WorldWideScience

Sample records for pipe scale deposits

  1. Prediction of wall deposition behaviour in a pilot-scale spray dryer using deposition correlations for pipe flows

    Institute of Scientific and Technical Information of China (English)

    KOTA K.; LANGRISH T.A.G.

    2007-01-01

    The particle deposition behaviour of skim milk, water and maltodextrin in the conical section of a pilot-scale spray dryer was predicted using simple correlations for particle depositions in pipes. The predicted particle deposition fluxes of these materials were then compared with the measured deposition fluxes. The predicted particle deposition regimes of the spray dryer were expected to be in the diffusional and mixed (diffusional and inertial) regimes, but the experimental results suggested that the particle deposition was mainly in the inertial regime. Therefore, using the pipe correlations for predicting deposition in a pilot-scale spray dryer suggests that they do not sufficiently represent the actual deposition behaviour. This outcome indicates that a further study of particle flow patterns needs to be carried out using numerical simulations (computational fluid dynamics,CFD) in view of the additional geometrical complexity of the spray dryer.

  2. DEPOSITION OF PARTICLES IN TURBULENT PIPE FLOW

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Luo; Suyuan Yu

    2006-01-01

    The deposition of particles in turbulent pipe flow was investigated in terms of two mechanisms, turbulent and thermophoretic. A general equation incorporating these two mechanisms was formulated to calculate the deposition efficiency of aerosol particles in turbulent pipe flow together with thermophoretic deposition. The validity of the equation was confirmed by good agreement between calculated and measured results.

  3. Laboratory Deposition Apparatus to Study the Effects of Wax Deposition on Pipe Magnetic Field Leakage Signals

    Directory of Open Access Journals (Sweden)

    Karim Mohd Fauzi Abd

    2014-07-01

    Full Text Available Accurate technique for wax deposition detection and severity measurement on cold pipe wall is important for pipeline cleaning program. Usually these techniques are validated by conventional techniques on laboratory scale wax deposition flow loop. However conventional techniques inherent limitations and it is difficult to reproduce a predetermine wax deposit profile and hardness at designated location in flow loop. An alternative wax deposition system which integrates modified pour casting method and cold finger method is presented. This system is suitable to reproduce high volume of medium hard wax deposit in pipe with better control of wax deposit profile and hardness.

  4. Corroded scale analysis from water distribution pipes

    Directory of Open Access Journals (Sweden)

    Rajaković-Ognjanović Vladana N.

    2011-01-01

    both fluid and solid, relatively dense shell-like layer that covers the porous core and provides structural integrity to the scale, and surface layer that is present on top of the shell-like layer at scale-water interface and loosely attached to the shell-like layer. Iron(II deposits are formed under reducing conditions. The presence of relatively soluble Fe(II deposits such as siderite and ferrous hydroxide was confirmed by XRD and SEM analysis. In the presence of carbonic species, siderite (FeCO3 is prevailing ferrous deposit. Further studies are needed for obtaining greater knowledge on the mechanism of iron release from corroded pipes and the influence of water quality to iron corrosion.

  5. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    OpenAIRE

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-01-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling brecc...

  6. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  7. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    Science.gov (United States)

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals.

  8. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingqing [College of Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Chen, Huanyu [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300000 (China); Yao, Lingdan; Wei, Zongyuan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Lou, Liping, E-mail: loulp@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda [Environmental Protection Agency, Office of Research and Development, NRMRL, Cincinnati, OH 45220 (United States); Hu, Baolan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhou, Xiaoyan [Shaoxing Water Environmental Science Institute Co. Ltd, Zhejiang 312000 (China)

    2016-11-05

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  9. The Influence of Vibration on CaCO3 Scale Formation in Piping System

    Directory of Open Access Journals (Sweden)

    Mangestiyono W.

    2016-01-01

    Full Text Available Carbonate scale is a common problem found in a piping system of industrial process. The presence of mechanical equipment such as turbine, compressor, blower, mixer and extruder produce a mechanical vibration on the piping system which is placed near these equipments. The influence of vibration on the CaCO3 scale formation in the piping system was experimentally investigated in the present study. The aim of the research was to understand the effect of vibration on the kinetics, deposition rates and the crystals formation in the synthetic solution. The solution was prepared using CaCl2 and Na2CO3 for concentration of calcium of 3.500 ppm, while the induction time, deposition rate, crystal growth were investigated at temperature of 25°C. In generating the vibration force, the mechanical equipment consisting of electrical motor, crankshaft, connecting rod and a vibration table were employed, including four coupons inside the pipe for investigating the scale formed. Frequency of the vibration was set at 0.00, 1.00 Hz and 2.00 Hz, respectively. A dosing pump with two inlets and two outlets was used to circulate the solutions at flowrate of 30 ml/min from each vessel to the coupons. After running for three hours, the induction time was recorded at 17; 10 and 8 minute with vibration frequency of 0.00; 1.00 and 2.00 Hz, respectively. The scale formed was then characterized using SEM/EDX for crystal morphology and elemental analysis. The results show that the deposition rates were 0.9457 and 3.3441 gram/h for the frequency of 1.00 and 2.00 Hz. The carbonate crystals found in coupon and filter were vaterite.

  10. Palaeomagnetic Emplacement Temperature Determinations of Pyroclastic and Volcaniclastic Deposits in Southern African Kimberlite Pipes

    Science.gov (United States)

    Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.

    2009-12-01

    Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits

  11. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    Science.gov (United States)

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-10-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200-440°C and in crater-filling talus breccias and volcaniclastic breccias at 560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10-30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300-400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the

  12. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    Science.gov (United States)

    Fernandez, Felix E. (Inventor)

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  13. STUDY OF ELECTROMAGNETIC STIRRING REFINING MICRO- STRUCTURES OF PIPE-LINE STEEL SAW DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    Y. Zhang; B.N. Qian; X.M. Guo

    2002-01-01

    The effects of electromagnetic stirring on the microstructures of pipe-line steel SAWdeposited metal were investigated. The results showed that electromagnetic stirringincreased the number density of inclusions with 0.2-0.6μm in diameter and promotedthe formation and refining of acicular ferrite within austenite grains. The low tem-perature toughness of deposited metal was improved.

  14. Effects of flow and water chemistry on lead release rates from pipe scales.

    Science.gov (United States)

    Xie, Yanjiao; Giammar, Daniel E

    2011-12-01

    Lead release from pipe scales was investigated under different water compositions, stagnation times, and flow regimes. Pipe scales containing PbO(2) and hydrocerussite (Pb(3)(OH)(2)(CO(3))(2)) were developed on lead pipes by conditioning the pipes with water containing free chlorine for eight months. Water chemistry and the composition of the pipe scales are two key factors affecting lead release from pipe scales. The water rarely reached equilibrium with pipe scales within one day, which makes solid-water contact time and corrosion product dissolution rates the controlling factors of lead concentrations for the conditions tested. Among five water compositions studied, a solution with orthophosphate had the lowest dissolved lead release rate and highest particulate lead release rate. Free chlorine also decreased the dissolved lead release rate at stagnant conditions. Water flow increased rates of release of both dissolved and particulate lead by accelerating the mass transfer of lead out of the porous pipe scales and by physically destabilizing pipe scales. Dissolved lead comprised the majority of the lead released at both stagnant and laminar flow conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Emplacement Temperatures of Pyroclastic and Volcaniclastic Deposits in Kimberlite Pipes in Southern Africa: New constraints From Palaeomagnetic Measurements

    Science.gov (United States)

    Fontana, G. P.; Macniocaill, C.; Brown, R. J.; Sparks, S. R.; Field, M.; Gernon, T. M.

    2009-05-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied for the first time to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater- fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The emplacement temperature results are comparable to the estimated emplacement temperatures of other kimberlite deposits and pyroclastic deposits from other volcanic systems, and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. This is in the range where welding and agglutination of juvenile pyroclasts occurs in other types of pyroclastic deposits. Such high emplacement temperatures for vent-filling pyroclastic deposits are consistent with volatile

  16. Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.

    2001-03-01

    Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.

  17. At-sea test system point design for a one-third scale cold water pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, W.H. (ed.)

    1979-12-01

    One step in the development of the technology for Ocean Thermal Energy Conversion (OTEC) Cold Water Pipes (CWP) is the at-sea testing of a fiberglass reinforced plastic nominal 10-foot diameter pipe. A design procedure and criteria for developing test hardware by scaling down a 30-foot diameter OTEC 10/40 MW Pilot Plant CWP design are presented. An example point design for the pipe, instrumentation to be used during the at-sea tests, and methods for selecting the support platform and mooring are described. The design considered starts with a scale model of a larger prototype, and then is modified to address the problems of fabrication and of survivability and handling during the 1/3rd scale model tests.

  18. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    Science.gov (United States)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  19. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  20. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  1. Prediction of the Scale Removal Rate in Heat Exchanger Piping

    Directory of Open Access Journals (Sweden)

    Najwa S. Majeed

    2010-01-01

    Full Text Available The possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate (as it is the controlling process are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.Correlation for the variation of Sherwood number ( or mass transfer rate with Reynolds’s number have been obtained .

  2. Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems.

    Science.gov (United States)

    Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H

    2010-08-01

    Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium.

  3. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater.

    Science.gov (United States)

    Li, Heng; Hsieh, Ming-Kai; Chien, Shih-Hsiang; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-01-01

    Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. A prominent challenge for the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe surfaces. In this study, theoretical, laboratory, and field work was conducted to evaluate the mineral deposition potential of MWW and its deposition control strategies under conditions relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce scale formation when the makeup water was concentrated four times in a recirculating cooling system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L dosing level in a synthetic MWW. However, the deposition inhibition by PMA was compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater suppressed the reaction of the free chlorine with PMA through the formation of chloramines. Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than free chlorine. In pilot tests, scaling control was more challenging due to the occurrence of biofouling even with effective control of suspended bacteria. Phosphorous-based corrosion inhibitors are not appropriate due to their significant loss through precipitation reactions with calcium. Chemical equilibrium modeling helped with interpretation of mineral precipitation behavior but must be used with caution for recirculating cooling systems, especially with use of MWW, where kinetic limitations and complex water chemistries often prevail. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Surface analysis of pilot distribution system pipe autopsies: The relationship of organic and inorganic deposits to input water quality.

    Science.gov (United States)

    Fabris, Rolando; Denman, John; Braun, Kalan; Ho, Lionel; Drikas, Mary

    2015-12-15

    Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) surface analysis was conducted to characterise deposits in polyethylene pipes used in a novel pilot water distribution system (PDS). The system consisted of four (4) parallel distribution systems receiving water from different treatment processes, ranging from conventional coagulation through to an advanced membrane filtration system. After two years of operation, the distribution system was shut down and samples of pipe were collected for autopsy analysis. Inlet and outlet samples from each PDS were collected for purpose of comparison. ToF-SIMS was used to assess chemical differences in surface biofilm accumulation and particulate deposition, which resulted as a consequence of the treatment method and operational mode of each system. These data supplemented previously collected bacteriological and chemical water quality data. Results from the inorganic analysis of the pipes were consistent with corrosion and contamination events that occurred upstream in the corresponding treatment systems. Principal component analysis of data on organic constituents showed oxygen and nitrogen containing fragments were associated with the treatment inlet and outlet samples. These types of signals can often be ascribed to biofilm polysaccharides and proteins. A trend was observed when comparing samples from the same PDS, showing an association of lower molecular weight (MW) organic fragments with the inlet and higher MW organic fragments with the outlet samples.

  5. Detailed Interstellar Polarimetric Properties of the Pipe Nebula at Core Scales

    CERN Document Server

    Franco, G A P; Girart, J M

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival 2MASS data we estimate that the surveyed areas present total visual extinctions in the range 0.6 < Av < 4.6. While the observed polarizations show a well ordered large scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one see details that are characteristics of each core. Although many observed stars present degree of polarization which are unusual for the common interstellar medium, our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic interstellar medium. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. T...

  6. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    Science.gov (United States)

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe(2+), Fe(3+) and Zn(2+), were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE

    Science.gov (United States)

    Örlü, R.; Fiorini, T.; Segalini, A.; Bellani, G.; Talamelli, A.; Alfredsson, P. H.

    2017-03-01

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.

  8. Self-similarity of the large-scale motions in turbulent pipe flow

    Science.gov (United States)

    Hellström, Leo; Marusic, Ivan; Smits, Alexander

    2016-11-01

    Townsend's attached eddy hypothesis assumes the existence of a set of energetic and geometrically self-similar eddies in the logarithmic layer in wall-bounded turbulent flows. These eddies can be completely scaled with the distance from their center to the wall. We performed stereo PIV measurements together with a proper orthogonal decomposition (POD) analysis, to address the self-similarity of the energetic motions, or eddies, in fully-developed turbulent pipe flow. The resulting modes/eddies, extracted at Reτ = 2460 , show a self-similar behavior for eddies with wall-normal length scales spanning a decade. This single length scale provides a complete description of the cross-sectional shape of the self-similar eddies. ONR Grant N00014-15-1-2402 and the Australian Research Council.

  9. Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence

    CERN Document Server

    Fatima, Tasnim

    2010-01-01

    We explore the homogenization limit and rigorously derive upscaled equations for a microscopic reaction-diffusion system modeling sulfate corrosion in sewer pipes made of concrete. The system, defined in a periodically-perforated domain, is semi-linear, partially dissipative and weakly coupled via a non-linear ordinary differential equation posed on the solid-water interface at the pore level. Firstly, we show the well-posedness of the microscopic model. We then apply homogenization techniques based on two-scale convergence for an uniformly periodic domain and derive upscaled equations together with explicit formulae for the effective diffusion coefficients and reaction constants. We use a boundary unfolding method to pass to the homogenization limit in the non-linear ordinary differential equation. Finally, besides giving its strong formulation, we also prove that the upscaled two-scale model admits a unique solution.

  10. Scaling in film growth by pulsed laser deposition and modulated beam deposition.

    Science.gov (United States)

    Lee, Sang Bub

    2011-04-01

    The scalings in film growth by pulsed laser deposition (PLD) and modulated beam deposition (MBD) were investigated by Monte Carlo simulations. In PLD, an atomic pulse beam with a period t(0) were deposited instantaneously on a substrate, whereas in MBD, adatoms were deposited during a short time interval t(1) (0≤t(1)≤t(0)) within each period. If t(1)=0, MBD will be identical to PLD and, if t(1)=t(0), MBD will become usual molecular beam epitaxy (MBE). Specifically, logarithmic scaling was investigated for the nucleation density reported for PLD, and the scaling of island density was studied regarding the growth for 0MBE growth was observed as t(1) increased. The phase diagram was also presented.

  11. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    Science.gov (United States)

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10(4) are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  12. Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe

    Energy Technology Data Exchange (ETDEWEB)

    Vallikivi, M.; Hultmark, M.; Smits, A.J. [Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, NJ (United States); Bailey, S.C.C. [University of Kentucky, Department of Mechanical Engineering, Lexington, KY (United States)

    2011-12-15

    A new nano-scale thermal anemometry probe (NSTAP) has been developed using a novel procedure based on deep reactive ion etching. The performance of the new probe is shown to be superior to that of the previous design by Bailey (J Fluid Mech 663:160-179, 2010). It is then used to measure the streamwise velocity component of fully developed turbulent pipe flow, and the results are compared with data obtained using conventional hot-wire probes. The NSTAP agrees well with the hot-wire at low Reynolds numbers, but it is shown that it has better spatial resolution and frequency response. The data demonstrate that significant spatial filtering effects can be seen in the hot-wire data for probes as small as 7 viscous units in length. (orig.)

  13. Application Closed-End Oscillating Heat Pipe for Essential Oil Condensation of the Small Scale Essential Oil Refiner

    Directory of Open Access Journals (Sweden)

    Sakultala WANNAPAKHE

    2013-12-01

    Full Text Available This research aimed to investigate the design and building of a small scale essential oil refiner by using heat pipes for essential oil condensation. The device structure of the small scale essential oil refiner was divided into 3 sections as follows: 1 the boiler with a heater for heating, 2 the vapor tube, and 3 the condenser unit. Three patterns of condenser unit were investigated: 1 condensation by water circulation, 2 condensation using heat pipes, and 3 condensation using heat pipes with water circulation. The temperature for testing was 80, 90 and 100 °C. A closed-end oscillating heat pipe (CEOHP was used in this research. The inner diameter of the heat pipe was 2 mm. R123 was used as the working fluid. 500 g of kaffir lime peels were used for each test with a time of 2 hours. It was found that the highest quantity of essential oil was 1.4 cc when using a CEOHP with a water circulation unit at 100 °C.

  14. Tellurium-Gold Mineralization Related to Cryptoexplosive Breccias within Volcanic Pipe in Zhuojiazhuang Gold Deposit,Shandong Province, China

    Institute of Scientific and Technical Information of China (English)

    Zeng Qingdong; Liu Tiebing; Shen Yuanchao; Li Guangming

    2002-01-01

    Zhuojiazhuang gold deposit (ZGD) is the most enriched breccia pipe type gold deposit in East China, resulted from cryptoexplosion related to alkalinic magmatism and orebearing fluid filling. The ZGD is a small-sized mine with over 5 tons of gold reserves and grade of 156g/t in average and the highest 2 728 g/t as known. In addition, tellurium and silver are also valuable.The mineralized breccia pipe is cylinder-like in shape with 15 m long and 10 m wide and controlled by intersection ofNW and EW trend faults. Mining level has reached 170 m below the surface, but the whole pipe mineralization is still stable. Mineralization commonly occurs within the cements of breccias. Gold ores consist of hydrothermal breccia ore, shatteredbreccia ore and cataclastic ore. From the center of the ore body outwards, there is the transition from hydrothermal breccia toshattered breccia and then to cataclastic ores. According to composition and amount of the cements, the hydrothermal brecciaores can further be divided into three subtypes: sulfides cemented, hydrothermal mineral cemented and magma cemented.The content of gold is closely related to the types of the cements. The grade of the sulfide cemented breccia is the highestone, usually more than 1 000 g/t, and the known maximum grade is 2 728 g/t. The composition of the shattered breccia ismainly dioritic porphyrite and cemented by hydrothermal minerals, the grade ranges from ten to several tens g/t. The catsclastic ores are mainly composed of dioritic porphyrite, syenitic porphyry, as well as carbonate with mineralized veins, and the grade is only 35 g/t.Major ore minerals consist of pyrite, native tellurium, sphalerite, with minor calaverite, galena and altaite. Gangueminerals are composed of microcrystalline quartz, decktite and fluorite, with minor sericite and calcite. Brecciated and disseminited structures are main structures of ores. Four ore-forming stages are defined: microcrystalline quartz-pyrite stage

  15. Mathematical Modelling of Silica Scaling Deposition in Geothermal Wells

    Science.gov (United States)

    Nizami, M.; Sutopo

    2016-09-01

    Silica scaling is widely encountered in geothermal wells in which produce two-phase geothermal fluid. Silica scaling could be formed due to chemical reacting by mixing a geothermal fluid with other geothermal fluid in different compositions, or also can be caused by changes in fluid properties due to changes pressure and temperature. One of method to overcome silica scaling which is occurred around geothermal well is by workover operation. Modelling of silica deposition in porous medium has been modeled in previously. However, the growth of silica scaling deposition in geothermal wells has never been modeled. Modelling of silica deposition through geothermal is important aspects to determine depth of silica scaling growth and best placing for workover device to clean silica scaling. This study is attempted to develop mathematical models for predicting silica scaling through geothermal wells. The mathematical model is developed by integrating the solubility-temperature correlation and two-phase pressure drop coupled wellbore fluid temperature correlation in a production well. The coupled model of two-phase pressure drop and wellbore fluid temperature correlation which is used in this paper is Hasan-Kabir correlation. This modelling is divided into two categories: single and two phase fluid model. Modelling of silica deposition is constrained in temperature distribution effect through geothermal wells by solubility correlation for silica. The results of this study are visualizing the growth of silica scaling thickness through geothermal wells in each segment of depth. Sensitivity analysis is applied in several parameters, such as: bottom-hole pressure, temperature, and silica concentrations. Temperature is most impact factor for silica scaling through geothermal wellbore and depth of flash point. In flash point, silica scaling thickness has reached maximum because reducing of mole in liquid portion.

  16. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems.

    Science.gov (United States)

    Schock, Michael R; Hyland, Robert N; Welch, Meghan M

    2008-06-15

    Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.

  17. Deposit-related failures of boiler superheater tubing and steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Kotwica, D.J. [Betz Labs. Inc., The Woodlands, TX (United States)

    1995-12-01

    Deposition in superheater tubing can originate from the carryover of water droplets into the superheater bank from the steam drum. Deposition occurs because the concentration of impurities present in the entrained water droplets can be several orders of magnitude greater than that present in steam alone. When the water flashes to steam in the superheater, salts, hardness species, and corrosion products dissolved or suspended in the water build-up on the internal surfaces of the superheater tubing. The detrimental effects of carryover deposition in superheater tubing has been shown to contribute to at least three types of failure: stress-corrosion cracking, overheating, and corrosion gouging. A case history illustrating each one of these failure mechanisms is presented.

  18. Scaling of ballistic deposition from a Langevin equation.

    Science.gov (United States)

    Haselwandter, Christoph A; Vvedensky, Dimitri D

    2006-04-01

    An exact lattice Langevin equation is derived for the ballistic deposition model of surface growth. The continuum limit of this equation is dominated by the Kardar-Parisi-Zhang (KPZ) equation at all length and time scales. For a one-dimensional substrate the solution of the exact lattice Langevin equation yields the KPZ scaling exponents without any extrapolation. For a two-dimensional substrate the scaling exponents are different from those found from computer simulations. This discrepancy is discussed in relation to analytic approaches to the KPZ equation in higher dimensions.

  19. Concept for integrity assurance of small scale piping systems; Konzept zur Gewaehrleistung der Integritaet von Kleinleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Bartonicek, J. [Gemeinschaftskernkraftwerk Neckar GmbH, Neckarwestheim (Germany); Zaiss, W. [Gemeinschaftskernkraftwerk Neckar GmbH, Neckarwestheim (Germany); Metzner, K.J. [Preussische Elektrizitaets-AG (Preussenelektra), Hannover (Germany); Peter, U. [RWE-Energie AG, Essen (Germany); Seibold, A. [Technischer Ueberwachungs-Verein Suedwestdeutschland e.V., Filderstadt (Germany); Glock, H. [Technischer Ueberwachungs-Verein Suedwestdeutschland e.V., Filderstadt (Germany); Hienstorfer, W.G. [Technischer Ueberwachungs-Verein Suedwestdeutschland e.V., Filderstadt (Germany); Blind, D. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Kockelmann, H. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Roos, E. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1996-12-31

    There may be safety and economic reasons which make it absolutely necessary that the integrity of small-scale piping systems be guaranteed. This might be problematic considering experience to date. Analysing the damages detected it has been possible to assign these to systems and operational modes. They are primarily due to the insufficient design, which in turn is connected to the low safety relevance assumed for these systems. Determination of the degradation mechanisms and the causes give sufficient information for preventing further damage of this kind. Non-allowable dynamic loads as well as quick crack growth caused by corrosion are to be avoided by taking the proper action. Even if the measures taken may be different from plant to plant or component to component, it is possible to state a generally applicable systematic approach to guarantee integrity. (orig.) [Deutsch] Sicherheitstechnische und wirtschaftliche Gruende koennen auch bei einigen Kleinleitungen die Gewaehrleistung der Integritaet unumgaenglich machen. Aufgrund der bisherigen Erfahrungen erscheint dies zunaechst als problematisch. Die Analyse der aufgetretenen Schaeden zeigt, dass diese Systemen und Fahrweisen zugeordnet werden koennen. Sie sind hauptsaechlich auf die unzureichende Auslegung zurueckzufuehren, die wiederum mit der niedrigeren Einstufung solcher Systeme zusammenhaengen. Die Ermittlung der Schadensmechanismen und die Bestimmung der Ursachen geben ausreichende Hinweise fuer die Vermeidung weiterer Schaeden. Nicht zulaessige dynamische Belastungen sowie schnelles Risswachstum infolge Korrosion sind durch entsprechende Massnahmen zu vermeiden. Auch wenn die Massnahmen anlagen- sowie komponentenspezifisch unterschiedlich sein koennen, kann eine allgemein gueltige systematische Vorgehensweise zur Gewaehrleistung der Integritaet angegeben werden. (orig.)

