breakage. To ensure the pipeline survivability it is necessary to carry out the control of pipeline conditions. The geophysical methods are used to provide such diagnostic. Authors have studied the corrosion processes of the municipal heating system pipelines in Saint-Petersburg (Russia) using the air thermal imaging method, the investigation of electromagnetic fields and spontaneous polarization, measurements of electrode potentials of metal tubes. The pipeline reparation works, which have been provided this year, allowed us to make the visual observation of pipes. The investigation object comprises a pipeline composed of two parallel tubes, which are placed 1-2 meters deep. The fact that the Russian Federation and CIS countries still use the direct heat supply system makes impossible any addition of anticorrosion components to circulating water. Pipelines operate under high pressure (up to 5 atm) and high temperature (designed temperature is 150°C). Tube's isolation is meant for heat loss minimization, and ordinary has poor hydro-isolation. Some pipeline construction elements (sliding and fixed bearings, pressure compensators, heat enclosures) are often non-isolated, and tube's metal contacts with soil. Hard usage condition, ingress of technical contamination cause, stray currents etc. cause high accidental rate. Realization of geophysical diagnostics, including electrometry, is hampered in a city by underground communication systems, power lines, isolating ground cover (asphalt), limitation of the working area with buildings. These restrictions form the investigation conditions. In order to detect and localize isolation (coat) defects authors

  4. Detection of underground pipeline based on Golay waveform design

    Science.gov (United States)

    Dai, Jingjing; Xu, Dazhuan

    2017-08-01

    The detection of underground pipeline is an important problem in the development of the city, but the research about it is not mature at present. In this paper, based on the principle of waveform design in wireless communication, we design an acoustic signal detection system to detect the location of underground pipelines. According to the principle of acoustic localization, we chose DSP-F28335 as the development board, and use DA and AD module as the master control chip. The DA module uses complementary Golay sequence as emission signal. The AD module acquisiting data synchronously, so that the echo signals which containing position information of the target is recovered through the signal processing. The test result shows that the method in this paper can not only calculate the sound velocity of the soil, but also can locate the location of underground pipelines accurately.

  5. Active acoustic leak detection for LMFBR steam generators. Pt. 6. Applicability to practical steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    It is necessary to develop a reliable water leak detection system for steam generators of liquid metal reactors in order to prevent the expansion of damage and to maintain the structural integrity of the steam generators. The concept of the active acoustic method is to detect the change of the ultrasonic field due to the hydrogen gas bubbles generated by a sodium-water reaction. This method has the potential for improved detection performance compared with conventional passive methods, from the viewpoint of sensitivity, response time and tolerance against the background noise. A feasibility study of the active acoustic leak detection system is being carried out. This report predicts the performance of the active acoustic method in the practical steam generators from the results of the large scale in-water experiments. The results shows that the active acoustic system can detect a 10 g/s leak within a few seconds in large-scale steam generators. (author)

  6. 75 FR 76742 - Detecting Oil Leaks From Vessels Into the Water

    Science.gov (United States)

    2010-12-09

    ... SECURITY Coast Guard Detecting Oil Leaks From Vessels Into the Water AGENCY: Coast Guard, DHS. ACTION... seeks information about the current state of technology to detect loss of oil into the water. DATES... about the current state of technology to detect loss of oil into the water. All information...

  7. Leak detection in spacecraft using structure-borne noise with distributed sensors

    Science.gov (United States)

    Holland, Stephen D.; Roberts, Ron; Chimenti, D. E.; Strei, Michael

    2005-04-01

    We have developed and tested in the laboratory a method for in-orbit detection and location of air leaks in manned spacecraft that uses only a small number of sensors distributed arbitrarily on the inner surface of the spacecraft skin. Then, structure-borne ultrasound in the range of 300-600 kHz is monitored from each of the sensors. When cross correlations between measured sensor waveforms indicate the presence of a leak, these correlations are compared with a large dynamically generated database of simulated correlations to locate the the leak on the pressure vessel. A series of experimental tests were performed and at worst the method identified some false locations, but the true location of the leak always appeared.

  8. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  9. Ultrasound monitoring of pipelines; Ultraschallueberwachung an Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Kircher, W.; Skerra, B.; Kobitsch-Meyer, S. [SONOTEC Ultraschallsensorik, Halle GmbH (Germany)

    2007-01-15

    Pipelines are the most modern, effective and safest transport system, which is world widely spread in a network of millions km length and is annually enlarged about thousands of km. It is sure that these systems, if they should stay save and effective, must be maintained adequately. A technique, which provides accurate and reliable measurement data without interrupting the pipeline operation, ''through the wall'', is the ultrasonic technology. This non-intrusive technology provides data for pig detection as well as it is used for recognising products in pipelines, detecting levels or full/empty states and accomplishment of sediment measurement, distance measurements, position detections and leak search. The article gives a review and describes some applications of ultrasonic technology in pipeline technique. (orig.)

  10. Studies on the detection of leaks from Tapacura dam

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Marco O.A.; Andrade Lima, Ricardo de; Antonino, Antonio C.D.; Villar, Heldio P.; Oliveira Lira, Carlos A.B. de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Badeira, Jefferson V. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Viana, Afonso A. [Companhia Pernambucana de Saneamento e Agua, Recife, PE (Brazil); Plata-Bedmar, Antonio [Centro de Estudios y Experimentaciones de Obras Publicas (Spain); Garcia-Agudo, Edmundo [International Atomic Energy Agency, Vienna (Austria)

    1997-12-01

    One of the many applications of stable isotope analyses is in hydrological studies. as the isotope concentration of elements in water vary as a result of fractionation due to physicochemical processes, each water has its own fingerprints, so that identification of its origin is made possible. This technique has been used in the investigation of the possible leaks through the geologic formation underneath the Tapacura Dam, near Recife, Brazil. Samples were collected from the reservoir and from several collection points downstream. These samples have been analysed for their deuterium, {sup 18} O and {sup 13} C concentrations. The comparison between results from these analyses indicated that water from the reservoir and from the other collection points had distinct origins. These finding were corroborated from standard chemical analyses and tracer studies, thus pointing to the absence of any significant underflow at the Tapacura Dam. (author). 4 refs., 1 fig., 4 tabs.

  11. Why the Scientific Pipeline Is Still Leaking? Women Scientists and Their Work-Life Balance in Poland

    Science.gov (United States)

    Polkowska, Dominika

    2014-01-01

    In the contemporary scholarly discourse, the under-representation of women in science is often explained by the phenomenon of women "in the pipeline". The pipeline carries a flow from one stage to another, and the flow of women diminishes between the stages. Based on the literature and qualitative studies, it can be inferred that one of…

  12. Why the Scientific Pipeline Is Still Leaking? Women Scientists and Their Work-Life Balance in Poland

    Science.gov (United States)

    Polkowska, Dominika

    2014-01-01

    In the contemporary scholarly discourse, the under-representation of women in science is often explained by the phenomenon of women "in the pipeline". The pipeline carries a flow from one stage to another, and the flow of women diminishes between the stages. Based on the literature and qualitative studies, it can be inferred that one of…

  13. Small-scale modelling of the physiochemical impacts of CO2 leaked from sub-seabed reservoirs or pipelines within the North Sea and surrounding waters.

    Science.gov (United States)

    Dewar, Marius; Wei, Wei; McNeil, David; Chen, Baixin

    2013-08-30

    A two-fluid, small scale numerical ocean model was developed to simulate plume dynamics and increases in water acidity due to leakages of CO2 from potential sub-seabed reservoirs erupting, or pipeline breaching into the North Sea. The location of a leak of such magnitude is unpredictable; therefore, multiple scenarios are modelled with the physiochemical impact measured in terms of the movement and dissolution of the leaked CO2. A correlation for the drag coefficient of bubbles/droplets free rising in seawater is presented and a sub-model to predict the initial bubble/droplet size forming on the seafloor is proposed. With the case studies investigated, the leaked bubbles/droplets fully dissolve before reaching the water surface, where the solution will be dispersed into the larger scale ocean waters. The tools developed can be extended to various locations to model the sudden eruption, which is vital in determining the fate of the CO2 within the local waters.

  14. [Usefulness of upper gastrointestinal series to detect leaks in the early postoperative period of bariatric surgery].

    Science.gov (United States)

    Medina, Francisco J; Miranda-Merchak, Andrés; Martínez, Alonso; Sánchez, Felipe; Bravo, Sebastián; Contreras, Juan Eduardo; Alliende, Isabel; Canals, Andrea

    2016-04-01

    Postoperative leaks are the most undesirable complication of bariatric surgery and upper gastrointestinal (GI) series are routinely ordered to rule them out. Despite the published literature recommending against its routine use, it is still being customarily used in Chile. To examine the usefulness of routine upper GI series using water-soluble iodinated contrast media for the detection of early postoperative leaks in patients undergoing bariatric surgery. A cohort of 328 patients subjected to bariatric surgery was followed from October 2012 to October 2013. Most of them underwent sleeve gastrectomy. Upper GI series on the first postoperative day were ordered to 308 (94%) patients. Postoperative leaks were observed in two patients, with an incidence of 0.6%. The sensitivity for upper GI series detection of leak was 0% and the negative predictive value was 99%. Routine upper GI series after bariatric surgery is not useful for the diagnosis of postoperative leak, given the low incidence of this complication and the low sensitivity of the technique.

  15. 75 FR 40863 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-07-14

    ... use computational pipeline monitoring (CPM) leak detection systems to comply with the standards set... and retain certain information in connection with the operation and testing of CPM systems. Compliance... proper functioning of CPM leak detection systems. Affected Public: Operators of hazardous...

  16. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.G.; Badden, J.J.

    1995-02-13

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford.

  17. Feasibility of leak-detection instrumentation for duplex-tube steam generator. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, E.; Witkowski, R.E.

    1974-01-01

    A literature search has been carried out to determine if current state-of-the-art for sodium vapor and water vapor detectors are feasible as leak detection instrumentation for the Westinghouse duplex-tube steam generator. A commercially available probe-type water vapor detector has been identified and a thermal ionization type sodium vapor detector, currently being developed by Westinghouse, has been selected as the reference sodium-vapor leak detector. Recommendations are made concerning the experimental studies required to adapt the selected instrumentation to steam-generator plant applications. Proposed future instrumentation development programs are also identified.

  18. Performance evaluation of PFBR wire type sodium leak detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, G., E-mail: viju@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Rajan, K.K.; Nashine, B.K.; Chandramouli, S. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Madhusoodanan, K. [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kalyanasundaram, P. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2011-06-15

    Highlights: > Performance evaluation of wire type leak detectors was conducted in LEENA facility by creating sodium leaks. > The lowest leak rate of 214 g/h was detected in 50 min and the highest detection time was 6 h for a leak rate of 222 g/h. > Factors affecting the leak detection time are packing density of thermal insulation, layout of heater, temperature, etc. > Relationship between leak rate and detection time was established and a leak rate of 100 g/h is likely to be detected in 11.1 h. > Contact resistance of leaked sodium increased to 3.5 kilo ohms in 20 h. - Abstract: Wire type leak detectors working on conductivity principle are used for detecting sodium leak in the secondary sodium circuits of fast breeder reactors. It is required to assess the performance of these detectors and confirm that they are meeting the requirements. A test facility by name LEENA was constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam to test the wire type leak detector lay out by simulating different sodium leak rates. This test facility consists of a sodium dump tank, a test vessel, interconnecting pipelines with valves, micro filter and test section with leak simulators. There are three different test sections in the test set up of length 1000 mm each. These test sections simulate piping of Prototype Fast Breeder Reactor (PFBR) secondary circuit and the wire type leak detector layout in full scale. All test sections are provided with leak simulators. A leak simulator consists of a hole of size one mm drilled in the test section and closed with a tapered pin. The tapered pin position in the hole is adjusted by a screw mechanism and there by the annular gap of flow area is varied for getting different leak rates. Various experiments were conducted to evaluate the performance of the leak detectors by creating different sodium leak rates. This paper deals with the details of wire type leak detector layout for the secondary sodium circuit of PFBR

  19. Development of systems for detection, early warning, and control of pipeline leakage in drinking water distribution: A case study

    Institute of Scientific and Technical Information of China (English)

    Weifeng Li; Wencui Ling; Suoxiang Liu; Jing Zhao; Ruiping Liu; Qiuwen Chen; Zhimin Qiang; Jiuhui Qu

    2011-01-01

    Water leakage in drinking water distribution systems is a serious problem for many cities and a huge challenge for water utilities.An integrated system for the detection,early warning,and control of pipeline leakage has been developed and successfully used to manage the pipeline networks in selected areas of Beijing.A method based on the geographic information system has been proposed to quickly and automatically optimize the layout of the instruments which detect leaks.Methods are also proposed to estimate the probability of each pipe segment leaking (on the basis of historic leakage data),and to assist in locating the leakage points (based on leakage signals).The district metering area (DMA) strategy is used.Guidelines and a flowchart for establishing a DMA to manage the large-scale looped networks in Beijing are proposed.These different functions have been implemented into a central software system to simplify the day-to-day use of the system.In 2007 the system detected 102 non-obvious leakages (i.e.,14.2% of the total detected in Beijing) in the selected areas,which was estimated to save a total volume of 2,385,000 m3 of water.These results indicate the feasibility,efficiency and wider applicability of this system.

  20. Research and development of a high-temperature helium-leak detection system (joint research). Part 1 survey on leakage events and current leak detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In High Temperature Gas-cooled Reactors (HTGR), the detection of leakage of helium at an early stage is very important for the safety and stability of operations. Since helium is a colourless gas, it is generally difficult to identify the location and the amount of leakage when very little leakage has occurred. The purpose of this R and D is to develop a helium leak detection system for the high temperature environment appropriate to the HTGR. As the first step in the development, this paper describes the result of surveying leakage events at nuclear facilities inside and outside Japan and current gas leakage detection technology to adapt optical-fibre detection technology to HTGRs. (author)

  1. Development, application & assessment of improved condenser leak detection program at Brayton Point Station

    Energy Technology Data Exchange (ETDEWEB)

    Medina, C.A.; Bennett, B.A.; Thornton, M.W.

    1996-08-01

    The adverse impacts of air inleakage on condenser performance are well known and include elevated turbine back pressure, increased parasitic loads (to remove elevated levels of noncondensables from the condenser), and high dissolved oxygen levels in the feedwater cycle. Prolonged neglect of leakage leads to increased maintenance to feedwater and air removal systems as well as reduced cycle efficiency and the potential of a unit trip on high turbine back pressure. Leak detection performed on a scheduled basis, just prior to a scheduled outage, is an effective preventive maintenance activity for older stations and important for newer stations concerned with heat rate degradation and equipment performance. New England Power began a comprehensive air inleakage reduction program at its Brayton Point Generating Station (BPS) in 1990. The authors describe the development and application on Units 1 through 4, including its unique identification and documentation tools and its computerized leak source tracking and trending software program. Actual results gained from the programs use at BPS will be presented. To put the merits of the program in perspective, historically, many real and potentially large leak paths were not being tested, because helium leak detection crews normally inspected familiar and easy-to-reach areas around the condenser. Tracking and trending was practically non-existent, providing little documentation for root cause analysis when a large leak is suspect. Since the improved program was implemented at BPS, air in-leakage detection has increased by 300 percent, in-leakage rates have reduced 40% and turbine backpressure levels have improved. Station personnel now have a tool to diagnose condenser air in-leakage with test repeatability, whether it be a sudden incident of high in-leakage demanding immediate testing and repair or gradual increases which can be identified during pre-outage testing for repair during their scheduled outage. 3 figs., 2 tabs.

  2. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Science.gov (United States)

    2010-07-01

    ...; cracks or spalling in cell room floors, pillars, or beams; caustic leaks; liquid mercury accumulations or... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt....

  3. 天然气管道泄漏爆炸事故风险分析%Analysis of the Leak Explosion Risk of Natural Gas Pipeline

    Institute of Scientific and Technical Information of China (English)

    张国军; 高志国; 申龙涉; 王秋莎; 代堪亮; 赵虎; 袁玉

    2012-01-01

    针对天然气管道泄漏爆炸,采用爆炸冲击波超压模型,结合TNT当量法对超压进行理论计算,确定了其爆炸事故的伤害范围,找到了影响超压的主要影响因素,提出了减小冲击波超压的措施,为制订天然气管道安全运行及应急预案提供了依据.%Aiming at leak explosion of the natural gas pipeline, blast shock wave overpressure model was used, combining with TNT equivalent method to calculate the overpressure. Then the range of explosion damage was determine, and the main factors that affect the overpressure were found. Therefore the measures to reduce the overpressure were put forward, which provides the basis for the natural gas pipeline operation safe and emergency.

  4. A Fiber-Optic Sensor for Leak Detection in a Space Environment

    Science.gov (United States)

    Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.

    2009-01-01

    A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.

  5. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    Energy Technology Data Exchange (ETDEWEB)

    Hookfin, J.D.

    1995-05-12

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

  6. COST AND PERFORMANCE REPORT: INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    Science.gov (United States)

    2016-12-30

    Technologies for Leak Detection in Challenging Pipe Types (Cost and Performance Report) Gary Anguiano Edwin Chiang Martha Araujo Stuart Strum Dr. Victor...N3943013C1256 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gary Anguiano; Edwin Chiang; Martha Araujo; and Stuart Strum (NAVFAC EXWC...Principal Investigator Scott Waisner U.S. Army Engineer R&D Center 3909 Halls Ferry Rd. Vicksburg, MS 39180 (601) 634-2286 (601) 634

  7. Steel Casing Resistivity Technology (SCRT): Innovative Applications of Electrical Methods for Buried Tank Leak Detection

    Science.gov (United States)

    Fink, J. B.; Levitt, M. T.; Gee, G. W.

    2002-12-01

    The need for non-invasive leak detection methods is extremely important for monitoring cleanup efforts of nuclear waste contained in underground storage tanks at the Hanford Nuclear Facility in Washington. Drilling is both very expensive and undesirable in the tank farms. Various geophysical imaging methods were evaluated over the past two years at two "cold" sites but within geologic conditions similar to the tank farms. The "cold" sites consisted of 1. a dense array of 32 steel casings, and 2. a "mock tank" in which various controlled leaks (injections) of a saturated aqueous solution of Na2S2O35H20 were metered. Nearly all methods required invasive drilling for subsurface placement of sensors. An innovative direct-current electrical method using existing infrastructure as grounding electrodes, such as steel casings and steel tanks, has shown very promising results and is undergoing further testing. The most useful results have been obtained by using multiple grounding points for spatial determinations and continuous time-series monitoring for temporal variations. Although the large size of tanks and lengths of casings make discrete volume estimations difficult, data acquired for test leaks to date have shown a surprising correlation between leak rates and the rate-of-change of specific electrical measurements. First order volume approximations can be made based on existing knowledge of the geologic environment and hydraulic parameters. Spatial data provide general leak location and gross flow characteristics, whereas temporal data indicate test leak commencement, cessation, and approximate leak rates. On-going testing is providing quantitative calibration information that is expected to transfer to the tank farm environments. Procedures are being developed that will simplify the installation and operation of the system in the tank-farm environments. Implementation of the technology necessitated remote operation and monitoring of the electrical system

  8. Soil Surface Leak Detection From Carbon Storage Sites Using ∆(CO2:O2) Measurements

    Science.gov (United States)

    Alam, M. M.; Norman, A. L.; Layzell, D. B.

    2015-12-01

    The early detection and remediation of CO2 leaks from Carbon Capture and Storage (CCS) sites is essential for the safety and public support of the technology. A model that integrates gas diffusion, mass flow and biological processes in soils was developed and used to predict the ∆CO2 and ∆O2 concentration differential between the soil surface and the bulk atmosphere under a wide range of environmental conditions that include temperature, soil gas and water content, soil respiratory quotient and rate of O2 uptake, soil porosity and CO2 leakage rate. The results predicted that measurement of ∆(CO2:O2) measurements at the soil surface relative to air should be able to detect a CCS leak as low as 2 µmol/m2/sec. To test this hypothesis, a gas analysis system was designed and constructed. It should allow a series of experiments under controlled conditions to test all aspects of the model. It is hoped that the results from this work will ultimately lead to the development of a new instrument and protocol for the early detection of CO2 leaks from a geological storage sites.

  9. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Science.gov (United States)

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  10. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Directory of Open Access Journals (Sweden)

    Gabriel J Bellante

    Full Text Available Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa to one of four possible treatment groups: 1 a CO2 injection group; 2 a water stress group; 3 an interaction group that was subjected to both water stress and CO2 injection; or 4 a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87 for the classification tree analysis and 83% (Kappa of 0.77 for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  11. 78 FR 23972 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2013-04-23

    ... installing new computational pipeline monitoring (CPM) leak detection systems or replacing components of existing CPM systems to comply with section 4.2 of the American Petroleum Institute's recommended practice.... Section 195.444 requires operators of single-phase hazardous liquid pipeline facilities that use CPM...

  12. Evaluation of an Interferometric Sensor for In-Space Detection of Gas Leaks

    Science.gov (United States)

    Polzin, Kurt A.; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2009-01-01

    Space mission planning often involves long-term storage of volatile liquids or high-pressure gases. These may include cryogenic fuels and oxidizers, high-pressure gases, and life-support-critical consumables. The risk associated with the storage of fluids and gases in space systems has long been an issue and the ability to retain these fluids is often tied to mission success. A leak in the storage or distribution system can cause many different problems, including a simple, but mission endangering, loss of inventory or, in severe cases, unbalanced thrust loads on a flight vehicle. Cryogenic propellants are especially difficult to store, especially over a long duration. The propellant can boil off and be lost through the insulating walls of the tank or simple thermal cycling of the fittings, valves, and propellant feed lines may unseat seals allowing the fluid to escape. Current NASA missions call for long-duration in-space storage of propellants, oxidizers, and life support supplies. Leaks of a scale detectable through a pressure drop in the storage tank are often catastrophic and have long been the focus of ground-based mitigation efforts where redundant systems are often employed. However, there is presently no technology available for detecting and monitoring low-level, but still mission-endangering, gas leaks in space. Standard in-space gas detection methods either have a very limited pressure range over which they operate effectively or are limited to certain gases. Mass spectrometer systems are able to perform the detection tasks, but their size, mass and use of high voltage, which could potentially lead to an arc that ignites a combustible propellent, severely limit their usefulness in a space system. In this paper, we present results from testing of the light-based interferometric gas monitoring and leak detection sensor shown in Fig. 1. The output of the sensor is an interference fringe pattern that is a function of the gas density, and commensurate index

  13. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    Science.gov (United States)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  14. Operational safety and post-maintenance gas leak detection in GE frame 9001FA gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, D.A.; Marley, L.; Lees, J.A. [PowerGen plc, Connah' s Quay Power Station, Deeside (United Kingdom)

    1999-12-01

    The increased use of natural-gas-fuelled combined cycle gas turbine and combined heat and power plants in recent years has been accompanied by the practice of constructing acoustic enclosures around the gas turbines for environmental reasons. This can increase the risk of an explosion if, for any reason, there is a build-up of flammable gas within the enclosure, since there can be a range of possible ignition sources. The UK Health and Safety Executive consider gas leaks within such enclosures to be foreseeable, especially following maintenance. The paper presents a review of operational safety and a leak detection method for the inspection and design of flanged joints within the acoustic enclosures around GE 9001FA gas turbines, providing a practical step towards minimising the risk of explosion due to fuel leakage. (Author)

  15. Pressure based leak detection system implanted on the business Unit Exploration and Production of PETROBRAS in Rio Grande do Norte e Ceara; Sistema de deteccao de vazamentos em dutos baseado em pressao implantado na Unidade de Negocios de Exploracao e Producao da PETROBRAS no Rio de Grande do Norte e Ceara

    Energy Technology Data Exchange (ETDEWEB)

    Rolim, Tuerte A.; Oliveira, Abenildo A.de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the experience faced by people who works in PETROBRAS Business Unit (UN-RNCE), located in Rio Grande do Norte Province, Brazil, during the implementation of a pipeline leak detection system. That application involved nine multiphase oil pipelines distributed along several production facilities. Because of the emergency after the leakage that polluted the Guanabara bay and due to the two phases and multi phases pipelines characteristics, the UN-RNCE decided to apply the Pressure Point Analysis (PPA) technology in order to detect leakages. It is a statistical method for leak detection e uses a very simple instrumentation which facilitates the installation and maintenance. However, in order to get the best performance of the system, it is necessary to know thoroughly the whole process and have a fast and reliable SCADA system for long distance communication. Finally it will be shown the test results, the recommendations to expand the system and the conclusions. (author)

  16. Active stand-off detection of gas leaks using an open-path quantum cascade laser sensor in a backscatter configuration

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2005-05-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the path-averaged concentration of N2O by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks.

  17. Long-wave infrared imaging of vegetation for detecting leaking CO2 gas

    Science.gov (United States)

    Johnson, Jennifer E.; Shaw, Joseph A.; Lawrence, Rick; Nugent, Paul W.; Dobeck, Laura M.; Spangler, Lee H.

    2012-01-01

    The commercial development of uncooled-microbolometer, long-wave infrared (LWIR) imagers, combined with advanced radiometric calibration methods developed at Montana State University, has led to new uses of thermal imagery in remote sensing applications. One specific novel use of these calibrated imagers is imaging of vegetation for CO2 gas leak detection. During a four-week period in the summer of 2011, a CO2 leak was simulated in a test field run by the Zero Emissions Research and Technology Center in Bozeman, Montana. An LWIR imager was deployed on a scaffold before and during the CO2 release, viewing a vegetation test area that included regions of high and low CO2 flux. Increased root-level CO2 concentration caused plant stress that led to reduced thermal regulation of the vegetation, which was consistent with increased diurnal variation of IR emission observed in this study. In a linear regression, the IR data were found to have a strong relationship to the CO2 emission and to be consistent with the location of leaking CO2 gas. Reducing the continuous data set to one image per day weakened the regression fit, but maintained sufficient significance to indicate that this method could be implemented with once-daily airborne images.

  18. Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles

    Science.gov (United States)

    Mouser, Paula J.; Rizzo, Donna M.; Druschel, Gregory K.; Morales, Sergio E.; Hayden, Nancy; O'Grady, Patrick; Stevens, Lori

    2010-12-01

    Groundwater biogeochemistry is adversely impacted when municipal solid waste leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface from leaking landfills. Detecting leachate contamination using statistical techniques is challenging because well strategies or analytical techniques may be insufficient for detecting low levels of groundwater contamination. We sampled profiles of the microbial community from monitoring wells surrounding a leaking landfill using terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene. Results show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves characterization of groundwater quality. Bacterial T-RFLP profiles showed shifts correlated to known gradients of leachate and effectively detected changes along plume fringes that were not detected using hydrochemical data. Experimental sediment microcosms exposed to leachate-contaminated groundwater revealed a shift from a β-Proteobacteria and Actinobacteria dominated community to one dominated by Firmicutes and δ-Proteobacteria. This shift is consistent with the transition from oxic conditions to an anoxic, iron-reducing environment as a result of landfill leachate-derived contaminants and associated redox conditions. We suggest microbial communities are more sensitive than hydrochemistry data for characterizing low levels of groundwater contamination and thus provide a novel source of information for optimizing detection and long-term monitoring strategies at landfill sites.

  19. Development of active acoustic method for water leak detection of LMFBR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-06-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver and the detection method for leakage are investigated experimentally. In-water experiments performed by using an SG full-sector model that simulates the actual SGs. As an experimental result, the received sound attenuation for 10s was more than 10dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s.) The attenuation of sound are least affected by bubble injection position of heat transfer tubes bunch department. It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  20. A case of spontaneous cerebrospinal fluid rhinorrhea: Accurate detection of the leak point by magnetic resonance cisternography

    Directory of Open Access Journals (Sweden)

    Teppei Matsubara

    2014-01-01

    Full Text Available Background: Spontaneous cerebrospinal fluid (CSF rhinorrhea is a rare entity. The accurate preoperative localization of the leak point is essential for planning surgical treatment, but is sometimes difficult. To localize the leak point, magnetic resonance cisternography (MRC is the method of choice, but its effectiveness remains unclear. Case Description: A 34-year-old mildly obese female experienced spontaneous CSF rhinorrhea after an attack of bronchial asthma. High-resolution computed tomography (CT failed to reveal the leak point, while MRC demonstrated an arachnoid herniation at the olfactory cleft. The patient underwent endoscopic endonasal repair of the CSF leak with success. There has been no recurrence of CSF rhinorrhea for 14 months after surgery followed by the administration of acetazolamide. Conclusion: We report a rare case of spontaneous CSF rhinorrhea associated with benign intracranial hypertension, in which the leak point was successfully detected by MRC. The CSF leak was completely repaired by minimally invasive endoscopic endonasal surgery. MRC may be a reliable method for detecting CSF leak points.

  1. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-05-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.

  2. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  3. Passing Ability of Inner Spherical Leak Detector in Vertical Segment of Submarine Pipeline%球形泄漏内检测器在海底管道竖直管段的通过性

    Institute of Scientific and Technical Information of China (English)

    陈世利; 赵吉波; 郭世旭; 徐天舒; 黄新敬

    2015-01-01

    Spherical leak detector ( hereinafter referred to as detector ) can detect small leakage in the pipeline , and suffers little risk of blocking .This paper studied the passing ability of the detector in the vertical segment of the submarine pipeline by CFD simulation method and experiment method .Results demonstrate that the thrust of the detector has something to do with the flow velocity and the diameter ratio d/D of the detector to the pipeline , while it has nothing to do with the pipeline pressure .The thrust of the detector and the flow velocity exhibits quadratic function relation .The thrust changes slightly when d/D is less than 70%, whereas it increases dramatically with the increase of d/D when d/D is over 75%.An experimental pipeline was set up , and some model balls with different densities and sizes were designed .Comparing the experiment results and the simulation results , the correctness of the simulation method is justified .Finally , it is predicted that the prototype detector ( with outer diameter of 184 mm and density of 1 300 kg/m3 ) can smoothly pass the vertical segment of the pipeline with diameter of 203.2 mm(8 inch) and 254.0 mm(10 inch) at the normal economic velocity(0.7m/s—1.5 m/s).%球形泄漏检测器(以下简称检测器)能够探测管道中非常小的泄漏,而且卡堵风险很小.该研究通过CFD仿真和实验对检测器在海底竖直管段的通过性进行了研究.研究结果表明:流体对检测器的推力受到流速、检测器与管道的管径比d/D的影响,而与管线压力无关.检测器受到的推力与流速呈二次函数关系.当d/D小于70%时,推力变化缓慢,但当d/D大于75%时,推力随d/D的增加而迅速增加.搭建了实验管道,设计了不同密度和大小的模型球.通过比较实验结果与仿真结果,验证了仿真方法的正确性.最后,预测了检测器样机(外径为184 mm,平均密度为1300 kg/m3)能

  4. Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method

    Science.gov (United States)

    Mousa, Ghassan; Golnaraghi, Farid; DeVaal, Jake; Young, Alan

    2014-01-01

    When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.

  5. LIBS Sensor for Sub-surface CO2 Leak Detection in Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Jinesh JAIN

    2017-07-01

    Full Text Available Monitoring carbon sequestration poses numerous challenges to the sensor community. For example, the subsurface environment is notoriously harsh, with large potential mechanical, thermal, and chemical stresses, making long-term stability and survival a challenge to any potential in situ monitoring method. Laser induced breakdown spectroscopy (LIBS has been demonstrated as a promising technology for chemical monitoring of harsh environments and hard to reach places. LIBS has a real- time monitoring capability and can be used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of the probe design and the use of fiber- optics has made LIBS particularly suited for remote measurements. The paper focuses on developing a LIBS instrument for downhole high-pressure, high-temperature brine experiments, where CO2 leakage could result in changes in the trace mineral composition of an aquifer. The progress in fabricating a compact, robust, and simple LIBS sensor for widespread subsurface leak detection is presented.

  6. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  7. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  8. Visual detection of gas shows from coal core and cuttings using liquid leak detector

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E. [United States Geological Survey, Denver, CO (United States)

    2006-09-15

    Coal core descriptions are difficult to obtain, as they must be obtained immediately after the core is retrieved and before the core is closed in a canister. This paper described a method of marking gas shows on a core surface by coating the core with a water-based liquid leak detector and photographing the subsequent foam developed on the core surface while the core is still in the core tray. Coals from a borehole at the Yukon Flats Basin in Alaska and the Maverick Basin in Texas were used to illustrate the method. Drilling mud and debris were removed from the coal samples before the leak detector solution was applied onto the core surfaces. A white froth or dripping foam developed rapidly at gas shows on the sample surfaces. A hand-held lens and a binocular microscope were used to magnify the foaming action. It was noted that foaming was not continuous across the core surface, but was restricted to localized points along the surface. It was suggested that the localized point foaming may have resulted from the coring process. However, the same tendency toward point gas show across the sample surface was found in some hard, well-indurated samples that still had undisturbed bedding and other sedimentary structures. It was concluded that gas shows marked as separate foam centres may indicate a real condition of local permeability paths. Results suggested that the new gas show detection method could be used in core selection studies to reduce the costs of exploration programs. 6 refs., 4 figs.

  9. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  10. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  11. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  12. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks

  13. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main

  14. Doppler method leak detection for LMFBR steam generators. Pt. 1. Experimental results of bubble detection using small models

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    1999-05-01

    To prevent the expansion of the tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that in practical steam generators the active acoustic method can detect bubbles of 10 l/s within 10 seconds. To prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of the leak before damage spreads to neighboring tubes. To evaluate the relationship between the detection sensitivity of the Doppler method and the bubble volume and bubble size, the structural shapes and bubble flow conditions were investigated experimentally, using a small structural model. The results show that the Doppler method can detect the bubbles under bubble flow conditions, and it is sensitive enough to detect small leakages within a short time. The doppler method thus has strong potential for the detection of water leakage in SGs. (author)

  15. Identification of sewage leaks by active remote-sensing methods

    Science.gov (United States)

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  16. Research on Magnetic Flux Leakage Detection Method for Subsea Pipeline

    Institute of Scientific and Technical Information of China (English)

    HUANG Zuo-ying; QUE Pei-wen; YANG Chong-chang

    2004-01-01

    The intelligent pig based on the (MFL) is frequently used for in-line inspection of transportation pipelines. The article discusses the key technology of an MFL tool that includes the sensor's structure, the constitution of tool hardware, software and the analysis method of MFL signal.

  17. Applications of a morphological scene change detection (MSCD) for visual leak and failure identification in process and chemical engineering

    Science.gov (United States)

    Tickle, Andrew J.; Harvey, Paul K.; Smith, Jeremy S.

    2010-10-01

    Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. The additional ability to set up the system in virtually any location due to the FPGA makes it ideal for insertion into an autonomous mobile robot for patrol duties. However, security is not the only potential of this robust algorithm. This paper details how such a system can be used for the detection of leaks in piping for use in the process and chemical industries and could be deployed as stated in the above manner. The test substance in this work was water, which was pumped either as a liquid or as low pressure steam through a simple pipe configuration with holes at set points to simulate the leaks. These holes were situated randomly at either the center of a pipe (in order to simulate an impact to it) or at a joint or corner (to simulate a failed weld). Imagery of the resultant leaks, which were visualised as drips or the accumulation of steam, which where analysed using MATLAB to determine their pixel volume in order to calibrate the trigger for the MSCD. The triggering mechanism is adaptive to make it possible in theory for the type of leak to be determined by the number of pixels in the threshold of the image and a numerical output signal to state which of the leak situations is being observed. The system was designed using the DSP Builder package from Altera so that its graphical nature is easily comprehensible to the non-embedded system designer. Furthermore, all the data from the DSP Builder simulation underwent verification against MATLAB comparisons using the image processing toolbox in order to validate the results.

  18. Sensitivity and specificity of intrathecal fluorescein and white light excitation for detecting intraoperative cerebrospinal fluid leak in endoscopic skull base surgery: a prospective study.

    Science.gov (United States)

    Raza, Shaan M; Banu, Matei A; Donaldson, Angela; Patel, Kunal S; Anand, Vijay K; Schwartz, Theodore H

    2016-03-01

    The intraoperative detection of CSF leaks during endonasal endoscopic skull base surgery is critical to preventing postoperative CSF leaks. Intrathecal fluorescein (ITF) has been used at varying doses to aid in the detection of intraoperative CSF leaks. However, the sensitivity and specificity of ITF at certain dosages is unknown. A prospective database of all endoscopic endonasal procedures was reviewed. All patients received 25 mg ITF diluted in 10 ml CSF and were pretreated with dexamethasone and Benadryl. Immediately after surgery, the operating surgeon prospectively noted if there was an intraoperative CSF leak and fluorescein was identified. The sensitivity, specificity, and positive and negative predictive power of ITF for detecting intraoperative CSF leak were calculated. Factors correlating with postoperative CSF leak were determined. Of 419 patients, 35.8% of patients did not show a CSF leak. Fluorescein-tinted CSF (true positive) was noted in 59.7% of patients and 0 false positives were encountered. CSF without fluorescein staining (false negative) was noted in 4.5% of patients. The sensitivity and specificity of ITF were 92.9% and 100%, respectively. The negative and positive predictive values were 88.8% and 100%, respectively. Postoperative CSF leaks only occurred in true positives at a rate of 2.8%. ITF is extremely specific and very sensitive for detecting intraoperative CSF leaks. Although false negatives can occur, these patients do not appear to be at risk for postoperative CSF leak. The use of ITF may help surgeons prevent postoperative CSF leaks by intraoperatively detecting and confirming a watertight repair.