  20. Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow.

    Science.gov (United States)

    Willis, Ashley P; Hwang, Yongyun; Cossu, Carlo

    2010-09-01

    The optimal amplifications of small coherent perturbations within turbulent pipe flow are computed for Reynolds numbers up to one million. Three standard frameworks are considered: the optimal growth of an initial condition, the response to harmonic forcing and the Karhunen-Loève (proper orthogonal decomposition) analysis of the response to stochastic forcing. Similar to analyses of the turbulent plane channel flow and boundary layer, it is found that streaks elongated in the streamwise direction can be greatly amplified from quasistreamwise vortices, despite linear stability of the mean flow profile. The most responsive perturbations are streamwise uniform and, for sufficiently large Reynolds number, the most responsive azimuthal mode is of wave number m=1 . The response of this mode increases with the Reynolds number. A secondary peak, where m corresponds to azimuthal wavelengths λ_{θ}^{+}≈70-90 in wall units, also exists in the amplification of initial conditions and in premultiplied response curves for the forced problems. Direct numerical simulations at Re=5300 confirm that the forcing of m=1,2 and m=4 optimal structures results in the large response of coherent large-scale streaks. For moderate amplitudes of the forcing, low-speed streaks become narrower and more energetic, whereas high-speed streaks become more spread. It is further shown that drag reduction can be achieved by forcing steady large-scale structures, as anticipated from earlier investigations. Here the energy balance is calculated. At Re=5300 it is shown that, due to the small power required by the forcing of optimal structures, a net power saving of the order of 10% can be achieved following this approach, which could be relevant for practical applications.

  1. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System

    Science.gov (United States)

    Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development. PMID:28060947

  2. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Ginige, Maneesha P; Garbin, Scott; Wylie, Jason; Krishna, K C Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.

  3. INVESTIGATION OF THE MEAN-FLOW SCALING AND TRIPPING EFFECT ON FULLY DEVELOPED TURBULENT PIPE FLOW

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Fully developed turbulence measurements in pipe flow were made in the Reynolds number range from 10×103 to 350×103 with hot-wire anemometer and a Pitot tube. Comparisons were made with the experimental results of previous researchers. The mean velocity profile and the turbulent intensity in the experiments indicate that for the mean velocity profile, in the fully developed turbulent pipe flow, von Kármán's constant κ is a function of the Reynolds number, I.e. Κ increases slowly with the Reynolds number. For turbulent pipe flow, the outer limit depends on whether the Kármán number R+ is greater or less than 850 in the centerline volocity profile: a log law exists for 850<R+<1750 in the experiment, and von Kármán's constant κ is shown to be 0.408. Under the effects of the test trip at the inlet, fully developed turbulence was obtained in pipe flow at lower Reynolds number when the entrance length (xD) was larger than 40. In the experiment it was also found that turbulence quantities in pipe flow remain independent of the upstream conditions when the trip blockage ratio is higher than 20%, and the comparison with channel water flow was also performed.

  4. Laser propagation through full-scale, high-gain MagLIF gas pipes using the NIF

    Science.gov (United States)

    Pollock, Bradley; Sefkow, Adam; Goyon, Clement; Strozzi, David; Khan, Shahab; Rosen, Mordy; Campbell, Mike; Logan, Grant; Peterson, Kyle; Moody, John

    2016-10-01

    The first relevant measurements of laser propagation through surrogate high-gain MagLIF gas pipe targets at full scale have been performed at the NIF, using 30 kJ of laser drive from one quad in a 10 ns pulse at an intensity of 2e14 W/cm2. The unmagnetized pipe is filled with 1 atm of 99%/1% neopentane/Ar, and uses an entrance window of 0.75 um polyimide and an exit window of 0.3 um of Ta backed with 5 um of polyimide. Side-on x-ray emission from the plasma is imaged through the 100 um-thick epoxy wall onto a framing camera at four times during the drive, and is in excellent agreement with pre-shot HYDRA radiation-hydrodynamics modeling. X-ray emission from the Ta exit plane is imaged onto a streak camera to determine the timing and intensity of the laser burning through the pipe, and the Ar emission from the center of the pipe is spectrally- and temporally-resolved to determine the plasma electron temperature. Backscatter is measured throughout the laser drive, and is found to be of significance only when the laser reaches the Ta exit plane and produces SBS. These first results in unmagnetized surrogate gas fills are encouraging since they demonstrate sufficient laser energy absorption and low LPI losses within high-density long-scale-length plasmas for proposed high-gain MagLIF target designs. We will discuss plans to magnetize targets filled with high-density DT gas in future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  5. Damage Detection in Lab-Scaled Underwater PVC Pipes Using Cylindrical Lamb Waves

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Woo; Na, Won Bae [Pukyong National University, Busan (Korea, Republic of)

    2011-06-15

    This study presents a nondestructive test for underwater PVC pipes. To use guided ultrasonic waves, specially denoted by cylindrical Lamb waves, a test setup was made in a water tank using the pitch and catch mode and specimens were made to give artificial cutouts located in the circumferential direction of the pipes. Total three states of damaged levels were considered to see how the guided waves interact with the defects. For the experimental adjustments, three different pipe diameters (60, 90, 114 mm) were tested, and two factors-incident angle (10 and 40 .deg.) and distance (50 and 200 mm) - were tried. From the results, regardless of the diameters and two experimental factors, it is shown that the degrees of defects were recognized through amplitude and arrived time of the very first part of the received cylindrical Lamb waves. Between amplitude and arrived time, it is found that the amplitude gives more sensitive results

  6. Experimental analysis on a 1:2 scale model of the double light pipe, an innovative technological device for daylight transmission

    Energy Technology Data Exchange (ETDEWEB)

    Baroncini, C.; Boccia, O.; Chella, F.; Zazzini, P. [D.S.S.A.R.R. Faculty of Architecture, University ' ' G. D' Annunzio' ' Viale Pindaro 42, 65127 Pescara (Italy)

    2010-02-15

    In this paper the authors present the double light pipe, an innovative technological device, designed as an evolution of a traditional light pipe, which distributes daylight to underground areas of a building, illuminating, at the same time, the passage areas thanks to a larger collector and a second transparent pipe attached to the first one. Unlike the traditional light pipe, thanks to this double illuminating function it can be located in the middle of a room, despite its encumbrance. In this paper the technological design of the double light pipe is presented and the results of an experimental analysis on a reduced scale (1:2) model are shown. Internal illuminance data over horizontal and vertical work-planes were measured in various sky conditions with or without direct solar radiation. Being this innovative device obtained by a light pipe integrated with a second pipe, it performs like a traditional light pipe for the final room and, at the same time, illuminates the intermediate room giving it uniform and high quality light, particularly indicated for wide plant areas, such as show-rooms or museums. (author)

  7. Nano-scale gap filling and mechanism of deposit-etch-deposit process for phase-change material

    Institute of Scientific and Technical Information of China (English)

    Ren Wan-Chun; Liu Bo; Song Zhi-Tang; Xiang Yang-Hui; Wang Zong-Tao; Zhang Bei-Chao; Feng Song-Lin

    2012-01-01

    Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture.Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality,purity,and accurate composition control.However,the conventional physical vapor deposition process cannot meet the gapfilling requirement with the critical device dimension scaling down to 90 nm or below.In this study,we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process,especially at the nano-scale critical dimension.The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed.We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling.We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process.We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.

  8. Large-Scale Graphene Film Deposition for Monolithic Device Fabrication

    Science.gov (United States)

    Al-shurman, Khaled

    Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors. The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need for a new platform material to replace Si. Graphene is considered a promising material with enormous potential applications in many electronic and optoelectronics devices due to its superior properties. There are several techniques to produce graphene films. Among these techniques, chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-scale graphene films. Though CVD method is suitable for large area growth of graphene, the need for transferring a graphene film to silicon-based substrates is required. Furthermore, the graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS circuitry and CVD chamber as well. So, lowering the deposition temperature is another technological milestone for the successful adoption of graphene in integrated circuits fabrication. In this research, direct large-scale graphene film fabrication on silicon based platform (i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine graphene formation on the bottom side of the Ni film

  9. Interrelationships between Blended Phosphate Treatment and Scale Formation for a Utility with Lead Pipes

    Science.gov (United States)

    Lead (Pb) in tap water (released from Pb-based plumbing materials) poses a serious public health concern. Water utilities experiencing Pb problems often use orthophosphate treatment, with the theory of forming insoluble Pb(II)-orthophosphate compounds on the pipe wall to inhibit ...

  10. Full-scale physical testing of a buried reinforced concrete pipe under axle load

    National Research Council Canada - National Science Library

    Lay, G.R; Brachman, R.W.I

    2014-01-01

    The structural response of a 600 mm inner diameter reinforced concrete pipe buried in a dense, well-graded sand and gravel soil and subjected to surface load from a single design truck axle with 0.3, 0.6...

  11. Predictive model for deposit velocity of commercial slurries in horizontal pipe%水平管道中工业浆体堆积速度的确定

    Institute of Scientific and Technical Information of China (English)

    吴万荣; 梁向京

    2012-01-01

    According to the changing rules of heterogeneous slurry flow state with the increase of the mean velocity, considering the flow of multisized particulate slurries with wide range of particle diameters, and based on the condition of solid particle start action and the concept of deposit velocity, the measurement model of deposit velocity of commercial slurries in horizontal pipes is studied. The prediction of the deposit velocity of commercial slurries in horizontal pipes is satisfying.%文章根据非均质浆体流态随着浆体平均流速增加的变化规律,考虑到浆体中固体颗粒组成,结合管道底部固体颗粒的起动条件和堆积速度的概念,研究了水平管道中工业浆体堆积速度的计算模型.该模型能较准确地预测水平管道中浆体的堆积流速.

  12. Deposition of Nano-Scaled Coatings Using Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    D H Jung; B Park; J J Lee

    2004-01-01

    Nano-scaled Ti-B-N coatings could be produced by inductively coupled plasma (ICP) assisted magnetron spurtering. The properties and microstructure of the coating can be changed drastically by applying ICP to conventional magnetron sputtering. In this work, an internal type rf ICP process is used. The core of this technology is the efficient production and control of self-depositing ions and reactive gas ions by an induced electric field. Ti-B-N coatings were prepared by using a TiB2 target and a gas mixture of N2 and Ar at 200 ℃ and a pressure of 60 mTorr. In addition to ICP, the effect of the substrate bias voltage on the structure and properties of the coating was investigated. By applying ICP and a bias voltage to the substrate the hardness of the Ti-B-N coating is increased by more than 75 GPa, as a result of enhanced ionization in the plasma. The Ti-B-N coating, which has the highest hardness, shows the best surface uniformity and a very dense structure with a grain size of 3 nm. This sample also shows a high crystallinity compared to the coating prepared using other deposition parameters.

  13. Energetic and Economic Assessment of Pipe Network Effects on Unused Energy Source System Performance in Large-Scale Horticulture Facilities

    Directory of Open Access Journals (Sweden)

    Jae Ho Lee

    2015-04-01

    Full Text Available As the use of fossil fuel has increased, not only in construction, but also in agriculture due to the drastic industrial development in recent times, the problems of heating costs and global warming are getting worse. Therefore, the introduction of more reliable and environmentally-friendly alternative energy sources has become urgent and the same trend is found in large-scale horticulture facilities. In this study, among many alternative energy sources, we investigated the reserves and the potential of various different unused energy sources which have infinite potential, but are nowadays wasted due to limitations in their utilization. This study investigated the effects of the distance between the greenhouse and the actual heat source by taking into account the heat transfer taking place inside the pipe network. This study considered CO2 emissions and economic aspects to determine the optimal heat source. Payback period analysis against initial investment cost shows that a heat pump based on a power plant’s waste heat has the shortest payback period of 7.69 years at a distance of 0 km. On the other hand, the payback period of a heat pump based on geothermal heat showed the shortest payback period of 10.17 year at the distance of 5 km, indicating that heat pumps utilizing geothermal heat were the most effective model if the heat transfer inside the pipe network between the greenhouse and the actual heat source is taken into account.

  14. Solution deposition of nanometer scale silver films as an alternative to vapor deposition for plasmonic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek S.; Sathish, R. Sai; Kostov, Yordan [Center for Advanced Sensor Technology and Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Rao, Govind, E-mail: grao@umbc.ed [Center for Advanced Sensor Technology and Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2010-05-03

    We report the attainment of surface plasmon-coupled emission (SPCE) from highly uniform thin silver films, solution-deposited on glass substrates by a wet chemistry approach. The surface morphology of these films was characterized by atomic force microscopy. The SPCE emission enhancements, polarization and angularity obtained from solution-deposited silver on BK7 glass were comparable to that achieved from conventional SPCE slides prepared via vapor deposition. This facile, wet chemistry procedure for the deposition of SPCE films provides an inexpensive, low maintenance alternative to vapor deposition for SPCE substrate preparation. This would allow the fluorescence observation technique to become more readily available for high sensitivity, low cost applications.

  15. Full scale evaluation of combined sewer overflows disinfection using performic acid in a sea-outfall pipe

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Flagstad, Rasmus; Sonne Munch, Ebbe

    2015-01-01

    Pollution of surface waters with pathogens from combined sewer overflows limits recreational use of surface waters. Large retention basins are a satisfactory solution but they are rarely sufficient for economic or space reasons. Fast disinfection during the overflow is an alternative, but few...... methods are known and each has problems. This work evaluated for the first time the full-scale disinfection using performic acid by the removal of the two currently regulated indicator bacteria for bathing water quality, E. coli and Enterococcus. Experiments were performed at a sewage bypass through a sea......-outfall pipe with a minimum hydraulic retention time of 24 min. The disinfection efficiency in the field was measured by analyzing samples taken before and after the treatment. Samples were also treated with performic acid in the laboratory to measure the disinfection effectiveness and kinetic of degradation...

  16. Dynamic Scaling of Lipofuscin Deposition in Aging Cells

    Science.gov (United States)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    2011-07-01

    Lipofuscin is a membrane-bound cellular waste that can be neither degraded nor ejected from the cell but can only be diluted through cell division and subsequent growth. The fate of postmitotic (non-dividing) cells such as neurons, cardiac myocytes, skeletal muscle fibers, and retinal pigment epithelial cells (RPE) is to accumulate lipofuscin, which as an "aging pigment" has been considered a reliable biomarker for the age of cells. Environmental stress can accelerate the accumulation of lipofuscin. For example, accumulation in brain cells appears to be an important issue connected with heavy consumption of alcohol. Lipofuscin is made of free-radical-damaged protein and fat, whose abnormal accumulation is related to a range of disorders including Type IV mucolipidosis (ML4), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease, Parkinson disease, and age-related macular degeneration (AMD) which is the leading cause of blindness beyond the age of 50 years. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin. As an example of lipofuscin deposit in a given kind of postmitotic cell, we study the kinetics of lipofuscin growth in a RPE cell. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the cell the larger ones become fixed and grow by aggregation.

  17. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    Science.gov (United States)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  18. Analysis of Aluminum Deposition on Inner Wall of Pipes with Atomic Layer Deposition%采用原子层沉积技术在管道内壁镀铝膜的分析研究

    Institute of Scientific and Technical Information of China (English)

    刘恒; 熊玉卿; 王济洲

    2012-01-01

    The feasibility of aluminum deposition on inner wall of waveguide by atomic layer deposition was studied. First, by solving adsorption kinetics equation based on gas on the pipe inner wall, the time for the reactant to reach saturated adsorption on the basis was calculated. Then, according to the aluminum crystal structure) the thickness of each deposition cycle was obtained. Finally, the minimum aluminum thickness and number of atomic layer deposition cycles that can meet electromagnetic requirement of wave guide was calculated.%研究分析了采用原子层沉积技术在大长径比管道内壁镀制铝膜的可行性.首先,建立了管道内壁气体吸附动力学方程,通过分离变量法解吸附动力学方程,计算出反应前驱体在管道内壁达到饱和化学吸附的时间;其次,根据铝晶胞的面心立方结构,计算出每层原子层沉积周期所镀制的铝膜厚度;最后,理论计算能实现正常波导的管道内壁所需要的铝膜最小厚度,得出原子层沉积所要循环的周期数.

  19. Epitaxial growth with pulsed deposition: Submonolayer scaling and Villain instability

    DEFF Research Database (Denmark)

    Hinnemann, Berit; Hinrichsen, H.; Wolf, D.E.

    2003-01-01

    It has been observed experimentally that under certain conditions, pulsed laser deposition (PLD) produces smoother surfaces than ordinary molecular beam epitaxy (MBE). So far, the mechanism leading to the improved quality of surfaces in PLD is not yet fully understood. In the present work, we...

  20. Activity concentrations of {sup 238}U and {sup 226}Ra in scales formed on pipes of industrial boilers in the state of Pernambuco, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Poggi, Claudia M.B.; Farias, Emerson E.G. de, E-mail: claudiapoggi04@gmail.com, E-mail: emersonemiliano@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Franca, Elvis J.; Hazin, Clovis A., E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Gazineu, Maria H.P., E-mail: helena@unicap.br [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Centro de Ciencias e Tecnologia

    2015-07-01

    The procedures employed in the industry can generate significant amounts of solid, liquid and gaseous wastes that usually contain toxic or materials of difficulty degradation. One of the facts that contribute to the formation of such wastes is the generation of steam used in operating processes and industry segments. Currently, steam supplied by boilers is the most economical and practical mode of heat transfer in industrial processes. Due to the high temperature of water used in these processes, compounds which were previously soluble become insoluble, generating residues called scales. This material, which contains stable ions, can also present naturally occurring radionuclides such as {sup 238}U and {sup 226}Ra, which concentrate over time in piping and equipment surfaces. If not disposed correctly, this material also can contaminate the environment. The main origin of these radionuclides is the use of groundwater in industrial processes. Thus, in regions of naturally enriched in radionuclides such as the Region of Pernambuco, including the municipalities of Paulista and Goiana, there is a greater possibility of radioactive scale formation. Therefore, this study aimed to determine the activity concentrations of {sup 238}U and {sup 226}Ra present in the solid wastes generated by industries situated in Paulista and Goiana, in order to assess radionuclide disequilibrium. For the sake of comparison, scale samples collected from industries located in the municipality of Caruaru, far from the previous municipalities, were also analyzed. The determination of the activity concentrations for {sup 238}U and {sup 226}Ra was performed by High Resolution Gamma-Ray Spectrometry. Samples were collected, prepared, packed in plastic containers and set aside for a minimum time of 21 days, for the secular equilibrium to occur between {sup 226}Ra and its short lived descendants. The counting time was 80,000 seconds. Gamma energies used for determination of activity concentrations

  1. SCHEME SELECTION OF SCALE REMOVAL FOR MINE DRAINAGE PIPE%煤矿井下排水管道除垢技术方案选择

    Institute of Scientific and Technical Information of China (English)

    胡春玲; 方晓玲; 王艳; 马芝文; 张晶; 王婷婷

    2011-01-01

    Scaling in mine underground drainage pipes happens frequently. In order to ensure the safe production of coal mine, the scale removal and improving efficiency of the pipes are not only the effective measures to increase the potential power of mine, but also the need for safety in mine production. By comparing with scale removal methods, the combination of chemical cleaning of static immersion and dynamic cycle cleaning is selected. Since the pipes are cleaned, the considerable funds can be saved and the production cost of coal can be reduced, which can bring very significant economic benefits to coal mine.%煤矿井下排水管道容易结垢.为确保煤矿安全生产,清除井下排水管道结垢,提高排水管道效率,是挖掘煤矿节能潜力的有效措施.通过管道除垢常用方法的比较,选择静态浸泡和动态循环清洗相结合的化学清洗方式进行除垢,清洗后每年可节约相当可观的资金,降低了煤炭的生产成本,给企业带来十分显著的经济效益.

  2. Petrography, sulfide mineral chemistry, and sulfur isotope evidence for a hydrothermal imprint on Musina copper deposits, Limpopo Province, South Africa: Evidence for a breccia pipe origin?

    Science.gov (United States)

    Chaumba, Jeff B.; Mundalamo, Humbulani R.; Ogola, Jason S.; Cox, J. A.; Fleisher, C. J.

    2016-08-01

    values of 0.4 and 0.7‰. The same sample also yielded a δ34Sbornite value of 0.4‰. Another Campbell Mine quartz vein sample yielded a chalcopyrite δ34S value of -0.3‰. Sulfur isotope thermometry for one Campbell Mine quartz vein sample with coexisting sulfides yielded a Δ34Schalcopyrite-bornite value of 359 °C that is consistent with the stability of this mineral pair. Thus, δ34S values from Campbell Mine are consistent with an igneous source for the sulfur. Based on a simple two-end member isotope mixing model, contamination of the sulfur by sulfur derived from granitic country rocks likely occurred at Artonvilla Mine. Based on findings from this study and by other previous investigators, it is concluded that features displayed by the Musina copper deposits are consistent with a breccia pipe origin for the Musina copper deposits.

  3. Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy)

    Science.gov (United States)

    Morteani, Giulio; Ruggieri, Giovanni; Möller, Peter; Preinfalk, Christine

    2011-02-01

    The CO2-rich geothermal fluids produced in the Piancastagnaio geothermal field (Mt. Amiata geothermal area, Southern Tuscany, Italy) show temperatures up to 360°C and pressures of about 200 bar at depths of around 3,500 m (Giolito, Ph.D. thesis, Università degli Studi di Firenze, Italy, pp 1-147, 2005). CaCO3- and/or SiO2-dominated scales are deposited in the pipes leading to the pressure and atmospheric separators of the geothermal wells. High content of metastibnite and/or stibnite in both calcite and silica scales and Sb contents of up to 50 mg/L in the fluids indicate their mineralising potential. The red or black colours of the scales depend on the predominance of red metastibnite or black stibnite, respectively. In our condensation experiments, as well as during deposition of the scales, metastibnite is the first Sb2S3 mineral to form. In a second stage, metastibnite is transformed to stibnite. During depressurization the Hg content of geothermal fluids partitions preferentially into the gas phase, whereas Sb and As remain in the liquid phase. This separation explains the often observed areal separation of Hg and Sb mineralization. The multistage deposition of Sb in the mining district of Tuscany is due to a periodic restoration of the permeability of the ore-bearing faults by microseismic events and subsequent host rock brecciation. The still ongoing microseismic events are induced by the accumulation of high-pressure CO2-rich fluids along faults followed by mechanical failure of the faults.

  4. Simulation of the effect of scale deposition on a geothermal turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, J.A. [Universidad Autonomadel Estado de Morelos (Mexico). Centro de Investigacion en Ingenieria y Ciencias Aplicadas; Urquiza-beltran, G. [Instituto de Investigaciones Electricas, Gerencia de Turbomaquinaria, Morelos (Mexico)

    2002-10-01

    Dissolved chemicals contained in geothermal steam can lead to corrosion, erosion and deposition of scale on turbine blades, reducing their useful life. In addition, deposits on the blading system reduce the flow area of the turbine. The first-stage nozzle group is typically most affected by deposition of scale although scale may be present in other parts of the system. The most common deposits are of silica and calcium carbonate. This decreases the output capacity and efficiency of the turbine. This paper presents the results of simulation on the effect of scale deposition in the first-stage nozzle group on the steam pressure before and after the first stage, output capacity and efficiency of the turbine. By measuring the steam pressure before and after the first stage the change in the flow area can be estimated. A method of monitoring the percentage of nozzle plugging in real time is proposed. The method can be applied to any turbine that is susceptible to scale deposition. (author)

  5. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  6. Province-scale commonalities of some world-class gold deposits: Implications for mineral exploration

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2015-05-01

    Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adopted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.

  7. Province-scale commonalities of some world-class gold deposits:Implications for mineral exploration

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; M. Santosh

    2015-01-01

    Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles. However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop-ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.

  8. Development of countermeasure against scale deposition at steam generators of PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Domae, M.; Miyajima, K.; Hirano, H. [Surface Science Dept., Central Research Inst. of Electric Power Industry (Japan); Kushida, H. [Nuclear Power Engineering Dept., Tokyo Electric Power Environmental Engineering Co., Inc. (Japan)

    2002-07-01

    Scale deposition has occurred at steam generators of several PWRs. The scale deposition may lead to reduction of flow rate of coolant, deterioration of heat exchanging efficiency and so on. These phenomena affect plant operation performance. Thus, elucidation of the mechanism of the scale deposition and some effective countermeasure are required. In CRIEPI (Central Research Institute of Electric Power Industry), the scale deposition is studied from two aspects: fluid dynamics and water chemistry. Concerning the water chemistry, we think that electro-kinetic behavior of scale, that is, metal oxides is of great importance. The final goal of the water chemical approach is to evaluate electro-kinetic potential (zeta potential) of metal oxides such as magnetite (Fe{sub 3}O{sub 4}) and hematite (Fe{sub 2}O{sub 3}), and to develop some countermeasure of the scale deposition based on the electro-kinetic data. As a first step, the zeta potential of 25 {mu}m Fe{sub 3}O{sub 4} particles was measured by the streaming potential method at room temperature, and effect of dispersant addition was studied. The dispersants examined were poly-acrylic acid (PAA, M{sub w} {proportional_to} 25,000) and polyvinylpyrrolidone (PVP, M{sub w} {proportional_to} 40,000). It has been found that the addition of PAA of more than 10 ppm lowers the zeta potentials by 5 - 15 mV in whole pH range, and that the addition of PVP of more than 10 ppm reduces absolute value of the zeta potentials. (authors)

  9. The Dynamic Scaling Study of Vapor Deposition Polymerization: A Monte Carlo Approach

    CERN Document Server

    Tangirala, Sairam; Zhao, Y -P; 10.1103/PhysRevE.81.011605

    2010-01-01

    The morphological scaling properties of linear polymer films grown by vapor deposition polymerization (VDP) are studied by 1+1D Monte Carlo simulations. The model implements the basic processes of random angle ballistic deposition ($F$), free-monomer diffusion ($D$) and monomer adsorption along with the dynamical processes of polymer chain initiation, extension, and merger. The ratio $G=D/F$ is found to have a strong influence on the polymer film morphology. Spatial and temporal behavior of kinetic roughening has been extensively studied using finite-length scaling and height-height correlations $H(r,t)$. The scaling analysis has been performed within the no-overhang approximation and the scaling behaviors at local and global length scales were found to be very different. The global and local scaling exponents for morphological evolution have been evaluated for varying free-monomer diffusion by growing the films at $G$ = $10$, $10^2$, $10^3$, and $10^4$ and fixing the deposition flux $F$. With an increase in ...

  10. Controlling Barium Sulphate Scale Deposition Problems in an unbleached Kraft Paper Mill

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2015-06-01

    Full Text Available /phosphonates and polyacrylates were effective in reducing and controlling the scale deposit problems. Institution of these measures led to a cleaner paper machine that required far fewer boil outs than before. In addition, productivity improved and the fisheye defects...

  11. Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates

    Science.gov (United States)

    Sun, Jian; Schmidt, Marek E.; Muruganathan, Manoharan; Chong, Harold M. H.; Mizuta, Hiroshi

    2016-03-01

    The direct growth of graphene on insulating substrate is highly desirable for the commercial scale integration of graphene due to the potential lower cost and better process control. We report a simple, direct deposition of nanocrystalline graphene (NCG) on insulating substrates via catalyst-free plasma-enhanced chemical vapor deposition at relatively low temperature of ~800 °C. The parametric study of the process conditions that we conducted reveals the deposition mechanism and allows us to grow high quality films. Based on such film, we demonstrate the fabrication of a large-scale array of nanoelectromechanical (NEM) switches using regular thin film process techniques, with no transfer required. Thanks to ultra-low thickness, good uniformity, and high Young's modulus of ~0.86 TPa, NCG is considered as a promising material for high performance NEM devices. The high performance is highlighted for the NCG switches, e.g. low pull-in voltage scale integration of graphene due to the potential lower cost and better process control. We report a simple, direct deposition of nanocrystalline graphene (NCG) on insulating substrates via catalyst-free plasma-enhanced chemical vapor deposition at relatively low temperature of ~800 °C. The parametric study of the process conditions that we conducted reveals the deposition mechanism and allows us to grow high quality films. Based on such film, we demonstrate the fabrication of a large-scale array of nanoelectromechanical (NEM) switches using regular thin film process techniques, with no transfer required. Thanks to ultra-low thickness, good uniformity, and high Young's modulus of ~0.86 TPa, NCG is considered as a promising material for high performance NEM devices. The high performance is highlighted for the NCG switches, e.g. low pull-in voltage <3 V, reversible operations, minimal leakage current of ~1 pA, and high on/off ratio of ~105. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00253f

  12. Piping Flexibility

    Science.gov (United States)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  13. Piping Analysis

    Science.gov (United States)

    1980-01-01

    Burns & McDonnell provide architectural and engineering services in planning, design and construction of a wide range of projects all over the world. In design analysis, company regularly uses COSMIC computer programs. In computer testing piping design of a power plant, company uses Pipe Flexibility Analysis Program (MEL-21) to analyze stresses due to weight, temperature, and pressure found in proposed piping systems. Individual flow rates are put into the computer, then computer calculates the pressure drop existing across each component; if needed, design corrections or adjustments can be made and rechecked.

  14. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  15. Efficient methods of piping cleaning

    OpenAIRE

    Orlov Vladimir Aleksandrovich; Nechitaeva Valentina Anatol'evna; Bogomolova Irina Olegovna; Shaykhetdinova Yuliya Aleksandrovna; Daminova Yuliya Farikhovna

    2014-01-01

    The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of d...

  16. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    Science.gov (United States)

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  17. Heat Pipe Integrated Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    to the satellite such as solar panels, radiators, antenna and.telescopes (for communications or sensors). Finally, the packages make thermal contact to the surface of the silicon heat pipe through soft thermal pads. Electronic components can be placed on both sides of the flexible circuit interconnect. Silicon heat pipes have a number of advantages over heat pipe constructed from other materials. Silicon heat pipes offer the ability to put the heat pipe structure beneath the active components of a processed silicon wafer. This would be one way of efficiently cooling the heat generated by wafer scale integrated systems. Using this technique, all the functions of a satellite could be reduced to a few silicon wafers. The integration of the heat pipe and the electronics would further reduce the size and weight of the satellite.

  18. One-step large-scale deposition of salt-free DNA origami nanostructures

    Science.gov (United States)

    Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo

    2015-10-01

    DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation.

  19. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  20. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    Science.gov (United States)

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  1. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    Science.gov (United States)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  2. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Science.gov (United States)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  3. Small scale analogs of the Cayley Formation and Descarts Mountains in impact associated deposits, part C

    Science.gov (United States)

    Head, J. W.

    1972-01-01

    The exploration of the Cayley Formation and material of the Descartes Mountains and an understanding of the origin and evolution of these units were primary objectives of the Apollo 16 lunar mission. This section examines several areas associated with impact crater deposits that show small-scale features similar in morphology to the regional characteristics of the Cayley and Descartes units shown in the Apollo 16 photography.

  4. Competition between surface relaxation and ballistic deposition models in scale free networks

    CERN Document Server

    La Rocca, Cristian E; Braunstein, Lidia A

    2012-01-01

    In this paper we study the scaling behavior of the fluctuations in the steady state $W_S$ with the system size $N$ for a surface growth process given by the competition between the surface relaxation (SRM) and the Ballistic Deposition (BD) models on degree uncorrelated Scale Free networks (SF), characterized by a degree distribution $P(k)\\sim k^{-\\lambda}$, where $k$ is the degree of a node. It is known that the fluctuations of the SRM model above the critical dimension ($d_c=2$) scales logarithmically with $N$ on euclidean lattices. However, Pastore y Piontti {\\it et. al.} [A. L. Pastore y Piontti {\\it et. al.}, Phys. Rev. E {\\bf 76}, 046117 (2007)] found that the fluctuations of the SRM model in SF networks scale logarithmically with $N$ for $\\lambda <3$ and as a constant for $\\lambda \\geq 3$. In this letter we found that for a pure ballistic deposition model on SF networks $W_S$ scales as a power law with an exponent that depends on $\\lambda$. On the other hand when both processes are in competition, we...

  5. Piping Connector

    Science.gov (United States)

    1994-01-01

    In Stennis Space Center's Component Test Facility, piping lines carry rocket propellants and high pressure cryogenic fuels. When the lines are chilled to a pretest temperature of 400 degrees below zero, ordinary piping connectors can leak. Under contract to Stennis, Reflange, Inc. developed the T-Con connector, which included a secondary seal that tolerates severe temperature change. Because of the limited need for the large and expensive T-Con product, Reflange also developed the less costly E-Con, a smaller more compact design with the same technical advantages as the T-Con.

  6. Sediment depositions upstream of open check dams: new elements from small scale models

    Science.gov (United States)

    Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain

    2015-04-01

    Torrent hazard mitigation remains a big issue in mountainous regions. In steep slope streams and especially in their fan part, torrential floods mainly result from abrupt and massive sediment deposits. To curtail such phenomenon, soil conservation measures as well as torrent control works have been undertaken for decades. Since the 1950s, open check dams complete other structural and non-structural measures in watershed scale mitigation plans1. They are often built to trap sediments near the fan apexes. The development of earthmoving machinery after the WWII facilitated the dredging operations of open check dams. Hundreds of these structures have thus been built for 60 years. Their design evolved with the improving comprehension of torrential hydraulics and sediment transport; however this kind of structure has a general tendency to trap most of the sediments supplied by the headwaters. Secondary effects as channel incision downstream of the traps often followed an open check dam creation. This sediment starvation trend tends to propagate to the main valley rivers and to disrupt past geomorphic equilibriums. Taking it into account and to diminish useless dredging operation, a better selectivity of sediment trapping must be sought in open check dams, i.e. optimal open check dams would trap sediments during dangerous floods and flush them during normal small floods. An accurate description of the hydraulic and deposition processes that occur in sediment traps is needed to optimize existing structures and to design best-adjusted new structures. A literature review2 showed that if design criteria exist for the structure itself, little information is available on the dynamic of the sediment depositions upstream of open check dams, i.e. what are the geomorphic patterns that occur during the deposition?, what are the relevant friction laws and sediment transport formula that better describe massive depositions in sediment traps?, what are the range of Froude and Shields

  7. Continental-scale variation in chloride/bromide ratios of wet deposition.

    Science.gov (United States)

    Short, M A; de Caritat, P; McPhail, D C

    2017-01-01

    Chlorine and bromine play crucial roles in atmospheric element cycles and are important environmental tracers in catchment investigations, so understanding their distribution at the Earth's near-surface is imperative for deciphering their behaviour. This study presents the first continental-scale analysis of Cl(-) and Br(-) concentrations of wet deposition, based on six and half years of weekly samples collected across North America. A recently developed imputation algorithm was applied to estimate the high proportion of censored Br(-) values, as well as the other eight analytes, based on the multivariate relationships of nine analytes. The results are consistent with previous studies that have found that the concentrations of these two ions in wet deposition, and the Cl(-)/Br(-) ratios of wet deposition decrease with distance inland. Close to the coast, Cl(-)/Br(-) ratios of wet deposition are similar to the ratio found in seawater (~288 by mass), rapidly decrease to approximately a third of the seawater ratio at ~200km inland, and then decrease at a much lesser rate to reach mass-ratios of 20 to 10 at ~1500km inland, following a logarithmic regression. The Niagara Falls and the Great Salt Lake are identified as localised sources of atmospheric solutes based on elevated Cl(-)/Br(-) ratios of wet deposition at proximal sites. Our observations provide further confidence in the findings presented in previous studies that have shown that Cl(-)/Br(-) ratios systematically decrease with increasing distance from the coast, despite the potential confounding impact of other processes, such as weather patterns, chemical behaviour and anthropogenic activity. Our results provide improved estimates of Cl(-)/Br(-) ratios of wet deposition source water in the absence of site-specific data.

  8. INFLUENCE OF NANOFILTRATION PRETREATMENT ON SCALE DEPOSITION IN MULTI-STAGE FLASH THERMAL DESALINATION PLANTS

    Directory of Open Access Journals (Sweden)

    Aiman E Al-Rawajfeh

    2011-01-01

    Full Text Available Scale formation represents a major operational problem encountered in thermal desalination plants. In current installed plants, and to allow for a reasonable safety margin, sulfate scale deposition limits the top brine temperature (TBT in multi-stage flash (MSF distillers up to 110-112oC. This has significant effect on the unit capital, operational and water production cost. In this work, the influence of nanofiltration (NF pretreatment on the scale deposition potential and increasing TBT in MSF thermal desalination plants is modeled on the basis of mass transfer with chemical reaction of solutes in the brine. Full and partial NF-pretreatment of the feed water were investigated. TBT can be increased in MSF by increasing the percentage of NF-treated feed. Full NF pretreatment of the make-up allows TBT in the MSF plant to be raised up to 175oC in the case of di hybrid NF-MSF and up to 165oC in the case of tri hybrid NF-RO-MSF. The significant scale reduction is associated with increasing flashing range, unit recovery, unit performance, and will lead to reduction in heat transfer surface area, pumping power and therefore, water production cost.

  9. Saharan dust deposition may affect phytoplankton growth in the Mediterranean sea at ecological time scales.

    Directory of Open Access Journals (Sweden)

    Rachele Gallisai

    Full Text Available The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5% of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer.

  10. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    Science.gov (United States)

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  11. Cleaning technique of ammonium sulfate evaporator pipes scale%硫铵蒸发器列管结垢的清洗工艺

    Institute of Scientific and Technical Information of China (English)

    张福元; 姚立斌

    2012-01-01

    This paper presents the pipes scale of ammonium sulfate falling film evaporator,elements composition of the scale was analyzed by X Ray Fluorescence(XRF) and quantitative analysis by chemistry mothed,adopting the dredge water cleaning,heating alkaline cleaning,room acid cleaning and water cleaning passivation multistep cleaning method by the results of analysis on scale,industrial cleaning results,this process method is simple and effect,it can deal with the hard evaporator scale that conventional physical approach is difficult to dredge,has good application value.%介绍了硫铵降膜蒸发器列管的结垢情况,对结垢进行了X衍射荧光光谱定性分析和化学定量分析,根据分析结果对列管进行疏通水洗—加热碱洗—常温酸洗—水洗钝化等多步清洗工艺。试验证明,该工艺简单、效果良好,能够处理常规物理方法难以处理的质硬蒸发器结垢,具有良好的推广应用价值。

  12. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  13. Ammonia emissions, transport, and deposition downwind of agricultural areas at local to regional scales

    Science.gov (United States)

    Zondlo, Mark; Pan, Da; Golston, Levi; Sun, Kang; Tao, Lei

    2016-04-01

    Ammonia (NH3) emissions from agricultural areas show extreme spatiotemporal variations, yet agricultural emissions dominate the global NH3 budget and ammoniated aerosols are a dominant component of unhealthy fine particulate matter. The emissions of NH3 and their deposition near and downwind of agricultural areas is complex. As part of a multi-year field intensive along the Colorado Front Range (including the NASA DISCOVER-AQ and NSF FRAPPE field experiments), we have examined temporal emissions of NH3 from feedlots, regional transport of ammonia and ammoniated aerosols from the plains to relatively pristine regions in Rocky Mountain National Park, and dry deposition and re-emission of grassland NH3 in the park. Eddy covariance measurements at feedlots and natural grasslands in the mountains were conducted with newly-developed open-path, eddy covariance laser-based sensors for NH3 (0.7 ng NH3/m2/s detection limit at 10 Hz). These measurements were coupled with other NH3/NHx measurements from mobile laboratories, aircraft, and satellite to examine the transport of NH3 from agricultural areas to cleaner regions downwind. At the farm level, eddy covariance NH3 fluxes showed a strong diurnal component correlated with temperature regardless of the season but with higher absolute emissions in summer than winter. While farm-to-farm variability (N=62 feedlots) was high, similar diurnal trends were observed at all sites regardless of individual farm type (dairy, beef, sheep, poultry, pig). Deposition at scales of several km showed relatively small deposition (10% loss) based upon NH3/CH4 tracer correlations, though the NH3 concentrations were so elevated (up to ppmv) that these losses should not be neglected when considering near-farm deposition. Ammonia was efficiently transported at least 150 km during upslope events to the Colorado Front Range (ele. 3000-4000 m) based upon aircraft, mobile laboratory, and model measurements. The gas phase lifetime of NH3 was estimated to

  14. 中国超大型钼矿床%Super scale molybdenum deposits in China

    Institute of Scientific and Technical Information of China (English)

    李文智; 付治国; 郭锐; 付恒一; 马晓辉; 李大卓

    2014-01-01

    中国目前共发现并探明10超大型钼矿床,其成因类型全部属于斑岩型矿床。超大型钼矿床特点是:①全部位于古板块对接带的仰冲带一侧,属于被动的冒地槽单元外侧;②成矿母岩:a.岩石学名称绝大多数是花岗斑岩类;b.岩石化学:三高一低,即高酸、高碱、高钾、低钙镁的正常太平洋型钙碱性系列的超浅成侵入岩;c.岩石地球化学:Mo,W均为特富集元素,Cu,Pb,Zn则为中等富集,从而说明成矿物质主要来源于上地幔与下地壳的混熔体;从成矿母岩的成岩和成矿年代学方面可知,中国超大型钼矿床主要形成于中生代燕山白垩纪中、晚期。%There have been discovered for ten super scale molybdenum deposits,the porphyry type,in China. The mineralization featurs of the super scale molybdenum deposit are as follows.All the deposits are located on the obduction sides of ancient plates connections that belong to the inner side of passive miogeosyncline u-nit.Secondly,their maj ority mother rocks are granite porphyry,with a small amount of granodiorite-por-phyry,with the lower deposit grade for the latter.The intrusive feature is that three highs and one low,they are peracid,high in alkaline and potassium,low in calcium and magnesium,normal Pacific typed calcium al-kaline hypabyssal intrusive rocks.The petro-geochemistry feature is as that Mo and W are both enriched ele-ments,while Cu,Pb,zinc are medium intensive.It is further proved that the ore-forming materials mainly are mixed magma from the upper mantle and lower crust.The diagenesis and mineralization chronology of the mother rock indicate that large molybdenum deposits in China were mainly formed in the middle to late Cretaceous within mid-late Mesozoic Yanshan period.

  15. Water Pipelines, Major, watr_pipe, Published in 2007, 1:1200 (1in=100ft) scale, City of Greenfield.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pipelines, Major dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Hardcopy Maps information as of 2007. It is described as...

  16. Water Distribution Lines, pipe features, Published in 2009, 1:24000 (1in=2000ft) scale, Washington County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Distribution Lines dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as...

  17. Deepwater turbidite system analysis : From outcrops studies to basin scale depositional elements. Key learnings for reservoir occurence and characterisation.

    Science.gov (United States)

    Navarre, J.-C.; Dattilo, P.; Crumeyrolle, P.

    2012-04-01

    Decisions on exploration and production in the deepwater domain rely mostly on seismic data (2D or 3D) with limited amount of well geological data. This limited information has to be supplemented by models derived from analogues at different scales, in order to derisk the reservoir presence and infer the reservoir architecture within a larger stratigraphic framework from shelf to deep basin. The fundamental outcrop analysis carried in the 70's and the 80's contributed to identify and characterize the main deep water depositional elements. Outcrop observations are the best way to appraise the architectural and faciological complexity of the subsurface depositional systems within their stratigraphic framework. The lessons learned in the Earth surface provide the key to the subsurface data understanding: core analysis, well-logs correlations and detailed 3D seismic interpretations. Subsurface data is in turn bringing key insights on large scale depositional system; 3D geometry and sediment nature of the depositional elements and processes. Research derived from 3D seismic subsurface data interpretations with tentative continuity between shelf to basin improved the understanding of shelf to deep basin sediment transfer mechanisms. In particular, it has been accompanied by a renewal of interest in the processes associated with hyperpycnal flows in the various deepwater settings. Outcrop and Subsurface integration appears as a powerful tool to characterize and predict reservoir occurence. A seismic based approach on the recognition of depositional elements defined at different scales honoring the stratigraphical architecture of turbidites deposits is systematically applied in our evaluations at a similar scale than the elementary depositional sequences recognized by Mutti (1994). Despite common depositional processes, a large diversity of systems and geobodies will be illustrated from regional scale to reservoir scale from a worldwide portfolio of assets in turbidite

  18. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  19. 3D Printing of Biocompatible Acellular Auricular Implant Using Dual Scaled Hydrid Technology Combining Fused Deposition Modeling with Electrospinning

    OpenAIRE

    Rezenda, R; Sabado, M; Kasjanovs, V; Baptista, L.; da Silva, K; Noritomi, P; Sena, F.; Wen, X.; Da Silva, J; Mironov, V.

    2013-01-01

    The dual-scaled hydrid scaffold fabrication technology based on combination of 3D printing (fused deposition modeling) and electrospining have been recently introduced. We report here the design, fabrication, mechanical testing, in vitro and in vivo biocompatibility testing of novel auricular implants for treatment microtia fabricated by dual scaled hydbrid scaffold fabrication technology.

  20. Large scale changes in 20th century black carbon deposition to Antarctica

    Directory of Open Access Journals (Sweden)

    M. M. Bisiaux

    2011-10-01

    Full Text Available Refractory black carbon aerosols (rBC emitted by biomass burning (fires and fossil fuel combustion, affect global climate and atmospheric chemistry. In the Southern Hemisphere (SH, rBC is transported in the atmosphere from low latitudes to Antarctica and deposited to the polar ice sheet preserving a history of emissions and atmospheric transport. Here, we present two high-resolution Antarctic rBC ice core records drilled from the West Antarctic Ice Sheet divide and Law Dome on the periphery of the East Antarctic ice sheet. Separated by ~3500 km, the records span calendar years 1850–2001 and reflect the rBC distribution over the Indian and Pacific ocean sectors of the Southern Ocean. Highly correlated over the past 60 yr, the records show that coherent large-scale changes in SH rBC occurred at decadal to inter-annual time scales, notably in ENSO-like periodicities. Decadal trends in the records are similar to inventories of SH rBC emissions from grass fires and biofuels. The combined records suggest a large-scale reduction in rBC from 1950 to 1990 over the remote Southern Hemisphere.