  19. ISS Leak Detection and Astrophysics with Lobster-Eye X-Ray Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate angular resolution and sensitivity. Successful lab demonstration of ISS leak checking, using nitrogen, electron beam, and Lobster x-ray optic. 

  20. 340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1995-03-01

    This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

  1. 40 CFR 63.1024 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1024 Section 63.1024... Standards for Equipment Leaks-Control Level 2 Standards § 63.1024 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical, but not later than 15...

  2. 40 CFR 65.105 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Leak repair. 65.105 Section 65.105... FEDERAL AIR RULE Equipment Leaks § 65.105 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it...

  3. Detection of Unauthorized Construction Equipment in Pipeline Right-of-Ways

    Energy Technology Data Exchange (ETDEWEB)

    Maurice Givens; James E. Huebler

    2004-09-30

    The leading cause of incidents on transmission pipelines is damage by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline is hit. Currently there is no method for continuously monitoring a pipeline right-of-way. Instead, companies periodically walk or fly over the pipeline to find unauthorized construction activities. Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber buried above the pipeline as a distributed sensor. A custom optical time domain reflectometer (OTDR) is used to interrogate the fiber. Key issues in the development of this technology are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. Advantages of the reflectometry technique are the ability to accurately pinpoint the location of the construction activity and the ability to separately monitor simultaneously occurring events. The basic concept of using OTDR with an optical fiber buried above the pipeline to detect encroachment of construction equipment into the right of way works. Sufficiently rapid time response is possible; permitting discrimination between encroachment types. Additional work is required to improve the system into a practical device.

  4. A small dim infrared maritime target detection algorithm based on local peak detection and pipeline-filtering

    Science.gov (United States)

    Wang, Bin; Dong, Lili; Zhao, Ming; Xu, Wenhai

    2015-12-01

    In order to realize accurate detection for small dim infrared maritime target, this paper proposes a target detection algorithm based on local peak detection and pipeline-filtering. This method firstly extracts some suspected targets through local peak detection and removes most of non-target peaks with self-adaptive threshold process. And then pipeline-filtering is used to eliminate residual interferences so that only real target can be retained. The experiment results prove that this method has high performance on target detection, and its missing alarm rate and false alarm rate can basically meet practical requirements.

  5. Development of a fiber-optic sensor for hydrogen leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from the ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.

  6. Assessment of Early Leak-Detection Capabilities at a Commercial-Scale Carbon Capture and Storage Site

    Science.gov (United States)

    Williams, M. D.; Vermeul, V. R.; Oostrom, M.; Porse, S.

    2014-12-01

    In cooperation with the U.S. Department of Energy (DOE), a large Midwest carbon capture and storage (CCS) project will upgrade a power plant with oxy-combustion technology to capture approximately 1.1 million metric tons (MMT) of CO2 each year. This project will design and construct a first-of-its-kind, near-zero emissions coal-fueled power plant that incorporates CCS. The project will implement a suite of monitoring technologies that includes early-leak-detection monitoring directly above the primary confining zone in regions of increased leakage potential (e.g., near wells that penetrate the caprock). In support of early leak-detection monitoring systems design, numerical models were developed and used to evaluate the relative value of various leak detection metrics over a range of hypothetical leakage scenarios. This preliminary modeling evaluation was based on a simplified model that assumed uniform properties for each model layer and interrogated both pressure and geochemical response in the first permeable interval overlying the primary confining zone. Simulation results indicate that pressure is likely to be the earliest indicator of leakage, given the rapid and areally extensive nature of this response. Simulated geochemical signals are much more localized and take much longer to develop than the pressure responses. Because of the buoyancy effect associated with supercritical CO2 (scCO2), early leak-detection monitoring for these leakage scenarios would be best achieved through monitoring in the upper portion of the interval near the contact with overlying low-permeability materials. Conversely, monitoring for geochemical signals associated with brine leakage exhibited less lateral spread than for scCO2 cases and detection of leakage would be best achieved through monitoring at the base of the interval. Results from these preliminary models for a suite of leakage scenarios and monitoring location distances will be presented. These preliminary models will be

  7. Infrared hyperspectral tunable filter imaging spectrometer for remote leak detection, chemical speciation, and stack/vent analysis applications

    Science.gov (United States)

    Hinnrichs, Michele

    2002-02-01

    With support from the Department of Energy, the State of California and the Gas Technology Institute, Pacific Advanced Technology is developing a small field portable infrared imaging spectrometer (Sherlock) based on the advances in hyperspectral tunable filter technology, that will be applied to the detection of fugitive gas leaks. This imaging spectrometer uses the Image Multi-spectral Sensing (IMSS) diffractive optic tunable filter invented by Pacific Advanced Technology . The Sherlock has an embedded digital signal processor for real time detection of the gas leak while surrounded by severe background noise. The infrared sensor engine is a 256 x 320 midwave cooled focal plane array which spans the spectral range from 3 to 5 microns, ideal for most hydrocarbon leaks. The technology is by no means limited to this spectral region, and can just as easily work in the longwave infrared from 8 to 12 microns for chemical detection applications. This paper will present the design of the Sherlock camera as well as processed data collected at a gas processing plant and an instrumented kiln at LSU using the prototype camera. The processed data shows that the IMSS imaging spectrometer, using an all passive approach, has the sensitivity to detect methane gas leaks at short range with a flow rate as low as 0.01 scfm2. In addition, the IMSS imaging spectrometer can measure hot gas plumes at longer ranges. As will be shown in this paper the IMSS can detect and image warm species gas additives of methane and propane in the Kiln exhaust stack. The methane injected gas with a concentration of 72 ppm and the propane with a concentration of 49 ppm (as seen by the IMSS sensor) at a range of 60 meters. The atmospheric path was a stressing environment, being hot and humid, for any imaging infrared spectrometer.

  8. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  9. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    Science.gov (United States)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  10. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, K.J.

    1992-07-01

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which is already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.

  11. Detection of UCP1 protein and measurements of dependent GDP-sensitive proton leak in non-phosphorylating thymus mitochondria.

    Science.gov (United States)

    Clarke, Kieran J; Carroll, Audrey M; O'Brien, Gemma; Porter, Richard K

    2015-01-01

    Over several years we have provided evidence that uncoupling protein 1 (UCP1) is present in thymus mitochondria. We have demonstrated the conclusive evidence for the presence of UCP1 in thymus mitochondria and we have been able to demonstrate a GDP-sensitive UCP1-dependent proton leak in non-phosphorylating thymus mitochondria. In this chapter, we show how to detect UCP1 in mitochondria isolated from whole thymus using immunoblotting. We show how to measure GDP-sensitive UCP1-dependent oxygen consumption in non-phosphorylating thymus mitochondria and we show that increased reactive oxygen species production occurs on addition of GDP to non-phosphorylating thymus mitochondria. We conclude that reactive oxygen species production rate can be used as a surrogate for detecting UCP1 catalyzed proton leak activity in thymus mitochondria.

  12. Proposed strategy for leak detection, monitoring, and mitigation (LDMM) during Hanford single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Iwatate, D.F., Westinghouse Hanford

    1996-07-08

    This document proposes a strategy to address issues related to leakage from single-shell tanks (SSTs) during sluicing. A set of criteria are proposed to capture the relevant issues pertaining to leak detection, monitoring, and mitigation (LDMM), and allow DOE-RL, the Contractor, Ecology, and Hanford Stakeholders to reach consensus on allowable leakage volumes (ALVs). Technical studies and findings that support the proposed strategy, and ALV criteria, are summarized and referenced. This document specifically addresses LDMM for SSTs at Hanford, Washington.

  13. Airborne laser scanning to detect pipeline area invasions

    Energy Technology Data Exchange (ETDEWEB)

    Falat, Denise R.; Sallem Filho, Silas [ESTEIO Engenharia e Aerolevantamentos S.A, Curitiba, PR (Brazil)

    2009-07-01

    The occupation of the surface on the pipeline right-of-ways needs constant detailing and updating. The speed of changes in the vegetation areas and the irregular growth of urbanization prove the need for quick answers on the identification of invasions and on the elaboration of technical reports showing spatially referenced elements. In this context, this technical paper seeks to identify changes on the surface, making use of data derived from airborne LASER (Light Amplification by Stimulated Emission of Radiance) sensor scanning performed in different periods in the same study right-of-way. This technique has been successfully used in a number of applications, however, in most of the cases the LASER data are combined with digital photogrammetric products. This paper aims at the identification of alterations on the surface of right-of-ways and pipelines, using data exclusively from LASER scanning, performed in distinct periods. From the data processing are generated the DSM's (Digital Surface Models). The automatic comparison between the DSM's allows the identification of changes occurred between the surveys. Based on the configuration of the altered areas, we then expect to distinguish the several types of changes occurred as: new buildings, the advance of vegetation over right-of-ways and objects. For the validation of this methodology, photographic images of the regions have been used, obtained through photogrammetry in the same period of the LASER scanning. (author)

  14. A survey and description of candidate technologies to support single shell tank waste retrieval, leak detection, monitoring, and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Teel, S.S.; Wegener, W.H.; Iwatate, D.F.

    1995-09-01

    This report was initially designed to provide a comprehensive review of potential leak detection technologies (LDTs). To this end, the report would contain several sections outlining the selection process. The purpose was twofold:(l) the reader would have a clear understanding of why specific technologies were recommended or not recommended, and (2) the reader could apply the same process in the future as new LDTs become available. Curtailment of project scope has prevented the development of the requisite judging criteria. The report has been modified accordingly. Section 2 of this report presents the baseline and guiding assumptions that were used to judge the LDTs. These assumptions include the environment where the technologies would be employed, the potential leak detection targets, and anticipated leak mechanisms. Section 3 presents a brief review of the methods used to arrive at the recommended LDTs. It also includes a description of the different technology families considered. Section 4 presents the recommended LDTs along with detailed descriptions of each that include sensitivities, operating parameters, and costs.

  15. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2002-07-19

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design of the diode laser driver and high-speed detector electronics and programming of the custom optical time domain reflectometer.

  16. Doppler method leak detection for LMFBR steam generators. Pt. 2. Detection characteristics of bubble in-water using large scale SG model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2000-06-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that, in practical steam generators, the active acoustic method can detect bubbles of 10 l/s within 10 seconds. However to prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of a leak before damage spreads to neighboring tubes. The detection sensitivity of the Doppler method and the influence of background noise were investigated experimentally. In-water experiments were performed using an SG full-sector model that simulates actual SGs. The results show that the Doppler method can detect bubbles of 0.1 l/s (equivalent to a water leak rate of about 0.1 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  17. Study on inference model of pipelines corrosion leak fire based on Bayesian networks%管道腐蚀泄漏火灾的贝叶斯网络推理模型研究

    Institute of Scientific and Technical Information of China (English)

    左哲

    2015-01-01

    In order to research evolutionary laws of unconfined vapor cloud explosion ( UVCE) induced by combustible gas leak in long-distance oil and gas pipelines, Bayesian networks on buried pipelines corrosion leak fire were built by analyzing event nodes on inner and outer wall corrosion failure, combustible gas leak, the gas cloud diffusion and UVCE. The state ranges and discrete methods of node variables were studied. Priori probability and conditional probability distribution of the node variables were set by analyzing on accident statistics data and expert judgements. Bayesian network inference strategy was developed, the sensitivities of each network node variable on inference results were analyzed by researching on evolution mechanism of corrosion leak fire, and the rationality of the model was verified. The results show that there are greater uncer-tainty in the process of pipeline corrosion leaks and secondary disaster. The uncertainty presents in diverse intermediate event status value and probability of accident evolutionary path is influenced by the model input conditions. Bayesian network ap-proach has a greater advantage to describe the dependency relations of accident intermediate nodes, and it can be used to measure uncertainties of accidents risk quantitatively.%为了研究长输管道腐蚀泄漏及蒸气云爆炸事故的演化规律,通过对埋地管道内(外)壁腐蚀失效、燃气泄漏、气体云团扩散及蒸气云爆炸等4阶段事件进行分析,构建埋地管线腐蚀泄漏火灾的贝叶斯网络模型。研究网络结构中节点变量的取值范围及离散化方法,并基于对事故统计和专家分析判断,设定节点变量的先验概率,量化节点关联的条件概率分布。在对贝叶斯网络推理策略研究的基础上,考察节点变量对推理结果的敏感性,验证模型的合理性。结果表明,长输管道腐蚀泄漏及次生灾害事件过程具有较大的不确定性,主要体现在

  18. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2003-04-17

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 1st quarter of 2003 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. The detector was redesigned reducing the noise floor by over a factor of ten. While GTI's OTDR was being improved, a new, commercial OTDR was used to verify that the technique is capable of measuring one pound continuous force applied to the Hergalite. Optical fibers were installed at the ANR Pipeline test site along an operating pipeline.

  19. A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies

    Energy Technology Data Exchange (ETDEWEB)

    Ganiler, Onur; Oliver, Arnau; Diez, Yago; Freixenet, Jordi; Llado, Xavier [University of Girona, VICOROB Computer Vision and Robotics Group, Girona (Spain); Vilanova, Joan C. [Girona Magnetic Resonance Center, Girona (Spain); Beltran, Brigitte [Dr. Josep Trueta University Hospital, Institut d' Investigacio Biomedica de Girona, Girona (Spain); Ramio-Torrenta, Lluis [Dr. Josep Trueta University Hospital, Institut d' Investigacio Biomedica de Girona, Multiple Sclerosis and Neuroimmunology Unit, Girona (Spain); Rovira, Alex [Vall d' Hebron University Hospital, Magnetic Resonance Unit, Department of Radiology, Barcelona (Spain)

    2014-05-15

    Time-series analysis of magnetic resonance images (MRI) is of great value for multiple sclerosis (MS) diagnosis and follow-up. In this paper, we present an unsupervised subtraction approach which incorporates multisequence information to deal with the detection of new MS lesions in longitudinal studies. The proposed pipeline for detecting new lesions consists of the following steps: skull stripping, bias field correction, histogram matching, registration, white matter masking, image subtraction, automated thresholding, and postprocessing. We also combine the results of PD-w and T2-w images to reduce false positive detections. Experimental tests are performed in 20 MS patients with two temporal studies separated 12 (12M) or 48 (48M) months in time. The pipeline achieves very good performance obtaining an overall sensitivity of 0.83 and 0.77 with a false discovery rate (FDR) of 0.14 and 0.18 for the 12M and 48M datasets, respectively. The most difficult situation for the pipeline is the detection of very small lesions where the obtained sensitivity is lower and the FDR higher. Our fully automated approach is robust and accurate, allowing detection of new appearing MS lesions. We believe that the pipeline can be applied to large collections of images and also be easily adapted to monitor other brain pathologies. (orig.)

  20. High Temperature Humidity Sensor for Detection of Leak Through Slits and Cracks in Pressurized Nuclear Power Reactor Pipes

    Directory of Open Access Journals (Sweden)

    Debdulal Saha

    2007-03-01

    Full Text Available The leak before break (LBB concept is well known to nuclear power reactor. The problem is common to water power reactor. This is based on the premise that a detectable leak will develop before catastrophic break occurs. The main purpose of the present study is to develop tape cast MgCr2O4+35mole% TiO2 and gel cast g-Al2O3 humidity sensor for use in LBB applications at 3000C. The material capacitance varies with transient injection of water vapour adsorption. In actual plant, the sensors are placed on a steam pipe surrounded by heat insulation. The pipe unites the nuclear reactor and power generator. The analysis of humidity distribution in the annulus is calculated assuring leak rate 0.1gpm in a 30 m long tube. In this paper, analysis is done on the basis of the two types of sensor using AC frequency. Performance characteristics are observed for the LLB application.

  1. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P.

    1993-12-08

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  2. Development of Deposit Detection System in Pipelines of the Steelworks Using CS-137 Gamma-Ray

    Science.gov (United States)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-02-01

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

  3. Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform

    CERN Document Server

    Stroeer, Alexander

    2009-01-01

    The Ninja data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert Huang Transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in coincidence, with 43 missed events characterized by signal to noise ratio SNR less than 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap...

  4. Bayesian belief network for CO2 leak detection by near-surface flux rates for CO2 and perfluorocarbon (PFC) tracer

    Science.gov (United States)

    Yang, Y.; Small, M. J.; Ogretim, E.; Gray, D. D.; Bromhal, G. S.; Strazisar, B. R.; Wells, A. W.

    2010-12-01

    To incorporate the use of multiple geologic sequestration monitoring techniques, a Bayesian Belief Network (BBN) for leak detection inference is applied to integrate the information provided by different techniques deployed at a site. In this study, two monitoring methods, near-surface soil CO2 flux and perfluorocarbon (PFC) tracer concentration, are included in the BBN. First, possible near-surface flux rates for CO2 and PFC tracer as a function of distance from a leakage point are simulated by TOUGH2, given different leakage rates and permeabilities. Then, the natural near-surface CO2 flux and background PFC tracer concentration measured at the Zero Emission Research and Technology (ZERT) site are used to determine critical values for leak inference and to calculate the probabilities of leak detection given a monitoring network. A BBN of leak detection is established by combing the TOUGH2 simulations and the background characterization of near-surface CO2 flux and PFC tracer at the sequestration site. The results show a positive correlation between the detection abilities of PFC tracer and soil CO2 flux, but the PFC tracer is more sensitive for detecting a leak in most cases. The BBN of leak detection including both soil CO2 flux and PFC tracer concentration gives an integrated probability estimation of leak detection for different permeability and leakage rates for a given monitoring network. A BBN developed using the proposed methodology can be used to help site engineers and decision makers to evaluate leakage signals and the risk of undetected leakage, given a suite of monitoring techniques and site conditions.

  5. 1.6 Micron Fiber Laser Source for CH4 Gas Leak Detection

    Directory of Open Access Journals (Sweden)

    Cézard Nicolas

    2016-01-01

    Full Text Available We report on the development of a new pulsed fiber laser source at 1645.5 nm, based on stimulated Raman amplification. This laser source is intended to be used in a future lidar system, dedicated to methane gas leak monitoring in the vicinity of industrial facilities. In this paper we discuss reasons for choosing the 1645.5 nm wavelength, and then we present the two-stage amplification architecture of our fiber laser source under development. Recent experimental results are provided and perspectives are drawn.

  6. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2003-01-29

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 4th quarter of 2002 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. It also included installation of optical fibers at the test site along an operating pipeline.

  7. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2002-10-30

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design and construction of the diode laser driver and high-speed detector electronics. Fine-tuning of the electronics is proceeding. A new test site along an operating pipeline has been obtained.

  8. Pipeline Processing with an Iterative, Context-Based Detection Model

    Science.gov (United States)

    2016-01-22

    and D. Dodge2 5d. PROJECT NUMBER 1010 5e. TASK NUMBER PPM00018850 5f. WORK UNIT NUMBER EF122183 7. PERFORMING ORGANIZATION NAME(S) AND...15. SUBJECT TERMS aftershock sequences, repeating explosions, detection framework, pattern detectors, correlation detectors, subspace detectors...2°x2° bins. The red stippled curves denote distances of 20, 95 and 144 degrees from ARCES. ............... 74 Figure 40: Predicted detection

  9. MONITORING TECHNOLOGY FOR EARLY DETECTION OF INTERNAL CORROSION FOR PIPELINE INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn M. Light; Sang Y. Kim; Robert L. Spinks; Hegeon Kwun; Patrick C. Porter

    2003-09-01

    Transmission gas pipelines are an important part of energy-transportation infrastructure vital to the national economy. The prevention of failures and continued safe operation of these pipelines are therefore of national interest. These lines, mostly buried, are protected and maintained by protective coating and cathodic protection systems, supplemented by periodic inspection equipped with sensors for inspection. The primary method for inspection is ''smart pigging'' with an internal inspection device that traverses the pipeline. However, some transmission lines are however not suitable for ''pigging'' operation. Because inspection of these ''unpiggable'' lines requires excavation, it is cost-prohibitive, and the development of a methodology for cost-effectively assessing the structural integrity of ''unpiggable'' lines is needed. This report describes the laboratory and field evaluation of a technology called ''magnetostrictive sensor (MsS)'' for monitoring and early detection of internal corrosion in known susceptible sections of transmission pipelines. With the MsS technology, developed by Southwest Research Institute{reg_sign} (SwRI{reg_sign}), a pulse of a relatively low frequency (typically under 100-kHz) mechanical wave (called guided wave) is launched along the pipeline and signals reflected from defects or welds are detected at the launch location in the pulse-echo mode. This technology can quickly examine a long length of piping for defects, such as corrosion wastage and cracking in circumferential direction, from a single test location, and has been in commercial use for inspection of above-ground piping in refineries and chemical plants. The MsS technology is operated primarily in torsional guided waves using a probe consisting of a thin ferromagnetic strip (typically nickel) bonded to a pipe and a number of coil-turns (typically twenty or so turns) wound

  10. MONITORING TECHNOLOGY FOR EARLY DETECTION OF INTERNAL CORROSION FOR PIPELINE INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn M. Light; Sang Y. Kim; Robert L. Spinks; Hegeon Kwun; Patrick C. Porter

    2003-09-01

    Transmission gas pipelines are an important part of energy-transportation infrastructure vital to the national economy. The prevention of failures and continued safe operation of these pipelines are therefore of national interest. These lines, mostly buried, are protected and maintained by protective coating and cathodic protection systems, supplemented by periodic inspection equipped with sensors for inspection. The primary method for inspection is ''smart pigging'' with an internal inspection device that traverses the pipeline. However, some transmission lines are however not suitable for ''pigging'' operation. Because inspection of these ''unpiggable'' lines requires excavation, it is cost-prohibitive, and the development of a methodology for cost-effectively assessing the structural integrity of ''unpiggable'' lines is needed. This report describes the laboratory and field evaluation of a technology called ''magnetostrictive sensor (MsS)'' for monitoring and early detection of internal corrosion in known susceptible sections of transmission pipelines. With the MsS technology, developed by Southwest Research Institute{reg_sign} (SwRI{reg_sign}), a pulse of a relatively low frequency (typically under 100-kHz) mechanical wave (called guided wave) is launched along the pipeline and signals reflected from defects or welds are detected at the launch location in the pulse-echo mode. This technology can quickly examine a long length of piping for defects, such as corrosion wastage and cracking in circumferential direction, from a single test location, and has been in commercial use for inspection of above-ground piping in refineries and chemical plants. The MsS technology is operated primarily in torsional guided waves using a probe consisting of a thin ferromagnetic strip (typically nickel) bonded to a pipe and a number of coil-turns (typically twenty or so turns) wound

  11. 空间站泄漏监测报警方案设想——绝压法%Assumption on Leak Monitoring and Alarming for Space Station --Absolute Pressure Leak Detection

    Institute of Scientific and Technical Information of China (English)

    回天力; 刘刚; 高静; 贾东永; 杨纯; 孙国辉

    2012-01-01

    介绍了各国空间站泄漏监测技术的背景及绝压法泄漏监测的原理,在分析空间站舱体内、外环境的基础上提出了空间站泄漏监测报警模式,及通过测量舱内氮分压进行泄漏监测的技术方案,提出了"反应时间占用率"的概念并以此作为评判监测报警效果的依据,最终对比得出氮分压间接监测法可作为有航天员值守期间空间站的泄漏监测与报警方案。%The background of space station leak monitoring technology and the principle of absolute pressure leak detection are introduced. Based on the analysis of internal and external environment of space station cabin, the monitoring and alarming mode for leak detection is proposed, and the technical scheme of leak monitoring by measuring the partial pressure of nitrogen in the cabin is also introduced. The concept of "Occupation Ratio of Response Time" is put for- ward and taken as a basis for judging the effect of monitoring and alarming. It is concluded that the indirect monitoring method by measuring the partial pressure of nitrogen can be used as a leak monitoring and alarming method when the space station is tended by astronauts.

  12. How Useful is Glucose Detection in Diagnosing Cerebrospinal Fluid Leak? The Rational Use of CT and Beta-2 Transferrin Assay in Detection of Cerebrospinal Fluid Fistula

    Directory of Open Access Journals (Sweden)

    Danny T.M. Chan

    2004-01-01

    Conclusions: Glucose detection using Glucostix test strips is not recommended as a confirmatory test due to its lack of specificity and sensitivity. In the presence of a skull base fracture on CT and a clinical CSF leak, there is no need for a further confirmatory test. In cases where a confirmatory test is needed, the beta-2 transferrin assay is the test of choice because of its high sensitivity and specificity.

  13. Transient wave-blockage interaction and extended blockage detection in elastic water pipelines

    Science.gov (United States)

    Duan, H. F.; Lee, P. J.; Ghidaoui, M. S.; Tuck, J.

    2014-04-01

    Extended partial blockages are common in pressurized water pipelines and can result in the wastage of energy, the reduction in system carrying capacity and the increased potential for contamination. This paper investigates the transient wave-blockage interaction and its application to extended blockage detection in pipelines, where blockage-induced changes to the system resonant frequencies are observed. The frequency shifting is first inspected and explained in this study through wave perturbation analysis, providing a theoretical confirmation for the result that unlike discrete blockages, extended blockages cause resonant frequency shifts in the system. Furthermore, an analytical expression is derived for the relationship between the blockage properties and the resonant frequency shifts and is used to detect the blockages in this study. The obtained results are validated through both numerical applications and laboratory experiments, where the accuracy and efficiency of the developed method for extended blockage detection are tested.

  14. Exploring the Feasibility of Robotic Pipeline Surveillance for Detecting Crude Oil Spills in the Niger Delta

    Directory of Open Access Journals (Sweden)

    O’tega A. Ejofodomi

    2016-07-01

    Full Text Available Oil spills have significant negative effects on the environment in which they occur, including damage to aquatic, aerial and terrestrial life. In the oil-producing Niger Delta, oil spillage is largely due to pipeline corrosion and crude oil theft and sabotage. This paper explores the feasibility of utilizing small mobile robots for early detection of ground oil leakage, a methodology defined as Ground Robotic Oil Spill Surveillance (GROSS. GROSS robot was constructed using iRobot Create, element serial Bluetooth Adapter Module (BAM and liquefied petroleum gas (LPG sensor, and programmed using MATLAB to patrol a pipeline route 5 m in length. To simulate oil spills, varying volumes of gasoline - 30, 59, 118, 236, 354, 472, 590, and 708 ml – were placed along the pipeline route prior to the robot‟s patrol. GROSS robot demonstrated capability of detecting spills as little as 0.2, 0.5, and 0.7 liters when running at 100, 200, and 300 mm/s respectively. Detection distance between LPG sensor and spill ranged from 76 – 157 cm. GROSS robots could assist in early detection of oil spills. Future work includes improvement in GROSS robot design and determining the effect of soil absorption and API density on the robot‟s ability to detect spills.

  15. 油箱泄漏的超声检测方法%Ultrasonic Leak Detection Methods of Fuel Tank

    Institute of Scientific and Technical Information of China (English)

    薛花; 吴迪; 王亚平; 赵振宁; 陈天夫; 滕永平

    2016-01-01

    The paper analyzed the factors influencing the bubble detection rate in ultrasonic leak detection for fuel tank,studied the characteristics of ultrasonic reflection field of transducer,and proposed a new 8-channel parallel cyclic scanning detection mode, maximizing the repetition frequency of each transducer.Then comparative experiment tests were conducted between our 8-channel parallel ultrasonic leak detector and the traditional one.The results showed that,compared to single-channel scanning mode,the multi-channel parallel testing method had much higher detection rates when the single air bubble or long time interval bubbles needed to be detected.So this method was more effective to detect smaller tank leakage (μm diameter).%分析了影响油箱泄漏超声检测中气泡检出率的相关因素,研究了超声检测探头声场特点,提出了8路并行循环检测的工作模式,最大限度地提高了每个探头的重复工作频率.将自行搭建的8路并行超声波检测装置和传统超声测漏仪器进行了对比试验.结果表明,相对于单路扫描工作方式,多路并行检测对产生时间间隔较大气泡和单个气泡具有较高的检出率,可以检出更微小的缺陷(微米量级).

  16. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  17. CSF leak

    Science.gov (United States)

    ... rarely). Drainage of CSF from the nose (rarely). Exams and Tests The health care provider will perform ... usually recommended. Drinking more fluids, especially drinks with caffeine, can help slow or stop the leak and ...

  18. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1997-05-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  19. Damage detection of an in-service condensation pipeline joint

    Science.gov (United States)

    Briand, Julie; Rezaei, Davood; Taheri, Farid

    2010-04-01

    The early detection of damage in structural or mechanical systems is of vital importance. With early detection, the damage may be repaired before the integrity of the system is jeopardized, resulting in monetary losses, loss of life or limb, and environmental impacts. Among the various types of structural health monitoring techniques, vibration-based methods are of significant interest since the damage location does not need to be known beforehand, making it a more versatile approach. The non-destructive damage detection method used for the experiments herein is a novel vibration-based method which uses an index called the EMD Energy Damage Index, developed with the aim of providing improved qualitative results compared to those methods currently available. As part of an effort to establish the integrity and limitation of this novel damage detection method, field testing was completed on a mechanical pipe joint on a condensation line, located in the physical plant of Dalhousie University. Piezoceramic sensors, placed at various locations around the joint were used to monitor the free vibration of the pipe imposed through the use of an impulse hammer. Multiple damage progression scenarios were completed, each having a healthy state and multiple damage cases. Subsequently, the recorded signals from the healthy and damaged joint were processed through the EMD Energy Damage Index developed in-house in an effort to detect the inflicted damage. The proposed methodology successfully detected the inflicted damages. In this paper, the effects of impact location, sensor location, frequency bandwidth, intrinsic mode functions, and boundary conditions are discussed.

  20. 75 FR 63774 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-10-18

    ... an operator's Supervisory Control and Data Acquisition (SCADA) system for controlling the pipeline... activation timing, or methods for integration of EFRD operation with an operator's SCADA and leak...

  1. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2004-07-26

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. A brighter diode laser increased our sensitivity by a factor of ten. Detection of load fluctuations with frequencies greater than 5 Hertz is also possible. The next step is beginning measurements at the field site.

  2. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2004-04-12

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. Detection of load fluctuations with frequencies greater than 1 Hertz is also possible. We have also purchased a brighter diode laser for use with the multimode fibers that should improve our sensitivity by a factor of ten.

  3. Intrusion detection on oil pipeline right of way using monogenic signal representation

    Science.gov (United States)

    Nair, Binu M.; Santhaseelan, Varun; Cui, Chen; Asari, Vijayan K.

    2013-05-01

    We present an object detection algorithm to automatically detect and identify possible intrusions such as construction vehicles and equipment on the regions designated as the pipeline right-of-way (ROW) from high resolution aerial imagery. The pipeline industry has buried millions of miles of oil pipelines throughout the country and these regions are under constant threat of unauthorized construction activities. We propose a multi-stage framework which uses a pyramidal template matching scheme in the local phase domain by taking a single high resolution training image to classify a construction vehicle. The proposed detection algorithm makes use of the monogenic signal representation to extract the local phase information. Computing the monogenic signal from a two dimensional object region enables us to separate out the local phase information (structural details) from the local energy (contrast) thereby achieving illumination invariance. The first stage involves the local phase based template matching using only a single high resolution training image in a local region at multiple scales. Then, using the local phase histogram matching, the orientation of the detected region is determined and a voting scheme gives a certain weightage to the resulting clusters. The final stage involves the selection of clusters based on the number of votes attained and using the histogram of oriented phase feature descriptor, the object is located at the correct orientation and scale. The algorithm is successfully tested on four different datasets containing imagery with varying image resolution and object orientation.

  4. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images.

  5. Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    Slugging flow in offshore oil & gas multi-phase transportation pipelines cause big challenges as the flow regime induces flow and pressure oscillations in the multi-phase pipelines. The negative impacts of the most severe slugs are significant and thus the elimination of slugging flow....... Based on the results the study concludes that the ERT is able to detect the slug very well when the oil and water is well mixed. Furthermore the traditional pressure transmitters have the limitation that pressure variations can be caused by other operating conditions than slug, such as change...... in the back pressure from control valves. The biggest limitation using ERT is the lack of ability to distinguish between gas and oil, and thus the ERT can only be used as an effective slug detect measurement when the oil-to-water ratio is low....

  6. cuInspiral: prototype gravitational waves detection pipeline fully coded on GPU using CUDA

    CERN Document Server

    Bosi, Leone B

    2010-01-01

    In this paper we report the prototype of the first coalescing binary detection pipeline fully implemented on NVIDIA GPU hardware accelerators. The code has been embedded in a GPU library, called cuInspiral and has been developed under CUDA framework. The library contains for example a PN gravitational wave signal generator, matched filtering/FFT and detection algorithms that have been profiled and compared with the corresponding CPU code with dedicated benchmark in order to provide gain factor respect to the standard CPU implementation. In the paper we present performances and accuracy results about some of the main important elements of the pipeline, demonstrating the feasibility and the chance of obtain an impressive computing gain from these new many-core architectures in the perspective of the second and third generations of gravitational wave detectors.

  7. Semi-empirical AGN detection threshold in spectral synthesis studies of Lyman-continuum-leaking early-type galaxies

    CERN Document Server

    Cardoso, Leandro S M; Papaderos, Polychronis

    2016-01-01

    Various lines of evidence suggest that the cores of a large portion of early-type galaxies (ETGs) are virtually evacuated of warm ionised gas. This implies that the Lyman-continuum (LyC) radiation produced by an assumed active galactic nucleus (AGN) can escape from the nuclei of these systems without being locally reprocessed into nebular emission, which would prevent their reliable spectroscopic classification as Seyfert galaxies with standard diagnostic emission-line ratios. The spectral energy distribution (SED) of these ETGs would then lack nebular emission and be essentially composed of an old stellar component and the featureless power-law (PL) continuum from the AGN. A question that arises in this context is whether the AGN component can be detected with current spectral population synthesis in the optical, specifically, whether these techniques effectively place an AGN detection threshold in LyC-leaking galaxies. To quantitatively address this question, we took a combined approach that involves spectr...

  8. Detection of Legionella, L. pneumophila and Mycobacterium Avium Complex (MAC along Potable Water Distribution Pipelines

    Directory of Open Access Journals (Sweden)

    Harriet Whiley

    2014-07-01

    Full Text Available Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05 increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.

  9. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    Energy Technology Data Exchange (ETDEWEB)

    James E. Huebler

    2003-07-17

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the custom OTDR. An avalanche photo-detector, was purchased. It was able to detect weights on the Hergalite fiber as low as one pound. We are also investigating a brighter laser for use with the multimode fibers.

  10. Assessment of Current Inservice Inspection and Leak Monitoring Practices for Detecting Materials Degradation in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simonen, Fredric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Muscara, Joseph [US Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kupperman, David S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    An assessment was performed to determine the effectiveness of existing inservice inspection (ISI) and leak monitoring techniques, and recommend improvements, as necessary, to the programs as currently performed for light water reactor (LWR) components. Information from nuclear power plant (NPP) aging studies and from the U. S. Nuclear Regulatory Commission’s Generic Aging Lessons Learned (GALL) report (NUREG-1801) was used to identify components that have already experienced, or are expected to experience, degradation. This report provides a discussion of the key aspects and parameters that constitute an effective ISI program and a discussion of the basis and background against which the effectiveness of the ISI and leak monitoring programs for timely detection of degradation was evaluated. Tables based on the GALL components were used to systematically guide the process, and table columns were included that contained the ISI requirements and effectiveness assessment. The information in the tables was analyzed using histograms to reduce the data and help identify any trends. The analysis shows that the overall effectiveness of the ISI programs is very similar for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). The evaluations conducted as part of this research showed that many ISI programs are not effective at detecting degradation before its extent reached 75% of the component wall thickness. This work should be considered as an assessment of NDE practices at this time; however, industry and regulatory activities are currently underway that will impact future effectiveness assessments. A number of actions have been identified to improve the current ISI programs so that degradation can be more reliably detected.

  11. Methane, Ethane, and Propane Sensor for Real-time Leak Detection and Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Roscioli, Joseph R. [Aerodyne Research, Inc., Billerica, MA (United States); Herndon, Scott [Aerodyne Research, Inc., Billerica, MA (United States); Nelson, David D. [Aerodyne Research, Inc., Billerica, MA (United States); Yacovitch, Tara [Aerodyne Research, Inc., Billerica, MA (United States)

    2017-03-24

    The Phase I effort demonstrated the technical viability of a fast, sensitive, mobile hydrocarbon monitor. The instrument will enable the oil and gas industry, researchers, and regulators to rapidly identify and chemically profile leaks from facilities. This capability will allow operators to quickly narrow down and mitigate probable leaking equipment, minimizing product loss and penalties due to regulatory non-compliance. During the initial development phase, we demonstrated operation of a prototype monitor that is capable of measuring methane, ethane, and propane at sub-part-per-billion sensitivities in 1 second, using direct absorption infrared spectroscopy. To our knowledge, this is the first instrument capable of fast propane measurements at atmospheric concentrations. In addition, the electrical requirements of the monitor have been reduced from the 1,200 W typical of a spectrometer, to <500 W, making it capable of being powered by a passenger vehicle, and easily deployed by the industry. The prototype monitor leverages recent advances in laser technology, using high-efficiency interband cascade lasers to access the 3 μm region of the mid-infrared, where the methane, ethane, and propane absorptions are strongest. Combined with established spectrometer technology, we have achieved precisions below 200 ppt for each compound. This allows the monitor to measure fast plumes from oil and gas facilities, as well as ambient background concentrations (typical ambient levels are 2 ppm, 1.5 ppb, and 0.7 ppb for methane, ethane and propane, respectively). Increases in instrument operating pressure were studied in order to allow for a smaller 125 W pump to be used, and passive cooling was explored to reduce the cooling load by almost 90% relative to active (refrigerated) cooling. In addition, the simulated infrared absorption profiles of ethane and propane were modified to minimize crosstalk between species, achieving <1% crosstalk between ethane and propane. Finally, a

  12. Accuracy improvement in leak detection of charcoal adsorbers by halide pulse integration method

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, B.J.; Banks, E.M. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    Due to the phaseout of the supply of R-11, which is used as a charcoal adsorber leak-testing agent, several new substitutes have been suggested and tested. Pulse testing using agents with higher boiling points produced longer response times (due to prolonged evaporation and dispersion times). This longer evaporation time alters the pulse shape and lowers the peak concentration. Since the dispersion and evaporation time under different ambient condition are unpredictable, the peak concentration becomes unpredictable as well. One way to eliminate this unpredictability is to determine the area under the curve (of concentration versus time) after test-agent injection rather than the peak concentration (height). This value should be independent of the injection time and evaporation rate as long as the volume of the test agent injected remains constant. Thus, tests were performed with a constant volume injection of test agent but with different injection times and evaporation rates. The area under the curve of concentration versus time was then compared with the peak concentration for each injection. 4 refs., 1 fig.

  13. Performance comparison of TDR-based systems for permanent and diffused detection of water content and leaks

    Science.gov (United States)

    Cataldo, A.; De Benedetto, E.; Cannazza, G.; Huebner, C.; Trebbels, D.

    2017-01-01

    In this work, the performance of three time domain reflectometry (TDR) instruments (with different hardware architectures, specifications and costs) is comparatively assessed. The goal is to evaluate the performance of low-cost TDR instrumentation, in view of the development of a completely permanent TDR-based monitoring solution, wherein the costs of the instrument is so low, that it can be left on-site, even unguarded, and controlled remotely. Without losing generality, the applications considered for the comparative experiments are the TDR-based detection of leaks in underground pipes and, more in general, of soil water content variations. For this reason, both laboratory and in-the-field experiments are carried out by comparatively using three TDR instruments, in conjunction with wire-like sensing elements (SEs).

  14. Development of a water leak detection system for LMFBR steam generators. Pt. 2; General planning of sensor arrangement for active acoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.)

    1994-04-01

    Development of a water leak detection system with short response time and high sensitivity for LMFBR steam generators is required to prevent failure propagation and to maintain structural integrity of steam generators. A new type of leak detection method, active acoustic method, which observes gas bubbles accompanying the leak using sonic waves is being developed. In this study, some series of experiments are carried out to investigate; (1) attenuation of sonic wave in a typical SG structure, (2) suitable method to attach waveguides to the SG shell, and (3) possibility of reflex method. Furthermore, a reference sensor arrangement for active acoustic method is selected based on the experimental results as the basis of future studies. (author).

  15. Research on On-line detection system for natural gas pipeline

    Institute of Scientific and Technical Information of China (English)

    Zuo Jianyong; Yan Guozheng; Ding Guoqing; Fu Xiguang; Zhang Yunwei

    2005-01-01

    Four methods for testing the thickness and defect of pipeline are compared and analyzed in this paper. The testing principle of magnetic leakage flux based on electromagnetism is discussed in detail. From the experiments of sensor character, the effects caused by some factors are found, which give some important information for sensor design, and this method is proved reasonable and effective. The mechanical and electrical structures of inspection equipment, as well as its working principle and technical features are introduced. In this paper, control flow and software design are discussed, too. This detection system has been successfully developed. Experiments show that this detection system has high resolution and can be put into practice.

  16. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  17. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  18. Discrete wavelet transform-based fault diagnosis for driving system of pipeline detection robot arm

    Institute of Scientific and Technical Information of China (English)

    Deng Huiyu; Wang Xinli; Ma Peisun

    2005-01-01

    A real-time wavelet multi-resolution analysis (MRA)-based fault detection algorithm is proposed. The first stage detailed MRA signals extracted from the original signals were used as the criteria for fault detection. By measuring sharp variations in the detailed MRA signals, faults in the motor driving system of pipeline detection robot arm could be detected. The fault type was then identified by comparison of the three-phase MRA sharp variations. The effects of the faults were examined. The simulation results show that this algorithm is effective and robust, it is promising for fault detection in a robot's joint driving system. The method is simple, rapid and it can operate in real time.

  19. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  20. Detection of active bile leak with Gd-EOB-DTPA enhanced MR cholangiography: Comparison of 20–25 min delayed and 60–180 min delayed images

    Energy Technology Data Exchange (ETDEWEB)

    Cieszanowski, Andrzej, E-mail: andrzej.cieszanowski@wum.edu.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Stadnik, Anna, E-mail: aniaws@yahoo.com [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Lezak, Aleksandra, E-mail: aleksandralezak@gmail.com [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Maj, Edyta, E-mail: em26@wp.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Zieniewicz, Krzysztof, E-mail: krzysztof.zieniewicz@wum.edu.pl [Chair and Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Rowinska-Berman, Katarzyna, E-mail: kasiarowinska@wp.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Grudzinski, Ireneusz P., E-mail: ireneusz.grudzinski@wum.edu.pl [Department of Toxicology, Medical University of Warsaw, Faculty of Pharmacy, ul. Banacha 1, 02-097 Warsaw (Poland); Krawczyk, Marek, E-mail: marek.krawczyk@wum.edu.pl [Chair and Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland); Rowiński, Olgierd, E-mail: olgierd.rowinski@wum.edu.pl [2nd Department of Clinical Radiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa (Poland)

    2013-12-01

    Objectives: The purpose of this study was to assess the value of contrast-enhanced magnetic resonance cholangiography (MRC) performed in different time delays after injection of gadoxetic acid disodium (Gd-EOB-DTPA) for the diagnosis of active bile leak. Methods: This retrospective analysis included Gd-EOB-DTPA enhanced MR images of 34 patients suspected of bile leak. Images were acquired 20–25 min after Gd-EOB-DTPA injection. If there was inadequate contrast in the bile ducts then delayed images after 60–90 min and 150–180 min were obtained. Results were correlated with intraoperative findings, ERCP results, clinical data, laboratory tests, and follow-up examinations. Results: Gd-EOB-DTPA enhanced MRC yielded an overall sensitivity of 96.4%, specificity of 100% and accuracy of 97.1% for the diagnosis of an active bile leak. The sensitivity of 20–25 min delayed MR images was 42.9%, of combined 20–25 min and 60–90 min delayed images was 92.9% and of combined 20–25 min, 60–90 min and 150–180 min delayed images was 96.4%. Conclusions: Gd-EOB-DTPA enhanced MRC utilizing delayed phase images was effective for detecting the presence and location of active bile leaks. The images acquired 60–180 min post-injection enabled identification of bile leaks even in patients with a dilated biliary system or moderate liver dysfunction.

  1. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  2. Magnetic anomaly detection (MAD) of ferromagnetic pipelines using principal component analysis (PCA)

    Science.gov (United States)

    Sheinker, Arie; Moldwin, Mark B.

    2016-04-01

    The magnetic anomaly detection (MAD) method is used for detection of visually obscured ferromagnetic objects. The method exploits the magnetic field originating from the ferromagnetic object, which constitutes an anomaly in the ambient earth’s magnetic field. Traditionally, MAD is used to detect objects with a magnetic field of a dipole structure, where far from the object it can be considered as a point source. In the present work, we expand MAD to the case of a non-dipole source, i.e. a ferromagnetic pipeline. We use principal component analysis (PCA) to calculate the principal components, which are then employed to construct an effective detector. Experiments conducted in our lab with real-world data validate the above analysis. The simplicity, low computational complexity, and the high detection rate make the proposed detector attractive for real-time, low power applications.

  3. Detection of metal defects on gas distribution pipeline by remote field eddy current (RFEC) using finite-element analysis; Analyse par la methode des elements finis de la detection des defauts metalliques d'un gazoduc en utilisant les courants de Foucault en champ lointain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H. [R and D Center, Seoul City Gas Co., Ltd. (Korea, Republic of); Yoon, Y.S. [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejun (Korea, Republic of)

    2001-07-01

    It is necessary to find out whether there are metal defects on underground gas distribution pipelines without excavation in order to establish safety strategies for replacement or maintenance. The metal defects are classified into general corrosion, stress corrosion cracking, lamination, pits, and metal loss, which cause leak or partial damages to a gas pipeline. Therefore, it is required to develop an effective method in the form of an in-line inspection concept that could be implemented internally into a gas pipeline. In this study, theoretical formulations of the magnetic vector potential and magnetic flux density including axial and radial wave numbers based on Maxwell equations are presented analytically to find out the changes of amplitude and phase in the magnetic flux density and the consequent induced voltage which can be a criterion in the remote field eddy current principle for detecting the metal defects in gas pipelines. Three-dimensional finite-element analysis is also presented to analyze the physical phenomenon in metal defects according to each defect size, excitation frequency and moving velocity, which can overcome inaccuracy of the two-dimensional approach, using axisymmetry condition, and simulate local pit conditions occurred severely in real gas pipelines; otherwise only metal loss such as whole circumferential decrease in wall thickness can be modeled. Some experimental works are performed to validate the analytical and finite elemental results regarding the magnetic flux density and induced voltage in the detector. (author)

  4. Detection of Spectral Features of Anomalous Vegetation From Reflectance Spectroscopy Related to Pipeline Leakages

    Science.gov (United States)

    van der Meijde, M.; van der Werff, H. M.; Kooistra, J. F.

    2004-12-01

    Underground pipeline leakage inspection is an open problem with large economical and environmental impact. Traditional methods for investigating leakage and pollution, like drilling, are time consuming, destructive and expensive. A non-destructive and more economic exploration method would be a valuable complement to sub-surface investigative methods. Reflectance spectroscopy (or hyperspectral remote sensing) proved to be a tool that offers a non-destructive investigative method to identify anomalous spectral features in vegetation. One of the major environmental problems related to pipelines is the leakage of hydrocarbons into the environment. Hydrocarbons can establish locally anomalous zones that favor the development of a diverse array of chemical and mineralogical changes. Any vegetation present in these zones is likely to be influenced by the hostile and polluted environment. Geobotanical anomalies occur as a result of the effect of hydrocarbons on the growth of vegetation. The most likely changes in the vegetation are expected to occur in the chlorophyll concentrations which are an indicator of the health state. This is the main conclusion after an extensive field campaign in May 2004 in Holland investigating a 1 km trajectory of a 21 km long pipeline. The pipeline is `sweating' benzene condensates at approximately 50% of the connection points between the 9 meter segments of the pipeline. Spectral measurements were conducted at four different test locations in the 1 km trajectory. The test locations were covered by long grass, one of the fields was recently mown. Using different survey designs we can confirm the presence of geobotanical anomalies in different locations using various spectral interpretation techniques like linear red edge shifts, Carter stress indices, normalized difference vegetation index en yellowness index. After the interpretation of the geobotanical anomalies, derived from hyperspectral measurements, we compared the findings with

  5. Semi-empirical AGN detection threshold in spectral synthesis studies of Lyman-continuum-leaking early-type galaxies

    Science.gov (United States)

    Cardoso, Leandro S. M.; Gomes, Jean-Michel; Papaderos, Polychronis

    2016-10-01

    Various lines of evidence suggest that the cores of a large portion of early-type galaxies (ETGs) are virtually evacuated of warm ionised gas. This implies that the Lyman-continuum (LyC) radiation produced by an assumed active galactic nucleus (AGN) can escape from the nuclei of these systems without being locally reprocessed into nebular emission, which would prevent their reliable spectroscopic classification as Seyfert galaxies with standard diagnostic emission-line ratios. The spectral energy distribution (SED) of these ETGs would then lack nebular emission and be essentially composed of an old stellar component and the featureless power-law (PL) continuum from the AGN. A question that arises in this context is whether the AGN component can be detected with current spectral population synthesis in the optical, specifically, whether these techniques effectively place an AGN detection threshold in LyC-leaking galaxies. To quantitatively address this question, we took a combined approach that involves spectral fitting with Starlight of synthetic SEDs composed of stellar emission that characterises a 10 Gyr old ETG and an AGN power-law component that contributes a fraction 0 ≤ xAGN nuclear activity may be missing in the AGN demographics.

  6. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Sakuma, Toshio [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author).

  7. On-line Detection of Gas Pipeline Based on the Real-Time Algorithm and Network Technology with Robot

    Institute of Scientific and Technical Information of China (English)

    YAN Bo; YAN Guo-zheng; DING Guo-qing; ZHOU Bing; FU Xi-guang; ZUO Jian-yong

    2004-01-01

    The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.

  8. Assuring asset integrity through improving the accuracy of leakage source identification of a permanently installed subsea leak detection system using artificial neural networks

    OpenAIRE

    Poungkrajorn, Tawan

    2015-01-01

    Environmental concerns and regulatory controls for oil and gas exploration and production activities have been increasing with the prospecting of deep-water fields and sensitive areas, such as the artic seas. To stop any incidents developing into critical events, subsea leak detection systems are required for a fast, cost-effective, and reasonable accurate method to not only detect the leakage substance (in this case methane), but also to identify its source and location. This thesis evaluate...

  9. The Gemini NICI planet-finding campaign: The companion detection pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wahhaj, Zahed [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Liu, Michael C.; Nielsen, Eric L.; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Biller, Beth A. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Close, Laird M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hayward, Thomas L.; Hartung, Markus [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Toomey, Douglas W. [Mauna Kea Infrared, LLC, 21 Pookela St., Hilo, HI 96720 (United States)

    2013-12-10

    We present high-contrast image processing techniques used by the Gemini NICI Planet-Finding Campaign to detect faint companions to bright stars. The Near-Infrared Coronographic Imager (NICI) is an adaptive optics instrument installed on the 8 m Gemini South telescope, capable of angular and spectral difference imaging and specifically designed to image exoplanets. The Campaign data pipeline achieves median contrasts of 12.6 mag at 0.''5 and 14.4 mag at 1'' separation, for a sample of 45 stars (V = 4.3-13.9 mag) from the early phase of the campaign. We also present a novel approach to calculating contrast curves for companion detection based on 95% completeness in the recovery of artificial companions injected into the raw data, while accounting for the false-positive rate. We use this technique to select the image processing algorithms that are more successful at recovering faint simulated point sources. We compare our pipeline to the performance of the Locally Optimized Combination of Images (LOCI) algorithm for NICI data and do not find significant improvement with LOCI.

  10. Comprehensive long distance and real-time pipeline monitoring system based on fiber optic sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nikles, Marc; Ravet, Fabien; Briffod, Fabien [Omnisens S.A., Morges (Switzerland)

    2009-07-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions. These pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. (author)

  11. Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb(2+) Ions in Rainwater Polluted by Leaking Perovskite Solar Cells.

    Science.gov (United States)

    Yu, Yaming; Hong, Ying; Gao, Peng; Nazeeruddin, Mohammad Khaja

    2016-12-20

    In the past few years, the advent of lead halide perovskite solar cells (PSCs) has revolutionized the prospects of the third- generation photovoltaics and the reported power conversion efficiency (PCE) has been updated to 22%. Nevertheless, two main challenges, including the poisonous content of Pb and the vexing instability toward water, still lie between the lab-based PSCs technology and large scale commercialization. With this background, we first evaluated Pb(2+) concentration from the rainwater samples polluted by three types of markets promising PSCs with inductively coupled plasma mass spectrometry measurements (ICP-MS) as a case study. The influence of possible conditions (pH value and exposure time) on the contents of Pb(2+) from the three PSCs was systematically compared and discussed. Furthermore, an optimized glutathione functionalized gold nanoparticles (GSH-AuNPs) colorimetric sensing assay was used to determine Pb(2+) leaking from PSCs for the first time. The Pb(2+)-induced aggregation of sensing assay could be monitored via both naked eye and UV-vis spectroscopy with a detection limit of 15 and 13 nM, which are all lower than the maximum level in drinking water permitted by WHO. The quantitative detection results were compared and in good agreement with that of ICP-MS. The results indicate that the content of Pb(2+) from three PSCs are in the same order of magnitude under various conditions. By the use of the prepared GSH-AuNPs self-assembled sensing assay, the fast and on-site detection of Pb(2+) from PSCs can be realized.

  12. Subsea Target Measurement Technique of High Resolution Multi-Beam Sonar System -A Case Study of Ocean Oil & Gas Production Platform and Pipeline Detection

    Science.gov (United States)

    Ding, J.; Tang, Q.; Zhou, X.

    2015-12-01

    Abstract: with fast development of modern science and technology, subsea pipeline detection means have been increasingly improved which have not only improved detection efficiency, but also extremely advanced the detection precision. The article has integrated the performance characteristics of high resolution multi-beam measurement system in recent years, which has introduced the relevant technique and detection achievement of subsea pipeline detecting (especially for exposed pipeline) by detection cases. The final detection result has been verified that high resolution multi-beam measurement system could accurately detect subsea minisize target object, which has provided the technical reference with popularization and application of new characteristics.

  13. Early tube leak detection system for steam boiler at KEV power plant

    Directory of Open Access Journals (Sweden)

    Ismail Firas B.

    2016-01-01

    Full Text Available Tube leakage in boilers has been a major contribution to trips which eventually leads to power plant shut downs. Training of network and developing artificial neural network (ANN models are essential in fault detection in critically large systems. This research focusses on the ANN modelling through training and validation of real data acquired from a sub-critical boiler unit. The artificial neural network (ANN was used to develop a compatible model and to evaluate the working properties and behaviour of boiler. The training and validation of real data has been applied using the feed-forward with back-propagation (BP. The right combination of number of neurons, number of hidden layers, training algorithms and training functions was run to achieve the best ANN model with lowest error. The ANN was trained and validated using real site data acquired from a coal fired power plant in Malaysia. The results showed that the Neural Network (NN with one hidden layers performed better than two hidden layer using feed-forward back-propagation network. The outcome from this study give us the best ANN model which eventually allows for early detection of boiler tube leakages, and forecast of a trip before the real shutdown. This will eventually reduce shutdowns in power plants.

  14. Multi-Spectral imaging of vegetation for detecting CO2 leaking from underground

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.; Lewicki, J.L.; Dobeck, L.M.; Repasky, K.S.; Spangler, L.H.

    2010-06-01

    Practical geologic CO{sub 2} sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO{sub 2}-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO{sub 2} releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO{sub 2} well, indicating the viability of this method to monitor for CO{sub 2} leakage. The 2007 data show rapid plant vigor degradation at high CO{sub 2} levels next to the well and slight nourishment at lower, but above-background CO{sub 2} concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO{sub 2} sink-source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.

  15. Portable Dual-comb Spectrometer for Stable Detection of Methane Leaks over Kilometer Scale Paths at Oil and Natural Gas Production Site

    Science.gov (United States)

    Coburn, S.; Wright, R.; Cossel, K.; Truong, G. W.; Baumann, E.; Coddington, I.; Newbury, N.; Alden, C. B.; Ghosh, S.; Prasad, K.; Rieker, G. B.

    2016-12-01

    Newly proposed EPA regulations on volatile organic compound (VOC) emissions from oil and gas production facilities have been expanded to include methane, making the detection of this important trace gas a topic of growing interest to the oil and gas industry, regulators, and the scientific community in general. Reliable techniques that enable long-term monitoring of entire production facilities are needed in order to fully characterize the temporal and spatial trends of emissions from these sites. Recent advances in the development of compact and robust fiber frequency combs are enabling the use of this powerful spectroscopic tool outside of the laboratory, presenting opportunities for kilometer-scale open-path sensing of emissions at remote locations. Here we present the characterization and field deployment of a dual comb spectrometer (DCS) system with the potential to locate and size methane leaks from oil and gas production sites from long range. The DCS is a laser-based system that enables broad spectral absorption measurements (>50 nm) with high spectral resolution (locations near Boulder, CO, demonstrating sensitivities of better than 2 ppb-km for methane. In addition, path integrated methane measurements from the DCS are coupled with an atmospheric inversion utilizing local meteorology and a high resolution fluid dynamics simulation to determine leak location and also derive a leak rate from simulated methane leaks

  16. Research and development for the high-temperature helium-leak detection system (Joint research). Part 2. Development of temperature sensors using optical fibre for the HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In the second stage of the research and development for a high-temperature helium-leak detection system, the temperature sensor using optical fibres was studied. The sensor detects the helium leakage by the temperature increase surrounded optical fibre with or without heat insulator. Moreover, the applicability of high temperature equipments as the HTTR system was studied. With the sensor we detected 5.0-20.0 cm{sup 3}/s helium leakages within 60 minutes. Also it was possible to detect earlier when the leakage level is at 20.0 cm {sup 3}/s. (author)

  17. Experimental Study of Surface Detection of Gas Pipeline Buried in Soil

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Pipeline is a key segment in the transportation of city gas and its safety affects the safety of industrial and domestic application. The characteristics of Shi Dongkou east gas steel pipeline buried in soil were discussed and its parameters related to safety were measured, including the state of anticorrosive layer, the soil resistivity,the natural potential and the protective potential of gas pipeline. The experimental results were confirmed by excavating, which are of value to the knowledge of the gas pipeline buried in soil in Shanghai. The experimental data were analyzed which provide the scientific basis for the assurance of the gas pipeline safety and the reparation of anticorrosivelayer.

  18. NRC Job Code V6060: Extended in-situ and real time monitoring. Task 4: Detection and monitoring of leaks at nuclear power plants external to structures

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S. H. (Nuclear Engineering Division)

    2012-08-01

    In support of Task 4 of the NRC study on compliance with 10 CFR part 20.1406, minimization of contamination, Argonne National Laboratory (ANL) conducted a one-year scoping study, in concert with a parallel study performed by NRC/NRR staff, on monitoring for leaks at nuclear power plants (NPPs) external to structures. The objective of this task-4 study is to identify and assess those sensors and monitoring techniques for early detection of abnormal radioactive releases from the engineered facility structures, systems and components (SSCs) to the surrounding underground environment in existing NPPs and planned new reactors. As such, methods of interest include: (1) detection of anomalous water content of soils surrounding SSCs, (2) radionuclides contained in the leaking water, and (3) secondary signals such as temperature. ANL work scope includes mainly to (1) identify, in concert with the nuclear industry, the sensors and techniques that have most promise to detect radionuclides and/or associated chemical releases from SSCs of existing NPPs and (2) review and provide comments on the results of the NRC/NRR staff scoping study to identify candidate technologies. This report constitutes the ANL deliverable of the task-4 study. It covers a survey of sensor technologies and leak detection methods currently applied to leak monitoring at NPPs. The survey also provides a technology evaluation that identifies their strength and deficiency based on their detection speed, sensitivity, range and reliability. Emerging advanced technologies that are potentially capable of locating releases, identifying the radionuclides, and estimating their concentrations and distributions are also included in the report along with suggestions of required further research and development.

  19. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  20. A pipeline to link meteorological information and TGFs detected by AGILE

    Science.gov (United States)

    Ursi, A.; Sanò, P.; Casella, D.; Marisaldi, M.; Dietrich, S.; Tavani, M.

    2017-02-01

    Terrestrial gamma ray flashes (TGFs) are brief (approximately hundreds of microseconds) intense gamma ray emissions coming from Earth's atmosphere (˜15 km above sea level), correlated with thunderstorms and atmospheric electric activity. Since their unexpected discovery in the early 1990s by the Burst And Transient Source Experiment/Compton Gamma Ray Observatory, TGFs have been further investigated by several satellites devoted to high-energy astrophysics. The Astrorivelatore Gamma ad Immagini LEggero (AGILE) mission turned out to be particularly suitable to detect these events, due to a very wide energy range (up to 100 MeV), an optimized triggering system, and a unique low-inclination near-equatorial orbit (2.5°). We describe a detection system, developed for the AGILE satellite, whose aim is to provide real-time meteorological information on each detected TGF. We take advantage of data acquired by geostationary satellites to promptly identify the associated storm and follow its evolution in space and time, in order to study its previous onset and development. Data from Low-Earth Orbit meteorological satellites, such as the Global Precipitation Mission, as well as ground measurements from lightning detection networks, can be integrated in the pipeline. This system allows us a prompt characterization of the ground meteorological conditions at TGF time which will provide instrument-independent trigger validation, fill in a database for subsequent statistical analysis, and eventually, on a longer term perspective, serve as a real-time alert service open to the community.

  1. Field tests and commercialization of natural gas leak detectors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, D.S.; Jeon, J.S.; Kim, K.D.; Cho, Y.A. [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-09-01

    Objectives - (1) fields test of industrial gas leak detection monitoring system. (2) commericialization of residential gas leak detector. Contents - (1) five sets of gas leak detection monitoring system were installed at natural gas transmition facilities and tested long term stability and their performance. (2) improved residential gas leak detector was commercialised. Expected benefits and application fields - (1) contribution to the improvement of domestic gas sensor technology. (2) localization of fabrication technology for gas leak detectors. 23 refs., 126 figs., 37 tabs.

  2. Pipeline leakage recognition based on the projection singular value features and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wei; Zhang, Laibin; Mingda, Wang; Jinqiu, Hu [College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, (China)

    2010-07-01

    The negative wave pressure method is one of the processes used to detect leaks on oil pipelines. The development of new leakage recognition processes is difficult because it is practically impossible to collect leakage pressure samples. The method of leakage feature extraction and the selection of the recognition model are also important in pipeline leakage detection. This study investigated a new feature extraction approach Singular Value Projection (SVP). It projects the singular value to a standard basis. A new pipeline recognition model based on the multi-class Support Vector Machines was also developed. It was found that SVP is a clear and concise recognition feature of the negative pressure wave. Field experiments proved that the model provided a high recognition accuracy rate. This approach to pipeline leakage detection based on the SVP and SVM has a high application value.

  3. Dimensionality aspects of nano micro integrated metal oxide based early stage leak detection room temperature hydrogen sensor

    Science.gov (United States)

    Deshpande, Sameer Arun

    Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO 2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec

  4. Non-invasive detection of biliary leaks using Gd-EOB-DTPA-enhanced MR cholangiography: comparison with T2-weighted MR cholangiography

    Energy Technology Data Exchange (ETDEWEB)

    Kantarci, Mecit; Pirimoglu, Berhan; Bayraktutan, Ummugulsum; Ogul, Hayri; Kizrak, Yesim; Eren, Suat [Atatuerk University, School of Medicine, Department of Radiology, Erzurum (Turkey); Karabulut, Nevzat [Pamukkale University, School of Medicine, Department of Radiology, Denizli (Turkey); Ozturk, Gurkan; Aydinli, Bulent [Atatuerk University, School of Medicine, Department of General Surgery, Erzurum (Turkey); Yilmaz, Sinan [Atatuerk University, School of Medicine, Department of Public Health, Erzurum (Turkey)

    2013-10-15

    To evaluate the added role of T1-weighted (T1w) gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance cholangiography (MRC) compared with T2-weighted MRC (T2w-MRC) in the detection of biliary leaks. Ninety-nine patients with suspected biliary complications underwent routine T2w-MRC and T1w contrast-enhanced (CE) MRC using Gd-EOB-DTPA to identify biliary leaks. Two observers reviewed the image sets separately and together. MRC findings were compared with those of surgery and percutaneous transhepatic cholangiopancreatography. The sensitivity, specificity and accuracy of the techniques in identifying biliary leaks were calculated. Accuracy of locating biliary leaks was superior with the combination of Gd-EOB-DTPA-enhanced MRC and T2w-MRC (P < 0.05).The mean sensitivities were 79 % vs 59 %, and the mean accuracy rates were 84 % vs 58 % for combined CE-MRC and T2w-MRC vs sole T2w-MRC. Nineteen out of 21 patients with biliary-cyst communication, 90.4 %, and 12/15 patients with post-traumatic biliary extravasations, 80 %, were detected by the combination of Gd-EOB-DTPA-enhanced MRC and T2w-MRC images, P < 0.05. Gd-EOB-DTPA-enhanced MRC yields information that complements T2w-MRC findings and improves the identification and localisation of the bile extravasations (84 % accuracy, 100 % specificity, P < 0.05). We recommend Gd-EOB-DTPA-enhanced MRC in addition to T2w-MRC to increase the preoperative accuracy of identifying and locating extravasations of bile. (orig.)

  5. Photoacoustic Detection of Perfluorocarbon Tracers in Air for Application to Leak Detection in Oil-Filled Cables

    Science.gov (United States)

    Zajarevich, N.; Slezak, V.; Peuriot, A.; Villa, G.; Láttero, A.; Crivicich, R.

    2013-09-01

    The underground oil-filled cable consists of a hollow copper conductor surrounded by oiled paper which acts as electrical insulation. The oil flows along the conductor and diffuses through it to the insulating paper. A lead sheath is used as the outer retaining wall. As the deterioration of this cover may cause a loss of insulation fluid, its detection is very important since this high voltage and power cable is used in cities even under sidewalks. The method of perfluorocarbon vapor tracers, based on the injection and subsequent detection of these volatile chemical substances in the vicinity of the cable, is one of the most promising methods, so far used in combination with gas chromatography and mass spectrometry. In this study, the possibility of detecting two different tracers, and , by means of resonant photoacoustic spectroscopy is studied. The beam from a tunable amplitude-modulated laser goes through an aluminum cell with quarter wave filters at both ends of an open resonator and an electret microphone in its center, attached to the walls. The calibration of the system for either substance diluted in chromatographic air showed a higher sensitivity for , so the experiment was completed checking the behavior of this substance in samples prepared with ambient air in order to analyze the application of the system to field studies.

  6. JavaScript 中的内存泄漏检测方法研究磁%An Approach to Detection Memory Leak in JavaScript

    Institute of Scientific and Technical Information of China (English)

    孙琳; 洪玫; 詹聪; 杜伊; 张琼宇

    2015-01-01

    As a mainstream front‐end script language ,JavaScript is widely used in WEB applications .Although dynam‐ic memory management for JavaScript is to use automatic management methods ,it still has memory leak problem because of the use of all kinds of libraries .In this paper ,11 kinds of memory leak patterns are analyzed and summarized ,it put forward combining the dynamic and static detection methods ,which implements the 11 kinds of memory leak detection .For static de‐tection ,abstract syntax tree is created based on JavaScript program ,relationship between class and event is analyzed and ab‐stracted ,object execution trajectory is tracked ,the suspected leak objects are found .For dynamic detection ,according to the result of static detection ,test cases are generated and ran ,dynamic heap information is gotten ,type points‐from graph is cre‐ated ,memory leaks is judged by analyzing rising trend of memory usage rate .This memory leak detection method is feasible by experimental verification ,performing well ,which reduces false positives compared with static detection and increases cov ‐erage rate compared with dynamic detection .%JavaScript 作为一种主流的前端脚本语言,广泛运用于 Web 应用中。虽然 JavaScript 语言具有垃圾回收机制动态管理内存,但用于各类程序库的的运用,仍然存在内存泄漏的问题。论文分析和归纳了十一种内存泄漏的模式,并提出静态和动态的检测方法的结合,实现对十一种内存泄漏的检测。在静态检测中,基于 JavaScript 程序的抽象语法树,分析和抽象类和事件之间的关系,跟踪对象执行轨迹,发现疑似泄漏的对象。在动态检测阶段,依据静态检测结果,生成测试用例并运行,获取动态堆信息,构建类型指向图,通过分析内存占用率上升的趋势判断内存泄漏。实验验证本内存泄漏检测方法是可行性的,并有较好的检测能力,比较

  7. Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data

    CERN Document Server

    Christiansen, Jessie L; Burke, Christopher J; Seader, Shawn; Jenkins, Jon M; Twicken, Joseph D; Smith, Jeffrey C; Batalha, Natalie M; Haas, Michael R; Thompson, Susan E; Campbell, Jennifer R; Sabale, Anima; Uddin, Akm Kamal

    2015-01-01

    The Kepler planet sample can only be used to reconstruct the underlying planet occurrence rate if the detection efficiency of the Kepler pipeline is known, here we present the results of a second experiment aimed at characterising this detection efficiency. We inject simulated transiting planet signals into the pixel data of ~10,000 targets, spanning one year of observations, and process the pixels as normal. We compare the set of detections made by the pipeline with the expectation from the set of simulated planets, and construct a sensitivity curve of signal recovery as a function of the signal-to-noise of the simulated transit signal train. The sensitivity curve does not meet the hypothetical maximum detection efficiency, however it is not as pessimistic as some of the published estimates of the detection efficiency. For the FGK stars in our sample, the sensitivity curve is well fit by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find that the pipeline algorithms recover the depths...

  8. Quantifying Urban Natural Gas Leaks from Street-level Methane Mapping: Measurements and Uncertainty

    Science.gov (United States)

    von Fischer, J. C.; Ham, J. M.; Griebenow, C.; Schumacher, R. S.; Salo, J.

    2013-12-01

    Leaks from the natural gas pipeline system are a significant source of anthropogenic methane in urban settings. Detecting and repairing these leaks will reduce the energy and carbon footprints of our cities. Gas leaks can be detected from spikes in street-level methane concentrations measured by analyzers deployed on vehicles. While a spike in methane concentration indicates a leak, an algorithm (e.g., inverse model) must be used to estimate the size of the leak (i.e., flux) from concentration data and supporting meteorological information. Unfortunately, this drive-by approach to leak quantification is confounded by the complexity of urban roughness, changing weather conditions, and other incidental factors (e.g., traffic, vehicle speed, etc.). Furthermore, the vehicle might only pass through the plume one to three times during routine mapping. The objective of this study was to conduct controlled release experiments to better quantify the relationship between mobile methane concentration measurements and the size and location of the emission source (e.g., pipeline leakage) in an urban environment. A portable system was developed that could release methane at known rates between 10 and 40 LPM while maintaining concentrations below the lower explosive limit. A mapping vehicle was configured with fast response methane analyzers, GPS, and meteorological instruments. Portable air-sampling tripods were fabricated that could be deployed at defined distances downwind from the release point and automatically-triggered to collect grab samples. The experimental protocol was as follows: (1) identify an appropriate release point within a city, (2) release methane at a known rate, (3) measure downwind street-level concentrations with the vehicle by making multiple passes through the plume, and (4) collect supporting concentration and meteorological data with the static tripod samplers deployed in the plume. Controlled release studies were performed at multiple locations and

  9. Tapping into the Hexagon spy imagery database: A new automated pipeline for geomorphic change detection

    Science.gov (United States)

    Maurer, Joshua; Rupper, Summer

    2015-10-01

    Declassified historical imagery from the Hexagon spy satellite database has near-global coverage, yet remains a largely untapped resource for geomorphic change studies. Unavailable satellite ephemeris data make DEM (digital elevation model) extraction difficult in terms of time and accuracy. A new fully-automated pipeline for DEM extraction and image orthorectification is presented which yields accurate results and greatly increases efficiency over traditional photogrammetric methods, making the Hexagon image database much more appealing and accessible. A 1980 Hexagon DEM is extracted and geomorphic change computed for the Thistle Creek Landslide region in the Wasatch Range of North America to demonstrate an application of the new method. Surface elevation changes resulting from the landslide show an average elevation decrease of 14.4 ± 4.3 m in the source area, an increase of 17.6 ± 4.7 m in the deposition area, and a decrease of 30.2 ± 5.1 m resulting from a new roadcut. Two additional applications of the method include volume estimates of material excavated during the Mount St. Helens volcanic eruption and the volume of net ice loss over a 34-year period for glaciers in the Bhutanese Himalayas. These results show the value of Hexagon imagery in detecting and quantifying historical geomorphic change, especially in regions where other data sources are limited.

  10. Variable leak gas source

    Science.gov (United States)

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  11. [A mobile sensor for remote detection of natural gas leakage].

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way.

  12. In-pipe leak detection by Minimum Residual complexity: A Robust time Delay Estimation method against correlated noise

    CERN Document Server

    Ahmadi, A M; Bahrampour, A R; Ravanbod, H

    2013-01-01

    In this work, the residual complexity (RC) similarity measure, is employed for time delay estimation (TDE) in gas pipe leak localization. The result of TDE by RC is compared with those of Cross Correlation(CC) and Mutual Information(MI) similarity measures based on our experimental data. The comparison confirms the advantages of RC relative to CC and MI, in robustness against both correlated noises and reduction of number of samples. These advantages originate from not only its mathematical nature of RC similarity measure which considers interdependency but also from broadband frequency of acoustic waves propagating during gas pipes.

  13. Locating a leaking crack by safe stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E.; Sagat, S. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.); Shek, G.K.; Graham, D.B.; Durand, M.A. (Ontario Hydro, Toronto, ON (Canada))

    1990-01-01

    A few Zr-2.5 Nb alloy pressure tubes in CANDU nuclear reactors have leaked through cracks that have grown by delayed hydride cracking (DHC). In some instances, tubes contained confirmed leaks that were leaking at a rate too low for precise identification of the leaking channel. Controlled stimulation of DHC can be used to help locate these leaks by extending the crack and increasing the leak rate without approaching crack instability. In the event of a leak being detected, a plant operator can gain time for leak location by a heating and unloading manoeuvre that will arrest crack growth and increase the critical crack length. This manoeuvre increases the safety margin against tube rupture. If required, the operator can then stimulate cracking in a controlled manner to aid in leak identification. Sequences of temperature and load manoeuvres for safe crack stimulation have been found by laboratory tests on dry specimens and the efficacy of the process has been demonstrated, partly in a power reactor, and partly in a full-scale simulation of a leaking pressure tube. (author).