  1. Large-scale quantification of suspended sediment transport and deposition in the Mekong Delta

    Directory of Open Access Journals (Sweden)

    N. V. Manh

    2014-04-01

    Full Text Available Sediment dynamics play a major role for the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the Mekong Delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment-nutrient deposition in the whole Mekong Delta. To this end, a quasi-2-D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated automatically using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for the two validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition vary from Kratie at the entrance of the Delta to the coast. The main factors influencing the spatial sediment dynamics are the setup of rivers, channels and dike-rings, the sluice gate operations, the magnitude of the floods and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, the annual sedimentation rate averaged over the Vietnamese floodplains varies from 0.3 to 2.1 kg m−2 yr−1, and the ring dike floodplains trap between 1 and 6% of the total sediment load at Kratie. This is equivalent to 29 × 103–440 × 103 t of nutrients (N, P, K, TOC deposited in the Vietnamese floodplains. This large-scale quantification provides a basis for estimating the benefits of the annual Mekong floods for agriculture and fishery, and is important information for assessing the effects of deltaic subsidence and climate change related sea level rise.

  2. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2016-07-01

    Full Text Available In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter.

  3. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ch.; Verdi, D.; Garrido, M.A.; Ruiz-Hervias, J.

    2016-07-01

    In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI) in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter. (Author)

  4. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow

    Science.gov (United States)

    Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime

    2016-11-01

    An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.

  5. Pilot‐scale investigation and CFD modeling of particle deposition in low‐dust monolithic SCR DeNOx catalysts

    DEFF Research Database (Denmark)

    Heiredal, Michael Lykke; Jensen, Anker Degn; Thøgersen, Joakim Reimer

    2013-01-01

    Deposition of particles in selective catalytic reduction DeNOx monolithic catalysts was studied by low‐dust pilot‐scale experiments. The experiments showed a total deposition efficiency of about 30%, and the deposition pattern was similar to that observed in full‐scale low‐dust applications....... On extended exposure to the dust‐laden flue gas, complete blocking of channels was observed, showing that also in low‐dust applications soot blowing is necessary to keep the catalyst clean. A particle deposition model was developed in computational fluid dynamics, and simulations were carried out assuming...... either laminar or turbulent flow. Assuming laminar flow, the accumulated mass was underpredicted with a factor of about 17, whereas assuming turbulent flow overpredicted the experimental result with a factor of about 2. The simulations showed that turbulent diffusion in the monolith channels and inertial...

  6. The carreau-yasuda fluids: a skin friction equation for turbulent flow in pipes and kolmogorov dissipative scales

    OpenAIRE

    ANDRADE, Luiz Claudio Fialho; PETRONÍLIO, Jamilson A.; MANESCHY, Carlos Edilson de Almeida; CRUZ, Daniel Onofre de Almeida

    2007-01-01

    In this work the turbulent flow of the Non-Newtonian Carreau-Yasuda fluid will be studied. A skin friction equation for the turbulent flow of Carreau-Yasuda fluids will be derived assuming a logarithmic behavior of the turbulent mean velocity for the near wall flow out of the viscous sub layer. An alternative near wall characteristic length scale which takes into account the effects of the relaxation time will be introduced. The characteristic length will be obtained through the analysis of v...

  7. A device for taking samples of scale from bore pipes used for collecting groundwater; Dispositivo para la toma de muestras de incrustaciones en tuberias de sondeos en la captacion de aguas subterraneas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Rubio, J.; Ruano Magan, P. [Tecnologias y Servicios Agrarios, S. A. (Spain); Gonzalez Yelamos, J. [Universidad Autonoma de Madrid (Spain); Rebollo Ferreiro, L. F. [Universidad de Alcala (Spain)

    2000-07-01

    A study was made of the problem of corrosion/scale in water collection bore pipes, beginning with a review of the existing literature. This led to the conclusion that thorough knowledge of such phenomena requires taking samples from the walls of the pipes and filters to determine the physiocochemical and biological details. A new instrument, based on a previous appliance, has been developed for this purpose. It has a pair of arms and is capable of going down inside the well or bore hole, generally with a video camera attached. It has a cup on the end of each arm that can scrape the wall, catch the sample and protect it with a lid. A prototype has proved to be efficient at obtaining representative samples that can be analysed to determine the corrosion/scale processes. (Author) 9 refs.

  8. Dynamic scaling and optical properties of Zn(S, O,OH) thin film grown by chemical bath deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Li Bo-Yan; Dang Xiang-Yu; Wu Li; Jin Jing; Li Feng-Yan; Ao Jian-Ping; Sun Yun

    2011-01-01

    The scaling behavior and optical properties of Zn(S,O and OH) thin films deposited on soda-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements,scanning electron microscopy and optical properties measurement.From the scaling behaviour,the value of growth scaling exponent β,0.38±0.06,was determined.This value indicated that the Zn(S,O,OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect.Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions.The energy band gap of the film deposited with 40 min was around 3.63 eV.

  9. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  10. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO3

    Science.gov (United States)

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; Lee, Ho Nyung; Christen, H. M.; Zschack, P.; Larson, B. C.

    2016-11-01

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO3 . We show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing in PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD "self-organizes" local step flow on a length scale consistent with the substrate temperature and PLD parameters.

  11. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  12. Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

    Directory of Open Access Journals (Sweden)

    Ryu Dong-Man

    2015-07-01

    Full Text Available This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb failure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

  13. Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu

    2015-07-01

    Full Text Available This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb fail-ure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

  14. Nitrogen deposition reduces plant diversity and alters ecosystem functioning: field-scale evidence from a nationwide survey of UK heathlands.

    Directory of Open Access Journals (Sweden)

    Georgina E Southon

    Full Text Available Findings from nitrogen (N manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha(-1 yr(-1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition--in both oxidised and reduced forms--and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity

  15. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    Science.gov (United States)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  16. Broad-scale distribution of epiphytic hair lichens correlates more with climate and nitrogen deposition than with forest structure

    OpenAIRE

    Esseen, Per-Anders; Ekström, Magnus; Westerlund, Bertil; Palmqvist, Kristin; Jonsson, Bengt Gunnar; Grafström, Anton; Ståhl, Göran

    2016-01-01

    Hair lichens are strongly influenced by forest structure at local scales, but their broad-scale distributions are less understood. We compared the occurrence and length of Alectoria sarmentosa (Ach.) Ach., Bryoria spp., and Usnea spp. in the lower canopy of > 5000 Picea abies (L.) Karst. trees within the National Forest Inventory across all productive forest in Sweden. We used logistic regression to analyse how climate, nitrogen deposition, and forest variables influence lichen occurrence....

  17. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  18. Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition

    Directory of Open Access Journals (Sweden)

    A. Tagliabue

    2007-08-01

    Full Text Available Dust deposition of iron is thought to be an important control on ocean biogeochemistry and air-sea CO2 exchange. In this study, we examine the impact of a large scale, yet climatically realistic, reduction in the aeolian Fe input during a 240 year transient simulation. In contrast to previous studies, we find that the ocean biogeochemical cycles of carbon and nitrogen are relatively insensitive to a 60% reduction in Fe input from dust. Net primary productivity (NPP is reduced in the Fe limited regions, but the excess macronutrients that result are able to fuel additional NPP elsewhere. Overall, NPP and air-sea CO2 exchange are only reduced by around 3% between 1860 and 2100. While the nitrogen cycle is perturbed more significantly (by ~15%, reduced N2 fixation is balanced by a concomitant decline in denitrification. Feedbacks between N2 fixation and denitrification are controlled by variability in surface utilization of inorganic nitrogen and subsurface oxygen consumption, as well as the direct influence of Fe on N2 fixation. Overall, there is relatively little impact of reduced aeolian Fe input (<4% on cumulative CO2 fluxes over 240 years. The lower sensitivity of our model to changes in dust input is primarily due to the more detailed representation of the continental shelf Fe, which was absent in previous models.

  19. Reusable pipe flange covers

    Energy Technology Data Exchange (ETDEWEB)

    Holden, James Elliott (Simpsonville, SC); Perez, Julieta (Houston, TX)

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  20. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  1. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  2. Assessment of suspended dust from pipe rattling operations

    Science.gov (United States)

    Park, Ju-Myon

    Six types of aerosol samplers were evaluated experimentally in a test chamber with polydisperse fly ash. The Andersen sampler overestimates the mass of small particles due to particle bounce between stages and therefore provides a conservative estimate of respirable particulate mass and thoracic particulate mass. The TSP sampler provides an unbiased estimate of total particulate mass. TSP/CCM provides no information below ESD 2 mum and therefore underestimates respirable particulate mass. The PM10 sampler provides a reasonable estimate of the thoracic particulate fraction. The RespiCon sampler provides an unbiased estimate of respirable, thoracic, and inhalable fractions. DustTrak and SidePak monitors provide relative particle concentrations instead of absolute concentrations because it could not be calibrated for absolute particle concentrations with varying particle shape, composition, and density. Six sampler technologies were used to evaluate airborne dust concentrations released from oilfield pipe rattling operations. The task sampled was the removal of scale deposited on the inner wall of the pipe before it was removed from service in a producing well. The measured mass concentrations of the aerosol samplers show that a Gaussian plume model is applicable to the data of pipe rattling operations for finding an attainment area. It is estimated that workers who remain within 1 m of the machine centerline and directly downwind have an 8-hour TWA exposure opportunity of (13.3 +/- 9.7) mg/m3 for the Mud Lake pipe scale and (11.4 +/- 9.7) mg/m3 for the Lake Sand pipe scale at 95% confidence. At distances more than 4 m downwind from the machine centerline, dust concentrations are below the TWA-TLV of 10 mg/m3 for the worker in both scales. At positions crosswind or upwind from the machine centerline there is no measurable exposure. Available data suggest that the attainment area for the public starts at about 9 m downwind from the machine centerline in both scales, as

  3. Achieving Thin Films with Micro/Nano-Scale Controllable Morphology by Glancing Angle Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    JIANG Shao-Ji; WANG Chao-Yi; TANG Ji-Jia; HU Lin-Xin

    2008-01-01

    @@ We demonstrate that thin films with micro/nanometre controllable morphology can be fabricated by the glancing angle deposition (GLAD) technique which is a physical vapour deposition technique.In this technique, there are parameters which determine the morphology of the thin films: the incident angle, ratio of the deposition rate with respect to the substrate rotation rate, nature of the material being deposited, etc.We fabricate the morphology of column, pillar, helices, zigzag and study the parameters which determine morphology by given some examples of SEM.

  4. BEAM PIPE IS INSTALLED

    CERN Multimedia

    The installation of the central section of the beam pipe into the heart of the  CMS was completed by 23 April. All the beam pipe elements have been successfully vacuum-tested and the bakeout started.  

  5. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events.

    Directory of Open Access Journals (Sweden)

    Andrew W Tweel

    Full Text Available Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils.

  6. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events.

    Science.gov (United States)

    Tweel, Andrew W; Turner, R Eugene

    2012-01-01

    Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils.

  7. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics

    Science.gov (United States)

    Singhal, Shrawan; Meissl, Mario J.; Bonnecaze, Roger T.; Sreenivasan, S. V.

    2013-09-01

    Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

  8. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    Science.gov (United States)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-12-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980-2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = -0.35 and p = 0.001 in the North and R = -0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (-0.009 mg N L-1 yr-1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (-7.3% yr-1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of tree-ring δ15N values at these

  9. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  10. Regional-Scale Ozone Deposition to North-East Atlantic Waters

    Directory of Open Access Journals (Sweden)

    L. Coleman

    2010-01-01

    Full Text Available A regional climate model is used to evaluate dry deposition of ozone over the North East Atlantic. Results are presented for a deposition scheme accounting for turbulent and chemical enhancement of oceanic ozone deposition and a second non-chemical, parameterised gaseous dry deposition scheme. The first deposition scheme was constrained to account for sea-surface ozone-iodide reactions and the sensitivity of modelled ozone concentrations to oceanic iodide concentration was investigated. Simulations were also performed using nominal reaction rate derived from in-situ ozone deposition measurements and using a preliminary representation of organic chemistry. Results show insensitivity of ambient ozone concentrations modelled by the chemical-enhanced scheme to oceanic iodide concentrations, and iodide reactions alone cannot account for observed deposition velocities. Consequently, we suggest a missing chemical sink due to reactions of ozone with organic matter at the air-sea interface. Ozone loss rates are estimated to be in the range of 0.5–6 ppb per day. A potentially significant ozone-driven flux of iodine to the atmosphere is estimated to be in the range of 2.5–500 M molec cm−2  s−1, leading to a mixing-layer enhancement of organo-iodine concentrations of 0.1–22.0 ppt, with an average increase in the N.E. Atlantic of around 4 ppt per day.

  11. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    The long time durability of seven different two layer fabric inlet stratification pipes for enhancing thermal stratification in hot water stores is investigated experimentally. Accelerated durability tests are carried out with the inlet stratification pipes both in a domestic hot water tank...... and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  12. Formational Mechanism and Structural Composition of Aluminum-Containing Scales in Water Supply Pipes%供水管道中含铝管垢的形成机理及其结构组成

    Institute of Scientific and Technical Information of China (English)

    张小妮; 王文东; 乔子霞; 周礼川; 王洪平; 丁真真

    2013-01-01

    The source of aluminum in the water supply pipe and the mechanism of pipe scale forming after aluminum accumulation and sedimentation were discussed in this paper.The forming conditions and structural features of typical aluminum-containing scales in the pipeline like amorphous aluminum hydroxide,aluminosilicate,magnesium aluminate,phosphate and so on was introduced.In order to decrease the release of trace metal elements and ensure the stable operation of pipe network and residents' healthy water drinking,water quality adjustment were suggested to avoid aluminum-containing scales formation in drinking distribution system.Future trends of development in this field were also proposed.%该文探讨了供水管道中铝的来源及其在管道内壁蓄积沉淀形成含铝管垢的机理.重点介绍了无定形氢氧化铝、硅铝酸盐、镁铝酸盐和磷酸盐等典型含铝管垢在给水管网中的形成条件和结构特征;为了减少输配水过程中铝的蓄积释放,保障管网稳定运行和居民饮水健康,建议通过水质调节措施来控制管网中含铝管垢的生成量;最后指出了今后的研究方向.

  13. Large clusters of gold deposits and large-scale metallogene-sis in the Jiaodong Peninsula, Eastern China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Jiaodong Peninsula is the largest repository of gold in China based on the production in history. It covers less than 0.2% of China's territory, but production of gold accounts for about one fourth of the whole country. Thus, the Jiaodong Peninsula is a typical area or case of large-scale metallogenesis and a large clusters of mineral deposits in China. It is characterized by the large clusters of gold deposits in large scale, high reserve and short mineralizing stage. In this study, we suggest that the eastern boundary of the large clusters of gold deposits is as same as that of North China Block, the gold deposits are hosted by Archean metamorphic rocks or Mesozoic granites, and the age of gold mineralization is 121.6 to 122.7 Ma. Gold and related ore-forming materials are derived from multisources, i.e. Archean metamorphic rocks, granites and intermediate-mafic dikes, especially, intermediate-mafic dikes and calc-alkaline granites. The metallogenic geodynamic process is constrained by the tectonic evolution of eastern North China Block during Late Mesozoic, and it is the result of the interaction between mantle and crust as the boundary plates are playing role on the block.

  14. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  15. Modern muddy deposit along the Zhejiang coast in the East China Sea: Response to large-scale human projects

    Science.gov (United States)

    Xu, Gang; Liu, Jian; Liu, Shengfa; Wang, Zhongbo; Hu, Gang; Kong, Xianghuai

    2016-11-01

    Grain size and clay minerals in the surface sediment off Zhejiang Province, China, of the East China Sea were analyzed to study changes in grain size, muddy deposit boundary, and major riverine and other derived matters transport paths in the Zhejiang coastal muddy deposit since the impoundment of the Three Gorges Dam and after other large-scale human projects. The results show that the sediment types are mainly silt and mud in the muddy deposit, divided based on the 10% isoline of the sand-sized component. The sources of sediment in the muddy deposit are mainly the Yangtze River and simultaneously supplies from the Qiantang Jiang, Ou Jiang, relict fine-grain matter, and hydrolyzed volcanic rocks around the Zhoushan Islands. The transport and dispersal of sediments in the study area are largely controlled by the Zhejiang-Fujian coastal current and the Taiwan Warm Current and appear seasonally. The contributions from the Ou Jiang, relict matter, local hydrolyzed matter, and the Qiantang Jiang are enlarged owing to the decline of Yangtze suspended matter and the constructions of major human projects in the Hangzhou Bay, respectively. In addition, the sediment grain size exhibits a fining trend because of the influence of the Three Gorges Dam. The boundary of the muddy deposit is relatively stable after the Three Gorges Dam impoundment north of the city of Zhoushan. In contrast, south of the city of Zhoushan the boundary of the muddy deposit lies toward the east because the sediment supply from the relict fine-grained matters resuspended by the Taiwan Warm Current east of the study area. The changes in the grain size and contributions from smaller rivers and other derived matter as well as the boundary of the muddy deposit there will probably become more pronounced in the future.

  16. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: annual, decadal, centennial scales

    Science.gov (United States)

    Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.

    2015-01-01

    The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.

  17. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    Science.gov (United States)

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or

  18. 大口径涂料法水冷金属型离心铸管机的设计%Design of Centrifugal Casting Machine for Pipe of Large Scale S.G.Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    习杰

    2011-01-01

    Design principle and method of centrifugal casting machine for production of pipe of large scale s.g. ductile cast iron with DN1000mm and above by coated water cooled die centrifugal casting have been mainly introduced.%主要介绍了DN1000以上大口径球墨铸铁管采用涂料法水冷金属型工艺生产时,离心铸管机的设计原理及方法.

  19. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine.

    Science.gov (United States)

    Jarvis, S; Woodward, S; Alexander, I J; Taylor, A F S

    2013-06-01

    Ectomycorrhizal fungi commonly associate with the roots of forest trees where they enhance nutrient and water uptake, promote seedling establishment and have an important role in forest nutrient cycling. Predicting the response of ectomycorrhizal fungi to environmental change is an important step to maintaining forest productivity in the future. These predictions are currently limited by an incomplete understanding of the relative significance of environmental drivers in determining the community composition of ectomycorrhizal (ECM) fungi at large spatial scales. To identify patterns of community composition in ECM fungi along regional scale gradients of climate and nitrogen deposition in Scotland, fungal communities were analysed from 15 seminatural Scots pine (Pinus sylvestris L.) forests. Fungal taxa were identified by sequencing of the ITS rDNA region using fungal-specific primers. Nonmetric multidimensional scaling was used to assess the significance of 16 climatic, pollutant and edaphic variables on community composition. Vector fitting showed that there was a strong influence of rainfall and soil moisture on community composition at the species level, and a smaller impact of temperature on the abundance of ectomycorrhizal exploration types. Nitrogen deposition was also found to be important in determining community composition, but only when the forest experiencing the highest deposition (9.8 kg N ha(-1)  yr(-1) ) was included in the analysis. This finding supports previously published critical load estimates for ectomycorrhizal fungi of 5-10 kg N ha(-1)  yr(-1) . This work demonstrates that both climate and nitrogen deposition can drive gradients of fungal community composition at a regional scale.

  20. Impedance modelling of pipes

    Science.gov (United States)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  1. Onset of Flow Induced Tonal Noise in Corrugated Pipe Segments

    NARCIS (Netherlands)

    Rudenko, O.; Nakiboglu, G.; Hirschberg, Abraham

    2014-01-01

    Corrugated pipes combine small-scale rigidity and large-scale flexibility, which make them very useful in industrial applications. The flow through such a pipe can induce strong undesirable tonal noise (whistling) and even drive integrity threatening structural vibrations. Placing a corrugated

  2. Episodic speleothem deposition tracks the terrestrial impact of millennial-scale last glacial climate variability in SW Ireland

    Science.gov (United States)

    Fankhauser, Adelheid; McDermott, Frank; Fleitmann, Dominik

    2016-11-01

    Eighty four new U-Th ages are presented for twenty randomly selected broken, displaced and reworked calcite speleothems retrieved from clastic sedimentary fill and from isolated bedding-plane shelves in Crag cave (SW Ireland). The dated pre-Holocene samples span much of the last glacial, ranging in age from 85.15 ± 0.60 to 23.45 ± 0.17 ka. Speleothem deposition requires the presence of liquid water, and because Crag cave is a shallow system, deposition is considered likely only when mean annual air temperatures (MAAT) exceed the freezing point of water. Deposition at this mid-latitude ocean-marginal site occurred episodically during MIS5a through to MIS2, synchronously within dating uncertainties, with the timing of Greenland Interstadials (GI). In the latter part of Marine Isotope Stage 3 (MIS3), deposition was particularly intense, consistent with regional scale climate amelioration inferred previously from radiocarbon ages for sparse MIS3 organic and freshwater surficial deposits in N. Ireland. A brief episode of speleothem deposition at c.23.40 ± 0.22 ka coincides with GI-2, demonstrating the sensitivity of the site to brief climate amelioration episodes in Greenland during MIS2. Conditions favourable for speleothem deposition occurred periodically during the last glacial, indicating temperature changes of at least 10 °C between stadials and interstadials at this mid-latitude site. Deposition ceased during Greenland Stadials (GS), including during periods of ice-rafting in the adjacent N. Atlantic Ocean (Heinrich events). Oxygen and carbon isotope ratios of the last glacial speleothems are generally elevated, reflecting non-equilibrium isotope fractionation effects. However, establishment of low δ13C values often occurred within a few decades of climate amelioration, indicating that biogenic CO2 production resumed rapidly at this site, particularly during MIS3. Speleothem δ18O variability was driven largely by long-term changes in the δ18O value of the

  3. Relation between forest vegetation, atmospheric deposition and site conditions at regional and European scales

    NARCIS (Netherlands)

    Dobben, van H.F.; Vries, de W.

    2010-01-01

    Several monitoring programs have been set up to assess effects of atmospheric deposition on forest ecosystems. The aim of the present study was to evaluate effects on the understorey vegetation, based on the first round of a regional (the Netherlands) and a European forest monitoring program. A mult

  4. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  5. Heat Pipe Materials Compatibility

    Science.gov (United States)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  6. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  7. Heat Pipe Planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  8. Large-scale fluid-deposited mineralization in Margaritifer Terra, Mars

    Science.gov (United States)

    Thomas, Rebecca J.; Potter-McIntyre, Sally L.; Hynek, Brian M.

    2017-07-01

    Mineral deposits precipitated from subsurface-sourced fluids are a key astrobiological detection target on Mars, due to the long-term viability of the subsurface as a habitat for life and the ability of precipitated minerals to preserve biosignatures. We report morphological and stratigraphic evidence for ridges along fractures in impact crater floors in Margaritifer Terra. Parallels with terrestrial analog environments and the regional context indicate that two observed ridge types are best explained by groundwater-emplaced cementation in the shallow subsurface and higher-temperature hydrothermal deposition at the surface, respectively. Both mechanisms have considerable astrobiological significance. Finally, we propose that morphologically similar ridges previously documented at the Mars 2020 landing site in NE Syrtis Major may have formed by similar mechanisms.

  9. Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells.

    Science.gov (United States)

    Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan

    2017-07-14

    Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm(2) , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm(2) . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Explosive welding of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Drennov, O.; Burtseva, O.; Kitin, A. [Russian Federal Nuclear Center, Sarov (Russian Federation)

    2006-08-15

    Arrangement of pipelines for the transportation of oil and gas is a complicated problem. In this paper it is suggested to use the explosive welding method to weld pipes together. This method is rather new. This method can be advantageous (saving material and physical resources) comparing to its static analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. We suggest to perform explosive welding according to the following scheme: the ends of the 2 pipes are connected, the external surfaces are kept at a similar level. A cylindrical steel layer of diameter larger than the pipe diameter is set around the pipe joint and an explosive charge is placed on its external surface. The basic problem is the elimination of strains and reduction of pipe diameter in the area of the dynamic effect. The suggestion is to use water as filler: the volume of pipes in the area adjacent to the zone of explosive welding is totally filled with water. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gas dynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  11. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    The paper treats a piping system, where the layout of the network is given but the diameters of the pipes should be chosen among a small number of different values. The cost of realizing the system should be minimized while keeping the energy heads at the nodes above some lower limits. A new...