  14. A Study on Advanced Ultrasonic Technique for Thermal Fatigue Crack Detection of Thermal Stratification Pipeline in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Won Geun; Lee, Min Rae; Choi, Snag Woo; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Lee, Bo Young [Hankook Aviation Univ., Goyang (Korea, Republic of)

    2005-07-01

    Ultrasonic inspection techniques are widely used to ensure the reliable operation and lifetime extension of nuclear power plants. Thermal stratification typically occurs in the surge line or the main feed water lines in nuclear power plants. Thermal stratification is a flow condition in which hotter fluid flows over a colder region of fluid in pipeline. Since a change in temperature causes a change in the density of the pipe wall, these thermal conditions might lead to increased overall bending stresses in pipelines. In addition, cyclic changes in stratification height cause thermal stress. This cycling can lead to thermal fatigue crack initiation and crack growth. If thermal fatigue crack grows continuously, the leakage of water or steam will occur and this may cause serious problems on reactor cooling system. Therefore, these cracks must be detected before the crack growth reaches for leakage. In this study, an ultrasonic technique was employed for evaluation of thermal fatigue cracks due to thermal stratification in pipelines of nuclear power plants. The angle beam ultrasonic techniques(time-of-flight diffraction(TOFD) and shadow effect method) were used to detect thermal fatigue cracks which grow from the inner surface of the pipeline. The angle beam ultrasonic technique is usually used for the detection of cracks on the inside of the structures. When ultrasonic waves generated from the angle probe encounters a crack, ultrasonic waves of the shear modes are reflect or transmit from the crack wall. Also ultrasonic waves generated from the angle probe shear modes are diffracted from the tip of the crack, and the shear wave is reflected from the corner of the crack.

  15. Modeling and locating underground water pipe leak with microseismic data

    Science.gov (United States)

    Wang, Jing; Liu, Jiangping; Liu, Hao; Tian, Zhijian; Cheng, Fei

    2017-01-01

    Traditional pipeline leak locating methods require that geophones have to be placed on the pipe wall. While if the exact location of the pipeline is unknown, the leaks may not be identified accurately. To solve this problem, considering the characteristics of pipeline leak, a continuous random seismic source model is proposed and geological models are established. Based on the two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm are employed to obtain the time difference and the leak location. Analysis and discussions of the effects of number of recorded traces, survey layout, and offset and trace interval on the accuracy of the estimated location are also conducted. Simulation and data field experiment results indicate that: (1) A continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D viscoacoustic equations and staggered grid FD algorithm. (2) For the leak microseismic wave field, the cross-correlation method is effective for calculating time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, accuracy of the time difference is reduced by the effects of refracted wave. (3) The SA algorithm based upon time difference, helps to identify the leak location effectively, even in the presence of noise. Estimation of the horizontal distance is more accurate than that of the depth, and the locating errors increase with increasing number of traces and offset. Moreover, in the refraction blind zone, trace interval has almost no impact on the accuracy of the location estimate. And the symmetrical array provides a higher estimate accuracy than the asymmetrical array. (4) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential

  16. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...

    Science.gov (United States)

    2013-08-28

    ... Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline... seal. Hazardous liquid and natural gas pipeline operators should ] verify if they have any TDW LRCs... and Flanged Fittings. These LRCs were manufactured for use on hazardous liquid and natural...

  17. Design and experimentation of a bell-mouthed spray gun with two channels for helium leak detection%一种氦质谱检漏用双流道喷枪的设计及实验

    Institute of Scientific and Technical Information of China (English)

    冯晓; 廖旭东; 胡茂中; 白国云; 陈涛

    2012-01-01

    To solve the problem of inaccurate positioning of leak by usual spray gun during the leak detection, a bell-mouthed spay gun with two channels was designed and the corresponding experiment was also carried out. The results show that the bell-mouthed spray gun with two channels can differentiate the two leaks 15mm apart and the positioning range of single leak is Φ20mm, which improves the accuracy of leak positioning during helium leak detection.%为解决普通喷枪在检漏时对漏孔定位能力低的问题,设计了一种钟罩式双流道喷枪,并对其开展了测试实验.结果表明:喷氦法检漏时,利用钟罩式双流道喷枪可分辨出相距15mm的相邻漏孔,对单一漏孔定位范围为Φ20 mm,较大的提高了喷氦法检漏时对漏孔的定位能力.

  18. Pipeline engineering

    CERN Document Server

    Liu, Henry

    2003-01-01

    PART I: PIPE FLOWSINTRODUCTIONDefinition and Scope Brief History of PipelinesExisting Major PipelinesImportance of PipelinesFreight (Solids) Transport by PipelinesTypes of PipelinesComponents of PipelinesAdvantages of PipelinesReferencesSINGLE-PHASE INCOMPRESSIBLE NEWTONIAN FLUIDIntroductionFlow RegimesLocal Mean Velocity and Its Distribution (Velocity Profile)Flow Equations for One-Dimensional AnalysisHydraulic and Energy Grade LinesCavitation in Pipeline SystemsPipe in Series and ParallelInterconnected ReservoirsPipe NetworkUnsteady Flow in PipeSINGLE-PHASE COMPRESSIBLE FLOW IN PIPEFlow Ana

  19. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and its Effect on Leak Detection: An Experimental Investigation

    Science.gov (United States)

    Almeida, Fabrício; Brennan, Michael; Joseph, Phillip; Whitfield, Stuart; Dray, Simon; Paschoalini, Amarildo

    2014-01-01

    Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors. PMID:24658622

  20. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and its Effect on Leak Detection: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Fabrício Almeida

    2014-03-01

    Full Text Available Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.

  1. Fouling detection in buried water pipelines by observation of the scattered electromagnetic field

    Science.gov (United States)

    Frezza, Fabrizio; Mangini, Fabio; Santini, Carlo; Stoja, Endri; Tedeschi, Nicola

    2014-05-01

    The electromagnetic scattered field by a buried pipeline is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of poly-vinyl chloride (PVC) material buried in a wall or pavement composed of cement with very low losses and filled with water. In order to make the model simpler, the pipeline is supposed running parallel to the air-cement interface. To excite the model, a linearly-polarized plane wave impinging normally on the above-mentioned interface is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pipeline cross-section. All the three components of the scattered field are monitored along a line just above the interface. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, we further complicate the model by introducing two fouling scenarios due to limestone formation on the pipeline walls. In the first case, the fouling is deposited at the bottom of the pipeline when the water pressure is low enough and the second one considers the fouling to deposit on the entire internal perimeter of the pipeline's cross-section by forming an additional limestone cylindrical layer. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependency on the fouling geometrical characteristics. One of the practical applications in the field of Civil Engineering of this study may be the use of ground penetrating radar (GPR) techniques to monitor the fouling conditions of

  2. Sample Delivery and Computer Control Systems for Detecting Leaks in the Main Engines of the Space Shuttle

    Science.gov (United States)

    Griffin, Timothy P.; Naylor, Guy R.; Hritz, Richard J.; Barrett, Carolyn A.

    1997-01-01

    The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore prior to use the main engines undergo extensive leak tests. Instead of using hazardous gases there tests utilize helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The major challenge in developing such a low level gas monitor is the sample delivery system. This paper discuss a system developed to meet the requirements while also being mobile. Also shown is the calibration technique, stability, and accuracy results for the system.

  3. 辽河油田集输管道外防腐层检测技术%The Detection Technique of Surface Anti Corrosion Layer for Gathering Pipeline in Liaohe Oilfields

    Institute of Scientific and Technical Information of China (English)

    陈兆雄; 吴明; 谢飞; 刁照金; 徐金萌; 杨成全; 张书东; 王安鹏

    2014-01-01

    阐述了多频管中电流法(PCM)的检测原理,利用英国雷迪公司的DM内外业一体化型管道防腐层检测仪,对辽河油田曙光采油厂内曙五联至首站、曙一联至曙五联和曙四联至首站三条集输管道进行了外防腐层检测,三条管道防腐层劣级和差级分别占全部防腐层的50.2%、51.8%和42.9%。对疑似漏点开挖验证与检测结果吻合。单纯将PCM检测方法用于油田地下管道的检测有一定的局限性,与其他检测手段结合更有利于提高检测结果的准确度。%By introducing PCM in the multi-frequency principles and using DM produced by Radiodetection company,the article showed respectively the detection results of the anticorrosion layers from Shuwulian to first station,from Shuyilian to Shuwulian and from Shusilian to first station gathering pipelines in Shuguang oil production plant in Liaohe oilfield.The inferior and poor level of the three pipelines was accounted for 50.2%,51.8% and 42.9% respectively on all the anticorrosion layers. The detect results and the verification of suspected leaks were consistent.There were certain limitations when PCM was used only to detect underground pipes .If it was combinated with other detection means,the results would be more accurate.

  4. Review of Detection and Monitoring Systems for Buried High Pressure Pipelines : Final Report

    NARCIS (Netherlands)

    Asadollahi Dolatabad, Saeid; Doree, Andries G.; olde Scholtenhuis, Léon Luc; Vahdatikhaki, Faridaddin

    2017-01-01

    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (‘transportleiding gevaarlijke stoffen’). This network comprises 22.000

  5. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  6. Holdup Measurement of Pipeline

    Institute of Scientific and Technical Information of China (English)

    LU; Wen-guang; XU; Zheng

    2015-01-01

    This research mainly adopts gamma spectroscopy to detect the pipeline retention.The calculation of retention of uranium has been obtained based on the intensity of gamma rays of 185.715 keV emitted by 235U,and the analysis method for the pipeline retention has been established.

  7. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Directory of Open Access Journals (Sweden)

    Jeffrey Tuck

    2013-12-01

    Full Text Available Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the

  8. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Science.gov (United States)

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important

  9. Detection of Two Buried Cross Pipelines by Observation of the Scattered Electromagnetic Field

    Science.gov (United States)

    Mangini, Fabio; Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Muzi, Marco; Tedeschi, Nicola

    2015-04-01

    In this work we present a numerical study on the effects that can be observed in the electromagnetic scattering of a plane wave due to the presence of two crossed pipelines buried in a half-space occupied by cement. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of metallic or poly-vinyl chloride (PVC) material. In order to make the model simpler, the pipelines are supposed running parallel to the air-cement interface on two different parallel planes; moreover, initially we suppose that the two tubes make an angle of 90 degrees. We consider a circularly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium, which excites the structure in order to determine the most useful configuration in terms of scattered-field sensitivity. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. A preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the commercial pipeline cross-section. We monitor the three components of the scattered electric field along a line just above the interface between the two media. The electromagnetic properties of the materials employed in this study are taken from the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, i.e. having considered orthogonal and tangential scenario, we further complicate the model by considering different crossing angles and distances between the tubes, in two cases of PVC and metallic material. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependence on the geometrical characteristics of the cross between two pipelines. One of the practical applications in the field of Civil Engineering of this study may be the use of ground

  10. Detection of leaks for radioactive tracer in marine duct for transport of liquefied petroleum gas; Deteccion de fugas por radiotrazado en ducto marino para transporte de gas LP

    Energy Technology Data Exchange (ETDEWEB)

    Robles P, E. F.; Benitez S, J. A.; Torre O, J. de la; Cruz S, E. de la; Molina, G.; Hernandez C, J. E.; Flores M, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e mail: efrp@nuclear.inin.mx

    2008-07-01

    In this work the aplication in the oil industry of the technique of radioactive tracer appears for the detection of internal leaks in a submarine duct that gives service as it lines of receipt of liquefied petroleum gas (Gas LP) located in the Mexican coast of the Pacific Ocean. This system of marine pipe is a consistent arrangement of a duct interior of 0.254 m (10 inches) of nominal diameter (N.D.) of steel to the carbon for cryogenic service ASTM A 333, Grade 6, schedule 30, isolated thermally with foam of polyurethane and shielding in a steel tube to the carbon ASTM A 53 Grade A, of 0.508 m (20 inches) N. D., schedule 20, which is recovered by a ballast encircling of concrete of 0.0508 m (2 inches) of thickness, reinforced with mesh metallic, and that 1315 m runs on the marine stratum to a maximum depth of 12.5 m. For the detection of leaks by radiotracer it was used as tracer the radioactive isotope La-140 produced in the TRIGA Mark III Experimental Reactor of the National Institute of Nuclear Research, starting from stable lanthanum nitrate (La(NO{sub 3}){sub 3} 6H{sub 2}O), with an activity of 100 mCi, the one which after having been made logistics tasks, given very particular sea maneuvers and due to the conditions of the work place, in the interior tube was injected in two subsequent stages to cover both duct senses; from earth and from the marine end respectively, there being used fresh water like transport way and submergible sodium iodide detectors (NaI) for the rake of the La-140. At the end of the journeys of pursuit of the radiotracer, it was determine the presence of three leaks points located in the break area of the marine surf to 360 m, 450 m and 495 m of distance of a reference point located in the beach section named Trap of Devils. (Author)

  11. Detection of JNI Memory Leaks Based on Extended Bytecode%基于中间语言的 JNI内存泄漏检查

    Institute of Scientific and Technical Information of China (English)

    蒋挺宇; 王鹏; 杨述; 褥震; 董渊; 王生原; 嵇智源

    2015-01-01

    JNI技术支持Java与本地C/C++的相互调用,在Android等混合语言实现的系统中有着广泛应用,但语言之间的安全特性差异使其成为安全薄弱环节,现有的分析方法难以处理多语言相互调用产生的安全缺陷。以JNI调用中易产生的内存泄漏为例,开展Java/C++JNI跨语言分析的研究。采用扩展的Java Bytecode(Bytecode倡)指令作为C++语义的解释来消除跨语言分析的障碍。围绕JNI调用中内存泄漏的问题,做了以下3方面工作:1)定义兼容Java/C++语言的分块内存模型;2)基于LLVM/LLJVM ,设计实现了C++到Bytecode倡的翻译策略;3)建立方法调用图,提取方法摘要,利用过程间分析方法检测JNI调用中的内存泄漏。针对具有典型内存泄漏特征的JNI实例翻译检测表明,该工作能够准确检测出Java/C++混合语言中的内存泄漏,对于JNI混合语言编程的理解和漏洞分析具有重要价值。%The Java native interface(JNI)enables Java code running in a Java virtual machine(JVM ) to be called by native code ,but the difference of security features between languages makes it a security weakness ,which cannot be detected by existing analysis methods .Commonly used detection methods are mainly based on the analysis of intermediate language ,w hich is invalid in this JNI case ,since the lack of an intermediate representation to bridge Java and C+ + .This paper analyzes JNI from a Java/C+ + cross‐language perspective and focuses on memory leaks which frequently occur in JNI calls .In order to overcome language barriers ,this paper proposes extended Bytecode (Bytecode* ) instructions as interpretation of C+ + semantics .Our contributions are described as follows :1)Define a block memory model which is compatible with both Java and C+ + ;2) Design translation rules from C+ +to extended Java Bytecode based on LLVM/LLJVM ;3)Construct a method call graph ,extract

  12. CO{sub 2} leak detection in motor car air conditioner components; CO{sub 2}-Lecksuche an Teilen fuer Automobilklimaanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schopphoff, A. [Pfeiffer Vacuum, Asslar (Germany)

    2005-07-01

    A test chamber is presented which can detect leak rates of < 0,5 g/a in a CO{sub 2} air conditioner. Requirements are: 1. a low CO{sub 2} background, which is achieved by evacuation of a vacuum chamber; 2. a sensitive sensor (mass spectrometer) with equally high sensitivity for all gases. [German] Mit Hilfe der vorgestellten Testkammer lassen sich Leckraten von < 0,5 g/a in einer CO{sub 2}-Klimaanlage detektieren. Voraussetzung sind: 1. ein niedriger CO{sub 2} Untergrund, der in diesem Aufbau durch das Evakuieren einer Vakuumkammer erreicht wird, und 2. ein empfindlicher Sensor, der alle Gase mit gleicher hoher Genauigkeit messen kann (Massenspektrometer).

  13. Leakage location system for oil pipeline on basis of stress wave detection

    Institute of Scientific and Technical Information of China (English)

    Bangfeng WANG; Renwen CHEN

    2008-01-01

    An online monitoring system was developed for rapidly determining the exact location of the holing position in an oil pipeline by monitoring and analyzing the characteristics of the strain wave caused by the hole. The system has a master-slaver computer structure based on a remote wireless network. The master system takes charge of managing and controlling the whole system, identifying the holing stress wave, and calculating the holing position. The slaver system is responsible for sampling the strain wave signal from the pipeline. The characteristics of the strain wave signal are extracted by a Hilbert-Huang trans-form based on a signal processing approach. The exact holing position can be obtained by a time delay locating method with stress wave characteristics. The experimental results of the in-service pipeline show that the average locating error of the system is less than 10 m, the accuracy ratio for the holing alarm is more than 90%, and the time that the system takes to respond to the leakage is less than 10 s.

  14. Design of wide- band gas leak infrared imaging detection system%宽波段气体泄漏红外成像检测系统设计

    Institute of Scientific and Technical Information of China (English)

    李家琨; 顿雄; 金明磊; 金伟其; 王霞; 夏润秋

    2014-01-01

    有毒有害气体的泄漏不仅污染环境,而且威胁人民生命财产安全,世界各国都非常重视快速有效的气体泄漏检测技术的研究和仪器开发。针对这一问题,提出了宽波段气体泄漏红外成像检测系统设计方案,主要包括宽波段红外光学镜头尧子波段滤光片及切换装置尧宽波段非制冷焦平面探测器尧视频处理及系统控制电路等组成部分,充分利用非制冷探测器的无光谱选择特性,结合热图像非均匀性校正和数字细节增强处理算法,实现了对不同种类气体泄漏的高灵敏度检测,提供了适合人眼判断的气体泄漏视频图像显示结果。整个系统具有可检测气体种类多尧检测范围大速度快尧气体泄漏痕迹明显增强尧系统便携性突出尧成本相对较低等特点。%The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people’s lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. To address this issue, a wide- band gas leak IR imaging detection system design was proposed, mainly including wide- band IR optical lens, the sub- band filters and switching device, wide- band Uncooled Focal Plane Array (UFPA) detector, video processing and system control circuit, which takes full advantage of the spectrally non- selective characteristic of the uncooled focal plane array detector. The system can sensitively detect and visualize a considerable number of different kinds of gases, which are not visible to the naked eyes, by using the IR image non-uniformity correction technology and Digital Detail Enhancement (DDE) technology. The resulting gas leak video easy to be observed for the human eye was provided. Many advantages are commendable, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas plume intuitively, and

  15. Recommendations for main line block valves installation in gas pipelines; Recomendacoes para instalacao de valvulas de bloqueio de linha tronco em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Oliveira, Valeriano Duque de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Cases of gas pipelines block valves and its pneumatic actuators presenting problems during the final pipeline commissioning and pre-operation phases, like internal leaks, leaking to the atmosphere, pneumatic circuit defects caused by water and debris, are nearly common. The majority can be avoided if a series of measuring are to be planned and implemented, as well as if an adequate planning of commissioning operations and line gasification, valves and actuators, are to be applied. This paper shows the practical experience in the construction and commissioning of valves and its actuators in the Bolivia-Brazil gas pipeline, which, in the first construction phase had a series of problems. After the diagnosis a set of procedures was implemented in the secondary construction phase, resulting in insignificant problems detected. All measures and procedures taken in the planning process, as well as additional aspects related to the main line valve design, its by-passes and supports, are demonstrated. (author)

  16. Application of Leak Detection and Location Technology Based on Ultrasonic for Manned Spacecraft%基于超声的气体泄漏检测与定位技术在载人航天器中的应用

    Institute of Scientific and Technical Information of China (English)

    马永成; 陈青松

    2009-01-01

    The fundamental principle of leak detection and location technology based on ultrasonic is introduced in this paper.Both portable leak detection equipment and autonomous ultrasonic leak detection and location equipment are introduced,including their system composition,principle and working mode.The application of these equipments for the ISS and Shuttle is introduced.A scheme of ultrasonic leak detection and location that can be used for the space station of China is developed.%介绍了基于超声的气体泄漏检测与定位技术的基本原理;介绍了便携式超声检漏、无线超声自动检漏这两类已有设备的组成、工作原理及其在国际空间站、美国航天飞机上的应用情况.以此为参照,初步提出了一种可用于我国未来空间站建设的气体泄漏检测与定位方案.

  17. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  18. Leaking Chaotic Systems

    CERN Document Server

    Altmann, Eduardo G; Tél, Tamás

    2013-01-01

    There are numerous physical situations in which a hole or leak is introduced in an otherwise closed chaotic system. The leak can have a natural origin, it can mimic measurement devices, and it can also be used to reveal dynamical properties of the closed system. In this paper we provide an unified treatment of leaking systems and we review applications to different physical problems, both in the classical and quantum pictures. Our treatment is based on the transient chaos theory of open systems, which is essential because real leaks have finite size and therefore estimations based on the closed system differ essentially from observations. The field of applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical flows, to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of partial leaks (partial absorption/transmission) with applications to room acoustics and optical microcavities in mind. Simulations in the lima .con family of billiards illustrate...

  19. 城市地下管线探测方法探讨%The discussion of city underground pipeline detecting methods

    Institute of Scientific and Technical Information of China (English)

    张睿

    2014-01-01

    Underground pipeline is an important infrastructure of city, the underground pipeline data has a very important practical significance for the city planning, road design, construction and management. In this paper, the detection of underground pipeline project of Suzhou Industrial Park as an example, describes the various methods of city underground pipeline detection and project process, provides a good experience for the city underground pipeline detection.%地下管线是城市的重要基础设施,地下管线资料对于城市规划、道路设计、施工和管理具有非常重要的现实意义。本文以苏州工业园区地下管线探测项目为例,阐述了城市地下管线探测的各种方法及项目流程,为以后城市地下管线探测提供了较好的经验。

  20. Studied Practices of Helium Mass Spectrometer to Leaking Detection Technology%氦质谱检漏技术的研究与实践

    Institute of Scientific and Technical Information of China (English)

    濮荣强; 黄文平

    2012-01-01

    在氦质谱检漏技术理论的基础上,采用了以微电脑为中心的自动控制技术,提高了氦质谱检漏仪的全自动操作智能化水平.180°非均匀磁场的实现,使离子聚焦更好.通过电子量程切换技术,减少了量程转换时间,扩大了测量范围,对高准确度密封性智能检测系统的实现进行了详细的研究与实践.%Introducing the theoretical basis of helium mass spectrometer to leaking detection technology, the automatic control technology is used here , which improves intelligent level and reduces the range switching time and expands the measuring range with the helps of both 180° non-uniform magnetic field for ion focus and electronic range switching . The paper gives the studied practices to high precision sealed intelligent detection system in detail.

  1. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data.

    Science.gov (United States)

    do Valle, Ítalo Faria; Giampieri, Enrico; Simonetti, Giorgia; Padella, Antonella; Manfrini, Marco; Ferrari, Anna; Papayannidis, Cristina; Zironi, Isabella; Garonzi, Marianna; Bernardi, Simona; Delledonne, Massimo; Martinelli, Giovanni; Remondini, Daniel; Castellani, Gastone

    2016-11-08

    Detecting somatic mutations in whole exome sequencing data of cancer samples has become a popular approach for profiling cancer development, progression and chemotherapy resistance. Several studies have proposed software packages, filters and parametrizations. However, many research groups reported low concordance among different methods. We aimed to develop a pipeline which detects a wide range of single nucleotide mutations with high validation rates. We combined two standard tools - Genome Analysis Toolkit (GATK) and MuTect - to create the GATK-LODN method. As proof of principle, we applied our pipeline to exome sequencing data of hematological (Acute Myeloid and Acute Lymphoblastic Leukemias) and solid (Gastrointestinal Stromal Tumor and Lung Adenocarcinoma) tumors. We performed experiments on simulated data to test the sensitivity and specificity of our pipeline. The software MuTect presented the highest validation rate (90 %) for mutation detection, but limited number of somatic mutations detected. The GATK detected a high number of mutations but with low specificity. The GATK-LODN increased the performance of the GATK variant detection (from 5 of 14 to 3 of 4 confirmed variants), while preserving mutations not detected by MuTect. However, GATK-LODN filtered more variants in the hematological samples than in the solid tumors. Experiments in simulated data demonstrated that GATK-LODN increased both specificity and sensitivity of GATK results. We presented a pipeline that detects a wide range of somatic single nucleotide variants, with good validation rates, from exome sequencing data of cancer samples. We also showed the advantage of combining standard algorithms to create the GATK-LODN method, that increased specificity and sensitivity of GATK results. This pipeline can be helpful in discovery studies aimed to profile the somatic mutational landscape of cancer genomes.

  2. Oil pipeline valve automation for spill reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  3. Real time detection of leaks in non-compressible fluid flow systems: a time series approach; Deteccao em tempo real de vazamentos em redes de escoamento para fluidos incompressiveis: uma abordagem em series temporais

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cesar Augusto Fernandes de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Lab. SDV - Dutos]. E-mail: jlm@eq.ufrj.br

    2002-06-01

    Algorithms were developed for real time detection, estimation and location of leaks in flow systems operating with non-compressible fluids. Process inputs and outputs are assumed to be available by means of field sensing, treated through historical time series reconciliation and storage. The process presented herein was built as a pseudo stationary system for process data generation at the selected variables: nodal pressures, flow rates in pipes and input and output nodes. The procedure consists in generating data series during the occurrence of programmed events and use them during the training of ARX/ARMAX structure MIMO predictors, with constant update. A sudden leak is detected by a statistically significant instant deviation between a group of predictions and the measures of the process associated with the predictors' answers. Once the event is identified, the next step is to locate and estimate its size using another group of predictors trained through simulated process data of known leak events. These predictors use leak parameters (i.e., its location and orifice diameter) as additional inputs so that estimation can be performed in order to predict real answers to the process that are being deviated from the original predictions monitored during the manifestation of the event. (author)

  4. Creation of an Exergetic Based Leak Detection and Diagnosis Methodology for Automotive Carbon Dioxide Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    M. B. Bailey

    2010-03-01

    Full Text Available

    Carbon dioxide automotive air conditioning (AC systems have been under development for over a decade. Although the AC system construction is important, a reliable refrigerant leakage detection system is also vital. A detailed thermodynamic simulation model and fault detection and diagnosis (FDD system, with proposed validation plans, has been developed at Rochester Institute of Technology. A discussion of simulation models that have been developed for various compressors and heat exchangers is presented; they are compared to actual AC systems to develop a realistic experimental setup. Assumptions from previous work are examined and improved.

    • Portions of this paper were previously published in the ECOS'05 and ECOS'07 conference proceedings.

  5. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor; ALIBABA, un systeme d`aide a la detection des voies de fuites du confinement sur un reacteur a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Bedier, P.O.; Libmann, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1995-12-31

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs.

  6. Research overview of real-time monitoring system for micro leak of three-dimensional pipe network

    Directory of Open Access Journals (Sweden)

    Shaofeng WANG

    2016-04-01

    Full Text Available Aiming at the key technical problems encountered by domestic and foreign scholars in building the real-time monitoring system for the micro leak of three-dimensional pipe networks, the paper classifies the problems into three aspects: 1 in the extraction of fault signal frequency, how to avoid the effect of the mixed echo stack and improve the delay estimation accuracy of the correlation; 2 in network bifurcation structure, how to discern the signal propagation path, and how to locate the leak source; 3 under the uncertainly delay in transmitting and receiving information data, how to ensure the time synchronization accuracy of the real-time monitoring system for the three-dimensional pipe network leakage. Through the comparison of the monitoring technologies for the pipe network leakage at home and abroad, it shows that the acoustic emission sensor network based three-dimensional pipeline leak real-time monitoring has great advantages in detecting the weak leakage of flammable and explosive gas/liquid transportation pipelines.

  7. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    Science.gov (United States)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  8. 探地雷达在地下管线探测中的应用%Application of Ground Penetrating Radar in Underground Pipeline Detecting

    Institute of Scientific and Technical Information of China (English)

    刘永义; 杨磊; 王瑞芳

    2015-01-01

    介绍了探地雷达的工作原理和数据采集系统,利用探地雷达进行地下管线的探测,探明了指定路线上的管线埋深情况,对结果进行精度分析比较,表明探地雷达探测出的管线点埋深符合限差要求,可以用于地下非金属管线的探测,对管线探测仪是一种补充。%The working principle and data acquisition system of ground penetrating radar are introduced in this paper .The detection of underground pipeline using GPR proves the buried depth in the designated route .The accuracy of analysis and comparison ,shows that the buried depth detected using GPR is in line with the requirements and can be used for the detection of underground non metal pipeline .At the same time ,it is a supplement to the nondestructive detection of pipeline detector cases only metal pipeline .

  9. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  10. 基于Duffing振子的天然气管道泄漏检测方法%Leak detection based on duffing oscillators for gas pipelines

    Institute of Scientific and Technical Information of China (English)

    杨红英; 葛传虎; 叶昊; 王桂增

    2010-01-01

    针对天然气管道泄漏因泄漏声波信号信噪比(SNR)过低而难于检测的问题,研究了基于Duffing振子的天然气管道泄漏检测方法.该方法将待检测数据输入Duffing振子系统,以振子系统的状态转化实现非周期信号中周期信号的检测.为了更好地提高Duffing振子的检测性能,在Duffing振子设计阶段,以随机共振的有关理论为基础,通过对系统输出信噪比的优化来实现Duffing振子的参数设计.基于实际天然气管道泄漏数据的测试结果表明,所提出方法可在低信噪比(-68dB)的情况下有效检测出泄漏,具有较好的检测性能.

  11. 长输液体管道泄漏检测方案的选择%Selection on Leak Detection Scenario of Long-distance Liquid Pipeline

    Institute of Scientific and Technical Information of China (English)

    安尧; 袁利海; 郭凤军

    2005-01-01

    介绍了在长输液体管道上应用的各种泄漏检测技术及其优缺点,以库鄯原油管道和兰成渝成品油管道为例,综合分析了管道工艺、设备、SCADA系统、通信系统以及投资等多方面因素对管道泄漏检测的影响,为长输管道泄漏检测方案的选择及确定提供了技术支持.

  12. Leak detection method for in-orbit spacecraft using circular ultrasonic sensor array%基于圆形超声阵列传感器的在轨泄漏定位方法

    Institute of Scientific and Technical Information of China (English)

    孟冬辉; 闫荣鑫; 郭欣

    2011-01-01

    In view of more and more debris in space, it is an important issue to locate the leak point in manned spacecraft cabin. In this paper, a leak detection method is developed for spacecraft on orbit using circular ultrasonic array sensors. The time difference of the ultrasonic signal reaching different ultrasonic units is calculated by cross correlation, and then the direction of the leak is determined. The leak location can then be identified by triangulation with three ultrasonic array sensors.%随着空间碎片数量的不断增加,载人航天器在轨泄漏定位问题成为一个亟待解决的问题.文章研究了一种基于圆形超声阵列传感器的在轨泄漏定位方法,利用互相关原理计算泄漏超声信号传播到不同测试单元的时间差,从而确定泄漏所在的方向,并根据三角定位方法确定漏孔的具体位置.

  13. Vulnerability assessment of critical infrastructure : activity 2 final report : information on SCADA systems and other security monitoring techniques used in oil and gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Revie, R.W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-03-15

    This study evaluated various technologies for monitoring the security of remote pipeline infrastructure. The technologies included flow, pressure and mass variations; negative pressure waves; dynamic and statistical modelling; hydrocarbon-sensitive cables; fiber optic systems; infrared thermography; spectral imaging; and synthetic aperture radar and radio frequency identification methods. A brief outline of the technologies was provided, along with suggestions for integrating the technology with other commercially available tools designed to manage security and reduce risk. The study demonstrated that many monitoring technologies are suitable for detecting pipeline leaks and identifying third party intrusions. A combination of different methods may provide optimal security and accuracy in leak detection and location. Automatic range and plausibility checks can be used to enhance system security and to recognize invalid changes in measuring devices and poorly parameterized media. Detailed reviews of the technologies were included in 2 appendices. 28 refs., 2 appendices.

  14. Modeling and monitoring of pipelines and networks advanced tools for automatic monitoring and supervision of pipelines

    CERN Document Server

    Torres, Lizeth

    2017-01-01

    This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems’ security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network’s operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.

  15. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2012-01-01

    Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst.......Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst....

  16. Wireless sensor network-based improved NPW leakage detection algorithm for real-time application in pipelines

    CSIR Research Space (South Africa)

    Adedeji, K

    2016-09-01

    Full Text Available of pipelines transporting this resource needs to be reduced. This paper briefly elaborates on work in progress employing wireless sensor networks (WSNs) to an improved negative pressure wave method for real-time leakage monitoring of a water pipeline network....

  17. 移动应用程序内存泄露机制分析与检测方案设计%Application code memory leak analysis and detecting technology research in mobile

    Institute of Scientific and Technical Information of China (English)

    朱洪军; 韩洋; 华保健; 陈灏

    2016-01-01

    Android development has become a hot field of mobile development, but memory usage problems in Android applications are often overlooked, part of the developers are lack of knowledge of Java garbage collection mechanism, which makes the memory leak become a very important issues in security area of Android application development. In this paper, the harm of memory leaks is expounded, it introduces some scenario of memory leak and sorts them according to the correlation of four components of Android, finally summarizes characteristics and puts forward a kind of memory leak code static code memory leak detection scheme based on symbolic execution.%Android开发已经成为移动开发热门领域,Android应用程序中内存使用的问题却经常容易被忽视,部分开发者对Java垃圾回收机制认识模糊,使得内存泄漏成为Android应用开发中十分隐秘但又确实存在的应用安全问题,对内存泄漏的危害进行了阐述,并根据与Activity、Service、ContentProvider、Broadcast Receiver等Android组件的相关性归类介绍了一些常见的典型内存泄漏情景,最后分析总结内存泄漏代码特征,并设计一种基于符号执行的内存泄漏静态代码检测方案。

  18. Dynamic modeling in compressible flow systems for application in real time leak detection; Modelagem dinamica em redes de escoamento compressivel para aplicacoes a deteccao de vazamentos em tempo real

    Energy Technology Data Exchange (ETDEWEB)

    Pires Neto, Joaquim Pamponet [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Lab. SDV - Dutos]. E-mail: joaquim@copene.com.br

    2002-06-01

    It is remarkable how there are hardly any computer tools that can build a transient behavioral analysis of process variables in a compressible flow, especially during starting and shutdown of plant. From this scenario, a modeling and dynamic simulation of compressible flow systems was built, and a computer method for detecting leaks in real time was presented. The phenomenon model is based on moment and continuity equations in transient basis. Unidimensional and isentropic natural gas flow was considered. The set of differential equations is solved through numerical integrations in time, using Runge-Kutta methods, after applying the finite elements method to spatial continuum. The suggested method for detection of leaks is based on the self-regressive stochastic parametric model. The procedure consist in generating process transient input and output data series, such as nodal pressures and flow rates in pipes, during the occurrence of the events programmed by the dynamic simulator and use them during training of IMO predictors in RX model structure, with constant update. The manifestation of a leak is detected by the instant deviation, statistically significant and beyond safety limits, between a group of predictions and the corresponding process measures. (author)

  19. Application of ground penetrating radar for detecting pipeline%瑞典MALA探地雷达在管线探测中的应用

    Institute of Scientific and Technical Information of China (English)

    汤博

    2015-01-01

    Swedish MALA ground penetrating radar (GPR) is applied in this article has carried on the research of under-ground pipeline detection. According to the material of underground pipeline and the surrounding medium and the different choices of different embedding depth, different frequencies of the antenna at the same time set up necessary working param-eters, the different types of underground pipeline detection, and the anomaly characteristics of the engineering examples of typical pipeline are analyzed.%应用瑞典MALA探地雷达进行了地下管线探测的研究。根据地下管线的材质、周围介质及埋设深度的不同选择,不同频率的天线同时设置必要的工作参数,对不同类型的地下管线进行了探测,并对工程实例中典型的管线异常特征进行了分析。

  20. 基于BP神经网络的盘管泄漏检测方法研究%Study of the coil-leak detective method based on the BP neural network

    Institute of Scientific and Technical Information of China (English)

    袁寅; 袁昌明; 王强

    2011-01-01

    The present paper is devoted to the study of the coil-leak detective method based on the BP neural network in hoping to extract its boundless application prospect. As a matter of fact, with the ever-increasing chemical safety demands, traditional offline pipe leak detection methods, such as pressure-keeping methods, which fail to meet the needs of on-line detection and control of the leakage of water coil of the reaction kettle for their poor real-time up-to-date performance. Flow balance method, though still effective in online leak-detection, also fails to meet the challenges of the fast-changing working conditions. Therefore, scientists began to face the challenge by using the flow balance method combined with neural network. In order to study the validity of this detection method, we have established an experimental platform of coil leak detection based on S7 - 300PLC. The platform can not only be able to simulate the leak of water coil, collect the flow data, but also produce warning alarms and help to control some sudden, unexpected leakage. Therefore, we have made an analysis of the flow changes in the inlet and outlet of the water coil of the reactor by means of a series of simulated experiments with the coil leakage, including the fast changing situations of working conditions and the leakage variations, we have also extracted characteristic signals (RMS) from the flow signal to protract RMS curve of flow. Careful comparison of the RMS curves of normal, leak and fast changing situations of working conditions, has offered us possibilities-to make clear the features of some quite different conditions. We have extracted RMS of the flow to construct the input matrix of the neural network. Through searching for a large number of experimental data to train the BP neural network, it becomes possible to work out the optimal neural network structures by comparing the network training error results of various structures. It is the BP neural network model we have

  1. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments.

    Science.gov (United States)

    Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G

    2016-06-01

    Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks.

  2. 基于Monte-Carlo方法的长输管道气体扩散模拟研究%Study on dispersion simulation of long-distant pipeline leaked gas based on Monte-Carlo

    Institute of Scientific and Technical Information of China (English)

    徐克; 何华刚; 朱毅川

    2012-01-01

    目前气体扩散模拟研究多采用流体力学的计算方法,分析气体扩散过程中的动力学特性.有限体积、有限元等方法都需要对事故区域整体进行网格划分,计算过程效率无法满足长输管道事故应急跨区域、多气象以及复杂地形的要求.Monte-Carlo方法利用RAMS预测的平均风场,模拟有限气体粒子在风场中的随机行走特性,有效地弥补了计算效率与网格精度冲突所导致的模拟性能下降的缺点.通过HAVEGE方法收集计算的硬件信息熵形成随机源,修正了以往伪随机数问题,增强了Monte-Carlo方法的计算精度.结果表明Monte-Carlo气体扩散模拟研究方法满足了长输管道事故灾害应急决策的需要.%The gas dispersion simulations almost used the methods of computational fluid dynamics at present, which analyzed the dynamic mechanics of the dispersion. However FVM and FEM have to mesh the total accidental area and the computation of both failed to meet the accidents emergency requirements, which included cross-regions , multiple meteorology and complicate terrains. Through researching the random walk performance of the particles in the average wind field predicted by the RAMS model, Monte-Carlo method resolved simulating performance degradation stemming from the conflict between the computing efficiency and the meshing accuracy. Besides, the HAVEGE method corrected paseudorandom problem by collecting the computer hardware comentropy as a random resource increased the computing accuracy. The results showed that the gas dispersion simulation based on Monte-Carlo could satisfy the requirement of the long-distant pipeline disasters emergency decision-making.

  3. Scanning, standoff TDLAS leak imaging and quantification

    Science.gov (United States)

    Wainner, Richard T.; Aubut, Nicholas F.; Laderer, Matthew C.; Frish, Michael B.

    2017-05-01

    This paper reports a novel quantitative gas plume imaging tool, based on active near-infrared Backscatter Tunable Diode Laser Absorption Spectroscopy (b-TDLAS) technology, designed for upstream natural gas leak applications. The new tool integrates low-cost laser sensors with video cameras to create a highly sensitive gas plume imager that also quantifies emission rate, all in a lightweight handheld ergonomic package. It is intended to serve as a lower-cost, higherperformance, enhanced functionality replacement for traditional passive non-quantitative mid-infrared Optical Gas Imagers (OGI) which are utilized by industry to comply with natural gas infrastructure Leak Detection and Repair (LDAR) requirements. It addresses the need for reliable, robust, low-cost sensors to detect and image methane leaks, and to quantify leak emission rates, focusing on inspections of upstream oil and gas operations, such as well pads, compressors, and gas plants. It provides: 1) Colorized quantified images of path-integrated methane concentration. The images depict methane plumes (otherwise invisible to the eye) actively interrogated by the laser beam overlaid on a visible camera image of the background. The detection sensitivity exceeds passive OGI, thus simplifying the manual task of leak detection and location; and 2) Data and algorithms for using the quantitative information gathered by the active detection technique to deduce plume flux (i.e. methane emission rate). This key capability will enable operators to prioritize leak repairs and thereby minimize the value of lost product, as well as to quantify and minimize greenhouse gas emissions, using a tool that meets EPA LDAR imaging equipment requirements.

  4. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Adrian eAndronache

    2013-08-01

    Full Text Available An emerging application of resting-state functional MRI is the study of patients with disorders of consciousness (DoC, where integrity of default-mode network (DMN activity is associated to the clinical level of preservation of consciousness. Due to the inherent inability to follow verbal instructions, arousal induced by scanning noise and postural pain, these patients tend to exhibit substantial levels of movement. This results in spurious, non-neural fluctuations of the blood-oxygen level-dependent (BOLD signal, which impair the evaluation of residual functional connectivity. Here, the effect of data preprocessing choices on the detectability of the DMN was systematically evaluated in a representative cohort of 30 clinically and etiologically heterogeneous DoC patients and 33 healthy controls. Starting from a standard preprocessing pipeline, additional steps were gradually inserted, namely band-pass filtering, removal of co-variance with the movement vectors, removal of co-variance with the global brain parenchyma signal, rejection of realignment outlier volumes and ventricle masking. Both independent-component analysis (ICA and seed-based analysis (SBA were performed, and DMN detectability was assessed quantitatively as well as visually. The results of the present study strongly show that the detection of DMN activity in the sub-optimal fMRI series acquired on DoC patients is contingent on the use of adequate filtering steps. ICA and SBA are differently affected but give convergent findings for high-grade preprocessing. We propose that future studies in this area should adopt the described preprocessing procedures as a minimum standard to reduce the probability of wrongly inferring that DMN activity is absent.

  5. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness.

    Science.gov (United States)

    Andronache, Adrian; Rosazza, Cristina; Sattin, Davide; Leonardi, Matilde; D'Incerti, Ludovico; Minati, Ludovico

    2013-01-01

    An emerging application of resting-state functional MRI (rs-fMRI) is the study of patients with disorders of consciousness (DoC), where integrity of default-mode network (DMN) activity is associated to the clinical level of preservation of consciousness. Due to the inherent inability to follow verbal instructions, arousal induced by scanning noise and postural pain, these patients tend to exhibit substantial levels of movement. This results in spurious, non-neural fluctuations of the rs-fMRI signal, which impair the evaluation of residual functional connectivity. Here, the effect of data preprocessing choices on the detectability of the DMN was systematically evaluated in a representative cohort of 30 clinically and etiologically heterogeneous DoC patients and 33 healthy controls. Starting from a standard preprocessing pipeline, additional steps were gradually inserted, namely band-pass filtering (BPF), removal of co-variance with the movement vectors, removal of co-variance with the global brain parenchyma signal, rejection of realignment outlier volumes and ventricle masking. Both independent-component analysis (ICA) and seed-based analysis (SBA) were performed, and DMN detectability was assessed quantitatively as well as visually. The results of the present study strongly show that the detection of DMN activity in the sub-optimal fMRI series acquired on DoC patients is contingent on the use of adequate filtering steps. ICA and SBA are differently affected but give convergent findings for high-grade preprocessing. We propose that future studies in this area should adopt the described preprocessing procedures as a minimum standard to reduce the probability of wrongly inferring that DMN activity is absent.

  6. Object-based detection of hazards to the European gas pipeline network using SAR images

    NARCIS (Netherlands)

    Dekker, R.J. van; Lingenfelder, I.; Brozek, B; Benz, U; Broek, A.C. van den

    2004-01-01

    In this paper the results of a study for a hazard detection system for Europe’s extensive high pressure gas mains transmission systems are presented. The system is designed to trace uncontrolled digging, ploughing, excavating activities using draglines or other machinery, construction works and

  7. Application of SVM and ELM Methods to Predict Location and Magnitude Leakage of Pipelines on Water Distribution Network

    Directory of Open Access Journals (Sweden)

    A.Ejah Umraeni Salam

    2015-06-01

    Full Text Available In this research, the system of leakage of pipelines detection will be done by a computerized technique by using analysis of pressure monitoring as a determinant of presence of pipeline leaks in the water distribution network. The pressure data obtained from EPANET software, namely a modeling in a hydraulic system. This study uses two methods, artificial intelligence, namely Support Vector Machine (SVM and Extreme Learning Machine (ELM which the results can be compared in order to predict the magnitude and location of leakage. Overall, both of these methods can be used to predict the magnitude and location of leakage. The accuracy of predictions for the magnitude and location of leakage of these methods is based on the value of NRMSE. In this case the results obtained by using the method of ELM are more accurate compared than the method of SVM of the entire pipeline systems.

  8. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Aron; Jeff Jia; Bruce Vance; Wen Chang; Raymond Pohler; Jon Gore; Stuart Eaton; Adrian Bowles; Tim Jarman

    2005-02-01

    This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even more compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length

  9. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Aron; Jon Gore, Roger Dalton; Stuart Eaton; Adrian Bowles; Owen Thomas; Tim Jarman

    2003-07-01

    This report describes progress, experiments, and results for a project to develop a pipeline inline inspection tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). There is a brief introduction that gives background material about EMATs and relevant previous Tuboscope work toward a tool. This work left various choices about the modes and transducers for this project. The experimental section then describes the lab systems, improvements to these systems, and setups and techniques to narrow the choices. Improvements, which involved transducer matching networks, better magnetic biasing, and lower noise electronics, led to improved signal to noise (SNR) levels. The setups permitted transducer characterizations and interaction measurements in plates with man-made cracks, pipeline sections with SCC, and a full pipe with SCC. The latter were done with a moveable and compact EMAT setup, called a lab mouse, which is detailed. Next, the results section justifies the mode and transducer choices. These were for magnetostrictive EMATs and the use of EMAT launched modes: SH0 (at 2.1 MHz-mm) and SV1 (at 3.9 MHz-mm). This section then gives details of measurements on these modes. The measurements consisted of signal to noise ratio, insertion loss, magnetic biasing sensitivities crack reflection and transmission coefficients, beam width, standoff and tilt sensitivities. For most of the measurements the section presents analysis curves, such as reflection coefficient versus crack depth. Some notable results for the chosen modes are: that acceptable SNRs were generated in a pipe with magnetostrictive EMATs, that optimum bias for magnetostrictive transmitters and receivers is magnetic saturation, that crack reflection and transmission coefficients from crack interactions agree with 2 D simulations and seem workable for crack grading, and that the mouse has good waveform quality and so is ready for exhaustive measurement EMAT

  10. Sensitive hydrogen leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  11. Margins in high temperature leak-before-break assessments

    Energy Technology Data Exchange (ETDEWEB)

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  12. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  13. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  14. 地下管线探测中地质雷达的应用%Application of the Geological Radar in Detecting Underground Pipeline

    Institute of Scientific and Technical Information of China (English)

    晏华平

    2016-01-01

    目的:探究地下管线探测中地质雷达的应用。方法:对地下管线探测中地质雷达的应用技术进行简单的阐述,立足于当前地下管线探测现状(存在的问题),分析地质雷达应用的优越性,并且针对具体的地下管线探测工程的实施,对比性重点突出该技术应用前后所产生的应用价值(效果)。结果:地质雷达探测地下管线的效率及质量明显的优于传统探测技术,能够有效的降低安全隐患,保障地下管线探测工作的顺利、健康、可持续发展。结论:利用先进的地质雷达探测地下管线的实际情况,能够为地下管线的顺利铺设保驾护航。%Objective:to explore the application of geological radar in underground pipeline detection. Methods:expound the application technology of the geological radar in underground pipeline detection, analyze the application advantages of geological radar Based on the current status of underground pipeline detection (problems), mainly protrude the application value (effect) before and after applying this technology by the implementation of underground pipeline detection.

  15. Oil pipeline geohazard monitoring using optical fiber FBG strain sensors (Conference Presentation)

    Science.gov (United States)

    Salazar-Ferro, Andres; Mendez, Alexis

    2016-04-01

    Pipelines are naturally vulnerable to operational, environmental and man-made effects such as internal erosion and corrosion; mechanical deformation due to geophysical risks and ground movements; leaks from neglect and vandalism; as well as encroachments from nearby excavations or illegal intrusions. The actual detection and localization of incipient and advanced faults in pipelines is a very difficult, expensive and inexact task. Anything that operators can do to mitigate the effects of these faults will provide increased reliability, reduced downtime and maintenance costs, as well as increased revenues. This talk will review the on-line monitoring of an extensive network of oil pipelines in service in Colombia using optical fiber Bragg grating (FBG) strain sensors for the measurement of strains and bending caused by geohazard risks such as soil movements, landslides, settlements, flooding and seismic activity. The FBG sensors were mounted on the outside of the pipelines at discrete locations where geohazard risk was expected. The system has been in service for the past 3 years with over 1,000 strain sensors mounted. The technique has been reliable and effective in giving advanced warning of accumulated pipeline strains as well as possible ruptures.

  16. C/C ++program memory leak detection based on bounded model checking%基于有界模型检测的C/C++程序内存泄露检测

    Institute of Scientific and Technical Information of China (English)

    黄蔚; 洪玫; 杨秋辉; 郭鑫宇; 代声馨; 徐保平; 高婉玲; 赵鹤

    2016-01-01

    The dynamic memory management mechanism in C /C ++programming language is free and flexible,but when used by developer it is easy to introduce memory leaks which lead to performance degradation and even failure of system.In order to detect memory leak more effectively,this paper proposed a memory leak detection method based on bounded model checking for C program called MLD-CBMC.It took C /C ++program files as input,unwound the program and inserted memory leak proper-ties,encoded the program constraints and properties into verification conditions using satisfiability modulo theory,then passed the verification conditions to a SMT solver.Thus it converted detecting memory leaks to solving satisfiability problems.By ex-periment and cooperation with other bounded model checking tools,MLD-CBMC shows its feasibility and effectiveness.%C /C ++语言中的动态内存管理机制自由且灵活,但动态内存的使用容易引入内存泄露,导致系统性能降低甚至系统崩溃。为了更加有效地检测内存泄露,提出了一个基于有界模型检测技术的 C /C ++程序内存泄露检测方案 MLD-CBMC。该方案以 C /C ++程序文件为输入,利用有界模型检测技术对程序进行展开处理,加入内存泄露性质,并利用可满足性模理论(SMT)对程序约束和性质组成的验证条件编码,使用 SMT 求解器对验证条件求解,将检测内存泄露问题转换为求解可满足性问题,实现 C /C ++程序内存泄露的检测。通过实验验证了方案的有效性,并与其他有界模型检测工具进行对比实验,实验证明方案对内存泄露的检测能力更强。

  17. Development of a water leak detection system for LMFBR steam generator. Pt. 3. Experimental results for detection of bubbles using the SG sector model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-05-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of liquid metal fast breeder reactor (LMFBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. The active acoustic detection method, which detects the sound attenuation due to bubbles generated at the sodium-water reactions, has drawn general interests owing to its short response time and reduction of the influence of background noise. Sound attenuation is also subjected to structures such as heat transfer tubes and shrouds. Accordingly, it is necessary to evaluate the sound attenuation due to structures. However, studies in these respects are very few. In this paper, using the water bath and SG sector model, the attenuation characteristics of sounds due to flat plates and heat transfer tubes are investigated under various conditions and discussed. (author).

  18. The special application of RD-PCM pipeline current mapping system in the detection of underground pipeline in Chongqing City%RD-PCM管道电流测绘系统在重庆市地下管线探测中的特殊应用

    Institute of Scientific and Technical Information of China (English)

    江周勇

    2015-01-01

    Pipeline detection is an important part of the city sur-vey. The large, deep buried pipeline detection is difficult in the detec-tion of pipeline. This paper focuses on the detection, in the Chongqing area on the large, deep buried pipeline through examples, introducing the specific application of RD-PCM pipeline current mapping system, through the examples the detection of underground pipeline in Chongqing city.%管线探测工作是城市基础调查工作的重要组成部分。而超大、深埋管线探测则是管线探测中的难点。本文着重探讨在重庆地区对超大、深埋管线的探测,通过实例,介绍RD-PCM管道电流测绘系统在重庆市地下管线探测中的特殊应用。

  19. A Fiber Bragg Grating Pressure Sensor and Its Application to Pipeline Leakage Detection

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2013-01-01

    Full Text Available The fiber Bragg grating (FBG technology has been rapidly applied in the sensing technology field. In this paper, an FBG pressure sensor is designed and implemented to detect the leakage of prestressed concrete cylinder pipe (PCCP. The pressure sensor is mainly based on a Bourdon tube with two FBGs bonded on its outside and inside surfaces, respectively. The measurement principle and simulation analysis results are described. The wavelength shift difference of the two FBGs is utilized as a pressure sensing signal, the sensitivity is enhanced, and the temperature cross-sensitivity is compensated. Experimental results indicate that the measurement sensitivity is 1.414 pm/kPa in a range from 0 to 1 MPa, and the correlative coefficient reaches 99.949%. This kind of pressure sensor is effective to quasi-distributed measure and online monitor pressure of gas or liquid in industry and manufacture fields.

  20. Megalencephaly syndromes: exome pipeline strategies for detecting low-level mosaic mutations.

    Directory of Open Access Journals (Sweden)

    William J Tapper

    Full Text Available Two megalencephaly (MEG syndromes, megalencephaly-capillary malformation (MCAP and megalencephaly-polymicrogyriapolydactyly-hydrocephalus (MPPH, have recently been defined on the basis of physical and neuroimaging features. Subsequently, exome sequencing of ten MEG cases identified de-novo postzygotic mutations in PIK3CA which cause MCAP and de-novo mutations in AKT and PIK3R2 which cause MPPH. Here we present findings from exome sequencing three unrelated megalencephaly patients which identified a causal PIK3CA mutation in two cases and a causal PIK3R2 mutation in the third case. However, our patient with the PIK3R2 mutation which is considered to cause MPPH has a marked bifrontal band heterotopia which is a feature of MCAP. Furthermore, one of our patients with a PIK3CA mutation lacks syndactyly/polydactyly which is a characteristic of MCAP. These findings suggest that the overlap between MCAP and MPPH may be greater than the available studies suggest. In addition, the PIK3CA mutation in one of our patients could not be detected using standard exome analysis because the mutation was observed at a low frequency consistent with somatic mosaicism. We have therefore investigated several alternative methods of exome analysis and demonstrate that alteration of the initial allele frequency spectrum (AFS, used as a prior for variant calling in samtools, had the greatest power to detect variants with low mutant allele frequencies in our 3 MEG exomes and in simulated data. We therefore recommend non-default settings of the AFS in combination with stringent quality control when searching for causal mutation(s that could have low levels of mutant reads due to post-zygotic mutation.

  1. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  2. Remote leak localization approach for fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, Au., E-mail: aurelien.durocher@cea.fr [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Bruno, V.; Chantant, M.; Gargiulo, L. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Gherman, T. [Floralis UJF Filiale, F-38610 Gières (France); Hatchressian, J.-C.; Houry, M.; Le, R.; Mouyon, D. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France)

    2013-10-15

    120 °C), “ppm” traces of helium or water have been measured. To improve these first promising results, a new test-bed called ROVE (remote operation vacuum equipment) has been set up in 2012 to qualify leak sensors and remote operation. A list of concepts has been set out from contacts with manufacturers and laboratories. For sniffing solutions it includes laser absorption measurement, mass spectrometer analyses and vibrating quartz. For embeddable concepts thermal conductivity and capacitive sensors are considered. Choice of concepts to detect water or helium traces is based on major criteria, such as weight, high sensibility and fast response time and recovery time. They also have to be operational under primary vacuum conditions or atmospheric pressure and from ambient temperature to 60 °C.

  3. Technology and Application of Long Distance Pipeline Corrosion Defects Detection%长输管道腐蚀缺陷检测技术与应用

    Institute of Scientific and Technical Information of China (English)

    周方舟

    2016-01-01

    我国一般采用多频管中电流法(RD400-PCM检测仪)对长输管道防腐层破损点进行检测定位,检测结果准确率达到100%;对管体壁厚的检测一般采用超声波检测技术,其精度要高于漏磁检测技术,点蚀达到5 mm2,10%管道壁厚的腐蚀量均能定量检测。埋地管道土壤环境评价指标包括土壤的电阻率、氧化还原电位、pH值、土壤含盐量以及含水量,根据各项指标确定了管道腐蚀级别,土壤含水量小于10%为宜,否则土壤对管道的腐蚀速率变大。将上述腐蚀检测体系在长庆油田某14 km的长输管道上进行了应用,结果表明:长输管道防腐层整体质量较好,管体腐蚀较为严重,其中坪五转外输腐蚀剩余管道壁厚最小,为3.81 mm,较大部分管线剩余壁厚均在4.31 mm左右。结合土壤环境,对使用年限较长的管道进行了更换,对有腐蚀现象的管段进行了维护,以延长管道使用寿命,降低长输管道运行风险。%Generally using multi- frequency tube in our country in current method (RD400-PCM detector) to test the coating damage point positioning, test result accuracy by 100%;Detection of pipe wall thickness generally uses the ultrasonic testing technology, its precision is higher than magnetic flux leakage detection technology, achieve 5 mm2 pitting, 10% amount of corrosion of pipe wall thickness can quantitative detection. Buried pipeline soil environmental evaluation index including soil resistivity,redox potential,pH value,soil salt content and water content, according to the size of the indicators to determine the level of pipeline corrosion, soil moisture content was less than 10% advisable, otherwise the soil corrosion rate of pipeline will increase. Then the corrosion inspection system application on a 14 km long distance pipeline in Changqing oil field, result shows that long-distance pipeline anticorrosive coating is in a good quality, the pipe

  4. Active acoustic leak detection for LMFBR steam generators. Pt. 4. Experimental results for detection of bubble using the SG full sector model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1996-06-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactor (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. The active acoustic method, which detects the sound attenuation due to bubbles generated at the sodium-water reactions, is being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles are investigated experimentally by using the SG full sector model simulating the actual SG. An emitter and a receiver sensor are attached to the SG shell, and the attenuation of sounds due to passing of bubbles through the sound field is detected and measured. As a experimental result, it is clarified that the received sound attenuates immediately upon injection of bubbles, and the attenuation of sound are 2-5 dB at after 10 seconds from bubble injection of 10 l/s. The attenuation of sound are least affected by bubble injection location. (author)

  5. Preliminary experimental research to detect grease stain of petroleum pipeline by sup 1 sup 3 sup 7 Cs gamma-ray transmission method

    CERN Document Server

    Wang Shi Heng

    2002-01-01

    The experimental study on the detection of grease stain for petroleum pipeline in Karamay oil-field of Xinjiang is carried out by gamma-ray transmission method. Experimental provision consists of sup 1 sup 3 sup 7 Cs gamma radiator and NaI(Tl) scintillation detector. The response of grease stain thickness of petroleum pipeline in Karamay oil-field is ln(N sub 0 /N)=0.00548 d-0.0046, and the response of paraffin thickness is ln(N sub 0 /N)=0.00522d-0.0126. The result of experiment indicates that the response of grease stain thickness is more sensitive than the response of paraffin thickness

  6. 地质雷达在管线探测中的应用%Application of geological radar in pipeline detection

    Institute of Scientific and Technical Information of China (English)

    王凯

    2011-01-01

    简单介绍了地质雷达的工作原理,分析了地下管线在地质雷达图像上表现的不同特征,并以天津实际工程为例进行了说明,最后指出地质雷达技术在城市管网探测方面将会有更大的发展空间。%This thesis briefly introduces the working principle of geological radar, and analyzes different characteristics of underground pipeline on the geological radar image. Taking Tianjin engineering as an example, it carries on an illustration. In the end, it points out greater development of geological radar technology in urban pipeline detection.

  7. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2013-01-01

    I artiklen undersøges det empiriske grundlag for Leader- ship Pipeline. Først beskrives Leadership Pipeline modellen om le- delsesbaner og skilleveje i opadgående transitioner mellem orga- nisatoriske ledelsesniveauer (Freedman, 1998; Charan, Drotter and Noel, 2001). Dernæst sættes fokus på det...... forholdet mellem kontinuitet- og diskontinuitet i ledel- seskompetencer på tværs af organisatoriske niveauer præsenteres og diskuteres. Afslutningsvis diskuteres begrænsningerne i en kompetencebaseret tilgang til Leadership Pipeline, og det foreslås, at succesfuld ledelse i ligeså høj grad afhænger af...

  8. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2013-01-01

    I artiklen undersøges det empiriske grundlag for Leader- ship Pipeline. Først beskrives Leadership Pipeline modellen om le- delsesbaner og skilleveje i opadgående transitioner mellem orga- nisatoriske ledelsesniveauer (Freedman, 1998; Charan, Drotter and Noel, 2001). Dernæst sættes fokus på det...... forholdet mellem kontinuitet- og diskontinuitet i ledel- seskompetencer på tværs af organisatoriske niveauer præsenteres og diskuteres. Afslutningsvis diskuteres begrænsningerne i en kompetencebaseret tilgang til Leadership Pipeline, og det foreslås, at succesfuld ledelse i ligeså høj grad afhænger af...

  9. 基于时延的高精度泄漏点超声定向检测方法%High accuracy method of ultrasonic gas leak direction detection based on time delay estimation

    Institute of Scientific and Technical Information of China (English)

    廖平平; 蔡茂林

    2013-01-01

    In order to solve the low accuracy problem in current gas leak detection, a new ultrasonic leak detection method based on time delay estimation (TDE) was proposed. Three ultrasonic sensors arranged in an equilateral triangle and received the ultrasound generated by a gas leak and the leak direction can be determined according to time delays between the outputs of every two sensors. A TDE algorithm based on cubic spline interpolation was adopted to overcome the accuracy limit caused by sampling interval. For each kernel window length, delay estimates of 100 sets of experimental data were obtained and their mean squared errors (MSE) were calculated. Comparison between MSE of experimental data and Cramer-Rao lower bound showed that their changing tendency was accordant. Influences of MSE, the space between sensors and the distance between leak and sensor on direction accuracy were analyzed. Results show that the direction error increases with MSE, decreases with the space between sensors, and increases with distance between leak and sensor. The direction detection accuracy is improved by 7 ~10 times compared with detection method with single ultrasonic sensor.%针对当前气体泄漏点检测定向精度低的情况,提出一种基于时延的高精度超声检测方法.该方法利用3个呈等边三角形分布的超声传感器接收由泄漏点产生的超声波,根据3路信号的相对时延值确定泄漏点的方向.为克服采样间隔对时延估计精度的限制,采用基于三次样条插值的时延估计算法估计信号时延值,并对不同核窗长度下的各100组实验数据的时延值进行误差统计,得到其均方差并与其Cramér-Rao下界比较,发现二者的变化趋势具有良好的一致性.在此基础上研究了时延值均方差,超声传感器间距和泄漏点距离对定向精度的影响.结果表明:定向误差随时延值均方差增大而增大,随超声传感器间距增大而减小,随泄漏点距离增大而增大

  10. Volume totalizers analysis of pipelines operated by TRANSPETRO National Operational Control Center; Analise de totalizadores de volume em oleodutos operados pelo Centro Nacional de Controle e Operacao da TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Thiago Lessa; Montalvao, Antonio Filipe Falcao [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Marques, Thais Carrijo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2012-07-01

    This paper aims to present the results and methodology in the analysis of differences in volume totals used in systems such as batch tracking and leak detection of pipelines operated by the National Center for Operational Control (CNCO) at TRANSPETRO. In order to optimize this type of analysis, software was developed to acquisition and processing of historical data using the methodology developed. The methodology developed takes into account the particularities encountered in systems operated by TRANSPETRO, more specifically, by CNCO. (author)

  11. 105 K-West isolation barrier leak recovery plan

    Energy Technology Data Exchange (ETDEWEB)

    Wiborg, J.C.

    1995-03-02

    Leak testing is being performed in 105 KW to verify the performance of the isolation barriers which have been recently installed. When an 11 inch differential head is established between the main basin and the discharge chute, a leak-rate of approximately 30 - 35 gpm is observed. The leak-rate would be achieved by a 1.65`` - 2`` diameter hole (or equivalent). Analyses suggest that the flow is turbulent/laminar transitional (dominantly turbulent), which would be indicative of a single point leak, typical of a pipe or large opening. However, local vortex rotation is observed in the entry to the West transfer chute while no observable motion was seen in the East transfer chute: this may be an indication of seal leakage in the East isolation barrier. The potential for leakage had been considered during the design and field work planning stages. Review of potential leak detection technologies had been made; at the planning stage it was determined that location specific leak detection could be established relatively quickly, applying existing K Basins technology (dye or ultrasonics). The decision was made not to pre-stage leak detection since the equipment development is highly dependent on the nature and location of the leak, and the characteristics of the leak rate provides data which guides leak characterization technology. The expense could be deferred and potentially avoided without risk to critical path activity. Consistent with the above, a systematic recovery plan has been developed utilizing phased activities to provide for management discipline combined with timely diagnosis and correction. Because this activity is not critical path at this time, activities will be coordinated with other plant activity to optimize overall plant work. Particular care will be exercised in assuring that information gained from this recovery can be utilized in the more critical work in 105 KE.

  12. Summary of QRL 7-8 Repair and Re-installation Leak Test Results

    CERN Document Server

    Kos, N; CERN. Geneva. TE Department

    2009-01-01

    This note describes the leak tests that have been performed during the repair and re-installation of QRL sector 7-8 during 2005 and 2006. The leak tests were performed in UX65, where the pipe elements were refurbished before re-installation, and in the tunnel. A variety of leaks have been detected, localised and repaired in the tunnel, including weld defects, accidentally drilled holes and imported leaks in previously tested components.

  13. MASS SPECTROMETER LEAK

    Science.gov (United States)

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  14. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  15. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  16. 半导体真空腔体静态密封和检漏的研究%Static Sealing and Leak Detection of Semiconductor Vacuum Chamber

    Institute of Scientific and Technical Information of China (English)

    陈妙娟

    2016-01-01

    针对半导体真空腔体静态密封中存在的泄漏及高温时密封圈受损等密封性问题,重新对密封圈的选择和密封槽的设计计算进行了完善,并对完善后的真空腔体的密封性进行了一系列的检漏测试及探讨,从而证明了改善方案的可行性。%This article focused on solving the problems of static sealing which caused the air leak and the O-ring damaging at high temperature in semiconductor vacuum chamber by choosing the O-ring and improving the sealing groove .Through further studying and a series of air leak test of the improved vacuum chamber ,it is proved that the improved solution is feasible .

  17. Uncertainty evaluation of vacuum chamber leak detection method for spacecraft component%航天器单机产品真空室检漏法测量结果的不确定度评定

    Institute of Scientific and Technical Information of China (English)

    汪力; 王勇; 孙立臣; 孙立志; 张海峰; 史纪军; 郭海涛

    2012-01-01

    航天器推进系统的单机产品的漏率测试往往采用氦质谱真空室检漏法,研究该方法测量结果的不确定度评定具有重要的工程应用价值.本文首先对真空室检漏法的原理进行了分析探讨,并从不确定的基础理论出发系统地研究了氦质谱真空室检漏法测量结果的不确定度评定方法,并结合工作的具体案例给出了评价的具体步骤.%Vacuum chamber leak detection method is widely used in (he spacecraft components of propellent subsystem. So it is very important to study the uncertainty evaluation of this method. First, the principle of the vacuum chamber leak detection method was analyzed. Second, the method of uncertainty evaluation was studied based on the basic theory about uncertainty. Last, the detailed evaluation steps were given through a case.

  18. Managing changes of location classes of gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B.; Sousa, Antonio Geraldo de [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Most of the gas pipeline design codes utilize a class location system, where the design safety factor and the hydrostatic test factor are determined according to the population density in the vicinities of the pipeline route. Consequently, if an operator is requested or desires to maintain an existing gas pipeline in compliance with its design code, it will reduce the operational pressure or replace pipe sections to increase the wall thickness whenever a change in location class takes place. This article introduces an alternative methodology to deal with changes in location classes of gas pipelines. Initially, selected codes that utilize location class systems are reviewed. Afterwards, a model for the area affected by an ignition following a natural gas pipeline leak is described. Finally, a methodology to determine the MAOP and third part damage mitigation measures for gas transport pipelines that underwent changes in location class is presented. (author)

  19. 基于GPRS的输油管道实时监控系统%The Design of Oil Pipeline Monitoring System Based on GRRS

    Institute of Scientific and Technical Information of China (English)

    罗会玖

    2013-01-01

    In order to ensure the security of the Oil Pipeline, An oil pipeline monitoring system based on GRRS is designed in this paper, the system mainly adopts a "negative pressure wave" method for Leakage detection and localization, through the RTU control unit samples the signal, the data is transmitted through GPRS wireless, the data is analyzed on PC monitoring system, and then locate the pipeline leaks.%为了确保输油管道的安全运行,设计了基于GPRS的输油管道实时监控系统,系统采用“负压波”法进行泄露检测,通过RTU控制数据采集,利用GPRS无线传输通信实现现场RTU与监控室数据通信,从而完成对输油管道实时监控功能.

  20. A report on the leak before break design and evaluation of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, H. Y.; Joo, Y. S.; Lee, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    In this study, the necessity of leak before break application for Liquid Metal Reactors (LMR) was investigated and the outline of leak before break evaluation procedure for KALIMER reactor structures and components was proposed. In the 1st phase of this project, the theoretical background for leak before break procedure was prepared based upon the state-of-the-art technology of the advanced countries. In the 2nd phase of project, evaluation method of creep crack growth was studied and the leak before break evaluation procedure of French RCC-MRA -16 was analyzed. Also, creep-fatigue crack growth was assessed according to the Japanese JNC method and this will help to establish the KALIMER leak before break procedure. It is necessary to specify proposed KALIMER leak before break evaluation technique including high temperature crack growth evaluation, stability analysis of crack growth, leak rate evaluation method, and leak detection technology. 24 refs., 12 figs., 4 tabs. (Author)

  1. Anchor Loads on Pipelines

    OpenAIRE

    Wei, Ying

    2015-01-01

    Anchor hooking on a subsea pipeline has been investigated in this thesis. Anchor loads on pipelines is in general a rarely occurring event, however, the severity when it occurs could easily jeopardize the integrity of any pipeline. It is considered as an accidental load in the design of pipelines. Pipeline Loads, limit state criteria and anchor categories are defined by the DNV standards. For pipeline, DNV-OS-F101 (08.2012), Submarine Pipeline Systems is adopted. Offshore standard DNV-RP...

  2. Is the 80% leak criterion always appropriate?

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Harvey [Kiefner and Associates, Inc., Vienna, VA (United States); McNealy, Rick [Applus-RTD, Houston, TX (United States); Rosenfeld, M.J. [Kiefner and Associates, Inc., Worthington, OH (United States)

    2010-07-01

    For evaluating metal loss depth by corrosion, ASME B31G recommends 80% of the wall thickness as an upper limit. A pipeline can still be safe with deeper corrosion, but the main question is whether conservative criteria are necessary because of errors in corrosion depth measurement. Corrosion depths over 80% might be acceptable if the measurement error was well understood and if errors could be treated in a routine and practical manner. Measurement errors are well understood when published values exist for commercial ILI tools and errors can be reassessed during remediation using in-the-ditch measurements. In the case of low-pressure pipelines, the 80% recommendation seems to be overly conservative and restricts re-inspection intervals unnecessarily. Otherwise, 80% seems appropriate in view of the current ILI and manual pit gauge depth measurement technology, but if the accuracy of ILI inspections was improved, fewer immediate digs could be possible. Corrosion deeper than 80% seems to cause leaks by perforation rather than mechanical failure.

  3. 40 CFR 63.1005 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... successful repair of the leak. (3) Maximum instrument reading measured by Method 21 of 40 CFR part 60... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1005 Section 63.1005... Standards for Equipment Leaks-Control Level 1 § 63.1005 Leak repair. (a) Leak repair schedule. The owner...

  4. Research project RoboGas{sup Inspector}. Gas leak detection with autonomous mobile robots; Forschungsprojekt RoboGas{sup Inspector}. Gaslecksuche mit autonomen mobilen Robotern

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Abdelkarim [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Bonow, Gero; Kroll, Andreas [Fachgebiet Mess- und Regelungstechnik, Universitaet Kassel, Kassel (Germany); Hegenberg, Jens; Schmidt, Ludger [Fachgebiet Mensch-Maschine-Systemtechnik, Universitaet Kassel, Kassel (Germany); Barz, Thomas; Schulz, Dirk [Fraunhofer FKIE, Unbemannte Systeme, Wachtberg (Germany)

    2013-05-15

    As part of the promotional program AUTONOMIK of the Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany) a consortium of nine project partners developed a prototype of an autonomous mobile robot looking for gas leaks in extended industrial equipment. The autonomous mobility of the system for any systems was implemented using different types of sensors for self-localization and navigation. The tele-operation enables a manual intervention in the process. The robot performs inspection tasks in industrial plants by means of video technology and remote gas measurement technology without driving into the possible risk areas and without the presence of humans. The robot can be used for routine inspections of facilities or for the targeted inspection of specific plant components. Thanks to the remote sensing technique also plant components can be inspected which are difficult to be inspected due to their limited accessibility by conventional measurement techniques.