  12. A heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Rachev, L.A.; Kravtsov, A.A.

    1979-02-08

    A thermal pipe is described which contains a hermetically sealed body with a reticular filler. In order to increase the transmitted thermal power, the pipe is equipped with a high voltage source and with insulators, located between the wall of the body and the filler, where the latter is switched in to the high voltage source, preferably an adjustable one.

  13. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt;

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  14. Development of heat pipes for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1984-01-01

    Numerous heat pipes were designed, manufactured, and filled on a specially developed filling rig. Each heat pipe was incorporated into a prototype solar water heater developed for this purpose, and was tested under actual insolation conditions. An extensive testing program lasting for more than a year revealed that the heat pipes perform satisfactorily as heat transfer elements in solar water heaters. A special heat pipe featuring a compact and effective condenser configuration was also tested. It was observed to likewise exhibit isothermal behavior and hence promised potential for large scale solar applications.

  15. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  16. The monster sound pipe

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2017-03-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which illustrates how an Internet keyboard can be used to estimate the fundamental pitches of each pipe. Since both pipes have similar end corrections, the pitch discrepancy between the smooth pipe and drainage tube is due to the corrugations, which lower the speed of sound inside the flexible tube, dropping its pitch a semitone.

  17. Mechanistic Model for Ash Deposit Formation in Biomass Suspension-Fired Boilers. Part 2: Model Verification by Use of Full Scale Tests

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    describes particle sticking or rebound by a combination of the description of (visco)elsatic particles impacting a solid surface and particle capture by a viscous surface. The model is used to predict deposit formation rates measured during tests conducted with probes in full-scale suspension-fired biomass...... of some physical parameters related to the description of surface capture are suggested. Based on these examinations of the model ability to describe observed deposit formation rates, the proposed model can be regarded as a promising tool for description of deposit formation in full-scale biomass......A model for deposit formation in suspension firing of biomass has been developed. The model describes deposit build-up by diffusion and subsequent condensation of vapors, thermoforesis of aerosols, convective diffusion of small particles, impaction of large particles and reaction. The model...

  18. Key results for the NRC`s Short Cracks in Piping and Piping Welds Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Krishnaswamy, P.; Brust, F. [Battelle, Columbus, OH (United States)] [and others

    1995-04-01

    The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The USNCRC program at Battelle was initiated in March 1990 and is scheduled to be completed in December 1994. This paper discusses key results from the overall program with particular emphasis on the efforts since the last WRSIM meeting. The program consists of eight technical tasks as listed below: task 1 short through-wall-cracked (TWC) pipe evaluations; task 2 short surface-cracked (SC) pipe evaluations; task 3 bi-metallic weld crack evaluations; task 4 dynamic strain aging and crack instabilities; task 5 fracture evaluations of anisotropic pipe; task 6 crack-opening-area evaluations; task 7 NRCPIPE code improvements; task 8 additional efforts. Task 8 is a collection of new efforts initiated during the coarse of the program. A list of the full-scale pipe experiments in this program is given in Table 1. All of the experiments have been completed. The most recent accomplishments in each of the tasks listed above are discussed below. The details of all the results in the eight tasks are published in the semiannual reports as well as topical reports from the program.

  19. Reeling of tight fit pipe

    NARCIS (Netherlands)

    Focke, E.S.

    2007-01-01

    If it would be possible to install Tight Fit Pipe by means of reeling, it would be an attractive new option for the exploitation of offshore oil and gas fields containing corrosive hydrocarbons. Tight Fit Pipe is a mechanically bonded double walled pipe where a corrosion resistant alloy liner pipe

  20. Experimenting with a "Pipe" Whistle

    Science.gov (United States)

    Stafford, Olga

    2012-01-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here…

  1. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    Science.gov (United States)

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  2. Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Gene Siegel

    2015-05-01

    Full Text Available We are reporting the growth of single layer and few-layer MoS2 films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns was used to ablate a polycrystalline MoS2 target. The material thus ablated was deposited on a single crystal sapphire (0001 substrate kept at 700 °C in an ambient vacuum of 10−6 Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM, Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL measurements. The ablation of the MoS2 target by 50 laser pulses (energy density: 1.5 J/cm2 was found to result in the formation of a monolayer of MoS2 as shown by AFM results. In the Raman spectrum, A1g and E12g peaks were observed at 404.6 cm−1 and 384.5 cm−1 with a spacing of 20.1 cm−1, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV and 615 nm (2.02 eV, with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS2 exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS2 films were prepared. It was found that as the number of monolayers (n in the MoS2 films increases, the spacing between the A1g and E12g Raman peaks (Δf increases following an empirical relation, Δ f = 26 . 45 − 15 . 42 1 + 1 . 44 n 0 . 9 cm − 1 .

  3. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  4. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    The paper treats a piping system, where the layout of the network is given but the diameters of the pipes should be chosen among a small number of different values. The cost of realizing the system should be minimized while keeping the energy heads at the nodes above some lower limits. A new...... algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  5. An electrohydrodynamic heat pipe.

    Science.gov (United States)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  6. Electrohydrodynamic heat pipes.

    Science.gov (United States)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  7. Hybrid Physical Chemical Vapor Deposition of Superconducting Magnesium Diboride Coatings for Large Scale Radio Frequency Cavities

    Science.gov (United States)

    Lee, Namhoon; Withanage, Wenura; Tan, Teng; Wolak, Matthaeus; Xi, Xiaoxing

    2016-03-01

    Magnesium diboride (MgB2) is considered to be a great candidate for next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature Tc (40 K) and increased thermodynamic critical field Hc compared to other conventional superconductors. These properties significantly reduce the BCS surface resistance (RsBCS)and residual resistance (Rres) according to theoretical studies and suggest the possibility of an enhanced accelerating field (Eacc) . We have investigated the possibility of coating the inner surface of a 3 GHz SRF cavity with MgB2 by using a hybrid physical-vapor deposition (HPCVD) system which was modified for this purpose. To simulate a real 3 GHz SRF cavity, a stainless steel mock cavity has been employed for the study. The film quality was characterized on small substrates that were placed at selected locations within the cavity. MgB2 films on stainless steel foils, niobium pieces and SiC substrates showed transition temperatures of above 36 K. Dielectric resonance measurements resulted in promising Q values as obtained for the MgB2 films grown on the various substrates. By employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB2 coatings for SRF cavities.

  8. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Oy, Helsinki (Finland)

    1996-10-01

    Three holes the size of deposition holes (depth 7.5 m and diameter 1.5 m) were bored in the Research Tunnel at Olkiluoto, Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string. The purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. The boring method was found to be technically feasible and efficient. Evaluation of the quality of the hole included studies of the geometry of the hole, measurements of the surface roughness using a laser profilometer and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, He-gas diffusion and the {sup 14}C-polymethylmethacrylate methods. 43 refs.

  9. Multi-Length Scale Tribology of Electrophoretically Deposited Nickel-Diamond Coatings

    Science.gov (United States)

    Awasthi, Shikha; Goel, Sneha; Pandey, Chandra Prabha; Balani, Kantesh

    2017-02-01

    Electrophoretically deposited (EPD) nickel and its composite coatings are widely used to enhance the life span of continuous ingot casting molds in the steel, aerospace and automotive industries. This article reports the effect of different concentrations of diamond particles (2.5-10 g/L) on the wear mechanism of EPD Ni. The distribution of diamond particles in the Ni matrix was observed using Voronoi tessellation. Variation in COF was observed by a fretting wear test to be 0.51 ± 0.07 for Ni, which decreases to 0.35 ± 0.03 for the Ni-diamond coatings. The wear volume of the coatings with 7.5 g/L concentration of diamond was observed to be a minimum (0.051 ± 0.02 × 10-3 mm3) compared with other composite coatings. Further, the micro-scratch testing of the coatings also exhibited a reduced COF (0.03-0.12) for 7.5 g/L diamond concentration compared with Ni (0.08-0.13). Higher wear resistance of the diamond-added coatings (optimum 7.5 g/L concentration) is due to the balance between the dispersion strengthening mechanism and the enhancement of the load-bearing capacity due to the incorporation of diamond particles. Thus, these composites can be used for applications in automotive and aerospace industries.

  10. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  11. Small-scale cyclic deposition in the Frasnian (Upper Devonian of the Holy Cross Mountains, Poland

    Directory of Open Access Journals (Sweden)

    Vierek Aleksandra

    2014-12-01

    Full Text Available In sections exposing Frasnian limestones at five outcrops in the Holy Cross Mountains, five lithofacies (L1 to L5 that represent upper slope to basinal environments are identified. These lithofacies are characterised by dark-coloured micritic limestones-marly shale couplets with many light-coloured intercalations of fine- to coarse-grained limestones (= event beds. This lithofacies pattern characterises mostly low-energy domains punctuated by storm episodes. In addition, these upper-slope to basinal lithofacies are arranged into small-scale, coarsening-upward beds and cycles. The cycles are locally composed of fining/thinning-upward beds. The small-scale cycles have a calculated duration of 19 to 42 kyr. The differential thickness of beds and cycles within and between sections was probably caused by differential subsidence and local tectonics. Possible evidence of tectonic activity is also related to a difference in number of cycles recorded in the time-equivalent sections. The recognised cyclicity shows sea-level fluctuations and a few deepening episodes. Some of them are correlated with the Timan global eustatic events. However, local tectonics and episodic subsidence may have played a significant role in recording brief deepening pulses. Thus, low-amplitude sea-level changes were major factors in platform generation and evolution in the Frasnian of the Holy Cross Mountains modified by local, block-related subsidence.

  12. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition

    Science.gov (United States)

    Park, Hamin; Kim, Tae Keun; Cho, Sung Woo; Jang, Hong Seok; Lee, Sang Ick; Choi, Sung-Yool

    2017-01-01

    Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.65 eV) obtained by electron energy loss spectroscopy was consistent with the dielectric properties. The h-BN-containing capacitors were characterized by highly uniform properties, a reasonable dielectric constant (3), and low leakage current density, while graphene on h-BN substrates exhibited enhanced electrical performance such as the high carrier mobility and neutral Dirac voltage, which resulted from the low density of charged impurities on the h-BN surface.

  13. Inhibitory effect of Hydrex anti-scalant on calcium scale deposition from seawater under multiple-effect distillers' conditions

    Directory of Open Access Journals (Sweden)

    Aiman Eid Al-Rawajfeh

    2015-09-01

    Full Text Available In this work, the inhibitory effect of a commercial anti-scalant (Veolia Hydrex® 9209 on the calcium minerals of carbonate, sulfate and hydrocalumite (Ca/Al clay deposition from seawater has been investigated. Different concentration factors and anti-scalant doses were studied by analyzing the water hardness and turbidity. The inhibitory effect of the investigated anti-scalant was efficient even at lower concentrations. The percentage inhibition decreases with increasing the temperature and increases with increasing the dose/amount of the anti-scalant. The carbonate scale inhibition was >99% and 98–99% at 50 and 70 °C, respectively. The percentage inhibition of sulfate from hemihydrate was ranged from 80% to 87% for 2 and 8 ppm anti-scalant at 50 °C. The inhibition of Ca/Al hydrocalumite deposition increases from 70% to 90% upon increasing the dose from 3 to 5 ppm, respectively. A recommended useful dose of antiscalant for seawater is 5 ppm.

  14. Highly Uniform Wafer-scale Synthesis of α-MoOsub>3sub> by Plasma Enhanced Chemical Vapor Deposition.

    Science.gov (United States)

    Kim, HyeongU; Son, Juhyun; Kulkarni, Atul; Ahn, Chisung; Kim, Ki Seok; Shin, Dongjoo; Yeom, Geun; Kim, Taesung

    2017-03-20

    Molybdenum oxide (MoOsub>3sub>) has gained immense attention because of its high electron mobility, wide band gap, and excellent optical and catalytic properties. However, the synthesis of uniform and large-area MoOsub>3sub> is challenging. Here, we report the synthesis of wafer-scale α-MoO3 by plasma oxidation of Mo-deposited on Si/SiOsub>2sub>. Mo was oxidized by Osub>2sub> plasma in a plasma enhanced chemical vapor deposition (PECVD) system at 150 °C. Mo was oxidized by Osub>2sub> plasma in a PECVD system at 150 °C. It was found that the synthesized α-MoOsub>3sub> had a highly uniform crystalline structure. For the as-synthesized α-MoOsub>3sub> sensor, we observed a current change when the relative humidity was increased from 11% to 95%. The sensor was exposed to different humidity levels with fast recovery time of about 8 s. Hence this feasibility study shows that MoOsub>3sub> synthesized at low temperature can be utilized for the gas sensing applications by adopting flexible device technology.

  15. An electrohydrodynamic heat pipe

    Science.gov (United States)

    Jones, T. B.

    1972-01-01

    Dielectric liquid for transfer of heat provides liquid flow from the condenser section to the evaporator section in conventional heat pipes. Working fluid is guided or pumped by an array of wire electrodes connected to a high-voltage source.

  16. Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zheng; Hui Wang∗; Yongjun Guo; Li Yang; Shuai Guo; Shaohua Wu

    2015-01-01

    In Oxy⁃fuel circulating fluidized bed, the residual CaO particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2 .In this paper, experiments were designed on ash deposition in a bench⁃scale fluidized bed under oxy⁃fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces. The chemical composition of fly ash and ash deposit from both air⁃firing and oxy⁃fuel firing cases were analyzed by Inductively Coupled Plasma⁃Atomic Emission Spectrometry ( ICP⁃AES ) and Scanning Electron Microscopy ( SEM) , respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy⁃fuel and air firing cases, and oxy⁃fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit, especially for elements of Ca, Na, K, and S. However, the carbonation reaction degree of ash deposits is found weak, which is due to the relatively low CaO content in ash deposit or not long enough of the sampling time.

  17. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  18. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  19. The Monster Sound Pipe

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2017-01-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which…

  20. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation...

  1. Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river

    Science.gov (United States)

    Measures, R.; Hicks, D. M.; Brasington, J.

    2016-01-01

    Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477

  2. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river.

    Science.gov (United States)

    Williams, R D; Measures, R; Hicks, D M; Brasington, J

    2016-08-01

    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  3. Continental Scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2009-12-01

    Full Text Available While Antarctica is often described as a pristine environment, the potential threats from local pollution sources including tourist ships and emissions associated with scientific activities have recently been raised. However, to date there has been no systematic attempt to model the impacts of such pollutants at the continental scale. Indeed, until very recently there was not even a sulphur emission budget available for Antarctica. Here we present the first comprehensive study of atmospheric pollution in Antarctica using a limited area chemistry climate model, and a monthly emissions inventory for sulphur from maintenance of research stations, ground and air traffic, shipping and the active volcano Mt. Erebus. We find that ship emissions, both sulphurous and black carbon, dominate anthropogenic pollution near the ground. These are likely to rise considerably if recent trends in tourism continue.

  4. Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2010-03-01

    Full Text Available While Antarctica is often described as a pristine environment, there is an increasing awareness of the potential threats from local pollution sources including tourist ships and emissions associated with scientific activities. However, to date there has been no systematic attempt to model the impacts of such pollutants at the continental scale. Indeed, until very recently there was not even a sulphur emission budget available for Antarctica. Here we present the first comprehensive study of atmospheric pollution in Antarctica using a limited area chemistry climate model, and a monthly emissions inventory for sulphur from maintenance of research stations, ground and air traffic, shipping and the active Erebus volcano. We find that ship emissions, both sulphurous and black carbon, dominate anthropogenic pollution near the ground. Their prevalence is likely to rise dramatically if recent trends in tourism continue.

  5. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  6. Predictions for fatigue crack growth life of cracked pipes and pipe welds using RMS SIF approach and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Punit, E-mail: punit@barc.gov.in [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Pukazhendhi, D.M.; Gandhi, P.; Raghava, G. [Structural Engineering Research Centre, Chennai 600 113 (India)

    2011-10-15

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of the austenitic stainless steel pipes/pipes welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K{sub RMS}) at deepest and surface points. Crack growth and the crack shape with loading cycles have been evaluated. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K{sub RMS}) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. Fatigue crack growth in pipe weld (Gas Tungsten Arc Welding) can be predicted well using Paris constants of base material but prediction is non-conservative for pipe weld (Shielded Metal Arc Welding). Further, predictions using fatigue crack growth rate curve of ASME produces conservative results for pipe and GTAW pipe welds and comparable results for SMAW pipe welds. - Highlights: > Predicting fatigue crack growth of Austenitic Stainless Steel pipes and pipe welds. > Use of RMS-SIF and

  7. Pipe flow of pumping wet shotcrete based on lubrication layer

    National Research Council Canada - National Science Library

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    .... The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests...

  8. Speciation of trace inorganic contaminants in corrosion scales and deposits formed in drinking water distribution systems.

    Science.gov (United States)

    Peng, Ching-Yu; Korshin, Gregory V

    2011-11-01

    Sequential extractions utilizing the modified Tessier scheme (Krishnamurti et al., 1995) and measurements of soluble and particulate metal released from suspended solids were used in this study to determine the speciation and mobility of inorganic contaminants (As, Cr, V, U, Cd, Ni, and Mn) found in corrosion scales and particles mobilized during hydraulic flushing events. Arsenic, chromium and vanadium are primarily associated with the mobilization-resistant fraction that is resistant to all eluents used in this study and also bound in highly stable crystalline iron oxides. Very low concentrations of these elements were released in resuspension experiments. X-ray absorbance measurements demonstrated that arsenic in the sample with the highest As concentration was dominated by As(V) bound by iron oxides. Significant fractions of uranium and cadmium were associated with carbonate solids. Nickel and manganese were determined to be more mobile and significantly associated with organic fractions. This may indicate that biofilms and natural organic matter in the drinking water distributions systems play an important role in the accumulation and release of these inorganic contaminants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Evaluation of flawed piping under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E. (Applied Science and Technology, Inc., Poway, CA (United States)); Quinones, D.F. (Cloud (Robert L.) and Associates, Inc., Berkeley, CA (United States)); Gilman, J.D. (Electric Power Research Inst., Palo Alto, CA (United States))

    1992-10-01

    This report describes analytical and interpretative research on results of large-scale dynamic tests of flawed pipe which were conducted for the International Piping Integrity Research Group (IPIRG). Here, the adequacy of dynamic analysis methods is examined, as well as margins against failure associated with flaw evaluation criteria. Experimental and analytical results are related to requirements of the American Society of Mechanical Engineers Boiler and Pressure Vessel Codes. Code limits of operability bound all test results. Guidance is offered on selection of Z-factors'' for austenitic materials to retain code safety margins. In the IPIRG tests, efforts to produce a nearly instantaneous full severance pipe break were unsuccessful, indicating that this hypothetical basis for plant accident evaluations is conservative.

  10. Development of solutions to benchmark piping problems

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M; Chang, T Y; Prachuktam, S; Hartzman, M

    1977-12-01

    Benchmark problems and their solutions are presented. The problems consist in calculating the static and dynamic response of selected piping structures subjected to a variety of loading conditions. The structures range from simple pipe geometries to a representative full scale primary nuclear piping system, which includes the various components and their supports. These structures are assumed to behave in a linear elastic fashion only, i.e., they experience small deformations and small displacements with no existing gaps, and remain elastic through their entire response. The solutions were obtained by using the program EPIPE, which is a modification of the widely available program SAP IV. A brief outline of the theoretical background of this program and its verification is also included.

  11. Water Service Areas, Buffer around water system pipes, Published in 2008, 1:600 (1in=50ft) scale, Citizen Energy Group.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Service Areas dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Other information as of 2008. It is described as 'Buffer...

  12. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. 76 FR 11757 - Drill Pipe From the People's Republic of China: Antidumping Duty Order

    Science.gov (United States)

    2011-03-03

    ... unfinished drill collars (including all drill collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which are tubes meeting the following description: seamless tubes with an outer... release any bond or other security posted and refund any cash deposit of estimated antidumping duties made...

  14. Composite drill pipe

    Science.gov (United States)

    Leslie, James C [Fountain Valley, CA; Leslie, II, James C.; Heard, James [Huntington Beach, CA; Truong, Liem , Josephson; Marvin, Neubert [Huntington Beach, CA; Hans, [Anaheim, CA

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  15. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  16. Large clusters of gold deposits and large-scale metallogene-sis in the Jiaodong Peninsula, Eastern China

    Institute of Scientific and Technical Information of China (English)

    ZHAI; Mingguo

    2001-01-01

    [1]Tu, G. C., The unique nature in ore deposition, geological background and metallogenic mechanism of non-conventional superlarge ore deposits: A preliminary discussion, Science in China (in Chinese), Ser. D, 1998, 41 (sup.): 1-6.[2]Pei, R. F., Qiu, X. P., Yin, B. C. et al., The Explosive anomaly of ore-forming processes and super-accumulation of metals, Mineral Deposits (in Chinese), 1999, 18 (4): 333-340.[3]Zhai, Y. S., De, J., Li, X. B., Essentials of Metallogeny (in Chinese), Beijing: Geological Publishing House, 1999: 1-288.[4]Mao, J. W., Hua, R. M., Li, X. B., A preliminary study of large-scale metallogenesis and large clusters of mineral deposits, Mineral Deposits (in Chinese), 1999, 18(4): 291-298.[5]Zhang, C. H., Gu, D. L., Study on the microstructure and deformation mechanism of the sinistral slick ductile shear zone in the middle of the northern Jiaonan uplift, in Tectonic and Geological Evolution of the Northern Jiaonan Uplift (in Chi-nese) (eds. Gu, D. L., Zhang, C. H.), Beijing: China University of Geosciences Press, 1996, 96-104.[6]Zhai, M. G., Guo, J. H., Wang, Q. C. et al., Division of geological-tectonic units in the northern Sulu ultra-high pressure zone: An example of thick-skin thrust of crystalline units, Scientica Geologica Acta (in Chinese), 2000, 35(1): 16-26.[7]Zhai, M. G., Guo, J. H., Cong, B. L. et al., Sm-Nd geochronolgy and petrography of garnet pyroxene granulites in the northern Sulu region and their geotectonic implication, Scientica Geologica Acta (in Chinese), 1999, 34(3): 301-310.[8]Zhai, M. G., Cong, B., Guo, J., Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication, Lithos, 2000, 52: 23-33.[9]Jahn, B. M., Geochemical and isotopic study of UHP terrain in China (abstract), in First Workshop on UHP Metamor-phism and Tectonics, Stanford: Stanford University, 1994, A71-74.[10]Li, S. G., Jagoutz

  17. Development of remote pipe cutting tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira

    2014-10-15

    Remote pipe cutting tool accessing from inside pipe has been newly developed for JT-60SA. The tool head equips a disk-shaped cutter blade and four rollers which are subjected to the reaction force. The tool pushes out the cutter blade by decreasing the distance between two cams. The tool cuts a cooling pipe by both pushing out the cutter blade and rotating the tool head itself. The roller holder is not pushed out anymore after touching the inner wall of the pipe. In other words, only cutter blade is pushed out after bringing the tool axis into the pipe axis. Outer diameter of the cutting tool head is 44 mm. The cutting tool is able to push out the cutter blade up to 32.5 mm in radius, i.e. 65 mm in diameter, which is enough to cut the pipe having an outer diameter of 59.8 mm. The thickness and material of the cooling pipe are 2.8 mm and SUS316L, respectively. The length of the cutting tool head is about 1 m. The tool is able to cut a pipe locates about 480 mm in depth from the mounting surface on the divertor cassette. The pipe cutting system equips two cutting heads and they are able to cut two pipes at the same time in order to remove the inner target plate. Reproducibility of the cross-sectional shape of the cut pipe is required for re-welding. The degree of reproducibility is inside 0.1 mm except for burr at outside of the pipe, which is enough to re-weld the cut pipe. Some swarf is generated during cutting the double-layered pipe assuming a plug located on the top of the pipe. The swarf is deposited on the bottom of the plug and collected by pulling out the plug in the actual equipment.

  18. Pipe Drafting with CAD. Teacher Edition.

    Science.gov (United States)

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  19. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  20. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films.

    Science.gov (United States)

    Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro

    2016-04-29

    Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

  1. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  2. Turkish Adolescent Perceptions about the Effects of Water Pipe Smoking on their Health.

    Science.gov (United States)

    Cakmak, Vahide; Cinar, Nursan

    2015-01-01

    Consumption of tobacco in the form of a water pipe has recently increased, especially among young people. This study aimed to develop a scale which would be used in order to detect perceptions about the effects of water pipe smoking on health and to test its validity and reliability. Our scale named "a scale of perception about the effects of water pipe smoking on health" was developed in order to detect factors effecting the perception of adolescents about the effects of water pipe smoking on health. The sample consisted of 150 voluntary students in scale development and 750 voluntary students in the study group. Data were collected via a questionnaire prepared by researchers themselves and 5-pont Likert scale for "a scale of perception about the effects of water pipe smoking on health" which was prepared through the literature. Data evaluation was carried out on a computer with SPSS. The findings of the study showed that "a scale of perception about the effects of water pipe smoking on health" was valid and reliable. Total score average of the adolescents participated in the study was 58.5±1.25. The mean score of the ones who did not smoke water pipe (60.1±11.7) was higher than the mean score of the ones who smoked water pipe (51.6±13.8), the difference being statistically significant. It is established that "a scale of perception about the effects of water pipe smoking on health" was a reliable and valid measurement tool. It is also found out that individuals who smoked a water pipe had a lower level of perception of water pipe smoking effects on health than their counterparts who did not smoke a water pipe.

  3. Modeling of inertial deposition in scaled models of rat and human nasal airways: Towards in vitro regional dosimetry in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Zhou, Yue

    2016-09-01

    Rodents are routinely used in inhalation toxicology tests as human surrogates. However, in vitro dosimetry tests in rodent casts are still scarce due to small rodent airways and in vitro tests to quantify sub-regional dosimetry are still impractical. We hypothesized that for inertial particles whose deposition is dominated by airflow convection (Reynolds number) and particle inertia (Stokes number), the deposition should be similar among airway replicas of different scales if their Reynolds and Stokes numbers are kept the same. In this study, we aimed to (1) numerically test the hypothesis in three airway geometries: a USP induction port, a human nose model, and a Sprague-Dawley rat nose model, and (2) find the range of applicability of this hypothesis. Five variants of the USP and human nose models and three variants of the rat nose model were tested. Inhalation rates and particle sizes were scaled to match the Reynolds number and Stokes numbers. A low-Reynolds-number k–ω model was used to resolve the airflow and a Lagrangian tracking algorithm was used to simulate the particle transport and deposition. Statistical analysis of predicted doses was conducted using ANOVA. For normal inhalation rates and particle dia- meters ranging from 0.5 to 24 mm, the deposition differences between the life-size and scaled models are insignificant for all airway geometries considered (i.e., human nose, USP, and rat nose). Furthermore, the deposition patterns and exit particle profiles also look similar among scaled models. However, deposition rates and patterns start to deviate if inhalation rates are too low, or particle sizes are too large. For the rat nose, the threshold velocity was found to be 0.71 m/s and the threshold Froude number to be 50. Results of this study provide a theoretical foundation for sub-regional in vitro dosimetry tests in small animals and for interpretation of data from inter-species or intra-species with varying body sizes.

  4. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  5. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications.

    Science.gov (United States)

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  6. Durability tests and up-scaling of selective absorbers based on copper-manganese oxide deposited by dip-coating

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, Rocio; San Vicente, Gema; Morales, Angel [Unidad de Concentracion Solar, Plataforma Solar de Almeria, Departamento de Energia, CIEMAT, Avd. Complutense 22, 28040 Madrid (Spain)

    2010-06-15

    Selective absorbers based on copper-manganese oxide were prepared by dip-coating method. The optical properties of the 2-layer configuration (Al/CuMnO{sub x}/SiO{sub 2}) were improved by introducing an additional absorber-protective layer directly in contact with the aluminium substrate (i.e. 3-layer absorber), for which solar absorptance up to 0.950 was achieved. Long-term durability of these absorbers was investigated by applying both thermal stability and humidity tests established by the IEA-SHC Task X. All the analyzed samples qualified for both tests leading to similar or even better results than some commercial absorbers. In order to prove the feasibility of the up-scaling process, 3-layer absorber samples of 30 x 30 cm{sup 2} size were prepared. It was observed that sintering process was determinant for obtaining fully homogenous films within the whole large-area surface. By using a sintering process with increasing temperature, 30 x 30 cm{sup 2} samples with {alpha}{sub s}=0.935{+-}0.005 (100 measurements) could be obtained. This study reveals that it is possible to deposit CuMn-oxide absorbers on large-area substrates and that they could be a good alternative to the materials present today in the market, not only in terms of optical properties but also in terms of long term durability. (author)

  7. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  8. Evaluation of scale formation in waterwall heated surfaces

    Directory of Open Access Journals (Sweden)

    Taylasheva Tatiana

    2017-01-01

    Full Text Available This paper presents the possibility of forecasting assessments of the speed and the time of formation of depositions in the evaporator-tube elements of double-drum boilers. The values of thermal flow in the wall region of tank screens of boiler furnace are obtained, besides the velocity values of scaling metal corrosion products are obtained. Conclusions about the ability of forecasting unnominal situations and emergency risks dependent with damage to the screen surface heating pipes are made.

  9. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  10. Basin-Scale Sand Deposition in the Upper Triassic Xujiahe Formation of the Sichuan Basin, Southwest China: Sedimentary Framework and Conceptual Model

    Institute of Scientific and Technical Information of China (English)

    Xiucheng Tan; Qingsong Xia; Jingshan Chen; Ling Li; Hong Liu; Bing Luo; Jiwen Xia; Jiajing Yang

    2013-01-01

    The Upper Triassic Xujiahe(须家河) Formation in the Sichuan (四川) Basin,Southwes China is distinctive for the basin-scale sand deposition.This relatively rare sedimentary phenomenon has not been well interpreted.Here we addressed this issue by discussing sedimentary framework and conceptual model.Analysis of sedimentary setting implied that the basin received transgression during the deposition.It had multiple provenance supplies and river networks,as being surrounded by oldlands in multiple directions including the north,east and south.Thus,the basin was generally characterized by coastal and widely open and shallow lacustrine deposition during the Late Triassic Xujiahe period.This is similar to the modern well-known Poyang(鄱阳) Lake.Therefore,we investigated the framework and conceptual model of the Sichuan Basin during the Xujiahe period with an analogue to the Poyang Lake.Results show that the conceptual model of the deposition can be divided into transgressive and regressive stages.The first,third and fifth members of the formation are in transgressive stage and the deposits are dominated by shore and shallow lacustrine mud.In contrast,the deposition is mainly of braided river channel sand deposits during the regressive stage,mainly including the second,fourth and sixth members of the formation.The sand deposited in almost the entire basin because of the lateral migration and forward moving of the cross networks of the braided rivers.The multiple alternations of short and rapid transgression and relatively long regression are beneficial to the basin-scale sand deposition.Thus,the main channel of the braided river and its extensional areas are favorable for the development of hydrocarbon reservoir.This provides practical significance to the reservoir evaluation and exploration.In addition,the results also justify the relatively distinctive sedimentary phenomenon in the study area and may also have implications for understanding the large-scale

  11. 75 FR 18788 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Preliminary Results and Rescission...

    Science.gov (United States)

    2010-04-13

    ... Pacific Pipe at the cash deposit rate required at the time of entry. Interested parties are invited to... by section 751(a)(1) of the Act: (1) for Saha Thai, the cash deposit rate will be the rate... listed above, the cash deposit rate will be the company-specific rate established for the most...

  12. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  13. Aeronautical tubes and pipes

    Science.gov (United States)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  14. Heat-pipe planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2017-09-01

    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  15. [Piping cinnamon] 791

    OpenAIRE

    W L H Skeen and Co

    2003-01-01

    279 x 211 mm. Showing female workers making cinnamon pipes. The cinnamon is placed on a low tripod formed from four sticks, and steadied with the operator's foot while the cuticle is scraped off with a small curved knife. Annotated '791' on the bottom right hand corner of the photograph. Date approximate.

  16. Influence so fusion processes in the evolution of modeling. Bardenas Reales (Navarra); Influencia de los procesos de sofusion (piping) en la evolucion del modelado. Bardenas Reales (Navarra)

    Energy Technology Data Exchange (ETDEWEB)

    Desir, G.; Gutierrez, M.

    2009-07-01

    Piping processes are controlled by many interacting factors, such as the index of dispersion and the sodium content, SAR and ESP. To it is necessary to join the density of cracking and the slope of the hillsides on which it develops. In the study area climatic characteristics together with soil structure and chemical and mineralogical composition of the substrate has a key role in Pipings formation. Cracking is linked to the presence of dispersive clays with high contents in SAR and ESP, which give the rates of swelling until 12%. The process presence of piping is linked to two concrete situations: the massive intermediate levels of the intermediate Holocene filling sediments and the sediments deposited by the gullies: whereas in the tertiary materials it does not manage to develop. The size and scale of the pipes studied show a clear relationship among the level thickness, slope and hydraulic gradient. In the Holocene landfills the principal bounding factor is the levels thickness since the lower laminated levels do not facilitate the continuity in depth of the process due to the high number of discontinuities, generating centimeter-scale conduits that are always on duty to the drainage network. (Author) 5 refs.

  17. Full Scale Deposition Trials at 150 MWe PF-boiler Co-firing COal and Straw: Summary of Results

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, Peter Farkas Binderup

    1999-01-01

    . In the visual analysis, a significant increase in amount and tenacity of primarily the upstream deposit was observed as a function of increased straw share, exposure time and/or boiler load.The chemical analysis of the deposits suggest an increased participation of K and S in the formation of the deposits...... for the coal types utilised in the tests.The deposit formation observed during co-firing with up to 20% straw (energy basis), does not lead to fouling and slagging problems which cannot be overcome by increased sootblowing when firing the two coals used in the demonstration programme. However, slagging...

  18. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale

    Science.gov (United States)

    Jeanjean, A. P. R.; Monks, P. S.; Leigh, R. J.

    2016-12-01

    Green infrastructure can reduce PM2.5 traffic emissions on a city scale, by a combination of dispersion by trees and deposition on buildings, trees and grass. Simulations of PM2.5 concentrations were performed using a validated CFD model. A 2 × 2 km area has been reconstructed as a 3D representation of Leicester (UK) city centre which is on a scale larger than most of the other CFD studies. Combining both the effects of tree aerodynamics and the deposition capabilities of trees and grass is also something that has not yet been modelled at this scale. During summer time in Leicester City, the results show that the aerodynamic dispersive effect of trees on PM2.5 concentrations result in a 9.0% reduction. In contrast, a decrease of PM2.5, by 2.8% owing to deposition on trees (11.8 t year-1) and 0.6% owing to deposition on grass (2.5 t year-1), was also observed. Trees and grass are shown to have greater effects locally, as smaller decreases in PM2.5 were found when considering reduction across the whole boundary layer. Densely built areas like Leicester City centre have relatively less vegetation and subsequently have a smaller effect on PM2.5 concentration. It was found that particle deposition on buildings was negligible with less than 0.03%. An empirical equation was derived to describe the changes in PM2.5 based on ground surface fraction of trees and grass, and their deposition velocities.

  19. Mechanistic feature-scale profile simulation of SiO{sub 2} low-pressure chemical vapor deposition by tetraethoxysilane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Labun, Andrew H. [Compaq Computer Corporation, 334 South Street, Shrewsbury, Massachusetts 01545 (United States); Moffat, Harry K. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Cale, Timothy S. [Dept. of Chemical Engineering, School of Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2000-01-01

    Simulation of chemical vapor deposition in submicron features typical of semiconductor devices has been facilitated by extending the EVOLVE [T. S. Cale, T. H. Gandy, and G. B. Raupp, J. Vac. Sci. Technol. A 9, 524 (1991)] thin film etch and deposition simulation code to use thermal reaction mechanisms expressed in the Chemkin format. This allows consistent coupling between EVOLVE and reactor simulation codes that use Chemkin. In an application of a reactor-scale simulation code providing surface fluxes to a feature-scale simulation code, a proposed reaction mechanism for tetraethoxysilane [Si(OC{sub 2}H{sub 5}){sub 4}] pyrolysis to deposit SiO{sub 2}, which had been applied successfully to reactor-scale simulation, does not correctly predict the low step coverage over trenches observed under short reactor residence time conditions. One apparent discrepancy between the mechanism and profile-evolution observations is a reduced degree of sensitivity of the deposition rate to the presence of reaction products, i.e., the by-product inhibition effect is underpredicted. The cause of the proposed mechanism's insensitivity to by-product inhibition is investigated with the combined reactor and topography simulators. This is done first by manipulating the surface-to-volume ratio of a simulated reactor and second by adjusting parameters in the proposed mechanism such as the calculated free energies of proposed surface species. The conclusion is that simply calibrating mechanism parameters to enhance the by-product inhibition can improve the fit to profile evolution data; however, the agreement between with reactor-scale data and simulations decreases. Additional surface reaction channels seem to be required to simultaneously reproduce experimental reactor-scale growth rates and feature-scale step coverages. (c) 2000 American Vacuum Society.

  20. A linear model for the onset of whistling in corrugated pipe segments: influence of geometry

    NARCIS (Netherlands)

    Rudenko, O.; Meertens, D.; Nakiboǧlu, G.; Hirschberg, A.; Belfroid, S.P.C.

    2013-01-01

    Corrugated pipes combine small-scale rigidity and large-scale flexibility, which makes them very useful in industrial applications. The flow through such a pipe can induce strong undesirable whistling noises and even drive dangerous structural vibrations. Placing a short corrugated segment along a

  1. The Communicating Pipe Model for Icy Plumes on Enceladus

    Institute of Scientific and Technical Information of China (English)

    MA Qian-Li; CHEN Chu-Xin

    2009-01-01

    We analyze the communicating pipe model on Enceladus, and predict that Saturn's strong tidal force in Enceladus plays a significant role in the plumes. In this model, the scale of the volcanoes can be evaluated based on the history of the craters and plumes. The correspondence of the data and observation make the model valid for the eruption. So it is imaginable that the tidal force is pulling the liquid out through the communicating pipe while reshaping the surface on Enceladus.

  2. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    Science.gov (United States)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  3. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  4. Characterization of flow pattern transitions for horizontal liquid-liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space

    Science.gov (United States)

    Zhai, Lu-Sheng; Zong, Yan-Bo; Wang, Hong-Mei; Yan, Cong; Gao, Zhong-Ke; Jin, Ning-De

    2017-03-01

    Horizontal oil-water two-phase flows often exist in many industrial processes. Uncovering the dynamic mechanism of the flow pattern transition is of great significance for modeling the flow parameters. In this study we propose a method called multi-scale distribution entropy (MSDE) in a coupled 3D phase space, and use it to characterize the flow pattern transitions in horizontal oil-water two-phase flows. Firstly, the proposed MSDE is validated with Lorenz system and ARFIMA processes. Interestingly, it is found that the MSDE is dramatically associated with the cross-correlations of the coupled time series. Then, through conducting the experiment of horizontal oil-water two-phase flows, the upstream and downstream flow information is collected using a conductance cross-correlation velocity probe. The coupled cross-correlated signals are investigated using the MSDE method, and the results indicate that the MSDE is an effective tool uncovering the complex dynamic behaviors of flow pattern transitions.

  5. Ash transformation and deposit build-up during biomass suspension and grate firing: Full-scale experimental studies

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    of this study was to investigate ash transformation and deposition behavior in two biomass-fired boilers, firing wheat straw and/or wood. The influence of strawfiring technology (grate and suspension) on the ash transformation, deposit formation rate and deposit characteristics has been investigated. Bulk...... on similar levels. This was observed even though the concentration of fly ash in the flue gas was significantly higher during straw suspension firing. The influence of co-combustion of wood with straw on deposit formation rate, probe heat uptake and deposit characteristicswas also investigated during...... suspension firing conditions. Data from 35% straw suspension firing with wood showed a deposit formation rate of 33 g/m2/h for the first 12 h. The deposit formation rate increased to 41 g/m2/h with 100% strawfiring. The probe heat uptake reduction up to 40 h of exposure time was 3.0, 7.3, 8.4 and 16.5 kW/m2...

  6. Simulation of the atmospheric transport and deposition on a local/meso-and regional scale after hypothetical accidents at the Kola nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Thaning, Lennart; Baklanov, Alexander [Defence Research Establishment, FOA, Division of NBC Defence, Umea (Sweden)

    1997-08-25

    An accident at the Kola nuclear power plant could cause a large release of radioactivity into the atmosphere. To illustrate possible effects on the environment, potential atmospheric transport and deposition are calculated for two different scales - the local/meso- and the regional, using two different models. A 3-dimensional meso-scale model, developed at the Kola Science Centre, and suitable for distances out to a few hundred kilometres, has been used for the local/meso-scale, and a model system based on the MATHEW/ADPIC code, for the regional scale. Some consequences for the population have been estimated by using the MACCS model. Calculated aerial radionuclide activity concentrations, ground contamination and consequences for the population of the Euro-Arctic Barents region are discussed for two scenarios. The results for the local scale show a considerable influence on the radionuclide ground contamination pattern from the presence of precipitation. The significance of wet deposition is confirmed by the results for the regional scale which also emphasise the importance of having access to high quality weather predictions in emergency response organisations. The importance of the specific Arctic nutrition pathways, not included in this study, is discussed. It is important to make further studies in order to investigate the significance of these pathways.

  7. LHCb: Beam Pipe portrait

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector: it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  8. LHCb: Beam Pipe

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector:it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  9. Heat Pipe Systems

    Science.gov (United States)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  10. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  11. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  12. The Cretaceous-Paleogene boundary deposit in the Gulf of Mexico: Large-scale oceanic basin response to the Chicxulub impact

    Science.gov (United States)

    Sanford, Jason C.; Snedden, John W.; Gulick, Sean P. S.

    2016-03-01

    Hydrocarbon exploration in the last decade has yielded sufficient data to evaluate the Gulf of Mexico basin response to the Chicxulub asteroid impact. Given its passive marine setting and proximity to the impact structure on the Yucatán Peninsula, the gulf is the premier locale in which to study the near-field geologic effect of a bolide impact. We mapped a thick (decimeter- to hectometer-scale) deposit of carbonate debris at the Cretaceous-Paleogene boundary that is ubiquitous in the gulf and readily identifiable on borehole and seismic data. We interpret deposits seen in seismic and borehole data in the deepwater gulf to be predominately muddy debrites with minor turbidites based on cores in the southeastern gulf. Mapping of the deposit in the northern Gulf of Mexico reveals that the impact redistributed roughly 1.05 × 105 km3 of sediment therein and over 1.98 × 105 km3 gulfwide. Deposit distribution suggests that the majority of sediment derived from coastal and shallow-water environments throughout the gulf via seismic and megatsunamic processes initiated by the impact. The Texas shelf and northern margin of the Florida Platform were significant sources of sediment, while the central and southern Florida Platform underwent more localized platform collapse. The crustal structure of the ancestral gulf influenced postimpact deposition both directly and indirectly through its control on salt distribution in the Louann Salt Basin. Nevertheless, impact-generated deposition overwhelmed virtually all topography and depositional systems at the start of the Cenozoic, blanketing the gulf with carbonate debris within days.

  13. Up-scaled Teer-UDP850/4 Unbalanced Magnetron Deposition System Used for Mass-Production of CrTiAlN Hard Coatings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-jun; YANG Shi-cai; JIANG Bai-ling; BAI Li-jing; CHEN Di-chun; WEN Xiao-bin; TEER D.G.

    2004-01-01

    Up-scaled deposition process of Teer-UDP850/4 has been established and used for massive production of CrTiAlN hard coatings in applications of anti-wear, cutting and forming tools. This deposition system uses four magnetrons that are arranged by unbalanced magnets to form closed magnetic field enabling the system running in high current density.Elemental metals of Cr, Ti and Al are used as the target materials which are co-deposited with nitrogen forming multialloy nitride, nanoscale multi-layer or superlattice hard coatings. The substrate turntable is designed as planet rotation mechanism with three folds so that components or tools with complicate geometry can be uniformly coated onto all their surfaces and cutting edges. The power units for the magnetrons are straight dc whilst the substrate is biased by pulsed dc. Two solid heaters are installed in the system to enable running a wide range of deposition temperature from 200℃ to 500℃. The pumping system is powerful that incorporated with a polycold to pump the system to a good vacuum in a very short time. A front door and a movable substrate table are available to benefit easily loading and unloading. Deposition procedure,properties and performance of the coatings is also presented in this paper.

  14. 46 CFR 76.33-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.33-15 Section 76.33-15 Shipping COAST GUARD... System, Details § 76.33-15 Piping. (a) Individual pipes shall be not less than 3/4-inch standard pipe size. (b) All piping, valves, and fittings of ferrous materials shall be protected inside and...

  15. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.; Seliuk, E. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

    2009-01-15

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MWt Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on all air-cooled probe at a temperature of 500{degree}C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  16. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.

    Science.gov (United States)

    Gogebakan, Zuhal; Gogebakan, Yusuf; Selçuk, Nevin; Selçuk, Ekrem

    2009-01-01

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MW(t) Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on an air-cooled probe at a temperature of 500 degrees C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  17. Experimenting with a ``Pipe'' Whistle

    Science.gov (United States)

    Stafford, Olga

    2012-04-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here allows students in a physics of music or introductory physics course to study an example of an "edge tone" device that produces discrete sound frequencies. From their textbooks, students likely know about standing waves produced by pipes or strings, as well as the resonant frequencies for open and closed pipes. To go a bit further, they can also learn how the frequency of the sound wave depends on the orifice-to-edge distance of the wind instrument.

  18. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  19. Multileg Heat-Pipe Evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  20. Turbulent pipe flows subjected to temporal decelerations

    Science.gov (United States)

    Jeong, Wongwan; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  1. Coherent structures in transitional pipe flow

    Science.gov (United States)

    Hellström, Leo H. O.; Ganapathisubramani, Bharathram; Smits, Alexander J.

    2016-06-01

    Transition to turbulence in pipe flow is investigated experimentally using a temporally resolved dual-plane particle image velocimetry approach, at a Reynolds number of 3440. The flow is analyzed using proper orthogonal decomposition and it is shown that the flow can be divided into two regions: a pseudolaminar region governed by the presence of azimuthally steady traveling waves, and turbulent slugs. The evolution of the structures within the slugs is identified by using the temporally resolved data along with the dual-plane velocity field. These structures are shown to be remarkably similar to the large-scale motions found in fully turbulent flows, with a streamwise and spatiotemporal extent about four pipe radii. The transition between structures is characterized by the detachment and decay of an old structure and the initiation of a new structure at the wall.

  2. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity

    Science.gov (United States)

    Pueyo Anchuela, Ó.; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M. J.; Gil Garbi, H.