  5. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

  6. Application of Pipeline Current Mapping Technology in Anti-corrosion Coating Detection of Underground Gas Pipeline%管道电流测绘技术在地下燃气管道防腐层检测中的应用

    Institute of Scientific and Technical Information of China (English)

    黄奕昶; 杨博; 李炜; 黄琴

    2016-01-01

    城镇地下燃气管道的运行状况直接关乎城镇的安全。管道电流测绘技术可以在非开挖条件下对埋地管道的阴极保护有效性做出评价,有效地检测出埋地钢质管道外防腐层缺陷。在工程应用中,采用这种新颖的检测技术可以快速检测和定位某处地下燃气管道的外防腐层缺陷。%The running state of theurban underground gas pipeline is crucial to the city safety. The pipeline current mapping technology is able to evaluate the effectiveness of the cathodic protection of the underground pipeline without excavation and effectively detect the defects of the anti-corrosion coating of the underground steel pipeline. In engineering application, the defects of the anti-corrosion coating of the underground gas pipeline can be detected and located rapidly by using this new detection technology.

  7. GPR for Detecting Underground Pipelines of Foundation Diseases%探地雷达探测地下管线的地基病害

    Institute of Scientific and Technical Information of China (English)

    何亮; 张清波

    2012-01-01

    文章在探地雷达理论的基础上,结合工程实例,阐述了探地雷达在探测地下管线周围地基病害中的应用,通过对雷达测线剖面图和单道波形图进行图像分析,对典型的地基病害如土体疏松进行了图像解释,确定出地基病害的程度和空间位置,并采用现场开挖及静力触探对比验证探地雷达的探测结果;此外,还阐述了探地雷达应用于金属管线和非金属管线的识别,并归纳了它们在雷达图像的异同。实践证明了探地雷达技术是一种有效的地基病害快速探测方法,值得大力推广。%Some engineering examples of GPR survey for detecting underground pipelines of the foundation diseases were introduced.Image interpretation about disturbed soil and soil slab in foundation diseases was base on analyzing the profile of GPR survey-line and the image of single-waveform,Determine the degree and spatial position of foundation diseases.The static cone penetration test(SPT) and excavation is also used to compare the result of GPR.In addition,but also elaborated ground penetrating radar applied in metal pipeline and non-metal pipeline identification,and concludes their similarities and differences in radar image.Engineering practices prove that GPR is a high-efficiency technique for detecting the position of foundation diseases accurately and worth to be popularized energetically.

  8. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  9. The Demonstration of a Robotic External Leak Locator on the International Space Station

    Science.gov (United States)

    Naids, Adam; Rossetti, Dino; Bond, Tim; Johnson, Brien; Huang, Alvin; Deal, Alexandra; Fox, Katie; Heiser, Michael; Hartman, William; Mikatarian, Ronald

    2017-01-01

    The International Space Station (ISS) and all currently conceivable future manned spacecraft are susceptible to mission impacts due to fluid/gas leaks to the exterior environment. For example, there is a well-known risk of ammonia leaks from the ISS External Thermal Control System loops and currently no method to locate them. It was, therefore, critical to develop a method for detecting and locating leaks to preserve vehicle health. The Robotic External Leak Locator (RELL) was developed and deployed to the ISS to provide this capability. An on-orbit validation and demonstration was successfully completed in December 2016 and leak locating operations occurred in February 2017. This paper discusses the results of those exercises including measurements of the environment around ISS, detection of the small ammonia leak and implementation of leak locating methodologies.

  10. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    Directory of Open Access Journals (Sweden)

    Voorrips Roeland E

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. Results We have developed a new algorithm to detect reliable SNPs and insertions/deletions (indels in EST data, both with and without quality files. Implemented in a pipeline called QualitySNP, it uses three filters for the identification of reliable SNPs. Filter 1 screens for all potential SNPs and identifies variation between or within genotypes. Filter 2 is the core filter that uses a haplotype-based strategy to detect reliable SNPs. Clusters with potential paralogs as well as false SNPs caused by sequencing errors are identified. Filter 3 screens SNPs by calculating a confidence score, based upon sequence redundancy and quality. Non-synonymous SNPs are subsequently identified by detecting open reading frames of consensus sequences (contigs with SNPs. The pipeline includes a data storage and retrieval system for haplotypes, SNPs and alignments. QualitySNP's versatility is demonstrated by the identification of SNPs in EST datasets from potato, chicken and humans. Conclusion QualitySNP is an efficient tool for SNP detection, storage and retrieval in diploid as well as polyploid species. It is available for running on Linux or UNIX systems. The program, test data, and user manual are available at

  11. Safety installation for preventing pollution by pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Wittgenstein, G.F.

    1972-10-25

    A safety installation for preventing pollution by pipelines, particularly those used for transporting liquid hydrocarbons, is described. It is applicable to any pipeline, but particularly to underground or submarine pipelines, whether made of steel, plastics, or any other material. The 4 essential objects of the invention are to insure reliable prevention of pollution of the environment due to leakage of a hydrocarbon through cracks in the pipe; to evacuate the leakage flow without delay to a vessel; to signal almost instantaneously the existence of a leak; and to effect remote control of operations by which the dynamic pressure in the pipe is cancelled. Each equipped section consists of a fluid-type jacket of plastic material which surrounds the pipe, which at its ends is sealed off. It is these seals which delimit the sections. (7 claims)

  12. In-service leak testing of district heating systems using dissolved tracer gas. Final report; Betriebsbegleitende Lecksuche mit geloestem Tracergas in Fernwaermesystemen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hergarten, A.; Althaus, W. [eds.

    1997-07-31

    The feasibility of in-service leak detection with dissolved tracer gas was investigated. Helium was selected as tracer gas because of its good diffusion characteristics, selective detectability at very low concentrations, inert and unproblematic behaviour within the district heating system, and good environmental compatibility. For a systematic investigation of the influencing parameters governing practical applications, a pipeline test field comprising about 240 m of KMR district heating pipelines and 61 controllable simulation leaks was constructed, and experiments using the new method were carried out. The required helium concentration amounts to a few grams of helium per cubic metre of district heating water. The water can be charged in the water preparation or feeding stage, and commercial detectors can be used. (orig./GL) [Deutsch] Zur Entwicklung einer betriebsbegleitenden Lecksuchmethode fuer erdverlegte Rohrleitungen wurden in einem Feasbility-Test die Machbarkeit der Tracergassuche mittels geloestem Spuergas bestaetigt. Als Tracergas wurde Helium aufgrund seines guenstigen Diffusionsverhaltens, seiner selektiven Nachweisbarkeit bei kleinsten Konzentrationen, seines inerten, unproblematischen Verhaltens im Fernwaermenetz und seiner guten Umweltvertraeglichkeit ausgewaehlt. Zur systematischen Untersuchung der Einflussparameter bei der Anwendung der Methode unter praxisnahen Bedingungen wurde ein Rohrleitungsversuchsfeld mit ca. 240 m KMR-Fernwaermeleitung und 61 regelbaren Simulationsleckagen aufgebaut und die neue Lecksuchmethode eingehend experimentell getestet. Die einzustellende Heliumkonzentration im Fernwaermewasser ist mit wenigen Gramm Helium je Kubikmeter Fernwaermewasser gering. Eine Vorrichtung fuer die empfohlene Beladung des gesamten Netzwasserinhalts kann in Wasseraufbereitung oder Nachspeisung des Netzes eingebunden werden. Zur Detektion koennen, marktverfuegbare Messgeraete verwendet werden. (orig./GL)

  13. Fault detection using artificial neural networks in pipelines for transport of oil and gas; Deteccao de falhas utilizando redes neurais artificiais em dutos para transporte de petroleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Guia, Jose G.C. da; Araujo, Adevid L. de [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica; Irmao, Marcos A. da Silva [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia de Processos; Silva, Antonio A. [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica

    2003-07-01

    The condition monitoring and diagnostic of structural faults in pipelines are an important problem for the petroleum's industry, being necessary to develop supervisory systems for detection, prediction and evaluation of a fault in the pipelines to avoid environmental and financial damages. In this work, three types of Artificial Neural Networks (ANNs) are reviewed and used to detect and locate a fault in a simulated pipe. The simulated pipe was modeled through the Finite Elements Method. In Neural Networks' analysis, the first six natural frequencies of the pipe are used as networks' inputs. The used ANNs were the Multi-Layer Perceptron Network with backpropagation, the Probabilistic Neural Network and the Generalized Regression Neural Network. After the analysis, it was concluded that the ANN are a good computational tool in problems of faults detection on pipelines with a great precision. In the localization of the faults were obtained errors smaller than 5%. (author)

  14. 浅析综合物探技术在地下管线探测中的应用%Superficial Analysis of the Application of Integrated Geophysical Prospecting Technology in Underground Pipeline Detection

    Institute of Scientific and Technical Information of China (English)

    李双超; 吴露

    2015-01-01

    迅速了解地下管线的布置情况,是今后城市建设中的必然要求.在地下管线的探测中,综合物探技术的运用起到了非常重要的作用.因此,分析了地下管线的分类、探测特征及其常用探测方法,并对提高探测质量的方法进行了阐述.%Rapid understanding of the layout of the underground pipeline is the inevitable requirement of the construction of the city in the future. In the exploration of underground pipelines, the application of integrated geophysical prospecting technology plays a very important role. Therefore, this paper analyzes the classification of underground pipelines, detection characteristics and common detection methods, and to improve the quality of detection methods are described.

  15. Detection of underground pipeline diameter in farmland using ground-penetrating radar%基于探地雷达的农田地埋管管径探测

    Institute of Scientific and Technical Information of China (English)

    赵艳玲; 胡振琪; 杨俊国; 王方; 付馨; 徐荣强

    2012-01-01

    To meet the demand for pipeline project acceptance, the method of detecting underground pipeline diameter in farmland was studied using ground penetrating radar. Based on the energy gradient of pipeline target radar image, the vertex and edge of target pipelines was extracted, and the theory of Least-squares was used to calculate the underground pipeline diameter. The results showed that using ground-penetrating radar on detecting underground pipeline diameter in farmland was feasible, and could detect the diameter of polyvinyl chloride pipeline with the diameter of 75 ~ 110 mm and buried depth of 0.5m . This study provides a new technology for the acceptance of irrigation and water conservancy project.%为探求农田地埋管管径的探测技术,满足现有大量农田地埋管工程验收的需求,研究了采用探地雷达探测农田土壤中地埋管管径的方法.通过地埋管线目标的雷达图像的能量梯度,提取管线目标顶点和双曲线边缘,并运用最小二乘原理,对地埋管管径进行计算.研究表明:采用探地雷达探测农田中地埋管管径是可行的,该技术可探测出埋深0.5 m,管径在75~110 mm的聚氯乙烯(polyvinyl chloride,PVC)地埋管管径,为农田水利工程验收提供了新的参考.

  16. ALMA Pipeline Heuristics

    Science.gov (United States)

    Muders, D.; Boone, F.; Wyrowski, F.; Lightfoot, J.; Kosugi, G.; Wilson, C.; Davis, L.; Shepherd, D.

    2007-10-01

    The Atacama Large Millimeter Array / Atacama Compact Array (ALMA / ACA) Pipeline Heuristics system is being developed to automatically reduce data taken with the standard observing modes such as single fields, mosaics or on-the-fly maps. The goal is to make ALMA user-friendly to astronomers who are not experts in radio interferometry. The Pipeline Heuristics must capture the expert knowledge required to provide data products that can be used without further processing. The Pipeline Heuristics system is being developed as a set of Python scripts using as the data processing engines the Common Astronomy Software Applications (CASA[PY]) libraries and the ATNF Spectral Analysis Package (ASAP). The interferometry heuristics scripts currently provide an end-to-end process for the single field mode comprising flagging, initial calibration, re-flagging, re-calibration, and imaging of the target data. A Java browser provides user-friendly access to the heuristics results. The initial single-dish heuristics scripts implement automatic spectral line detection, baseline fitting and image gridding. The resulting data cubes are analyzed to detect source emission spectrally and spatially in order to calculate signal-to-noise ratios for comparison against the science goals specified by the observer.

  17. The Impact of Pipeline Position on the Underground Cavity Detection%管线位置对地下空洞检测的影响

    Institute of Scientific and Technical Information of China (English)

    孔令翔; 李青; 赵志鹏; 王先进; 周泽正; 万帅

    2015-01-01

    通过分析电磁波在地下介质中的传播规律,介绍了探地雷达检测地下空洞的基本原理。制作实验装置,测量单独的空洞模型,分析产生的波形图,初步了解了空洞在反射波谱上的图像特征。将管线埋设于不同位置,对比它们与单独空洞模型所得到的反射波形之间的图像差异,研究其对地下空洞探测结果的影响规律。结果表明,管线水平位置的不同、管线和空洞间距的不同都会对电磁波的传播造成影响,主要在于阻碍空洞反射波传播地表,不利于判断空洞位置和计算脱空大小。本次研究所得图像可作为样本,为现场测量和危害评估提供理论支持,对于防范塌陷灾害有一定的促进作用。%Through analyzing the electromagnetic wave propagation in underground medium, this paper intro-duces the basic principle of detecting the underground cavity by GPR( Ground Penetrating Radar).A single cavity model is established in the experimental device and the characteristics of the reflection spectrum about the under-ground cavity can be understood preliminarily by analyzing the detecting waveform.Establish models of pipelines buried in different position.Contrast the differences of the reflection waveform between these models and that of a single cavity and study the impact on the underground cavity detection.The study shows that the horizontal position of pipeline and the distance between pipeline and cavity has affected the electromagnetic wave propagation.It pre-vents the reflection wave from transmitting back to the ground so that the position and the size of the underground cavity cannot be identified precisely.The waveform in this study can be collected as samples.It provides theoretical support for the detection and the damage assessment, and is very effective in preventing collapse.

  18. 基于太阳能充电的无线远程监控氯气泄漏系统%Wireless Remote Monitor System of Detecting the Leaking of Chlorine Gas Based on Solar Energy Charging

    Institute of Scientific and Technical Information of China (English)

    王金辉; 周巧娣; 徐勤利; 蒋科学; 陈文华

    2013-01-01

    根据工业用氯气的量大以及罐体存储的需求,选用基于GSM的远程监控系统对氯气泄漏进行检测.用太阳能电池板实现白天对系统供电以及对锂电池充电,夜晚完全由锂电池对供电.系统微控制器选用MSP430,以达到超低功耗的功能.对于氯气泄漏的信号采集使用CL2-A1电化学式氯气传感器,实现到对泄漏氯气快速检测做出反应的效果.该设计具有适用范围广,通用性强,能现场以及远程报警等优点.%Based on the large amount of chlorine for industrial use and storage of tank requirements, GSM-based remote monitoring system is selected to detect chlorine leaks. During the day the system uses solar panels as the system power supply and battery charger, but lithium-powered by night. In order to achieve ultra-low power consumption features, system uses ultra-low power microcontroller's MSP430. For acquisition of chlorine leakage signal, CL2 - Al Electrochemical chlorine sensor is used in the design, in order to achieve a rapid detection of chlorine leak response effect. The design has advantages of wide range of application, versatility, and can site and remote alarm.

  19. 生物安全实验室效率检漏型高效空气过滤装置的研制%Development of HEPA Filter Unit with Efficiency Leak Detection for Bio-safety Laboratory

    Institute of Scientific and Technical Information of China (English)

    张宗兴; 赵明; 衣颖; 祁建城

    2013-01-01

    目的:研制一种可安装在生物安全实验室内的效率检漏型排风高效过滤装置,可实现对高效空气过滤器的原位检漏和消毒.方法:依据高效空气过滤器效率法检测和气体消毒要求,进行高效空气过滤装置的结构设计.结果:该高效空气过滤装置,可采用效率法对高效过滤器进行原位检漏,并可对过滤器进行原位气体消毒及验证消毒效果,满足相关标准要求.结论:该装置适用于生物安全实验室的污染空气排放处置,可满足我国生物安全实验室建设的需要.%Objective To develop an exhaust HEPA filter unit installed in the laboratory that has the functions of in-situ leak detection and sterilization of HEPA filter.Methods The structure composition of the unit was designed according to the requirement of efficiency test and gas sterilization of HEPA filter.Results The HEPA filter unit which met relevant standard requirements had the functions of in-situ leak detection using efficiency test,sterilization and validating the effect of sterilization of HEPA filter.Conclusion The unit which is applicable to decontamination of contaminated air emissions of bio-safety laboratory can meet the needs of construction of bio-safety laboratory in China.

  20. Estimation of leak rate through circumferential cracks in pipes in nuclear power plants

    Directory of Open Access Journals (Sweden)

    Jai Hak Park

    2015-04-01

    Full Text Available The leak before break (LBB concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry–Fauske flow model and modified Henry–Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

  1. In-service helium leak testing of vacuum furnace

    Science.gov (United States)

    Ahmad, Anis; Tripathi, S. K.; Sawant, P. S.; Mukharjee, D.; Shah, B. K.

    2012-11-01

    Helium leak detection of vacuum furnaces and equipments used for processing of nuclear material is generally carried out by utilizing vacuum spray technique. In this technique helium leak detector is connected to the furnace, back ground reading is noted and helium gas is sprayed on all the suspected joints. Any increase in back ground is noted as leak signal. Processing of Zirconium alloy cladded fuel pins is carried out in vacuum furnace of about 3 meter length and 500 mm inside diameter. Furnace is connected with two numbers of rotary vacuum pump and one number of diffusion pump for creating vacuum (1 × 10-6 torr) inside the furnace. It is desirable that furnace should have good vacuum and best possible leak tightness during dynamic and static vacuum. During dynamic vacuum at higher temperature although required vacuum is achieved the furnace may have fine leakage through which air may enter and cause oxidation of clad tube leading to change in its coloration. This change in coloration will cause rejection of fuel element. Such fine leakages may not be reflected in the dynamic vacuum of the system at high temperature. During trial run change in coloration of outside surface of clad tube was observed although dynamic vacuum of the furnace was in the range of 1×10-6 torr range. To eliminate such possibilities of oxidation due to fine leakages in the system, it was decided to carry out in-service leak testing of the furnace. Helium leak testing of the furnace was carried out by using vacuum spray method and leaks observed were repaired and furnace was retested to ensure the leak tightness. The in-service helium leak testing of the furnace helped in maintaining its leak tightness during service under dynamic vacuum and prevent oxidation of fuel element. This paper describes the techniques of in- service helium leak testing, it's importance for detection of fine leak under dynamic vacuum and discusses details of the testing method and result obtained.

  2. Focus on safety and environment : a comparative analysis of pipeline performance 2000-2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The number and frequency of various incidents that affect pipeline integrity, safety and the environment must be examined regularly in order to evaluate pipeline performance. This paper evaluated incidents at companies that are regulated by the National Energy Board (NEB) and compared pipeline performance in other jurisdictions. This constituted the fifth edition of the report and included data from January 1, 2000 to December 31, 2005. The report provided an introduction to the National Energy Board and performance indicators that were used to evaluate the safety of pipeline employees and contractors. Performance indicators were also used to evaluate the effectiveness of pipeline integrity programs and the protection of the environment during pipeline operations. Eight performance indicators were identified by the Board, grouped under the rubrics of: safety, integrity, environment and incidents. The indicators included the number of fatalities; injuries; pipeline ruptures; pipeline contacts; and liquid releases, leaks and spills. Other indicators included the volume and frequency of liquid releases, leaks and spills; number and frequency of gas releases; and, number of onshore pipeline regulations (OPR) reportable incidents. The methodology of moving averages and analysis of each of the indicators was also discussed. It was concluded that NEB-regulated pipelines performed consistently with reference organizations in Canada, the U.S. and overseas, within the limits of data comparability and that pipelines remain an efficient and safe method of transporting hydrocarbon products. refs., 21 tabs., 17 figs., 3 appendices.

  3. Ultra high vacuum pumping system and high sensitivity helium leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  4. An energy-based sparse representation of ultrasonic guided-waves for online damage detection of pipelines under varying environmental and operational conditions

    Science.gov (United States)

    Eybpoosh, Matineh; Berges, Mario; Noh, Hae Young

    2017-01-01

    This work addresses the main challenges in real-world application of guided-waves for damage detection of pipelines, namely their complex nature and sensitivity to environmental and operational conditions (EOCs). Different propagation characteristics of the wave modes, their distinctive sensitivities to different types and ranges of EOCs, and to different damage scenarios, make the interpretation of diffuse-field guided-wave signals a challenging task. This paper proposes an unsupervised feature-extraction method for online damage detection of pipelines under varying EOCs. The objective is to simplify diffuse-field guided-wave signals to a sparse subset of the arrivals that contains the majority of the energy carried by the signal. We show that such a subset is less affected by EOCs compared to the complete time-traces of the signals. Moreover, it is shown that the effects of damage on the energy of this subset suppress those of EOCs. A set of signals from the undamaged state of a pipe are used as reference records. The reference dataset is used to extract the aforementioned sparse representation. During the monitoring stage, the sparse subset, representing the undamaged pipe, will not accurately reconstruct the energy of a signal from a damaged pipe. In other words, such a sparse representation of guided-waves is sensitive to occurrence of damage. Therefore, the energy estimation errors are used as damage-sensitive features for damage detection purposes. A diverse set of experimental analyses are conducted to verify the hypotheses of the proposed feature-extraction approach, and to validate the detection performance of the damage-sensitive features. The empirical validation of the proposed method includes (1) detecting a structural abnormality in an aluminum pipe, under varying temperature at different ranges, (2) detecting multiple small damages of different types, at different locations, in a steel pipe, under varying temperature, (3) detecting a structural

  5. 基于检查片的埋地管道阴极保护检测与评估%Detection and Assessment of the Cathodic Protection for Buried Pipeline by Coupon Tests

    Institute of Scientific and Technical Information of China (English)

    伍欣; 张卓; 杨诗怡

    2016-01-01

    阴极保护作为埋地管道的主要防护措施,在管道保护方面起到重要作用。为了准确地评估管道阴极保护效果,文中介绍了管道阴极保护检查片检测技术,重点阐述了国内外发展状况以及利用检查片检测管道阴极保护效果的优势,分析了目前国外对检查片检测技术的改进方式和评价准则,对埋地管道阴极保护检查片检测评估技术提出了展望,并成功应用于某长输管道阴极保护的检测与评估。%As the main protection of buried pipelines, cathodic protection played an important role in the pipeline protec-tion. In order to accurately assess the pipeline cathodic protection, detection technology of cathodic protection by coupon was de-scribed in this article. The development status at home and abroad and the advantage of use coupon to detect the pipeline cathodic were expounded. The improvement mode and evaluation criteria of checking coupon technology, some prospects are put forwards to detection and effective evaluation technology by coupon for buried pipelines, and it is successfully applied to the detection and assessment of cathodic protection of pipeline.

  6. Research on Mechanism and Analysis of Underground Pipeline Detection with Ground Penetrating Radar%探地雷达探测地下管线的机理和应用研究

    Institute of Scientific and Technical Information of China (English)

    苏兆锋; 陈昌彦; 肖敏

    2013-01-01

    地下管线无论其内部充填空气、水或其它介质,其介电常数、电导率等物性参数与周围介质均存在明显差异,具备探地雷达探测的地球物理前提.从探地雷达探测地下管线的极性分析入手,通过建立金属和非金属管线的正演数值模型,研究探地雷达电磁波在金属管线、非金属管线和组合管线中的传播机制.结合实际探测的地下管线探地雷达特征图谱,从反射波波形、极性、同相轴、电磁波能量吸收和衰减等方面分析探地雷达探测地下管线的波谱特征,建立探地雷达探测金属和非金属管线的识别方法,为准确探测地下管线起到很好的指导作用.%The dielectric constant and electical conductivity of underground pipeline are obviously different with surrounding medium,regardless of its internal filling air,water or other medium.It is prerequisite with the ground penetrating radar for detecting underground pipelinse.This paper analyzes the ground penetrating radar for detecting underground pipelines polarity.Through the establishment of metal and non-metallic pipeline forward numerical model,it focuses the transimission mechanism of GPR electromagnetic wave in metal pipeline,nonmetal pipeline.Combined with the actual detection of underground pipeline ground-penetrating radar feature mapping,it analyzes the spectrum characteristics from the reflection waveform,polarity,phase axis,electromagnetic wave energy absorption and attenuation.Finally,it establishes the identificaion method of GPR detecting metal and non-metallic pipeline.The results play a very good guidance for accurately detecting underground pipelines.

  7. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  8. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  9. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created

  10. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  11. 基于混沌理论的城市供水系统漏损检测新方法%A New Method to Leak Detection in Water System Based on Chaos Theory

    Institute of Scientific and Technical Information of China (English)

    张琴; 朱庆建; 汪雄海

    2013-01-01

    Considering the importance of leak detection to energy efficiency in urban water system,a new method to leak detection based on chaos theory is presented.The chaotic evolutional characters of successive users were used to detect pipe break or the leakage.By extracting the correlation dimension、Lyapunov exponent、attractor phase diagram and R/S analysis of hourly water consumption,the water time series of successive users were proved to be fractal and chaotic chaining relevant.On the basis,the different chaotic characters of booster and leakage were compared by phase diagram and the maximum Lyapunov exponent variation.Test results show that the chaotic characters are changed immediately when the booster occurs,and slow leakage can be discovered after two hours.Thus this method supplies new judgments to effectively amend water system in time and decrease the loss of water resource.%针对漏损检测对城市供水系统节能降耗的重要性,研究时用水量的混沌特性并提出一种基于混沌理论的漏损检测新方法,利用沿程用户时用水量的混沌演化特性来检测漏损故障和漏水.根据城市时用水量的时间序列,提取关联维数、最大Lyapunov指数、吸引子相图和R/S等混沌特征指数,分析沿程城市用水量观测序列的分形和链级混沌关联,并在此基础上,依据系统相图和最大Lyapunov指数变化来比较漏损故障和漏水时序的不同混沌特性.仿真结果表明,漏损故障时的混沌特性显著改变并能立即检测到,缓慢漏水2h后混沌特性变化明显,为及时修补供水系统提供依据,减小了资源损耗.

  12. 77 FR 70543 - Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory...

    Science.gov (United States)

    2012-11-26

    ... for natural gas pipelines and for hazardous liquid pipelines. Both committees were established under... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory Committee AGENCY: Pipeline and...

  13. Influence of Crack Morphology on Leak Before Break Margins

    Energy Technology Data Exchange (ETDEWEB)

    Weilin Zang (Inspecta Technology AB, Stockholm (SE))

    2007-11-15

    The purpose of the project is to evaluate the deterministic LBB-margins for different pipe systems in a Swedish PWR-plant and using different crack morphology parameters. Results: - The influence of crack morphology on Leak Before Break (LBB) margins is studied. The subject of the report is a number of LBB-submittals to SKI where deterministic LBB-margins are reported. These submittals typically uses a surface roughness of 0.0762 mm (300 microinch) and number of turns equal to zero and an in-house code for the leak rate evaluations. The present report has shown that these conditions give the largest LBB-margins both in terms of the quotient between the critical crack length and the leakage crack size and for the leak rate margin. - Crack morphology parameters have a strong influence on the leak rate evaluations. Using the SQUIRT code and more recent recommendations for crack morphology parameters, it is shown that in many cases the evaluated margins, using 1 gpm as the reference leak rate detection limit, are below the safety factor of 2 on crack size and 10 on leak rate, which is generally required for LBB approval. - The effect of including weld residual stresses on the LBB margins is also investigated. It is shown that for the two examples studied, weld residual stresses were important for the small diameter thin wall pipe whereas it was negligible for the large diameter thick wall pipe which had a self-balanced weld residual stress distribution

  14. Methane Leaks from Natural Gas Systems Follow Extreme Distributions.

    Science.gov (United States)

    Brandt, Adam R; Heath, Garvin A; Cooley, Daniel

    2016-11-15

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.

  15. DM在航油管道外防腐层检测中的应用%The Application of DM at the External Anticorrosion Coating Detection of a Fuel Pipeline

    Institute of Scientific and Technical Information of China (English)

    陈智君; 李勇樊; 顾平

    2016-01-01

    本文通过研究各种管道检测技术的基本原理,对比了它们的优缺点,强调了综合检测技术的重要性。在此基础上介绍了DM(Defect Mapper)管道防腐层检测仪的基本原理和使用方法,并在某航油管道外防腐层检测中得到应用,获得良好的检测效果。%This paper introduced the basic principle of different pipeline detection technology and compared their advantages and disadvantages and emphasized the importance of comprehensive testing technology. We also introduced the basic principles and methods of DM pipeline coating detector. And get good results through its practical application in some jet fuel pipeline.

  16. Modelling and Simulation of Free Floating Pig for Different Pipeline Inclination Angles

    Directory of Open Access Journals (Sweden)

    Woldemichael Dereje Engida

    2016-01-01

    Full Text Available This paper presents a modelling and simulation of free floating pig to determine the flow parameters to avoid pig stalling in pigging operation. A free floating spherical shaped pig was design and equipped with necessary sensors to detect leak along the pipeline. The free floating pig does not have internal or external power supply to navigate through the pipeline. Instead, it is being driven by the flowing medium. In order to avoid stalling of the pig, it is essential to conduct simulation to determine the necessary flow parameters for different inclination angles. Accordingly, a pipeline section with inclination of 0°, 15°, 30°, 45°, 60°, 75°, and 90° were modelled and simulated using ANSYS FLUENT 15.0 with water and oil as working medium. For each case, the minimum velocity required to propel the free floating pig through the inclination were determined. In addition, the trajectory of the free floating pig has been visualized in the simulation.

  17. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks.

    Science.gov (United States)

    Wolf, Leif; Zwiener, Christian; Zemann, Moritz

    2012-07-15

    There is little quantitative information on the temporal trends of pharmaceuticals and other emerging compounds, including artificial sweeteners, in urban groundwater and their suitability as tracers to inform urban water management. In this study, pharmaceuticals and artificial sweeteners were monitored over 6 years in a shallow urban groundwater body along with a range of conventional sewage tracers in a network of observation wells that were specifically constructed to assess sewer leakage. Out of the 71 substances screened, 24 were detected at above the analytical detection limit. The most frequent compounds were the iodinated X-ray contrast medium amidotrizoic acid (35.3%), the anticonvulsant carbamazepine (33.3%) and the artificial sweetener acesulfame (27.5%), while all other substances occurred in less than 10% of the screened wells. The results from the group of specifically constructed focus wells within 10 m of defective sewers confirmed sewer leaks as being a major entrance pathway into the groundwater. The spatial distribution of pharmaceuticals and artificial sweeteners corresponds well with predictions by pipeline leakage models, which operate on optical sewer condition monitoring data and hydraulic information. Correlations between the concentrations of carbamazepine, iodinated X-ray contrast media and artificial sweeteners were weak to non-existent. Peak concentrations of up to 4130 ng/l of amidotrizoic acid were found in the groundwater downstream of the local hospital. The analysis of 168 samples for amidotrizoic acid, taken at 5 different occasions, did not show significant temporal trends for the years 2002-2008, despite changed recommendations in the medical usage of amidotrizoic acid. The detailed results show that the current mass balance approaches for urban groundwater bodies must be adapted to reflect the spatially distributed leaks and the variable wastewater composition in addition to the lateral and horizontal groundwater fluxes.

  18. 基于局部堆内存抽象表示的堆操作程序内存泄露检测%Memory Leak Detection for Heap-Manipulating Programs Based on Local Heap Abstraction

    Institute of Scientific and Technical Information of China (English)

    董龙明; 王戟; 陈立前; 董威

    2012-01-01

    There are many operations about shared and mutable data structures in heap-manipulating programs, such as allocation, combination, separation, deletion, and so on. Therefore, memory leak detection for these programs requires precise field-sensitive pointer alias information, which becomes more complex and harder to deal with. A novel field-sensitive heap abstraction approach based on extended pointer types is proposed for heap-manipulating programs in this paper. The approach computes the local layout around pointer variables in the heap, and therefore supports local reasoning for heap. The pointer alias sets are computed about the memory cells, which are reached by the pointer along various pointer fields in the given abstract distance domain. Various operation semantics about all basic statements based on extended pointer types are defined and a new algorithm runs typical forward dataflow iteration analysis to see whether there are any memory leaks. Our algorithm also supports both intra- and inter- procedural analysis. We have implemented the prototype tool (Heapcheck) for C programs in the Crystal open compiler framework to support detecting memory leaks about different pointer fields in complex data structures. Experimental evaluation about a set of C benchmark programs shows that the proposed approach has better scalability and precision than current work.%堆操作程序通过共享易变数据结构可灵活地申请、合并、删除堆内存.这类程序的内存泄漏检测要求精确的域敏感的指针别名信息,变得尤其复杂和难以处理.针对这个问题,提出了基于“指针扩展类型”域敏感的堆内存抽象方法,对指针变量在形态上的排列关系进行抽象以支持堆的局部推理.首先,定义了各种基本语句的操作语义,然后基于该抽象方法采用前向数据流迭代算法提出了一种新的内存泄露检测算法.在Crystal编译框架下实现了面向C程序的内存泄漏检测原型工

  19. Detection system for urban pipeline based on IOT and UGW%基于物联网和超声导波的管道检测系统研究

    Institute of Scientific and Technical Information of China (English)

    陈志奎; 贾少攀; 赵亮; 张清辰

    2013-01-01

    To reduce the complexity of manual handling operations of current detection systems for urban pipeline and meet the requirements of pipeline working environmental information analyzing and early warning function, a detection system for urban pipeline based on internet of things (IOT) and ultrasonic guided wave (UGW) was designed and developed. IOT technology, UGW testing and signal processing methods are integrated with this system. To implement the functions such as detection of pipeline, environmental information gathering and early warning, the system transmits data over wireless network to cloud data processing center which analyzes the pipeline detection data. Simulation results show that this system can meet the accuracy requirement of defect location, and reduce manual handling operations with early warning function.%针对当前城市管道检测系统实际应用时复杂的人工操作问题和管道工作环境信息的分析预警功能缺失问题,设计开发一套基于物联网和超声导波的城市管道检测系统.该系统将物联网、超声导波检测、信号处理等技术相融合,通过无线网络将数据传到云端数据处理中心并由数据处理中心分析管道检测信息,实现管道缺陷检测、环境信息采集以及预警等功能.实验仿真表明:该系统的缺陷定位精度达到了(能够满足)城市管道检测的要求,在减少人工操作的同时,能有效提供预警功能.

  20. Leak testing of IR sensor dewars to 1E-15 std He/s

    Science.gov (United States)

    Sasaki, Y. Tito; Bergquist, Lyle E.

    1990-09-01

    The results of tests for leakage performed on ten IR sensor dewars are presented, and the design principles of the new testing devices are discussed. The ultrasensitive leak detector used for testing is compared to conventional detectors. The superfine leak calibrator consisting of a tracer gas supply, an aliquot volume, a pressure transducer, temperature gage, and valves was used to measure leak rates in the E-4 to E-12 std cc He/s range. The testing method is explained, including the gases used, the quadrupole mass analyzer, the reference leak calibration, and the temperature coefficient of the reference leak. The test results of the IR sensor dewars are shown: seven showed leak rates in the E-15 std cc He/s range, two had no detectable leaks, and one had a mid-range E-14 leak. The shelf lives of the dewars are calculated based on the results. The vacuum integrity of small IR sensor dewars can be reliably tested to the range of 1E-15 std cc He/s using the ultrasensitive leak detector and the superfine leak calibrator.

  1. Study of Internal and External Leaks in Tests of Anode-Supported SOFCs

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hendriksen, Peter Vang; Hagen, Anke

    2008-01-01

    A planar anode-supported solid oxide fuel cell (SOFC) has been tested to investigate gas tightness of the electrolyte and the applied seals. Gas leaks reduce the efficiency of the SOFC and it is thus important to determine and minimise them. Probe gases (He and Ar) and a Quadrupole Mass Spectrome......A planar anode-supported solid oxide fuel cell (SOFC) has been tested to investigate gas tightness of the electrolyte and the applied seals. Gas leaks reduce the efficiency of the SOFC and it is thus important to determine and minimise them. Probe gases (He and Ar) and a Quadrupole Mass...... Spectrometer were used to detect both internal (through electrolyte) and external (through seals) gas leaks. The internal gas leak through the electrolyte was quantified under different conditions, as was the external leak from the surroundings to the anode. The internal gas leak did not depend on the pressure...... and pressure gradients. The measured gas leaks deduced from the probe gas experiments and the total leak calculated from the deviation between the Emf defined by the gases and the cell OCV (which contains all gas leaks as well as effects of electronic leaks) were compared. Good agreement between the two...

  2. Novel Fiber Optic Sensor Probe with a Pair of Highly Reflected Connectors and a Vessel of Water Absorption Material for Water Leak Detection

    Directory of Open Access Journals (Sweden)

    Tae-Sik Cho

    2012-08-01

    Full Text Available The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.

  3. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  4. LOCATING LEAKS WITH ACOUSTIC TECHNOLOGY

    Science.gov (United States)

    Many water distribution systems in this country are almost 100 years old. About 26 percent of piping in these systems is made of unlined cast iron or steel and is in poor condition. Many methods that locate leaks in these pipes are time-consuming, costly, disruptive to operations...