    2016-07-01

    The Quaternary Añavieja-Dévanos tufa system is located in the northern sector of the Iberian Chain. It has been previously tackled by means sedimentological studies focused on the available outcrops and some boreholes. They have permitted the proposal of a sedimentary scenario that fits with a pool-barrage fluvial tufa model. However a better knowledge of the characteristics and internal distribution of the usually non-outcropping pool deposits as well as of its relationship with barrage deposits has not been evaluated in detail yet. Palaeoenvironmental studies on tufas are usually biased because tufas are commonly delicate facies exposed to intense erosion during water level fall stages; for this reason outcrops are usually scarce and very often coincide with the most cemented barrage deposits. In order to analyse the internal characteristics of the tufa deposits under study, but also the lateral correlation among different facies, ground penetrating radar (GPR) has been employed both for the evaluation of its applicability in such kind of environments and to improve, if possible, the sedimentary model using geophysical data in sectors without outcrops. A GPR survey including different antennas ranging from 50 to 500 MHz along different sectors and its comparison with natural outcrops has been carried out. GPR results have permitted to deduce clear differences between pool and barrage deposits and to recognise its internal structure and geometrical relationships. The survey also permitted an approach to different scales of heterogeneities in the radarfacies evaluation by using distinct antennas and therefore, reaching different resolutions and penetrations. The resulting integration from different antennas allows three different attenuant and eight reflective radarfacies to be defined permitting a better approach to the real extension of the pool areas. These results have permitted to decipher the horizontal and vertical facies changes and the identification of

  3. A Jurassic Shock-Aftershock Earthquake Sequence Recorded by Small Clastic Pipes and Dikes within Dune Cross-Strata, Zion National Park, Utah

    Science.gov (United States)

    Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.

    2012-12-01

    Eolian sandstones of south-central and southeast Utah contain large volumes of contorted cross-strata that have long been recognized as products of liquefaction caused by seismic shaking. Unlike most sites where Navajo Sandstone is exposed, in Zion National Park (southwestern Utah), the Navajo contains very, very few contorted strata. We have, however, mapped the distribution of more than 1,000 small-scale, vertical pipes and dikes in uncontorted cross-strata of the Navajo at two small study sites in Zion. Pipes are 2-5 cm in diameter and up to 3 m long; dikes are ~6 cm wide. Clusters of the water-escape structures lie directly above and below numerous, near-horizontal bounding surfaces. Dikes are restricted to the wind-ripple strata that lie above the bounding surfaces. Pipes are common both above and below the bounding surfaces. In map view, most pipes are arranged in lines. Near the bounding surfaces, pipes merge upward with shallow dikes trending parallel to the lines of pipes. Pipes formed in grainflows—homogeneous, well-sorted sand lacking cohesion. Dikes formed above the bounding surface, in more-cohesive, poorly sorted, wind-ripple strata. As liquefaction began, expansion of subsurface sand caused spreading within the unliquified (capping) beds near the land surface. Dikes intruded cracks in the wind-ripple strata, and pipes rose from the better-sorted sand to interdune surfaces, following trends of cracks. Because the wind-ripple strata had low cohesive strength, a depression formed around each rupture, and ejected sand built upward to a flat-topped surface rather than forming the cone of a classic sand volcano. In one 3 m2 portion of the map area, a cluster of about 20 pipes and dikes, many with truncated tops, record eight stratigraphically distinct seismic events. The large dunes that deposited the Navajo cross-strata likely moved ~1m/yr. When, in response to seismic shaking, a few liters of fluidized sand erupted onto the lowermost portion of the

  4. Large-bore pipe decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  5. Deployable Pipe-Z

    Science.gov (United States)

    Zawidzki, Machi

    2016-10-01

    This paper presents a concept of deployable Pipe-Z (dPZ): a modular structural system which takes advantage of the robustness of rigid-panel mechanism and allows to create free-form links which are also reconfigurable and deployable. The concept presented can be applied for building habitats and infrastructures for human exploration of oceans and outer space. dPZ structures can adapt to changing requirements e.g. mission objectives, crew condition and technological developments. Furthermore, such lightweight and adaptable structural concept can assist in sustainable exploration development. After brief introduction, the concept of Pipe-Z (PZ) is presented. Next, the reconfigurability of PZ is explained and illustrated with continuous and collision-free transition from a PZ forming a Trefoil knot to a Figure-eight knot. The following sections introduce, explain and illustrate the folding mechanism of a single foldable Pipe-Z module (fPZM) and entire dPZ structure. The latter is illustrated with asynchronous (delayed) unfolding of a relatively complex Unknot. Several applications of PZ are suggested, namely for underwater and deep-space and surface habitats, for permanent, but in particular, temporary or emergency passages. As an example, a scenario of a failure of one of the modules of the International Space Station is presented where a rigid structure of 40 fPZMs bypasses the "dead link". A low-fidelity prototype of a 6-module octagonal dPZ is presented; several folding schemes including concentric toric rings are demonstrated. Practical issues of pressurization and packing are briefly discussed.

  6. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    as well as structural design. Material development was carried out considering both processing requirements as well as mechanical properties of the hardened material. A micro-mechanical model for the non-linear material behavior of the hardened material based on the stress-crack width or the $\\sigma...... itself. The structural modeling of the pipe was done making direct use of the $\\sigma-w$ material characterization. The processing technique developed is a novel type of extrusion combiningease of material mixing and few requirements for material pre-processingwith a high degree of accuracy and stability...

  7. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    Science.gov (United States)

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  8. Inhibition of calcium carbonate deposition on stainless steel using olive leaf extract as a green inhibitor.

    Science.gov (United States)

    Aidoud, Roumaissa; Kahoul, Abdelkrim; Naamoune, Farid

    2017-01-01

    The antiscale properties of the aqueous extract of olive (Olea europaea L.) leaves as a natural scale inhibitor for stainless steel surface in Hammam raw water were investigated using chronoamperometry (CA) and electrochemical impedance spectroscopy techniques in conjunction with a microscopic examination. The X-ray diffraction analysis reveals that the scale deposited over the pipe walls consists of pure CaCO3 calcite. The CA, in accordance with electrochemical impedance spectra and scanning electron microscopy, shows that the inhibition efficiency increases with increasing extract concentration. This efficiency is considerably reduced as the temperature is increased.

  9. 77 FR 41967 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Certain...

    Science.gov (United States)

    2012-07-17

    ... and Border Protection will continue to collect cash deposits at the rates in effect at the time of... finished conduit. Standard pipe that is dual or triple certified/ stenciled that enters the U.S. as line... hollows for redraws, finished scaffolding, and finished conduit. Standard pipe that is dual or triple...

  10. ABSTRACTS WELDEL PIPE AND TUBE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    ABSTRACTS WELDEL PIPE AND TUBE Vol.24 No.3 May.2001 Huang Jingan(1) Strengthen, Intercourse, Coordination and Promote the Development Together Liang Aiyu(11) The Production and the Development of the Water supply pipe for City Construction From the aspects of the quality, appearance, environment protection, economic analysis etc., This article evaluates the galvanized pipe, plastic steel complex pipe, plastic aluminum pipe, stainless pipe for city water supply. In accordance with the requirements of the city construction programming and development, it is considered that the plastic aluminum pipe and plastic steel pipe instead of galvanization pipe is the trend of the development. The author also gives some constructive proposals for reference. Subject Terms:galvanized pipe complex pipe stainless pipe city water supply evaluation Zhao Rongbin,Li Guangjun(14) The TIG welding of Protected Tantalum-pipe for sheathed thermocouples used in corrosive environment The protected Tantalum-pipe welding of sheathed therocouples was investigated by TIG. The welding process and its key parameters were introduced. Welding quality influenced by processing was discussed. Subject Terms:welding protected Tantalum-pipe corrosion He Defu et al(18) Design and Research for An Automatic MIG Welding Machine of Catalyst Converter of Automobile Two different schemes for automatic MIG welding of catalyst converter of automobile have been compared and analysed. A design of automatic MIG welding machine used for catalyst converter of automobile has been suggested in this paper. Subject Terms:environmental protection automobile tri-catalyst converter MIG welding automatic welding PLC Fang Chucai(24) Cold Crack Analysis of Low Alloy High Strength Steel Weld Seam Heat Affected Area During the welding of low alloy high strength (X65 and above), the fine crack occurs in the weld (especially inner weld) and the low plastic hard brickle structure occurs in the Heat Affected Area (HAZ) sometime. This

  11. Heat Pipe Blocks Return Flow

    Science.gov (United States)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  12. Mechanical Behaviour of Lined Pipe

    NARCIS (Netherlands)

    Hilberink, A.

    2011-01-01

    Installing lined pipe by means of the reeling installation method seems to be an attractive combination, because it provides the opportunity of eliminating the demanding welds from the critical time offshore and instead preparing them onshore. However, reeling of lined pipe is not yet proven

  13. Temperature drops in heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, A.M.; Khalifa, A.M.A.; Akyurt, M.

    1986-01-01

    The role of entrainment in limiting heat pipe power handling capacity is discussed. The effect of entrainment on the measured temperature field in the integral heat pipe of a split system solar cooker is analyzed. An experimental set-up depicting a heat loop is presented, along with test results.

  14. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  15. Long liquid slugs in stratified gas/liquid flow in horizontal and slightly inclined pipes

    NARCIS (Netherlands)

    Kadri, U.

    2009-01-01

    Long liquid slugs reaching several hundreds pipe diameter may appear when transporting gas and liquid in horizontal and near horizontal pipes. The long slugs cause system vibration and separation difficulties that may lead to operational failures. Identifying and predicting the time and length scale

  16. Long liquid slugs in stratified gas/liquid flow in horizontal and slightly inclined pipes

    NARCIS (Netherlands)

    Kadri, U.

    2009-01-01

    Long liquid slugs reaching several hundreds pipe diameter may appear when transporting gas and liquid in horizontal and near horizontal pipes. The long slugs cause system vibration and separation difficulties that may lead to operational failures. Identifying and predicting the time and length scale

  17. 大型联合化工项目中压蒸汽管网吹扫方案及实施%Purging Scheme and Implementation of Medium Pressure Steam Pipe Network of Large Scale Integration Chemical Project

    Institute of Scientific and Technical Information of China (English)

    郭玉林; 刘俊青; 史学廷

    2014-01-01

    介绍了中压蒸汽管网总体吹扫方案及实施情况,并针对吹扫过程中出现的问题提出了相应的解决措施。此次中压蒸汽管网吹扫工作取得了圆满成功,对二期项目建设过程中改进管线设计、施工、监理、验收方法以及同类管线吹扫工作具有十分重要的参考意义。%The overall purging scheme of medium pressure steam pipe network and implementation is presented , and in connection with problems in purging process , relevant counter measures are suggested .The medium pressure steam pipe network purging scheme is a complete success , and it has important reference value for improvement of pipe network design , construction , supervision , acceptance check method in construction of the second phase and for same kind of pipe network purging .

  18. Optimal design of the separate type heat pipe heat exchanger

    Institute of Scientific and Technical Information of China (English)

    YU Zi-tao; HU Ya-cai; CEN Ke-fa

    2005-01-01

    Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effectiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.

  19. Fracture behavior of short circumferentially surface-cracked pipe

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, P.; Scott, P.; Mohan, R. [Battelle, Columbus, OH (United States)] [and others

    1995-11-01

    This topical report summarizes the work performed for the Nuclear Regulatory Comniission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC`s PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria.

  20. Vibration analysis of composite pipes using the finite element method with B-spline wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Oke, Wasiu A.; Khulief, Yehia A. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2016-02-15

    A finite element formulation using the B-spline wavelets on the interval is developed for modeling the free vibrations of composite pipes. The composite FRP pipe element is treated as a beam element. The finite pipe element is constructed in the wavelet space and then transformed to the physical space. Detailed expressions of the mass and stiffness matrices are derived for the composite pipe using the Bspline scaling and wavelet functions. Both Euler-Bernoulli and Timoshenko beam theories are considered. The generalized eigenvalue problem is formulated and solved to obtain the modal characteristics of the composite pipe. The developed wavelet-based finite element discretization scheme utilizes significantly less elements compared to the conventional finite element method for modeling composite pipes. Numerical solutions are obtained to demonstrate the accuracy of the developed element, which is verified by comparisons with some available results in the literature.

  1. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Johansson, Aasa [SWECO, Stockholm (Sweden)

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours.

  2. Numerical simulation of regional scale dispersion and deposition of radioactive pollutants from the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Satomura, Takehiko [Kyoto Univ. (Japan)

    1996-12-01

    The dispersion and deposition of radioactive pollutants from the Chernobyl accident was simulated according to a transfer model for air pollutants, which was made by Meteorological Research Institute. The observation data and the data of emission source used here were obtained from the document distributed by ATMES (Atmospheric Transport Model Evaluation Study). The numerical model used consisted of two parts. One is an atmospheric estimation model which allows to predict meteorological factors and the other is a part to calculate the advection diffusion based on the predicted meteorological factors. The time-course changes in {sup 137}Cs concentration in the air determined in Stockholm, Mol, Budapest and Attikis were well coincident with the calculated {sup 137}Cs levels for the respective cities. For atmospheric {sup 137}Cs concentrations at Bilthoven and Berlin, the estimation was also satisfactory, but the calculated deposition levels in both cities did not agree with the respective observation levels. (M.N.)

  3. Pilot studies on discolouration loose deposits' build-up

    NARCIS (Netherlands)

    Poças, Ana; Rebola, Nazaré; Rodrigues, Sérgio; Benoliel, Maria João; Rietveld, Luuk; Vreeburg, Jan; Menaia, José

    2015-01-01

    Tap water discolouration occurs due to resuspension of loose deposits (LD) that accumulate in drinking water distribution systems. Strategies for discolouration control involve network pipe cleaning and replacement of cast-iron pipes. However, the sole application of such measures is not generall

  4. The CoLaPipe--the new Cottbus large pipe test facility at Brandenburg University of Technology Cottbus-Senftenberg.

    Science.gov (United States)

    König, Franziska; Zanoun, El-Sayed; Öngüner, Emir; Egbers, Christoph

    2014-07-01

    The CoLaPipe is a novel test facility at the Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg (BTU Cottbus-Senftenberg), set up to investigate fully developed pipe flow at high Reynolds numbers (Re(m) ⩽ 1.5 × 10(6)). The design of the CoLaPipe is closed-return with two available test sections providing a length-to-diameter ratio of L/D = 148 and L/D = 79. Within this work, we introduce the CoLaPipe and describe the various components in detail, i.e., the settling chamber, the inlet contraction, the blower, bends, and diffusers as well as the cooling system. A special feature is the numerically optimized contraction design. The applications of different measuring techniques such as hot-wire anemometry and static pressure measurements to quantitatively evaluate the mean flow characteristics and turbulence statistics are discussed as well. In addition, capabilities and limitations of available and new pipe flow facilities are presented and reconsidered based on their length-to-diameter ratio, the achieved Reynolds numbers, and the resulting spatial resolution. Here, the focus is on the facility design, the presentation of some basic characteristics, and its contribution to a reviewed list of specific questions still arising, e.g., scaling and structural behavior of turbulent pipe flow as well as the influence of the development length on turbulence investigations.

  5. Evaluation of aluminum drill-pipe material and design

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao C. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Lourenco, Marcelo I.; Netto, Theodoro Antoun [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2008-07-01

    Experimental program and numerical analyses were carried out to investigate the fatigue mechanisms of aluminum drill pipes designed and manufactured in compliance with ISO 15546. The main objective is to improve the fatigue performance of these components by selecting the appropriate aluminum alloy and by enhancing the mechanical design of the threaded steel connector. This paper presents the experimental test program and numerical analyses conducted on a drill-pipe of different materials (Al-Cu-Mg and Al-Zn-Mg system aluminum alloys) and geometry. Material mechanical properties, including S-N curve, were determined through small-scale tests on specimens cut from actual drill pipes. Full-scale experiments were also performed in laboratory. A finite element model of the drill pipe, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly, and then reproduces the physical experiments numerically in order to obtain the actual stress distribution. Good correlation between full-scale and small-scale fatigue tests was obtained by adjusting the strain/stress levels monitored in the full-scale tests in light of the numerical simulations and performing fatigue life calculations via multiaxial fatigue models. The weak points of the current practice design are highlighted for further development. (author)

  6. Radial differences in contaminant distribution in large-diameter pipe scales of main pipelines in drinking water distribution system%供水管网大口径管道管垢中污染物分布的径向差异

    Institute of Scientific and Technical Information of China (English)

    陈环宇; 柳景青; 魏宗元; 张慧慧; 何晓芳; 周晓燕; 裘尚德; 胡宝兰; 楼莉萍

    2015-01-01

    以管龄为11年的城市主供水管道上的DN300球墨铸铁管为研究对象,采用扫描电镜(SEM)、能谱分析(EDS)、晶体衍射结构分析(XRD)等手段对其径向不同位置的管垢进行了表征,并分析了其各类金属与有机污染物的分布差异.结果表明:管道下部的管垢总量高,平均粒径大.重金属在空间上的分布明显不同,铁、锰、锌、铅、铜和铬在上部的管垢中含量最高,而下部管垢中,铝的含量最高,该分布与管垢中其来源密切相关.管垢中累积了多种的有机污染物,除了微生物代谢形成的烃类物质之外,还累积了藻类的代谢产物及外源有机污染物,不同位置上出现的有机污染物类型也有所差异.该研究结果对将来饮用水管网生物化学安全的研究方法提出了更高的要求,并为管网的饮用水安全保障提供了理论依据.%The surface character of a 11-year-old DN300 ductile cast iron pipes of main pipelines in drinking water distribution system was investigated by atomic absorption spectrometry, GC-MS, EDS, and XRD, and the content of pollutants, such as metals and organic compounds, also detected. Results showed that, the pipe scales of the lower part had the maximum amount and the maximum average particle size. The spatial distribution of heavy metals was significantly different. The concentration of iron, manganese, zinc, lead, copper and chromium was highest in the upper pipe scales. While the highest content of aluminum was detected in the lower pipe scales. The distribution was closely related with its resource in pipe scales. Beside some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminant accumulated in pipe scales. And types of organic pollutants varied in different spatial locations. The finding put forward higher requirements on the research method about drinking water distribution system biochemical safety, and

  7. 46 CFR 95.15-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.15-15 Section 95.15-15 Shipping COAST GUARD... Dioxide Extinguishing Systems, Details § 95.15-15 Piping. (a) The piping, valves, and fittings shall have a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal...

  8. 46 CFR 154.520 - Piping calculations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping calculations. 154.520 Section 154.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Process Piping Systems § 154.520 Piping calculations. A piping system must be designed to meet...

  9. 46 CFR 108.475 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 108.475 Section 108.475 Shipping COAST GUARD... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  10. 14 CFR 27.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  11. 46 CFR 197.336 - Pressure piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that... must— (a) Meet the ANSI Code; (b) Have the point of connection to the integral piping system of...

  12. 46 CFR 64.95 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping. 64.95 Section 64.95 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.95 Piping. (a) Piping, valves, flanges, and fittings used in the... the piping system must comply with § 56.60-25(c) of this chapter....

  13. 46 CFR 76.23-20 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.23-20 Section 76.23-20 Shipping COAST GUARD... System, Details § 76.23-20 Piping. (a) All piping, valves, and fittings shall meet the applicable requirements of subchapter F (Marine Engineering) of this chapter. (b) All piping, valves, and fittings...

  14. 46 CFR 95.17-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD... Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable requirements of Subchapter F (Marine Engineering) of this chapter. (b) All piping, valves, and fittings...

  15. 46 CFR 76.17-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD... Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable requirements of subchapter F (Marine Engineering) of this chapter. (b) All piping, valves, and fittings...

  16. 46 CFR 193.15-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Piping. 193.15-15 Section 193.15-15 Shipping COAST GUARD... Dioxide Extinguishing Systems, Details § 193.15-15 Piping. (a) The piping, valves, and fittings shall have a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in nominal...

  17. Investigation of high-frequency pipe welding

    Science.gov (United States)

    Konovalov, Nikolai A.; Lakhno, Nikolay I.; Gushchin, A. G.; Putryk, N. D.; Kovalenko, Vladimir I.; Galkina, V. A.; Veselovsky, Vladimir B.; Furmanov, Valeri B.; Kovika, Nikolai D.; Novikov, Leonid V.; Shcherbina, V. N.

    1993-01-01

    For investigation of a pipe welding process at high-frequency heating aimed at increasing of pipe quality and decreasing of spoilage, the use of high-speed recording and TV-technique is considered to be effective. The authors have created a visual inspection system for pipe welding process studies at a tube mill of the Novomoskovsk Pipe Plant.

  18. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  19. 49 CFR 195.114 - Used pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Used pipe. 195.114 Section 195.114 Transportation... PIPELINE Design Requirements § 195.114 Used pipe. Any used pipe installed in a pipeline system must comply with § 195.112 (a) and (b) and the following: (a) The pipe must be of a known specification and the...

  20. 49 CFR 195.112 - New pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false New pipe. 195.112 Section 195.112 Transportation... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy...

  1. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for use...

  2. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  3. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  4. Fluidized-sediment pipes in Gale crater, Mars, and possible Earth analogs

    Science.gov (United States)

    Rubin, David M.; Fairen, A.G.; Frydenvang, J.; Gasnault, O.; Gelfenbaum, Guy R.; Goetz, W.; Grotzinger, J.P.; Le Mouélic, S.; Mangold, N.; Newsom, H.; Oehler, D. Z.; Rapin, W.; Schieber, J.; Wiens, R.C.

    2017-01-01

    Since landing in Gale crater, the Mars Science Laboratory rover Curiosity has traversed fluvial, lacustrine, and eolian sedimentary rocks that were deposited within the crater ∼3.6 to 3.2 b.y. ago. Here we describe structures interpreted to be pipes formed by vertical movement of fluidized sediment. Like many pipes on Earth, those in Gale crater are more resistant to erosion than the host rock; they form near other pipes, dikes, or deformed sediment; and some contain internal concentric or eccentric layering. These structures provide new evidence of the importance of subsurface aqueous processes in shaping the near-surface geology of Mars.

  5. Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit

    Science.gov (United States)

    Incerti, S.; Champion, C.; Tran, H. N.; Karamitros, M.; Bernal, M.; Francis, Z.; Ivanchenko, V.; Mantero, A.; Members of Geant4-DNA Collaboration

    2013-07-01

    In the perspective of building an open source simulation platform dedicated to the modelling of early biological molecular damages due to ionising radiation at the DNA scale, the general-purpose Geant4 Monte Carlo simulation toolkit has been recently extended with specific very low energy electromagnetic physics processes for liquid water medium. These processes - also called “Geant4-DNA” processes - simulate the physical interactions induced by electrons, hydrogen and helium atoms of different charge states. The present work reports on the energy deposit distributions obtained for incident electrons, protons and alpha particles in nanometre-size volumes comparable to those present in the genetic material of mammalian cells. The frequency distributions of the energy deposition obtained for three typical geometries of nanometre-size cylindrical targets placed in a spherical phantom are found to be in reasonable agreement with prior works. Furthermore, we present a combination of the Geant4-DNA processes with a simplified geometrical model of a cellular nucleus allowing the evaluation of energy deposits in volumes of biological interest.

  6. Nitrogen heat pipe for cryocooler thermal shunt

    Energy Technology Data Exchange (ETDEWEB)

    Prenger, F.C.; Hill, D.D.; Daney, D.E.; Daugherty, M.A. [Los Alamos National Lab., NM (United States); Green, G.F.; Roth, E.W. [Naval Surface Warfare Center, Annapolis, MD (United States)

    1995-09-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in the temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined.

  7. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    Science.gov (United States)

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer.

  8. Continental-scale assessment of long-term trends in wet deposition trajectories: Role of anthropogenic and hydro-climatic drivers

    Science.gov (United States)

    Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.