  5. Variable gas leak rate valve

    Energy Technology Data Exchange (ETDEWEB)

    Eernisse, Errol P. (Albuquerque, NM); Peterson, Gary D. (Albuquerque, NM)

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  6. The Design of Intelligent System for Gas Leak Detection in Substation%变电站气体泄漏检测的智能系统设计

    Institute of Scientific and Technical Information of China (English)

    苏镇西; 马凤翔; 吴雪莲

    2016-01-01

    针对传统变电站气体泄漏检测工作中存在的工作效率低、安全性差且误差较大等问题,提出了一种基于磁导航和RFID定位、3G无线通信网络等技术的气体泄漏智能检测系统。该系统通过3G无线通信网络将变电站气体泄漏AGV巡检采集的现场数据信息,实时传输到后台管理系统和监控管理中心,便于监管人员动态掌握变电站设备气体泄漏情况和运行工况,从而科学制定安排维护工作,为设备气体泄漏检修和状态管理提供重要参考依据。%There are some defects in traditional substation gas leakage detection, such as low work efficiency, poor security and larger error. To overcome these shortcomings, an intelligent system of gas leakage detection is proposed and implemented based on magnetic navigation, RFID location and 3G wireless network. This system achieves the field information data collected by AGV, and delivered to the central server system through 3G wireless network. It can provide an important reference to build the scientifically gas leakage detection and maintenance management work.

  7. Anastomotic leaks after bariatric surgery: it is the host response that matters.

    Science.gov (United States)

    Al-Sabah, Salman; Ladouceur, Martin; Christou, Nicolas

    2008-01-01

    Anastomotic leaks after bariatric surgery can lead to severe complications and adverse outcomes. We tested the hypothesis that not all patients with an anastomotic leak after bariatric surgery present with clinical symptoms and that their outcome is dependent on the aggressiveness of the host inflammatory response. This was a retrospective analysis of prospectively collected clinical data from 2384 bariatric surgeries from 1983 to 2006. All anastomotic leaks were identified from the database, and the vital signs, hematologic and biochemical data, mode of diagnosis, treatment, and outcome were recorded and analyzed. We identified 55 anastomotic leaks (2.3%) at a median of 4 days (range 1-26) after surgery. In 37 patients (67.3%), the leaks were identified at a median of 5 days (range 1-26) postoperatively because of clinical signs and symptoms of a systemic inflammatory response (SIRS leaks). In contrast, in 18 patients (32.7%), the leaks were identified at a median of 1.5 days (range 1-16) postoperatively only after routine contrast studies (non-SIRS leaks). Treatment included antibiotics and open drainage in 41.8%, laparoscopic drainage in 21.8%, computed tomography-guided drainage in 12.7%, conservative treatment in 14.5%, and other in 9.2%. All 6 deaths (4 men and 2 women, 10.9%) occurred in the SIRS group. Using logistic regression analysis, temperature (inflammatory response) and body mass index were independent predictors of mortality. The results of our study have shown that one third of patients with anastomotic leaks after bariatric surgery present with minimal clinical symptoms (non-SIRS) and are only detected if contrast studies are performed. Such leaks are unlikely to lead to death. Two thirds of patients with anastomotic leaks present with a systemic inflammatory response to the leak. Such leaks require urgent treatment that might not always prevent death.

  8. Development of a General Method for Determining Leak Rates from Limiting Enclosures

    Science.gov (United States)

    Zografos, A. I.; Blackwell, C. C.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a general method for the determination of very low leak rates from limiting enclosures. There are many methods that can be used to detect and repair leaks from enclosures. Many methods have also been proposed that allow the estimation of actual leak rates, usually expressed as enclosure volume turnover. The proposed method combines measurements of the state variables (pressure, temperature, and volume) as well as the change in the concentration of a tracer gas to estimate the leak rate. The method was applied to the containment enclosure of the Engineering Development Unit of the CELSS Test Facility, currently undergoing testing at the NASA Ames Research Center.

  9. The leak microstructure

    Indian Academy of Sciences (India)

    M Lombardi; C Baiocchi; A Battistella; G Balbinot; H Huo-Ja Guoxiang; F S Lombardi

    2001-07-01

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are presented. For every single detected ionizing radiation it gives a pair of ‘induced’ charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and essentially in time coincidence, that are proportional to the primary ionization collected. Each pulse of a pair gives the same energy and timing information, thus one can be used for these information and the other for the position. The complete lack of insulating materials in the active volume of this microstructure avoids problems of charging-up and makes stable and repeatable its behavior. It is possible to observe primary avalanches with a size of more than 2.5 × 107 electrons (4 pC), which give current pulses with a peak of more than 0.26 mA on 100 Ohm and about 30 ns duration, with 5.9 KeV X-rays of 55Fe working in proportional region in 760 Torr of isobutane gas. Single electrons emitted by a heated filament ( < 1~ eV) can also be detected in 760 Torr of isobutane; with an estimated gas gain of 1.2 × 106 and a counting rate up to 800 Kpulses/sec per single microstructure. Some new features and three different types of sensitive-position two-dimensional read-out detectors based on these microstructures, which are in developmental stage, are presented.

  10. Presidential Leaks: Rhetoric and Mediated Political Knowledge.

    Science.gov (United States)

    Erickson, Keith V.

    1989-01-01

    Argues that presidential leaks constitute rhetorical acts, enabling administrations to exercise a variety of rhetorically potent options not afforded by the public forum. Proposes a typology of presidential leaks and analyzes their rhetorical functions, benefits, and liabilities. (MM)

  11. Stochastic Consequence Analysis for Waste Leaks

    Energy Technology Data Exchange (ETDEWEB)

    HEY, B.E.

    2000-05-31

    This analysis evaluates the radiological consequences of potential Hanford Tank Farm waste transfer leaks. These include ex-tank leaks into structures, underneath the soil, and exposed to the atmosphere. It also includes potential misroutes, tank overflow

  12. CT findings suggesting anastomotic leak and predicting the recovery period following gastric surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Jung Hoon; Shin, Cheong-Il; Kim, Se Hyung; Han, Joon Koo; Choi, Byung Ihn [Seoul National University College of Medicine, Department of Radiology, Institute of Radiation Medicine, Jongno-gu, Seoul (Korea, Republic of)

    2015-07-15

    To assess diagnostic performance of routine CT for detecting anastomotic leak after gastric surgery, and analyse the relationship between recovery period and CT findings. We included 179 patients who underwent immediate CT and fluoroscopy after gastric surgery. Two reviewers retrospectively rated the possibility of leak on CT using a five-point scale focused on predefined CT findings. They also evaluated CT findings. Patients were categorised as: Group I, leak on fluoroscopy; Group II, possible leak on CT but negative on fluoroscopy; Group III, no leak. We analysed the relationship between recovery period and group. Area under the curve for detecting leak on CT was 0.886 in R1 and 0.668 in R2 with moderate agreement (k = 0.482). Statistically common CT findings for leak included discontinuity, large amount of air-fluid and wall thickening at anastomosis site (p < 0.05). Discontinuity at anastomosis site and a large air-fluid collection were independently associated with leak (p < 0.05). The recovery period including hospitalisation and postoperative fasting period was longer in Group I than Group II or III (p < 0.05). Group II showed a longer recovery period than Group III (p < 0.05). Postoperative routine CT was useful for predicting anastomotic leak using specific findings, and for predicting length of recovery period. (orig.)

  13. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions.

    Science.gov (United States)

    Sahli, Hussein; El-Sheimy, Naser

    2016-04-21

    Pipeline inspection gauges (pigs) have been used for many years to perform various maintenance operations in oil and gas pipelines. Different pipeline parameters can be inspected during the pig journey. Although pigs use many sensors to detect the required pipeline parameters, matching these data with the corresponding pipeline location is considered a very important parameter. High-end, tactical-grade inertial measurement units (IMUs) are used in pigging applications to locate the detected problems of pipeline using other sensors, and to reconstruct the trajectories of the pig. These IMUs are accurate; however, their high cost and large sizes limit their use in small diameter pipelines (8″ or less). This paper describes a new methodology for the use of MEMS-based IMUs using an extended Kalman filter (EKF) and the pipeline junctions to increase the position parameters' accuracy and to reduce the total RMS errors even during the unavailability of above ground markers (AGMs). The results of this new proposed method using a micro-electro-mechanical systems (MEMS)-based IMU revealed that the position RMS errors were reduced by approximately 85% compared to the standard EKF solution. Therefore, this approach will enable the mapping of small diameter pipelines, which was not possible before.

  14. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions

    Directory of Open Access Journals (Sweden)

    Hussein Sahli

    2016-04-01

    Full Text Available Pipeline inspection gauges (pigs have been used for many years to perform various maintenance operations in oil and gas pipelines. Different pipeline parameters can be inspected during the pig journey. Although pigs use many sensors to detect the required pipeline parameters, matching these data with the corresponding pipeline location is considered a very important parameter. High-end, tactical-grade inertial measurement units (IMUs are used in pigging applications to locate the detected problems of pipeline using other sensors, and to reconstruct the trajectories of the pig. These IMUs are accurate; however, their high cost and large sizes limit their use in small diameter pipelines (8″ or less. This paper describes a new methodology for the use of MEMS-based IMUs using an extended Kalman filter (EKF and the pipeline junctions to increase the position parameters’ accuracy and to reduce the total RMS errors even during the unavailability of above ground markers (AGMs. The results of this new proposed method using a micro-electro-mechanical systems (MEMS-based IMU revealed that the position RMS errors were reduced by approximately 85% compared to the standard EKF solution. Therefore, this approach will enable the mapping of small diameter pipelines, which was not possible before.

  15. Investigation on the sodium leak accident of Monju. Sodium leak test simulating the Monju leak

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Kazuhito; Nishimura, Masahiro; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Usami, Masayuki

    1996-11-01

    Sodium fire experiments were carried out two times using the Sodium Fire Test Rig (SOFT-1) in the Power Reactor and Nuclear Fuel Development Corp (PNC) as a part of works to research the cause of the accident in secondary main cooling system of Monju. The purposes of these experiments are to confirm the leak rate and leakage form of sodium from damaged thermometer, to confirm the damage to the piping insulating structure around the thermometer and to the flexible tube, and to compare the temperature history of the signal from the thermometer between the experiments and Monju. In the experiments 56({+-}2)g/sec was obtained as the leak rate under the condition of ensuring the leakage pass in the simulated thermometer. This leak rate was corrected to 53g/sec to take account of manufacturing error of the thermometer between the experiment and Monju. In calculation of this leak rate, it is assumed that the annulus size of thermometer well tip is a nominal distance and pressure value to the leakage sodium is 1.65kg/cm{sup 2}G, which was the maximum one during the leakage of Monju. The behavior of signal from the simulated thermometer was very similar to that of the damaged thermometer in Monju and it was confirmed this temperature history could be sufficiently explained by moving of the temperature contact position of the thermocouple following the runoff of leakage sodium. (J.P.N.)

  16. Leak before break application in French PWR plants under operation

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  17. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    Science.gov (United States)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  18. Leak signature space: an original representation for robust leak location in water distribution networks

    OpenAIRE

    Casillas, Myrna V.; Garza-Castañón, Luis E.; Vicenç Puig; Adriana Vargas-Martinez

    2015-01-01

    In this paper, an original model-based scheme for leak location using pressure sensors in water distribution networks is introduced. The proposed approach is based on a new representation called the Leak Signature Space (LSS) that associates a specific signature to each leak location being minimally affected by leak magnitude. The LSS considers a linear model approximation of the relation between pressure residuals and leaks that is projected onto a selected hyperplane. This new approach allo...

  19. Trace Software Pipelining

    Institute of Scientific and Technical Information of China (English)

    王剑; AndreasKrall; 等

    1995-01-01

    Global software pipelining is a complex but efficient compilation technique to exploit instruction-level parallelism for loops with branches.This paper presents a novel global software pipelining technique,called Trace Software Pipelining,targeted to the instruction-level parallel processors such as Very Long Instruction Word (VLIW) and superscalar machines.Trace software pipelining applies a global code scheduling technique to compact the original loop body.The resulting loop is called a trace software pipelined (TSP) code.The trace softwrae pipelined code can be directly executed with special architectural support or can be transformed into a globally software pipelined loop for the current VLIW and superscalar processors.Thus,exploiting parallelism across all iterations of a loop can be completed through compacting the original loop body with any global code scheduling technique.This makes our new technique very promising in practical compilers.Finally,we also present the preliminary experimental results to support our new approach.

  20. Leaking electricity in domestic appliances

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Alan; Rosen, Karen

    1999-05-01

    Many types of home electronic equipment draw electric power when switched off or not performing their principal functions. Standby power use (or ''leaking electricity'') for most appliances ranges from 1 - 20 watts. Even though standby use of each device is small, the combined standby power use of all appliances in a home can easily exceed 50 watts. Leaking electricity is already responsible for 5 to 10 percent of residential electricity use in the United States and over 10 percent in Japan. An increasing number of white goods also have standby power requirements. There is a growing international effort to limit standby power to around one watt per device. New and existing technologies are available to meet this target at little or no extra cost.

  1. Green pipeline dreams; Gruene Pipeline-Traeume

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Karsten

    2010-11-15

    In theory, Germany and the other EU states would be able to cover their natural gas demand completely with pipeline-supplied biomethane. But will this be really possible in practice? The contribution takes a closer look. (orig.)

  2. ALMA Pipeline: Current Status

    Science.gov (United States)

    Shinnaga, H.; Humphreys, E.; Indebetouw, R.; Villard, E.; Kern, J.; Davis, L.; Miura, R. E.; Nakazato, T.; Sugimoto, K.; Kosugi, G.; Akiyama, E.; Muders, D.; Wyrowski, F.; Williams, S.; Lightfoot, J.; Kent, B.; Momjian, E.; Hunter, T.; ALMA Pipeline Team

    2015-12-01

    The ALMA Pipeline is the automated data reduction tool that runs on ALMA data. Current version of the ALMA pipeline produces science quality data products for standard interferometric observing modes up to calibration process. The ALMA Pipeline is comprised of (1) heuristics in the form of Python scripts that select the best processing parameters, and (2) contexts that are given for book-keeping purpose of data processes. The ALMA Pipeline produces a "weblog" that showcases detailed plots for users to judge how each step of calibration processes are treated. The ALMA Interferometric Pipeline was conditionally accepted in March 2014 by processing Cycle 0 and Cycle 1 data sets. From Cycle 2, ALMA Pipeline is used for ALMA data reduction and quality assurance for the projects whose observing modes are supported by the ALMA Pipeline. Pipeline tasks are available based on CASA version 4.2.2, and the first public pipeline release called CASA 4.2.2-pipe has been available since October 2014. One can reduce ALMA data both by CASA tasks as well as by pipeline tasks by using CASA version 4.2.2-pipe.

  3. Reliability-based management of buried pipelines considering external corrosion defects

    Science.gov (United States)

    Miran, Seyedeh Azadeh

    Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub

  4. Imaging with the leak microstructures: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Baiocchi, C.; Balbinot, G; Battistella, A.; Galeazzi, G.; Lombardi, F.S.; Lombardi, M. E-mail: mariano.lombardi@lnl.infn.it; Prete, G.; Simon, A

    2004-02-01

    We report on some images obtained with the Leak Microstructures (LM), which are elements for the detection of gas ionizing particles based on needle-point anodes. X-ray images of a mask with seven holes, 300 {mu}m in diameter and 100 {mu}m separated, drilled on a tantalum sheet were obtained with a very good spatial resolution. Varying the potential to the drifting electrode we put in evidence the possibility to perform a 'zoom' of the image. X-ray images of a tantalum sheet of about 20x20 mm{sup 2} were obtained using a matrix of 9x9 LMs read by only 6 electronic chains (6 ADCs)

  5. On application of adaptive neutral network filtering technique in pipeline leak detection%自适应神经网络滤波技术检测管道泄漏的应用

    Institute of Scientific and Technical Information of China (English)

    龙友发; 王丽

    2009-01-01

    对基于Adaline神经网络的自适应滤波器进行了分析,并将其应用于延时估计检测技术,利用该神经网络滤波器消除管道泄漏检测信号中的干扰噪声,达到准确定位漏点的目的,采用MATLAB语言对该滤波系统进行了描述和仿真,仿真结果表明,该方案有效地消除检测信号中外界干扰噪声,为检漏系统检测出准确的泄漏点提供了有力的保证.

  6. Discussion on design of outdoor leak detection pipeline trench in collapsible loess area%湿陷性黄土地区室外检漏管沟设计探讨

    Institute of Scientific and Technical Information of China (English)

    徐志嫱; 宋涛; 孙晓强

    2006-01-01

    湿陷性黄土地区对建筑给排水管道的设计有一定的要求.结合工程实例,对给排水管道检漏管沟设计施工中的一些处理方法进行了探讨,提出管道的设计除了按照规范要求外,还应从防水、结构措施、地基处理三方面综合考虑预防湿陷的措施.

  7. Analyzing User Awareness of Privacy Data Leak in Mobile Applications

    Directory of Open Access Journals (Sweden)

    Youngho Kim

    2015-01-01

    Full Text Available To overcome the resource and computing power limitation of mobile devices in Internet of Things (IoT era, a cloud computing provides an effective platform without human intervention to build a resource-oriented security solution. However, existing malware detection methods are constrained by a vague situation of information leaks. The main goal of this paper is to measure a degree of hiding intention for the mobile application (app to keep its leaking activity invisible to the user. For real-world application test, we target Android applications, which unleash user privacy data. With the TaintDroid-ported emulator, we make experiments about the timing distance between user events and privacy leaks. Our experiments with Android apps downloaded from the Google Play show that most of leak cases are driven by user explicit events or implicit user involvement which make the user aware of the leakage. Those findings can assist a malware detection system in reducing the rate of false positive by considering malicious intentions. From the experiment, we understand better about app’s internal operations as well. As a case study, we also presents a cloud-based dynamic analysis framework to perform a traffic monitor.

  8. 埋地输气管线腐蚀综合评价%Comprehensive Assessment for the Corrosion of Buried Gas Pipeline

    Institute of Scientific and Technical Information of China (English)

    张晓存; 薛继军

    2015-01-01

    为了保证输气管道的安全平稳运行,通过对某沙漠地区输气管线的腐蚀情况进行综合评价,包括PCM检测,阴极保护有效性检测,管体内腐蚀缺陷检测、成像与剩余强度评价以及剩余寿命评价。结果表明,该埋地输气管线的外防腐层存在漏点80个,阴极保护全部达标,管体外表面腐蚀是由防腐层破损而引起的,管体壁厚减薄处最小值为5.45 mm,该管道腐蚀缺陷在接受范围内,管道平均腐蚀速率较低。。%To ensure the gas pipeline running safely and smoothly, this paper focused on a comprehensive assessment for the corrosion of a gas pipeline in desert area by the methods of PCM detection, cathodic protection system detection, internal corrosion defect detection, imaging and residual strength valuation and remaining lifetime assessment. The results showed that there are 80 leak sources on the external anti-corrosion coating, the cathodic protection system is qualified, the external surface corrosion of the pipeline is caused by coating damages, the outer surface corrosion of pipe body is caused by coating damage, the minimum wall thickness of the pipeline is 5.45 mm, the corrosion defects on the pipeline are acceptable and the average corrosion rate is low.

  9. Leak-Tight Welding Experience from the Industrial Assembly of the LHC Cryostats at CERN

    CERN Document Server

    Bourcey, N; Chiggiato, P; Limon, P; Mongelluzzo, A; Musso, G; Poncet, A; Parma, V

    2008-01-01

    The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10-9 mbar.l.s-1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfil the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds. This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the use...

  10. Doing detective work

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, L.

    1991-01-01

    This paper reports that government statistics show a significant downward trend in injuries and fatalities from gas pipeline incidents since 1970. Not only are pipelines the safest mode of energy transportation in the nation, but they also help to make natural gas the bargain that it is. This record hasn't evolved by accident---the gas industry constantly keeps at its detective work to identify the sources of leakage, make repairs and look for ways to prevent leaks in the first place. In analyzing the sources of leakage, A.G.A. found that two-thirds are caused by outside forces ranging from natural disasters such as earthquakes to damaged gas facilities caused by third-party excavators. The two other leading causes of leakage--corrosion and material defects--together account for only a quarter of the incidents, yet eliminating these has been a top priority for gas companies. An array of weapons has been embraced, including leakage surveys, cathodic protection systems, pipeline coatings and annual safety audits.

  11. Method for HEPA filter leak scanning with differentiating aerosol detector

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  12. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-08-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  13. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    Energy Technology Data Exchange (ETDEWEB)

    A. G. Ware; C. Hsu (USNRC); C. L. Atwood; M. B. Sattison; R. S. Hartley (INEEL); V. N. Shah

    1999-02-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  14. Intelligent systems for pipeline infrastructure reliability ISPIR progress report 9 : final report

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Doiron, A.; Mohapatra, B.; Papavinasam, S.; Revie, R.W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2004-05-15

    This paper described a multifunctional pipeline monitoring system that used fiber optic sensors and a microbiologically influenced corrosion (MIC) sensor designed by researchers at Natural Resources Canada's CANMET laboratory. The intelligent system for pipeline infrastructure reliability (ISPIR) was developed to monitor pressure and temperature changes; corrosion; cracking and crack propagation; third party intrusion; and pH and dissolved carbon dioxide (CO{sub 2}) concentrations. The ISPIR is also capable of detecting and inspecting leaks, buckling, bending, soil movement, and microbial activity. The fiber optics system measures chemical and microbiological environmental conditions on external pipe surfaces. A structural integrity monitoring software system was used to provide a user-friendly interface for modelling and developing decision-making algorithms. The paper included the results of laboratory tests conducted to evaluate the system's fiber optic pH and CO{sub 2} sensors as well as to assess the accuracy of long gauge monitoring data. Further research is being conducted to develop methods of monitoring disbondment; the development of high axial stresses; and the absence of protective cathodic potential. 11 refs., 9 figs., 1 appendix.

  15. 管线防护、泄漏检测与收集的新技术%New Technology for Pipeline Protection, Leakages Detection and Collecting

    Institute of Scientific and Technical Information of China (English)

    比克布拉托夫 I Kh; 萨波列夫 A V; 苏拉耶夫 N S

    2000-01-01

    @@ The pipe lines are the most safe type of transport, however its protection problem, prevention of pumped product leakages becomes more and more acute because of permanently increased technogenic stress for the environment and raised population risk, large-scale economical damages caused by the leakages of pumped products. The general lenght of pipeline systems is rather significant (Table 1).

  16. Slurry pipeline hydrostatic testing

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy G.; Navarro Rojas, Luis Alejandro [BRASS Chile S.A., Santiago (Chile)

    2009-07-01

    The transportation of concentrates and tailings through long distance pipeline has been proven in recent years to be the most economic, environmentally friendly and secure means of transporting of mine products. This success has led to an increase in the demand for long distance pipeline throughout the mining industry. In year 2007 alone, a total of over 500 km of pipeline has been installed in South America alone and over 800 km are in the planning stages. As more pipelines are being installed, the need to ensure its operating integrity is ever increasing. Hydrostatic testing of long distance pipeline is one of the most economical and expeditious way to proving the operational integrity of the pipe. The intent of this paper is to show the sound reasoning behind construction hydro testing and the economic benefit it presents. It will show how hydro test pressures are determined based on ASME B31.11 criteria. (author)

  17. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  18. Identification of urban gas leaks and evaluation of methane emission inventories using mobile measurements

    Science.gov (United States)

    Zazzeri, Giulia; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Butler, Dominique; Lanoisellé, Mathias; Nisbet, Euan G.

    2017-04-01

    Leakages from the natural gas distribution network, power plants and refineries account for the 10% of national methane emissions in the UK (http://naei.defra.gov.uk/), and are identified as a major source of methane in big conurbations (e.g. Townsend-Small et al., 2012; Phillips et al., 2013). The National Atmospheric Emission Inventories (NAEI) website provides a list of gas installations, but emissions from gas leakage, which in the inventories are estimated on the basis of the population distribution, are difficult to predict, which makes their estimation highly uncertain. Surveys with a mobile measurement system (Zazzeri et al., 2015) were carried out in the London region for detection of fugitive natural gas and in other sites in the UK (i.e. Bacton, Southampton, North Yorkshire) to identify emissions from various gas installations. The methane isotopic analysis of air samples collected during the surveys, using the methodology in Zazzeri et al. (2015), allows the calculation of the δ13C signature characterising natural gas in the UK. The isotopic value of the natural gas supply to SE London has changed a little in recent years, being close to -34 ‰ over 1998-99 period (Lowry et al., 2001) and close to -36 ‰ since at least 2002. Emissions from gas installations, such as pumping stations in NE England (-41 ± 2 ‰ ) were detected, but some of them were not listed in the inventories. Furthermore, the spatial distribution of the gas leaks identified during the surveys in the London region does not coincide with the distribution suggested by the inventories. By locating both small gas leaks and emissions from large gas installations, we can verify how these methane sources are targeted by national emission inventories. Lowry, D., Holmes, C.W., Rata, N.D., O'Brien, P., and Nisbet, E.G., 2001, London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories: Journal of Geophysical Research

  19. ISOLDE Off-line Gas Leak Upgrade

    CERN Document Server

    Nielsen, Kristoffer Bested

    2017-01-01

    This study investigates gas injection system of the ISOLDE Off-line separator. A quadrupole mass spectrometer is used to analysis the composition of the gas. Based on these measurements a contamination of the injected gas is found and a system upgrade is purposed. Furthermore a calibration of the leak rate of the leak valve is made.

  20. Strength and leak testing of plasma activated bonded interfaces

    DEFF Research Database (Denmark)

    Visser, M.M.; Weichel, Steen; Reus, Roger De

    2002-01-01

    Bond strength and hermeticity of plasma activated bonded (PAB) Si-Si interfaces are reported. Bonding of 100 mm Si(1 0 0) wafers was performed. An average bond strength of 9.0+/-3.9 MPa was achieved without performing any annealing steps. Cavities bonded in vacuum were found to be hermetic based...... on detection of changes in membrane deflections. The detection limit for leak was 8E-13 mbar l/s. For comparison, strength and leak tests were also performed with regular fusion bonded wafers annealed at 1100 degreesC. The PAB was found to withstand post-processing steps such as RCA cleaning, 24 h in de......-ionised water (DIW), 24 h in 2.5% HF, 24 h in acetone and 60 s in a resist developer. By analysing the thin silicon oxide present on the surfaces to be bonded with optical methods, the influence of pre-cleaning and activation process parameters was investigated....

  1. Near-source mobile methane emission estimates using EPA Method33a and a novel probabilistic approach as a basis for leak quantification in urban areas

    Science.gov (United States)

    Methane emissions from underground pipeline leaks remain an ongoing issue in the development of accurate methane emission inventories for the natural gas supply chain. Application of mobile methods during routine street surveys would help address this issue, but there are large ...

  2. Stress-strain analysis of pipelines laid in permafrost

    Science.gov (United States)

    Burkov, P.; Yan‘nan', Van; Burkova, S.

    2016-09-01

    Increasing reliability of pipelines becomes a real challenge at all stages: design, construction and operation of pipeline systems. It is very important to determine the behaviour of the constructed pipeline under the operational and environmental loads using the design model in accordance with that one adopted in the rules and regulations. This article presents the simulation of pipeline in permafrost. The evaluation of the stress-strain state is given herein and the areas of the stress concentration are detected with the account for different loads occurred during the pipeline operation. Information obtained from the assessment of the stress-strain state of the pipeline allows determining sections in pre-emergency state (even before damages) and take all the necessary measures for eliminating them, thus increasing the pipeline system reliability. It is shown that the most critical pipeline cross-section is observed at the point of transition from one environment to another. The maximum strains decrease the level of the pipeline reliability. The finite element model is presented to determine the pipeline sections in pre-emergency state.

  3. Astronomical pipeline processing using fuzzy logic

    Science.gov (United States)

    Shamir, Lior

    In the past few years, pipelines providing astronomical data have been becoming increasingly important. The wide use of robotic telescopes has provided significant discoveries, and sky survey projects such as SDSS and the future LSST are now considered among the premier projects in the field astronomy. The huge amount of data produced by these pipelines raises the need for automatic processing. Astronomical pipelines introduce several well-defined problems such as astronomical image compression, cosmic-ray hit rejection, transient detection, meteor triangulation and association of point sources with their corresponding known stellar objects. We developed and applied soft computing algorithms that provide new or improved solutions to these growing problems in the field of pipeline processing of astronomical data. One new approach that we use is fuzzy logic-based algorithms, which enables the automatic analysis of the astronomical pipelines and allows mining the data for not-yet-known astronomical discoveries such as optical transients and variable stars. The developed algorithms have been tested with excellent results on the NightSkyLive sky survey, which provides a pipeline of 150 astronomical pictures per hour, and covers almost the entire global night sky.

  4. Satellites and solid state electronics test concrete pressure water pipelines

    Science.gov (United States)

    Fumo, John; Worthington, Will

    2000-06-01

    Like all structures, water pressure pipelines have a finite life. Pipelines will eventually begin to fail, leaving the pipeline owner to deal with the quandary: what caused this to happen, can we prevent future failures, must we replace this structure now? The causes for pipeline failure include defects and anomalies which may occur in any phase of a pipeline's life: during the engineering, the manufacture, the construction, or the operation. Failure may simply be the result of environmental conditions or old age. In the past five years, passive acoustic emission detection technology has been adapted to concrete pressure pipelines. This method of inspection is based on the caustic emissions made by the prestressed reinforcing wire as it releases its energy. A recently patented method of using this technology relies on a series of remote, independent test stations to detect, record and time-stamp these acoustic emissions. A low-powered, high- performance embedded processor system makes use of global positioning system time signals to synchronize multiple stations. These methods are re-defining the standard of care of water pressure pipelines. This paper describes pipeline failure mechanisms and a state-of-the-art data sampling system which has been developed to evaluate pipeline structural integrity.

  5. 面向近海管道泄漏检测探究传感器布局的线性动力学计算%Computational linear dynamics for sensor deployments toward leakage detection in offshore pipelines

    Institute of Scientific and Technical Information of China (English)

    陈特欢; 徐巍华; 许超; 谢磊; 吴玉成

    2012-01-01

    Leakage detection in offshore pipeline transport is much more challenging than that in ground fluid transport systems due to the lack of measurements along the pipelines.The linear dynamics is considered using the transmission line model,and then we compare the frequency responses of the transfer functions are obtained via both the finite difference method and PDE Laplace transform.The simulation result shows the effectiveness of the finite dimensional models which can approximate the original linearized model accurately in low frequencies.Due to the scarcity of the sensors in the SCADA (the supervisory control and data acquisition) systems of offshore pipelines,a novel integrated drifting sensor solution is proposed for this type of detection problem and a brief introduction to the data assimilation framework is given.%由于缺少管道沿途测量数据,近海管道运输中的泄漏检测问题比陆地流体管道泄漏检测系统更具有挑战性.我们用传输线模型来考虑其线性动力学部分,然后通过有限差分法和偏微分方程拉普拉斯变换来比较传递函数的频域响应.仿真结果表明,有限维模型在低频下可以有效地逼近原始线性模型.由于近海管道监控与数据采集系统缺少传感器,进一步提出了一种新型集成漂流传感嚣的方法来解决此类型的检测问题并对数据同化框架进行了简要地介绍.

  6. Oil pipeline leakage detection and positioning system based on PC104%基于PC104的输油管道泄漏检测定位系统

    Institute of Scientific and Technical Information of China (English)

    邓士伟; 李一博; 李健

    2012-01-01

    Aiming at the shortage of large power consumption, unreliable network communication and different system time on pipeline online monitoring, a new oil pipeline leakage detection and positioning system based on embedded PC104 is designed. Use the GPS time service technology and LAN between central PC and remote terminal unit. The detection principle, hardware structure and software design of the system are introduced in detail. The test and actual application show that the system operates stably,and its power consumption is low and integrity, reliability and real-time performance of remote data transmission is guaranteed. It is able to correctly identify the pipeline leakage, and make accurate positioning.%针对目前管道在线监测用电功率大、网络通信不稳定和系统时间不同一的缺陷,设计了一种基于嵌入式PC104的管道泄漏检测定位系统.应用GPS授时技术和局域网连接中心PC与远程监测终端,详细分析了其系统检测原理、硬件结构和软件设计方案.通过实际测试和应用表明:该系统运行稳定,低功耗,且保证了远距离数据传输的完整性、可靠性和实时性,能够对管道泄漏进行正确的识别,并做出准确的定位.

  7. Successful Endoscopic Therapy of Traumatic Bile Leaks

    Directory of Open Access Journals (Sweden)

    Matthew P. Spinn

    2013-02-01

    Full Text Available Traumatic bile leaks often result in high morbidity and prolonged hospital stay that requires multimodality management. Data on endoscopic management of traumatic bile leaks are scarce. Our study objective was to evaluate the efficacy of the endoscopic management of a traumatic bile leak. We performed a retrospective case review of patients who were referred for endoscopic retrograde cholangiopancreatography (ERCP after traumatic bile duct injury secondary to blunt (motor vehicle accident or penetrating (gunshot trauma for management of bile leaks at our tertiary academic referral center. Fourteen patients underwent ERCP for the management of a traumatic bile leak over a 5-year period. The etiology included blunt trauma from motor vehicle accident in 8 patients, motorcycle accident in 3 patients and penetrating injury from a gunshot wound in 3 patients. Liver injuries were grade III in 1 patient, grade IV in 10 patients, and grade V in 3 patients. All patients were treated by biliary stent placement, and the outcome was successful in 14 of 14 cases (100%. The mean duration of follow-up was 85.6 days (range 54-175 days. There were no ERCP-related complications. In our case review, endoscopic management with endobiliary stent placement was found to be successful and resulted in resolution of the bile leak in all 14 patients. Based on our study results, ERCP should be considered as first-line therapy in the management of traumatic bile leaks.

  8. Natural Gas Liquid Pipelines

    Data.gov (United States)

    Department of Homeland Security — Natural gas interstate and intrastate pipelines in the United States. Based on a variety of sources with varying scales and levels of accuracy and therefore accuracy...

  9. BSEE_Pacific_Pipelines

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains the locations of oil and gas pipelines in the Bureau of Safety and Environmental Enforcement Pacific OCS Region

  10. Central oxygen pipeline failure

    African Journals Online (AJOL)

    Anaesthetic and critical care staff play a governing role in the comprehension of a ... complete central oxygen pipeline failure occurred throughout. Tygerberg Hospital. ..... emergency stations and at plant room emergency supply manifolds.

  11. Leveraging Social Norms to Improve Leak Resolution Outcomes Across Meter Classes:

    Science.gov (United States)

    Holleran, W.

    2016-12-01

    Over the past decade, utilities, governments, businesses, and nonprofits have come to realize that more than just financial considerations and information drive behavior. Social and psychological factors also play a significant role in shaping consumers' decisions and behaviors around resource use. Stakeholders have consequently turned their interest to behavioral science, a multidisciplinary field that draws from psychology, sociology, public health, and behavioral economics to explain the complex mechanisms that shape human behavior. When used strategically, behavioral science holds the potential to drive down resource use, drive up profits, and generate measurable gains in conservation and efficiency. WaterSmart will present on how the water sector can employ behavioral science to nudge residential rate-payers to use water more efficiently and help them save money. Utilities can use behavioral science to influence people's reaction to leaks. 5% of Single Family Residential (SFR) metered water use can be attributed to leaks. This value potentially skews even higher for MultiFamily (MF) and Commercial accounts given that it can get lost in the noise of daily consumption. Existing leak detection algorithms in the market are not sophisticated enough to detect leaks for a MF or Commercial property. Leveraging data from utilities on known leak events at MF and Commercial buildings allowed WaterSmart to train a machine learning model to identify key features in the load shape and accurately detect these types of water use events. The outcome of the model is a leak amount and confidence level for each irregular usage event. The model also incorporates record feedback from users on the type of leak event, and the accuracy of the alert. When WaterSmart leverages this data model with social norms messaging, we've been able to improve water demand management for MF and Commercial properties. Experiences from leak detection and resolution in the SFR space will also be

  12. Nearshore Pipeline Installation Methods.

    Science.gov (United States)

    1981-08-01

    179. 5. Aldridge, R. G., and Bomba , J. G., "Deep Water Pipelines - Interdependence of Design and Construction", ASCE Paper. 6. American Society Civil...October 13, 1967. 24. Bomba , J. G. and Seeds, K. J., "Pipelining in 600 feet of water .... A Case Study of Washington Natural Gas Company’s Puget Sound...Crossing", Offshore Technology Conference, paper OTC 1188, 1970. 25. Bomba , J., "Submarine Pipe Construction Methods", Petroleum Engineer, Vol. 32

  13. Analytical and experimental studies of leak location and environment characterization for the international space station

    Energy Technology Data Exchange (ETDEWEB)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin [Stinger Ghaffarian Technologies, Inc, 7701 Greenbelt Rd, Greenbelt, MD 20770 (United States); Abel, Joshua; Hawk, Doug [Alliant Techsystems, Inc, 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States); Autrey, David; Glenn, Jodie [Lockheed Martin, 1300 Hercules, Houston, TX 77058 (United States); Bond, Tim; Buffington, Jesse [NASA Johnson Space Flight Center, 2101 NASA Pkwy, Houston, TX 77058 (United States); Cheng, Edward; Ma, Jonathan; Rossetti, Dino [Conceptual Analytics, 8209 Woburn Abbey Rd, Glenn Dale, MD 20769 (United States); DeLatte, Danielle [ASRC Federal Space and Defense, 7000 Muirkirk Meadows Drive, Suite 100, Beltsville, MD 20705 (United States); Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Tull, Kimathi [Jackson and Tull, 7375 Executive Pl, Lanham, MD 20706 (United States); Warren, Eric [Wyle STE Group, 1290 Hercules Ave, Houston, TX 77058-2769 (United States)

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  14. Analytical and experimental studies of leak location and environment characterization for the international space station

    Science.gov (United States)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-12-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbm//yr. to about 1 lbm/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  15. Pipeline coating comparison methods for northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, P. [Shaw Pipe Protection, Calgary, AB (Canada); Purves, G.A. [Cimarron Engineering Ltd., Calgary, AB (Canada)

    2004-07-01

    Two high-quality pipe coatings designed for northern environments were compared for their relative costs and suitability for the conditions that will be encountered in the field. Coating selection should consider local conditions to achieve the optimum life-cycle costs for the system. Some of the key factors affecting the integrity of the protective coating on a pipe include the effects of cold temperature and soil types. In this study, both Fusion Bonded Epoxy (FBE) and High Performance Composite Coatings (HPCC) were evaluated for an entire pipeline installation in a northern environment, from the coating plant to the pipe trench. The evaluation focused on the advantages of better abrasion resistance of the HPCC coating. This was compared against the incremental cost of HPCC coating over FBE on large diameter NPS 30 to NPS 48 pipelines. The following parameters influenced the choice of coating: storage, transportation and handling; bending ability under cold weather conditions; pipe installation and backfilling; weld joint coatings; coating repair and cathodic protection and pipeline integrity. Some of the construction costs that are indirectly affected by the choice of pipe coating include right-of-way preparation and restoration; trenching; supervision, service and downtime and specialist crossings. It was concluded that HPCC has better resistance to abrasion than FBE and is more flexible in extremely cold temperatures. Standard FBE is about 10 per cent less expensive than HPCC. In general HPCC will require less coating protection than FBE, depending on site conditions. 3 refs., 18 tabs., 8 figs.

  16. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  17. 基于脉冲漏磁的带保温层管道腐蚀缺陷检测%Detection of corrosion in pipeline with insulation layer based on pulsed magnetic flux leakage

    Institute of Scientific and Technical Information of China (English)

    张韬; 左宪章; 张云; 费骏骉

    2011-01-01

    在带保温层金属管道腐蚀检测方面,脉冲漏磁技术显示了潜在的优势.利用有限元分析软件Comsol Multiphysics对不同结构的传感器进行仿真分析的基础上,提出了一种优化结构的脉冲漏磁传感器,用于带保温层的管道腐蚀缺陷的检测.通过实验验证了传感器结构优化设计的有效性,为进一步量化分析缺陷信息打下基础.%In detection of corrosion in pipeline with insulation layer.the pulsed magnetic flux leakage (PMFL) technique has many advantages One of finite element analysis softwares, comsol multiphysis,is used to simulate the sensors with different structure. A new pulsed magnctic flux leakage ( PMFL)sensor wilh optimizated structure is proposed,which can detect the corrosion in pipeline with insulation layer, The experiment results show that the optimizated structure is successful,and it paves the way for quantitative analysis of defect information.

  18. Automated system of hydrostatic test - one reality of the analysis of the pipeline integrity; Sistema de teste hidrostatico automatizado - uma realidade na analise da integridade dos dutos

    Energy Technology Data Exchange (ETDEWEB)

    Laxe, Victor; Ataide, Leonardo [CONDUTO, Duque de Caxias, RJ (Brazil)

    2003-07-01

    The accomplishment of hydrostatic tests in pipeline has been used to long years in the certification of the construction methods and assembly. Now with the considerable increase of the installed pipeline, the hydrostatic tests became a tool of significant importance in the evaluation and analysis of the structural integrity of the mesh pipeline. Inserted in this purpose, to CONDUIT it developed an automated system of hydrostatic tests for lines Onshore and Offshore, where the monitoring and registrations, of the essential variables - in 'real team' - such as pressure, temperature, flows and volumes, they made possible to detect leaks, besides the one of small scales, with larger speed and reliability. A supervisory system controlled with PLC's, interlinked the sensor ones and computers, they register and operate the essential variables and the injection of chemical during whole the test, besides generating graphs in 'real team' with inferior input to 5 seconds, making possible the monitoring of several lines, simultaneous and independently. With a system compact, versatile, of easy and fast mobilization, it allows installation in places where the traditional measurement instruments and control are unviable, as uninhabited and automated platforms, points in field open of difficult access, guaranteeing like this continuity and reliability in all of the stages of the test. The application of this technology results in the reduction of work hand and period, bringing reliable necessary results in any situation. (author)

  19. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  20. Leaking Underground Storage Tank (LUST) Trust Fund

    Science.gov (United States)

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  1. WikiLeaks: neue Dimensionen des Medienaktivismus

    OpenAIRE

    Stalder, Felix

    2011-01-01

    "Mit WikiLeaks hat der Medienaktivismus eine neue Dimension erreicht. WikiLeaks versteht die neuen sozio-technischen Möglichkeiten und institutionellen Widersprüche, die die gegenwärtige Phase der Entwicklung der Netzwerkgesellschaft kennzeichnen, für sein Projekt nutzbar zu machen. Politisch bleibt das Projekt allerdings schwer kategorisierbar, da es gleichzeitig eine markt-libertäre und eine institutionskritische Haltung vertritt, gleichermassen staatliche wie privat-wirtscha...

  2. Stress Detection System for Oil Pipeline Based on Rectangular Rosette%基于直角应变花的输油管道应力监测系统

    Institute of Scientific and Technical Information of China (English)

    杨军凯; 陈彦; 王护利

    2015-01-01

    For monitoring the deformation, fracture and other security risks of long oil pipeline affected by various factors, design a stress detection system. Through the acquisition of resistance change which is the result of pipe deformation, of the resistance rosette pasted in pipeline surface, making sure the direction and size of strain, and through the GSM to transfer data remotely, it can realize the real-time monitoring of the pipe stress. The results showed that the system is reliable, easy to install and debug and its low cost, which can apply to the system such as long pipeline stress monitoring in large scale and unattended situation, and natural gas long-distance transmission system.%为监测长输油管线受各种因素影响而产生的管道形变、断裂等安全隐患,研制一种应力检测系统。通过采集粘贴在管道表面的电阻应变花随管道变形而产生的电阻变化,确定主应力方向及应力大小,并通过GSM网络远程传输数据到主控中心,实现对管道应力的实时监测。结果表明:该系统稳定可靠、安装调试方便、成本低廉,适用于大规模野外无人值守情况下的长输油管道应力检测和天然气的远距离传输系统中。

  3. Study on Defect Detect of Oil and Gas Pipeline by Metal Magnetic Memory Testing Technology Based on Wavelet Analysis%基于小波分析的油气管道缺陷磁记忆检测研究

    Institute of Scientific and Technical Information of China (English)

    刘书俊; 李著信; 龚利红; 郭联欢

    2011-01-01

    金属磁记忆检测技术是目前唯一能对铁磁性构件早期损伤进行诊断的无损检测手段,能检测识别油气管道早期损伤以及以应力集中为特征的裂纹缺陷.小波分析由于具有良好的时频局部性,能很好地克服傅里叶变换的不足,得到广泛的应用.针对目前金属磁记忆检测技术以过零点作为缺陷判定准则存在的不足,利用小波尺度谱和再分配的尺度谱对磁记忆信号进行分析.试验结果表明,小波再分配尺度谱能有效应用于管道缺陷的磁记忆检测之中.%Metal magnetic memory testing (MMMT) technology is the only feasible NDT method in the aspect of early diagnosis till now, which can detect and recognize the early damnification and oil and gas pipeline crack in the character of stress concentration. Wavelet is widely applied for it has good time-frequency location character and can get over the deficiency of Fourier transform. Aiming at the deficiency of using MMMT to recognize pipeline defect, the reassigned wavelet scalogram analysis method was put forward to analyze the MMMT signal. The experimental result proves that the reassigned wavelet scalogram is effective in pipeline defect recognition by MMMT.

  4. The concepts of leak before break and absolute reliability of NPP equipment and piping

    Energy Technology Data Exchange (ETDEWEB)

    Getman, A.F.; Komarov, O.V.; Sokov, L.M. [and others

    1997-04-01

    This paper describes the absolute reliability (AR) concept for ensuring safe operation of nuclear plant equipment and piping. The AR of a pipeline or component is defined as the level of reliability when the probability of an instantaneous double-ended break is near zero. AR analysis has been applied to Russian RBMK and VVER type reactors. It is proposed that analyses required for application of the leak before break concept should be included in AR implementation. The basic principles, methods, and approaches that provide the basis for implementing the AR concept are described.

  5. Analysis of Pressurized Water Reactor Primary Coolant Leak Events Caused by Thermal Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Corwin Lee; Shah, Vikram Naginbhai; Galyean, William Jospeh

    1999-09-01

    We present statistical analyses of pressurized water reactor (PWR) primary coolant leak events caused by thermal fatigue, and discuss their safety significance. Our worldwide data contain 13 leak events (through-wall cracking) in 3509 reactor-years, all in stainless steel piping with diameter less than 25 cm. Several types of data analysis show that the frequency of leak events (events per reactor-year) is increasing with plant age, and the increase is statistically significant. When an exponential trend model is assumed, the leak frequency is estimated to double every 8 years of reactor age, although this result should not be extrapolated to plants much older than 25 years. Difficulties in arresting this increase include lack of quantitative understanding of the phenomena causing thermal fatigue, lack of understanding of crack growth, and difficulty in detecting existing cracks.

  6. Suggestions to leak prevention in Fortaleza's natural gas piping system; Sugestoes para a prevencao de vazamentos de gas natural canalizado na regiao metropolitana de Fortaleza

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara (ARCE), Fortaleza, CE (Brazil)

    2004-07-01

    Leaks are the bigger problem in health, safety and environmental when the subject is gas distribution piping systems. Specially in high density human regions, like in the majority districts of Fortaleza, safety have to be the higher priority to the gas company responsible for the gas distribution piping systems. Leaks are able to cause accidents or incidents, depending on the circumstances which they happen. In order to be control the situation and overcome the luck factor, leaks must be previously avoided by the application of some security requirements. This paper present some suggestions to natural gas leak prevention in the Fortaleza's metropolitan region pipeline systems. First, the piping systems are analysed, observing the risk regions. Then, safety actions and basic requirements to avoid pipe corrosion are presented in order to improve safety in the gas distribution piping systems of Fortaleza's metropolitan region. (author)

  7. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-01-13

    ... Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety... registry of pipeline and liquefied natural gas operators. FOR FURTHER INFORMATION CONTACT: Jamerson Pender... 72878), titled: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting...

  8. 1994 livestock field investigation of two ranches associated with a pipeline break

    Energy Technology Data Exchange (ETDEWEB)

    Mostrom, M.S.; Campbell, C.A.J.

    1998-11-01

    In January 1994, a pipeline in the Rocky Mountain foothill region of Alberta leaked sour gas and condensate, including volatile hydrocarbons, into the Red Deer River. Cattle on two ranches were within 4 km to less than 0.5 km from the leak site. Once the leak was discovered (about three days after the rupture) the well was shut in and the pipeline was purged of crude petroleum. The cows at both ranches were brought into confined areas for clinical observations. Calving started in mid-January at both ranches. Many of the calves and cows exhibited abnormal behaviour. An investigation into the possible toxicological effects of the leak emissions in cattle was conducted in order to assess the health and productivity of the cattle on the two ranches and to evaluate plausible etiologies for observed adverse effects in the cattle. Another objective was to obtain exposure analyses. Both ranches had a higher mortality in 1994 compared to previous years. Results showed evidence, by way of clinical signs and histopathologic lesions in the respiratory, nervous, and lymphoid tissues, of exposure to volatile hydrocarbons released at the time of the leak and during the subsequent cleanup operations. However, there were also other factors (BVD virus and Salmonella and corona virus infections, neonatal diarrhea, selenium and copper poisoning), that have contributed, although no consistent pattern of disease other than immune dysfunction could explain the high death losses observed among calves on the two ranches. 63 refs., 20 tabs., 12 figs., 5 appendices.

  9. Pipeliners go regulator shopping

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    1996-12-09

    The weakening of Alberta`s regulatory grip on gas pipelines was discussed. Palliser Pipeline Limited has challenged Nova Corp`s monopoly by applying to the National Energy Board (NEB) for permission to build a 150-mile pipeline from Calgary to the Saskatchewan border. If the $350 million project proceeds, it would mean that gas would be flowing out of Alberta for the first time through a line that is not operated by Nova Corp. Palliser would operate with a lower shipping toll, set by the NEB rather than Alberta`s Energy and Utilities Board. Alliance Pipeline Ltd. will also apply to the NEB to build a 1850-mile pipeline that would originate in British Columbia, cross Alberta and terminate in Chicago. Nova Corp has implied that it might have to consider charging distance-based tolls if the Palliser bypass line proceeds. However, Palliser countered that it should not be necessary to change the postage stamp system for that small a fraction. Palliser suggested that Nova was simply reacting because it was facing competition for the first time. Final decision is in the hands of the federal government.

  10. Protecting a pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.H (Univ. of Michigan, Ann Arbor, MI (United States)); Garcia-Lopez, M. (Ingenieria y Geotecnia Ltda., Santafe de Bogota (Colombia))

    1994-12-01

    This article describes some of the difficulties in constructing an oil pipeline in Colombia across a forested mountain range that has erosion-prone slopes. Engineers are finding ways to protect the pipeline against slope failures and severe erosion problems while contending with threats of guerrilla attacks. Torrential rainfall, precipitous slopes, unstable soils, unfavorable geology and difficult access make construction of an oil pipeline in Colombia a formidable undertaking. Add the threat of guerrilla attacks, and the project takes on a new dimension. In the country's central uplands, a 76 cm pipeline traverses some of the most daunting and formidable terrain in the world. The right-of-way crosses rugged mountains with vertical elevations ranging from 300 m to 2,000 mm above sea level over a distance of some 30 km. The pipeline snakes up and down steep forested inclines in some spots and crosses streams and faults in others, carrying the country's major export--petroleum--from the Cusiana oil field, located in Colombia's lowland interior, to the coast.

  11. Pipelines. Economy's veins; Pipelines. Adern der Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feizlmayr, Adolf; Goestl, Stefan [ILF Beratende Ingenieure, Muenchen (Germany)

    2011-02-15

    According to the existing prognoses more than 1 million km of gas pipelines, oil pipelines and water pipelines are built up to the year 2030. The predominant portion is from gas pipelines. The safe continued utilization of the aging pipelines is a large challenge. In addition, the diagnostic technology, the evaluation and risk assessment have to be developed further. With the design of new oil pipelines and gas pipelines, aspects of environmental protection, the energy efficiency of transport and thus the emission reduction of carbon dioxide, the public acceptance and the market strategy of the exporters gain in importance. With the offshore pipelines one soon will exceed the present border of 2,000 m depth of water and penetrate into larger sea depths.

  12. 77 FR 31827 - Pipeline Safety: Pipeline Damage Prevention Programs

    Science.gov (United States)

    2012-05-30

    ... Safety: Pipeline Damage Prevention Programs AGENCY: Pipeline and Hazardous Materials Safety... excavation damage prevention law enforcement programs; establish an administrative process for making... excavation damage prevention law enforcement programs; and establish the adjudication process...

  13. CPL: Common Pipeline Library

    Science.gov (United States)

    ESO CPL Development Team

    2014-02-01

    The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

  14. Pipeline rehabilitation planning

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil; Eyre, David [PENSPEN (United Kingdom)

    2005-07-01

    An operator faced with an onshore pipeline that has extensive damage must consider the need for rehabilitation, the sort of rehabilitation to be used, and the rehabilitation schedule. This paper will consider pipeline rehabilitation based on the authors' experiences from recent projects, and recommend a simple strategy for planning pipeline rehabilitation. It will also consider rehabilitation options: external re-coating; internal lining; internal painting; programmed repairs. The main focus will be external re-coating. Consideration will be given to rehabilitation coating types, including tape wraps, epoxy, and polyurethane. Finally it will discuss different options for scheduling the rehabilitation of corrosion damage including: the statistical comparison of signals from inspection pigs; statistical comparison of selected measurements from inspection pigs and other inspections; the use of corrosion rates estimated for the mechanisms and conditions; expert judgement. (author)

  15. Evaluation of methodologies for the calculation of leak rates for pressure retaining components with crack-like leaks; Bewertung von Methoden zur Berechnung von Leckraten fuer druckfuehrende Komponenten mit rissartigen Lecks

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Juergen; Heckmann, Klaus; Blaesius, Christoph

    2015-06-15

    For the demonstration of break preclusion for pressure retaining components in nuclear power plants, the nuclear safety standard KTA 3206 determines also the requirements for the leak-before-break verification. For this procedure, it has to be ensured that a wall-penetrating crack is subcritical with respect to instable growth, and that the resulting leakage under stationary operation conditions can be detected by a leak detection system. Within the scope of the project 3613R01332 analyses with respect to conservative estimates of the leak rates in case of detections regarding break preclusion were performed by means of leak rate models being available at GRS. For this purpose, conservative assumptions in the procedure were quantified by comparative calculations concerning selected leak rate experiments and the requirements regarding the determination of leak rates indicated in the KTA 3206 were verified and specified. Moreover, the models were extended and relevant recommendations for the calculation procedure were developed. During the investigations of leak rate tests the calculation methods were validated, qualified by means of both examples indicated in KTA 3206 and applied to a postulated leak accident in the cooling circuit of a PWR. For the calculation of leak rates several simplified solution methods which are included in the GRS program WinLeck were applied, and for the simulation of a leak accident the large-scale programs ANSYS Mechanical and ATHLET (thermohydraulics program developed by GRS) were used. When applying simplified methods for the calculation of leak rates using the limiting curve for the friction factor which has been derived during the project and which is included in the KTA 3206 attention has to be paid to the fact that in case of small flow lengths the entrance loss can dominate compared to the friction loss. However, the available data do not suffice in order to make a quantitative statement with respect to limits of applicability

  16. 78 FR 70623 - Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory...

    Science.gov (United States)

    2013-11-26

    ... gas pipelines and for hazardous liquid pipelines. Both committees were established under the Federal... Administration [Docket No. PHMSA-2009-0203] Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory Committee AGENCY: Pipeline and Hazardous Materials Safety...

  17. Investigation of Corrosion of Buried Oil Pipeline by the Electrical ...

    African Journals Online (AJOL)

    MICHAEL

    The resistivity and self potential values of the soil along the pipeline were obtained ... These methods applied in the study are quick, economic and efficient for detecting likely ... metallic materials is a very widespread problem. Structures such ...

  18. The TROBAR pipeline

    Science.gov (United States)

    Stefanon, Mauro

    TROBAR is a 60cm robotic telescope installed at the Observatrio de Aras de los Olmos (OAO), approximately 100km north-west of Valencia (Spain). It is currently equipped with a 4K×4K optical camera covering a FoV of 30×30 arcmin^2. We are now implementing a pipeline for the automatic reduction of its data. In this paper we will present the main features of the pipeline, with particular care to some of the algorithms implemented to assess the quality of the produced data and showing their application to synthetic images.

  19. Biliary leaks after laparoscopic cholecystectomy:timetostentortimetodrain

    Institute of Scientific and Technical Information of China (English)

    Haim Pinkas; Patrick G. Brady

    2008-01-01

    BACKGROUND: Endoscopic retrograde cholangiopan-creatography (ERCP) with placement of a biliary stent or nasobiliary (NB) drain is the procedure of choice for treatment of post-cholecystectomy bile duct leaks. The aim of this study was to compare the effect of NB drainage versus internal biliary stenting on rates of leak closure, time elapsed until drain or stent removal, length of hospital stay and number of required endoscopic procedures. METHODS: Charts were reviewed on 20 patients who underwent laparoscopic cholecystectomy complicated by Luschka or cystic duct leak. Ten patients were treated with NB drains connected to low intermittent suction and repeat NB cholangiograms were performed until leak closure was observed. Ten patients were treated with internal biliary stents. Biliary sphincterotomies were performed for stone extraction or a presumed papillary stenosis. Large bilomas were drained percutaneously prior to stenting. RESULTS: In all 20 patients, a cholangiogram and successful placement of a NB drain or internal stent was achieved. Four patients (20%) were found to have bile duct stones, which were extracted following a sphincterotomy. Sixteen patients required percutaneous drains to evacuate large bilomas prior to biliary instrumentation. Fifteen cystic duct leaks and 5 Luschka duct leaks were reviewed. There were no complications related to ERCP. Closure of the leak was documented within 2 to 11 days (mean 4.7±0.9 days) in patients receiving a NB drain. The drains were removed non-endoscopically following leak closure. The internal stent group required stenting for 14 to 53 days (mean 29.1±4.4 days). The stent was then removed endoscopically after documentation of leak closure. Bile leaks following laparoscopic cholecystectomy closed rapidly after NB drainage and did not require repeat endoscopy for removal of the NB drain, resulting in fewer ERCPs required for treatment of biliary leaks. Internal biliary stents were in place longer owing

  20. 长输天然气管道泄漏回收研究%Research on Recovery of Natural Gas in Pipeline During Long-Distance Pipeline Leakage

    Institute of Scientific and Technical Information of China (English)

    马焱; 刘德俊; 李小月; 高钊; 王芙; 高吉庆; 孙皓

    2013-01-01

    长输天然气管道作为重要的能源运输工具,在保障安全高效性输送的同时,全面拉动了我国天然气城市化进程。国内处理管道泄露问题时,通常先放空管道内天然气再进行抢修工作,这样就造成了对天然气的大量浪费。设计了一套对长输管道放空天然气进行回收的车载压缩机组,并进行经济可行性分析。当发生泄露后,车量迅速到达截断阀室现场,将泄露段天然气回收注入至下一段管道,既节约能源,又减少了由于放空天然气带来的环境污染。%As important energy transportation means, the long-distance natural gas pipeline promotes the natural gas urbanization process in China as it can ensure safe efficiency natural gas transmission. When dealing with the problem of pipeline leak in China, natural gas in the pipeline is usually vented before carrying out the repair work,which can cause a lot of waste of natural gas. A set of vehicle compressor was designed, it can recover natural gas in long distance pipeline, and its economic feasibility was analyzed. When a leak occurs, recycling car will quickly reach the cut-off valve room scene, recycle natural gas of leak section and inject it into the next section of pipeline. It can save energy, and reduce the environmental pollution caused by venting natural gas.

  1. The Feasibility of TOFD Detection in Nuclear Power Conventional Island Pipeline Weld%超声衍射时差法用于核电站常规岛管道焊缝检测的可行性

    Institute of Scientific and Technical Information of China (English)

    惠维山; 钟华; 穆晓忠

    2016-01-01

    根据核电站常规岛管道焊缝施工特点,设计制作了带有人工缺陷的试块,对试块进行了超声衍射时差法(TOFD)、射线及超声检测,并对检测结果从检出率、缺陷定位、缺陷定量及缺陷评级等方面进行了对比分析。结果表明,TOFD方法在管道检测方面具有较高的可靠性。通过在工程现场进行TOFD和射线检测试验,表明TOFD方法在核电站常规岛中的应用是可行的。%According to the construction features of conventional island of nuclear power plant,test blocks with artificial defects were designed and manufactured.The TOFD,X-ray and conventional ultrasonic detection on the test block were performed.The detection results from the detection rate,defect location and quantification of defects and defect rating were compared and analyzed.Results show that the TOFD technique in pipeline detection is of high detection reliability.By means of TOFD and radiographic testing in engineering,the application of TOFD technology in conventional island of nuclear power plant is feasible.

  2. Sinopec: Pipeline Goes Ahead

    Institute of Scientific and Technical Information of China (English)

    Xie Ye

    2002-01-01

    @@ Asia's largest refinery, Sinopec Corp, will proceed with a 1,600-kilometre oil pipeline across southern provinces of China, although speculation continues to linger that the company will scrap the plan due to a postponement of the multi-million-dollar project.

  3. 埋地钢管外防腐系统腐蚀因素的检测评价与控制%Detection Assessment and Control of Corrosion Factors on External Anti-corrosion System of Buried Steel Pipelines

    Institute of Scientific and Technical Information of China (English)

    娄桂云

    2012-01-01

    Based on the external anti-corrosion detection of buried steel pipelines in North Shanghai Gas Business CO., Ltd, the artilce analyses the influences of the external anti-corrosion coating, the cathode protection effectiveness, the influences of the stray current, and puts forward the corrosion controlling method.%文章通过对上海燃气市北销售有限公司埋地钢管外防腐系统的检测,分析了外防腐层保护效果、阴极保护效果以及杂散电流对钢管腐蚀的影响,并提出了腐蚀控制措施。

  4. Escape dynamics through a continuously growing leak

    Science.gov (United States)

    Kovács, Tamás; Vanyó, József

    2017-06-01

    We formulate a model that describes the escape dynamics in a leaky chaotic system in which the size of the leak depends on the number of the in-falling particles. The basic motivation of this work is the astrophysical process, which describes the planetary accretion. In order to study the dynamics generally, the standard map is investigated in two cases when the dynamics is fully hyperbolic and in the presence of Kolmogorov-Arnold-Moser islands. In addition to the numerical calculations, an analytic solution to the temporal behavior of the model is also derived. We show that in the early phase of the leak expansion, as long as there are enough particles in the system, the number of survivors deviates from the well-known exponential decay. Furthermore, the analytic solution returns the classical result in the limiting case when the number of particles does not affect the leak size.

  5. Development of a Miniaturized and Portable Methane Analyzer for Natural Gas Leak Walking Surveys

    Science.gov (United States)

    Huang, Y. W.; Leen, J. B.; Gupta, M.; Baer, D. S.

    2016-12-01

    Traditional natural gas leak walking surveys have been conducted with devices that are based on technologies such as flame ionization detector (FID), IR-based spectrometer and IR camera. The sensitivity is typically on the ppm level. The low sensitivity means the device cannot pick up leaks far from it, and more time is spent surveying the area before pinpointing the leak location. A miniaturized methane analyzer has been developed to significantly improve the sensitivity of the device used in walking surveys to detect natural gas leaks at greater distance. ABB/LGR's patented Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) is utilized to offer rugged and highly sensitive methane detection in a portable package. The miniaturized package weighs 13.5 lb, with a 4-hour rechargeable battery inside. The precision of the analyzer for methane is 2 ppb at 1 second. The analyzer operates at 10 Hz and its flow response time is 3 seconds for measurements through a 1-meter long sampling wand to registering on the data stream. The data can be viewed in real-time on a tablet or a smartphone. The compact and simplified package of the methane analyzer allows for more efficient walking surveys. It also allows for other applications that require low-power, low-weight and a portable package. We present data from walking surveys to demonstrate its ability to detect methane leaks.

  6. CT assessment of anastomotic bowel leak

    Energy Technology Data Exchange (ETDEWEB)

    Power, N. [Department of Radiology, Sunnybrook Hospital, Toronto, Ontario M4N 3M5 (Canada); Atri, M. [Department of Radiology, Sunnybrook Hospital, Toronto, Ontario M4N 3M5 (Canada)]. E-mail: mostafa.atri@sw.ca; Ryan, S. [Department of Radiology, Sunnybrook Hospital, Toronto, Ontario M4N 3M5 (Canada); Haddad, R. [Department of Surgery, Sunnybrook Hospital, Toronto, Ontario M4N 3M5 (Canada); Smith, A. [Department of Surgery, Sunnybrook Hospital, Toronto, Ontario M4N 3M5 (Canada)

    2007-01-15

    Aim: To evaluate the predictors of clinically important gastrointestinal anastomotic leaks using multidetector computed tomography (CT). Subjects and methods: Ninety-nine patients, 73 with clinical suspicion of anastomotic bowel leak and 26 non-bowel surgery controls underwent CT to investigate postoperative sepsis. Fifty patients had undergone large bowel and 23 small bowel anastomoses. The time interval from surgery was 3-30 days (mean 10 {+-} 5.9 SD) for the anastomotic group and 3-40 days (mean 14 {+-} 11 SD) for the control group (p = 0.3). Two radiologists blinded to the final results reviewed the CT examinations in consensus and recorded the presence of peri-anastomotic air, fluid or combination of the two; distant loculated fluid or combination of fluid and air; free air or fluid; and intestinal contrast leak. Final diagnosis of clinically important anastomotic leak (CIAL) was confirmed at surgery or by chart review of predetermined clinical and laboratory criteria. Results: The prevalence of CIAL in the group undergoing CT was 31.5% (23/73). The CT examinations with documented leak were performed 5-28 (mean; 11.4 {+-} 6 SD) days after surgery. Nine patients required repeat operation, 10 percutaneous abscess drainage, two percutaneous drainage followed by surgery, and two prolonged antibiotic treatment and total parenteral nutrition (TPN). Of the CT features examined, only peri-anastomotic loculated fluid containing air was more frequently seen in the CIAL group as opposed to the no leak group (p = 0.04). There was no intestinal contrast leakage in this cohort. Free air was present up to 9 days and loculated air up to 26 days without CIAL. Conclusion: Most postoperative CT features overlap between patients with and without CIAL. The only feature seen statistically more frequently with CIAL is peri-anastomotic loculated fluid containing air.

  7. Innovative Electromagnetic Sensors for Pipeline Crawlers

    Energy Technology Data Exchange (ETDEWEB)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second

  8. Single-Shell Tank Leak Integrity Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, D. G. [Washington River Protection Solutions LLC, Richland, WA (United States); Girardot, C. L. [Washington River Protection Solutions LLC, Richland, WA (United States); Venetz, T. J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-03-26

    This document summarizes and evaluates the information in the Hanford Tri-Party Agreement Interim Milestone M-045-91F Targets completed between 2010 and 2015. 1) Common factors of SST liner failures (M-045-91F-T02), 2) the feasibility of testing for ionic conductivity between the inside and outside of SSTs (M-045-91F-T03, and 3) the causes, locations, and rates of leaks from leaking SSTs (M-045-91F-T04).

  9. The NOAO Pipeline Data Manager

    Science.gov (United States)

    Hiriart, R.; Valdes, F.; Pierfederici, F.; Smith, C.; Miller, M.

    2004-07-01

    The Data Manager for NOAO Pipeline system is a set of interrelated components that are being developed to fulfill the pipeline system data needs. It includes: (1) management of calibration files (flat, bias, bad pixel mask and xtalk calibration data.); (2) management of the pipeline stages' configuration parameters; and (3) management of the pipeline processing historic information, for each of the data products generated by the pipeline. The Data Manager components uses a distributed, CORBA based architecture, providing a flexible and extensible object oriented framework, capable of accommodating the present and future pipeline data requirements. The Data Manager communicates with the pipeline modules, with internal and external databases, and with other NOAO systems such as the NOAO Archive and the NOAO Data Transport System.

  10. Research and Practice on Dynamic Pipeline Risk Warning Map%动态管道风险预警地图的研究与实践

    Institute of Scientific and Technical Information of China (English)

    吴迪; 吴家兵

    2013-01-01

    Abstract:To address serious pipe leakage and frequent pipe burst accidents for water supply enterprises,the pipeline risk value quantification and the visualization of risk evaluation results were researched.In the case of Foshan water supply system,a database of pipe burst information was established,a method of calculating pipeline risk value was proposed,and the probabilities of water supply main burst and leakage were quantitatively evaluated.Moreover,the concept of gridding management was introduced,and the on-line maps API technology was used to exhibit dynamic pipeline risk evaluation results in graphical form on the city map.This provides an effective visualization solution for pipeline inspection,risk warning and leak detection.%针对供水企业爆管事故频发和管网漏损严重的现状,进行了管道风险值量化和风险评价结果可视化表达的研究.以佛山市禅城区供水管网为研究对象,建立了规范的管道爆漏信息数据库,提出了管道爆漏风险值的计算方法,将输水主干管爆漏可能性大小进行定量评价,并引入网格化管理概念,通过在线地图API技术,使管网风险评价结果以图形形式在城市地图上动态展现.这为供水企业的管网巡检、管道风险预警、管道探漏提供了有效的可视化解决方案.

  11. Vulnerability of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-01

    Although pipelines may be damaged due to natural sources such as stress corrosion cracking (SCC) or hydrogen-induced cracking (HIC), most pipeline damages are a result of third-party interference, such as unauthorized construction in a right of way. Pipelines are also among the prime targets for sabotage because interruptions in energy distribution can render large segments of a population debilitated. The importance of protecting critical infrastructure was emphasized in this theme issue which disseminated information on vulnerability of pipelines due to third-party intrusions, both intentional and unintentional. It summarized the 10 presentations that were delivered at a pipelines security forum in Calgary, Alberta, addressing Canadian and U.S. government and industry approaches to oil and natural gas pipeline security. The opening keynote address remarked on the evolution of international terror networks, the targeting of the energy sector, and the terrorist threat and presence in Canada. Policies towards critical energy infrastructure protection (CIP) were then examined in light of these threats. A policy shift away from traditional defensive protective security towards an offensive intelligence-led strategy to forestall terrorist threats was advocated. Energy sector representatives agreed that Canada needs an effective national lead agency to provide threat assessments, alert notification, and coordination of information pertaining to CIP. It was agreed that early warning information must come from Canadian as well as U.S. sources in order to be pertinent. The conference session on information collection concentrated on defining what sort of threat information is needed by the energy sector, who should collect it and how should it be shared. It was emphasized that government leadership should coordinate threat reporting and disseminate information, set standards, and address the issues of terrorism risk insurance. Concern was raised about the lack of

  12. Performances of the leak microstructures

    CERN Document Server

    Lombardi, M; Lombardi, F S

    2002-01-01

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are stressed. For every single detected ionizing radiation it gives a pair of 'induced' charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and essentially in time coincidence, that are proportional to the primary ionization collected. The complete lack of insulating materials in the active volume of this microstructure avoids problems of charging-up and makes stable and repeatable its behaviour. Primary avalanches with a size of more than 2.5x10 sup 7 electrons (4 pC) giving current pulses with a peak of more than 0.26 mA on 100 OMEGA and about 30 ns duration are possible with 5.9 keV X-rays of sup 5 sup 5 Fe working in proportional region and in isobutane gas. Single electrons emitted by a heated filament (E sub c <1 eV) were detected in 760 Torr of isobutane; with an estimated gas gain of 1.2x10 sup 6 a counting rate up to...

  13. Corrosivity Sensor for Exposed Pipelines Based on Wireless Energy Transfer.

    Science.gov (United States)

    Lawand, Lydia; Shiryayev, Oleg; Al Handawi, Khalil; Vahdati, Nader; Rostron, Paul

    2017-05-30

    External corrosion was identified as one of the main causes of pipeline failures worldwide. A solution that addresses the issue of detecting and quantifying corrosivity of environment for application to existing exposed pipelines has been developed. It consists of a sensing array made of an assembly of thin strips of pipeline steel and a circuit that provides a visual sensor reading to the operator. The proposed sensor is passive and does not require a constant power supply. Circuit design was validated through simulations and lab experiments. Accelerated corrosion experiment was conducted to confirm the feasibility of the proposed corrosivity sensor design.

  14. Endoscopic diagnosis and treatment of biliar y leak in patients following liver transplantation:a prospective clinical study

    Institute of Scientific and Technical Information of China (English)

    Jia-Zhi Liao; Qiu Zhao; Hua Qin; Rong-Xiang Li; Wei Hou; Pei-Yuan Li; Nan-Zhi Liu; De-Ming Li

    2007-01-01

    BACKGROUND:Orthotopic liver transplantation has been widely used in patients with end-stage liver disease within the last two decades. However, the prevalence of biliary complications after liver transplantation remains high. The most common short-term biliary complication may be biliary leak. So, we examined 13 patients with biliary leak after liver transplantation, attempting to evaluate the role of endoscopic diagnosis and treatment of biliary leak and the incidence of bile duct stricture after healing of the leak. METHODS: Six cases of T-tube leak and seven cases of anastomosis leak complicating liver transplantation were enrolled in this prospective study. Six patients were treated by endoscopic plastic stent placement, two by nasobiliary catheter drainage, two by papillosphincterotomy, and three by nasobiliary catheter drainage combined with plastic stent placement. Some patients received growth hormone treatment. RESULTS: The bile leak resolution time was 10-35 days in 10 patients with complete documentation. The median time of leak resolution was 15.3 days. Four cases of anastomosis stricture, three cases of common hepatic duct and one case of multiple bile duct stenosis were detected by follow-up nasobiliary catheter cholangiography or endoscopic retrograde cholangiopancreatography. CONCLUSIONS:Endoscopic nasobiliary catheter or plastic stent placement is a safe and effective treatment for bile duct stricture occurring after bile leak resolution in most liver transplantation patients. Nasobiliary catheter combined with plastic stent placement may be the best choice for treating bile leak, because, theoretically, it may prevent the serious condition resulting from accidental nasobiliary catheter dislocation, and it may have prophylactic effects on upcoming bile duct stricture, although this should be further conifrmed.

  15. Pipeline ADC Design Methodology

    OpenAIRE

    Zhao, Hui

    2012-01-01

    Demand for high-performance analog-to-digital converter (ADC) integrated circuits (ICs) with optimal combined specifications of resolution, sampling rate and power consumption becomes dominant due to emerging applications in wireless communications, broad band transceivers, digital-intermediate frequency (IF) receivers and countless of digital devices. This research is dedicated to develop a pipeline ADC design methodology with minimum power dissipation, while keeping relatively high speed an...

  16. Pipeline ADC Design Methodology

    OpenAIRE

    Zhao, Hui

    2012-01-01

    Demand for high-performance analog-to-digital converter (ADC) integrated circuits (ICs) with optimal comb