    2012-12-01

    The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a

  9. Large-scale concentration and deposition maps for the Netherlands. Report on 2012; Grootschalige concentratie- en depositiekaarten Nederland. Rapportage 2012

    Energy Technology Data Exchange (ETDEWEB)

    Velders, G.J.M.; Aben, J.M.M.; Jimmink, B.A.; Geilenkirchen, G.P.; Van der Swaluw, E.; De Vries, W.J.; Wesseling, J.; Van Zanten, M.C.

    2012-06-15

    RIVM (National Institute for Public Health and the Environment) presents new concentration maps for the Netherlands, for eight air pollutants, including nitrogen dioxide and particulate matter, for the period up to 2030. New deposition maps for nitrogen are also presented. These maps are produced annually and show a combined image of the air quality and level of deposition in the Netherlands. They are used in the national air quality collaboration programme (NSL) and in the programmatic approach to nitrogen (PAS) of the Dutch Ministry of Infrastructure and the Environment and the Ministry of Economic Affairs, Agriculture and Innovation. The maps are based both on measurements and model calculations. They have legal status and are considered a touchstone for new infrastructural projects [Dutch] Het RIVM presenteert de nieuwe kaarten waarin de concentraties van acht luchtverontreinigende stoffen (onder andere stikstofdioxide en fijn stof) in Nederland tot 2030 staan weergegeven. Hetzelfde geldt voor de mate waarin stikstof op de bodem neerslaat. Deze kaarten worden jaarlijks gemaakt en geven een beeld van de luchtkwaliteit en de neerslag van stikstof op de bodem in Nederland. Ze worden gebruikt in het Nationaal Samenwerkingsprogramma Luchtkwaliteit (NSL) en de Programmatische Aanpak Stikstof (PAS) van de ministeries van Infrastructuur en Milieu (IenM) en Economische Zaken, Landbouw en Innovatie (ELI). De kaarten hebben een wettelijke status en gelden als toetssteen voor ruimtelijke ordeningsplannen. Ze zijn gemaakt op basis van metingen en modelberekeningen.

  10. 49 CFR 192.279 - Copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or... heavier wall pipe listed in Table C1 of ASME/ANSI B16.5. [Amdt. 192-62, 54 FR 5628, Feb. 6, 1989, as...

  11. B Plant process piping replacement feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  12. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.

    Science.gov (United States)

    Qajar, Jafar; Arns, Christoph H

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  13. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition

    Science.gov (United States)

    Qajar, Jafar; Arns, Christoph H.

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  14. Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Kondracka, Marta

    2016-12-01

    This paper aims to provide a more comprehensive characterization of piping systems in mountainous areas under a temperate climate using geomorphological mapping and geophysical methods (electrical resistivity tomography - ERT and ground penetrating radar - GPR). The significance of piping in gully formation and hillslope hydrology has been discussed for many years, and most of the studies are based on surface investigations. However, it seems that most surface investigations underestimate this subsurface process. Therefore, our purpose was to estimate the scale of piping activity based on both surface and subsurface investigations. We used geophysical methods to detect the boundary of lateral water movement fostering pipe development and recognize the internal structure of the underlying materials. The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mountains. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a mean depth of about 0.7-0.8 m. The geophysical techniques that were used are shown to be successful in identifying pipes. GPR data suggest that the density of piping systems is much larger than that detectible from surface observations alone. Pipe length can be > 6.5-9.2% (maximum = 49%) higher than what surface mapping suggests. Thus, the significance of piping in hillslope hydrology and gully formation can be greater than previously assumed. These results also draw attention to the scale of piping activity in the Carpathians, where this process has been neglected for many years. The ERT profiles reveal areas affected by piping as places of higher resistivity values, which are an effect of a higher content of air-filled pores (due to higher soil porosity, intense biological activity, and well-developed soil structure). In addition, the ERT profiles show that the pipes in the study area develop at the soil-bedrock interface, probably above the layers of shales or mudstones which create a water restrictive layer

  15. Geochemical Characteristics and Significance of Major Elements, Trace Elements and REE in Mineralized Altered Rocks of Large-Scale Tsagaan Suvarga Cu-Mo Porphyry Deposit in Mongolia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization.The mineralized and altered zones from hydrothermal metallogenic center to the outside successively are Cu-bearing stockwork silicification zone, Cu-bearing argillized zone, Cu-Mo-bearing quartz-sericite alteration zone, Cu-Mo-bearing K-silicate alteration zone, and propylitization zone.The K-silicate alteration occurred in the early phase, quartz-sericite alteration in the medium phase, and argillization and carbonatization (calcite) in the later phase.Ore-bearing-altered rocks are significantly controlled by the structure and fissure zones of different scales, and NE- and NW-trending fissure zones could probably be the migration pathways of the porphyry hydrothermal system.Results in this study indicated that the less the concentrations of REE, LREE, and HREE and the more the extensive fractionation between LREE and HREE, the closer it is to the center circulatory hydrothermal ore-forming and the more extensive silicification.The exponential relationship between the fractionation of LREE and HREE and the intensity of silicification and K-silicate alteration was found in the Cu-Mo deposit studied.The negative Eu anomaly, normal Eu, positive Eu anomaly and obviously positive Eu anomaly are coincident with the enhancement of Na2O and K2O concentrations gradually, which indicated that Eu anomaly would be significantly controlled by the alkaline metasomatism of the circulatory hydrothermal ore-forming system.Therefore, such characteristics as the positive Eu anomaly, the obvious fractionation between LREE and HREE and their related special alteration lithofacies are suggested to be metallogenic prognostic and exploration indications for Tsagaan Suvarga-style porphyry Cu-Mo deposits in Mongolia and China.

  16. Investigation of guided wave propagation in pipes fully and partially embedded in concrete.

    Science.gov (United States)

    Leinov, Eli; Lowe, Michael J S; Cawley, Peter

    2016-12-01

    The application of long-range guided-wave testing to pipes embedded in concrete results in unpredictable test-ranges. The influence of the circumferential extent of the embedding-concrete around a steel pipe on the guided wave propagation is investigated. An analytical model is used to study the axisymmetric fully embedded pipe case, while explicit finite-element and semi-analytical finite-element simulations are utilised to investigate a partially embedded pipe. Model predictions and simulations are compared with full-scale guided-wave tests. The transmission-loss of the T(0,1)-mode in an 8 in. steel pipe fully embedded over an axial length of 0.4 m is found to be in the range of 32-36 dB while it reduces by a factor of 5 when only 50% of the circumference is embedded. The transmission-loss in a fully embedded pipe is mainly due to attenuation in the embedded section while in a partially embedded pipe it depend strongly on the extent of mode-conversion at entry to the embedded-section; low loss modes with energy concentrated in the region of the circumference not-covered with concrete have been identified. The results show that in a fully embedded pipe, inspection beyond a short distance will not be possible, whereas when the concrete is debonded over a fraction of the pipe circumference, inspection of substantially longer lengths may be possible.

  17. Corrosion behavior in heat pipe

    Directory of Open Access Journals (Sweden)

    Anurak Rodbumrung

    2016-01-01

    Full Text Available The aim of this study was to perform life testing and determine the effect of working fluid on the corrosion of a heat pipe with a sintered wick. The heat pipe was made from a copper tube. The inner heat pipe was filled with 99.97% pure copper powder as a dendritic for the sintering process. The heat pipe had an outer diameter of 6 mm with a length of 200 mm, and distilled water and ethanol were the working fluids. The operating temperature at the evaporator was 125°C. The analysis consisted of using a scanning electron microscope, energy dispersive X-ray spectrometry and atomic absorption spectroscopy. The results of the scanning electron microscope and energy dispersive X-ray spectrometry analysis showed that the corrosion of the heat pipe was uniform. The result of the atomic absorption spectroscopy indicated that the concentration of the copper in the ethanol as the working fluid was greater than in the distilled water as the working fluid, and the highest concentration of copper particles in the ethanol was 22.7499 ppm or 0.0409 mg after testing for 3000 h. The concentration of copper was higher when the length of the life test increased due to corrosion of the heat pipe.

  18. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  19. Some Comments on the Entropy-Based Criteria for Piping

    Directory of Open Access Journals (Sweden)

    Emöke Imre

    2015-04-01

    Full Text Available This paper is an extension of previous work which characterises soil behaviours using the grading entropy diagram. The present work looks at the piping process in granular soils, by considering some new data from flood-protection dikes. The piping process is divided into three parts here: particle movement at the micro scale to segregate free water; sand boil development (which is the initiation of the pipe, and pipe growth. In the first part of the process, which occurs during the rising flood, the increase in shear stress along the dike base may cause segregation of water into micro pipes if the subsoil in the dike base is relatively loose. This occurs at the maximum dike base shear stress level (ratio of shear stress and strength zone which is close to the toe. In the second part of the process, the shear strain increment causes a sudden, asymmetric slide and cracking of the dike leading to the localized excess pore pressure, liquefaction and the formation of a sand boil. In the third part of the process, the soil erosion initiated through the sand boil continues, and the pipe grows. The piping in the Hungarian dikes often occurs in a two-layer system; where the base layer is coarser with higher permeability and the cover layer is finer with lower permeability. The new data presented here show that the soils ejected from the sand boils are generally silty sands and sands, which are prone to both erosion (on the basis of the entropy criterion and liquefaction. They originate from the cover layer which is basically identical to the soil used in the Dutch backward erosion experiments.

  20. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  1. Growth of centimeter-scale atomically thin MoS{sub 2} films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Gene; Venkata Subbaiah, Y. P.; Prestgard, Megan C.; Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-05-01

    We are reporting the growth of single layer and few-layer MoS{sub 2} films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS{sub 2} target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10{sup −6} Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS{sub 2} target by 50 laser pulses (energy density: 1.5 J/cm{sup 2}) was found to result in the formation of a monolayer of MoS{sub 2} as shown by AFM results. In the Raman spectrum, A{sub 1g} and E{sup 1}{sub 2g} peaks were observed at 404.6 cm{sup −1} and 384.5 cm{sup −1} with a spacing of 20.1 cm{sup −1}, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS{sub 2} exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS{sub 2} films were prepared. It was found that as the number of monolayers (n) in the MoS{sub 2} films increases, the spacing between the A{sub 1g} and E{sup 1}{sub 2g} Raman peaks (Δf) increases following an empirical relation, Δf=26.45−(15.42)/(1+1.44 n{sup 0.9}) cm{sup −1}.

  2. Canonical Nonlinear Viscous Core Solution in pipe and elliptical geometry

    Science.gov (United States)

    Ozcakir, Ozge

    2016-11-01

    In an earlier paper (Ozcakir et al. (2016)), two new nonlinear traveling wave solutions were found with collapsing structure towards the center of the pipe as Reynolds number R -> ∞ , which were called Nonlinear Viscous Core (NVC) states. Asymptotic scaling arguments suggested that the NVC state collapse rate scales as R - 1 / 4 where axial, radial and azimuthal velocity perturbations from Hagen-Poiseuille flow scale as R - 1 / 2, R - 3 / 4 and R - 3 / 4 respectively, while (1 - c) = O (R - 1 / 2) where c is the traveling wave speed. The theoretical scaling results were roughly consistent with full Navier-Stokes numerical computations in the range 105 NVC states for pipes with elliptical cross-section and identify similar canonical structure in these cases. National Science Foundation NSF-DMS-1515755, EPSRC Grant EP/1037948/1.

  3. The CAD System Development for Power Plants Pipe-Prefabrication

    Institute of Scientific and Technical Information of China (English)

    RUI Xiaoming; MA Zhiyong

    2006-01-01

    An intelligent design software system for the power station pipe-prefabrication (PPDS) has been developed in the paper, which is taking pipe material database as core and developed on the platform of AutoCAD and Borland C++.Whereas design and construction of power plants in China belong to different departments, the input and recognition problem of pipeline system disposition chart must be solved firstly for the prefabrication design. Based on AI technology, the model fast building subsystem (MFBS) was established for entering the 3-D pipeline graph data, so that the problems of reconstruction of pipeline digital model and computer identification of original 2-D design data can be solved. The optimization design scheme in the pipe-prefabrication process has been studied and also the corresponding algorithm put forward. The technique and system mentioned can effectively raise the pipe- prefabrication design quality and efficiency in the construction of large scale power plants, reduce the period of design and the waste of raw material. PPCADS has still offered the functions such as the construction design for pipeline prefabricated process, the detailing drawing for manufacturing pipe section and automatic generating the technical files for the completed project.

  4. Diffusive heat and mass transfer in oscillatory pipe flow

    Science.gov (United States)

    Brereton, G. J.; Jalil, S. M.

    2017-07-01

    The enhancement of axial heat and mass transfer by laminar flow oscillation in pipes with axial gradients in temperature and concentration has been studied analytically for the cases of insulated and conducting walls. The axial diffusivity can exceed its molecular counterpart by many orders of magnitude, with a quadratic scaling on the pressure-gradient amplitude and the Prandtl or Schmidt number, and is a bimodal function of oscillatory frequency: quasi-steady behavior at low frequencies and a power-law decay at high frequencies. When the pipe wall is conductive and of sufficient thickness, and the flow oscillation is quasi-steady, the axial diffusivity may be enhanced by a further factor of about ten as a result of increased radial diffusion, for liquid and gas flows in pipes with walls with a wide range of thermal conductivities. Criteria for the wall thickness required to achieve this additional enhancement and for the limits placed on the validity of these solutions by viscous dissipation are also deduced. When the heat transfer per unit flow work achieved by oscillatory pipe flow is contrasted with that of a conventional parallel-flow heat exchanger, it is found to be of comparable size and the ratio of the two is shown to be a function only of the pipe geometry, heat-exchanger mean velocity, and fluid viscosity.

  5. Positron emission tomography in pebble beds. Part 1: Liquid particle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Ludwig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Kulenkampff, J.; Gründig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Franke, K. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy (IRP), Permoserstraße 15, 04318 Leipzig (Germany); Lippmann-Pipke, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2014-02-15

    Highlights: • Particle deposition in a pebble bed was recorded by positron emission tomography. • The particles were radioactively labelled and their spatial distribution was recorded. • Particle deposition was mainly driven by particle inertia and turbulent dispersion. • Particle deposits form hot spots on the upstream face of the single pebbles. - Abstract: Accidental scenarios such as the depressurisation of the primary circuit of high temperature gas cooled pebble bed reactors may lead to the release of fission products via the discharge of radioactive graphite dust. For a detailed source term assessment in such accident scenarios knowledge of the flow mechanics of dust transport in complex coolant circuit components, like pebble beds, recuperator structures and pipe systems is necessary. In this article an experimental study of aerosol deposition in a pebble bed is described. We investigated the deposition of radiolabelled liquid aerosol particles in a scaled pebble bed in an air-driven small-scale aerosol flow test facility under isothermal ambient conditions. The aerosol particles were generated by means of a condensational aerosol generator with potassium-fluoride (KF) condensation nuclei. Particle concentration measurements upstream and downstream of the pebble bed were performed by isokinetic sampling and particle counting. The results agree with typical deposition curves for turbulent and inertia driven particle deposition. Furthermore, positron emission tomography (PET) was performed to visualize and measure particle deposition distributions in the pebble bed. Results of a selected deposition experiment with moderately large particles (d{sub aero} = 3.5 μm, Re{sup ′}{sub pb}=2200) show that the deposited particles are located in the vicinity of the upstream stagnation points of the pebbles. These findings support the thesis that inertia driven particle deposition is predominating.

  6. Study of Straggling and Extreme Cases of Energy Deposition in Micron Scale Silicon Volumes using the DEPFET Detector

    CERN Document Server

    Wilk, Fabian; Schwenker, Benjamin

    The Depleted P-channel Field-Effect Transistor detector is a pixel detector type currently under development. In high energy physics, pixel detectors measure space points along the trajectory of charged particles. They determine the spatial position by measuring the charges created as a result of interactions with the passing particle. Thus the detector’s signals can be used to determine the energy deposited by the particle in single pixels of a pixel matrix. The development of a new detector raises the question whether our simulation models can accurately describe the physical processes – like ionisation and scattering – taking place during operation. The thesis aims to validate one of the current Monte-Carlo simulations (based on the Geant4 simulation package) of high energy straggling processes using experimental data of a test beam run of DEPFET modules. This is done by calculating the spatial distribution of the electron/hole pairs created in extreme cases of ionisation and using this distribution ...

  7. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    Science.gov (United States)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across

  8. Spatial distribution and reconstruction potential of Japanese anchovy (Engraulis japonicus) based on scale deposition records in recent anaerobic sediment of the Yellow Sea and East China Sea

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiansheng; SUN Yao; JIA Haibo; YANG Qian; TANG Qisheng

    2014-01-01

    Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. In order to understand the causes of variability in fish stocks (natural and/or anthropogenic) and calibrate the error between catches and standing stocks, it is essential to develop long-term time series of fish stocks from the time when human impacts are minimal or negligible. Well preserved fish scales from sediment record are regarded as useful indicators revealing the history of fish population dynamics over the last centuries. Anchovy scales was first analyzed over the Yellow Sea and East China Sea and the largest abundance was found in the central South Yellow Sea where is regarded as the largest overwintering ground for Japanese anchovy (Engraulis japonicas). Thus in the central South Yellow Sea, two cores covering the last 150 years were collected for estimating fish scale flux. The scale deposition rate (SDR) records show that the decadal scale SDRs were obviously coherent between cores with independent chronologies. Thecalibration of downcore SDRs to the standing stocks of anchovy further validated that SDR is a reliable proxy to recon-struct the long-term anchovy population dynamic in the central South Yellow Sea where anoxic conditions prevail in the sediment. When assembled with other productivity proxies, it would be expected that SDR could be associated with changes in oceanic productivity and may make a contribution to determine the forcing factors and elucidate the mechanism of the process in future.

  9. Micrometer scale carbon isotopic study of bitumen associated with Athabasca uranium deposits: Constraints on the genetic relationship with petroleum source-rocks and the abiogenic origin hypothesis

    Science.gov (United States)

    Sangély, L.; Chaussidon, M.; Michels, R.; Brouand, M.; Cuney, M.; Huault, V.; Landais, P.

    2007-06-01

    In situ analytical techniques - Fourier transform infrared microspectroscopy (μFTIR) and ion microprobe - have been used to unravel the origin of solid bitumen associated with the uranium deposits of Athabasca (Saskatchewan, Canada). Both aliphaticity and carbon isotopic compositions within the samples are heterogeneous but spatially organized in concentric zonations at the micrometer scale. Finally, the δ13C values are positively correlated to the aliphatic contents over an extremely large isotopic range from ˜ - 49‰ to ˜ - 31‰. We infer that this positive correlation may be related to the carbon isotopic fractionations associated with the synthesis of bitumen through the catalytic hydrogenation of CO 2, rather than the result of pre-existing petroleum product precipitation and/or alteration (such as radiolysis). This explanation is consistent with (i) published results of abiogenic synthesis experiments, in which the differences in δ13C values between saturated and unsaturated hydrocarbons range from + 2 and + 19‰, in contrast to the differences systematically observed in conventional bitumen and petroleum ranging from 0‰ to - 4‰; (ii) the absence of a similar positive correlation between aliphatic contents and δ13C values in the other bitumen analyzed in the present study, for which a biogenic origin has been unequivocally established (samples from Oklo, Gabon, and Lodève, France, uranium deposits); (iii) the presence of CO 2 and H 2 in the gas-phase of fluid inclusions in the Athabasca uranium deposits, H 2 resulting from water radiolysis. The present results suggest that the δ13C vs. aliphaticity correlation could be used as a criterion to discriminate between abiogenic vs. biogenic origin of macromolecular organic matter.

  10. Atomic Layer Deposition of Titanium Oxide on Single-Layer Graphene: An Atomic-Scale Study toward Understanding Nucleation and Growth

    Science.gov (United States)

    2017-01-01

    Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble.

  11. From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes

    Science.gov (United States)

    Finstad, Anders G.; Andersen, Tom; Larsen, Søren; Tominaga, Koji; Blumentrath, Stefan; de Wit, Heleen A.; Tømmervik, Hans; Hessen, Dag Olav

    2016-08-01

    Increased concentrations of dissolved organic carbon (DOC), often labelled “browning”, is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover (“greening”), and this terrestrially fixed carbon represents another potential source for export of organic carbon to lakes and rivers. The impact of this greening on the observed browning of lakes and rivers on decadal time scales remains poorly investigated, however. Here, we explore time-series both on water chemistry and catchment vegetation cover (using NDVI as proxy) from 70 Norwegian lakes and catchments over a 30-year period. We show that the increase in terrestrial vegetation as well as temperature and runoff significantly adds to the reduced SO4-deposition as a driver of freshwater DOC concentration. Over extended periods (centuries), climate mediated changes in vegetation cover may cause major browning of northern surface waters, with severe impact on ecosystem productivity and functioning.

  12. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi

    2015-01-01

    Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides.

  13. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition.

    Science.gov (United States)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-01-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates.

  14. Atomic-Scale Kinetic Monte Carlo Simulation of {100}-Oriented Diamond Film Growth in C-H and C-H-Cl Systems by Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    安希忠; 张禹; 刘国权; 秦湘阁; 王辅忠; 刘胜新

    2002-01-01

    We simulate the { 100}-oriented diamond film growth of chemical vapour deposition (CVD) under different modelsin C-H and C-H-CI systems in an atomic scale by using the revised kinetic Monte Carlo method. The sirnulationresults show that: (1) the CVD diamond flm growth in the C-H system is suitable for high substrate temperature,and the flm surface roughness is very coarse; (2) the CVD diamond film can grow in the C-H-C1 system eitherat high temperature or at low temperature, and the film quality is outstanding; (3) atomic CI takes ala activerole for the growth of diamond film, especially at low temperatures. The concentration of atomic C1 should becontrolled in a proper range.

  15. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas--Implication from the highly precise and accurate ages of metal deposits

    Institute of Scientific and Technical Information of China (English)

    MAO; Jingwen; (毛景文); WANG; Yitian; (王义天); ZHANG; Zuoheng; (张作衡); YU; Jinjie; (余金杰); NIU; Baogui; (牛宝贵)

    2003-01-01

    Based on the summary of the highly precise datings of the metal deposits and related granitic rocks in North China craton and adjacent areas, such as the molybdenite Re-Os datings, 40Ar-39Ar datings of mica, K-feldspar and quartz, some Rb-Sr isochrons, and the SHRIMP zircon U-Pb dating and single grain zircon U-Pb dating, we suggest that the large-scale mineralization in North China craton and adjacent areas take place in three periods of 200-160Ma, 140Ma±, and 130-110Ma. Their corresponding geodynamic settings are proposed to be the collision orogenic process, transformation of the tectonic regime, and delamination of the lithosphere, respectively, in light of analyzing the Mesozoic geodynamic evolution in the North China craton.

  16. Development of Exterior Anti-corrosion Coating Production Line for Large Diameter Hot Bent Pipes

    Institute of Scientific and Technical Information of China (English)

    JiaoRuyi; ZhangYing

    2004-01-01

    The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti-corrosion method with cost efficiency, environment friendliness and stable coating quality. The quality of the coating on the bent pipe fully meets the requirements of the current national and industrial standards. The application of the technology has filled the gap in the bent pipe anti-corrosion coating area of China, and leads the world technologically. With this technology the coating quality of the bent pipe has greatly improved, resulting in significant social and economic benefits. With the use of the technology in various large scale pipeline projects such as the “West to East Gas Pipeline Project”, it will exhibite a greater potential in the future pipeline projects with a broad application prospect.

  17. Clastic pipe characteristics and distributions throughout the Colorado Plateau: Implications for paleoenvironment and paleoseismic controls

    Science.gov (United States)

    Wheatley, D. F.; Chan, M. A.; Sprinkel, D. A.

    2016-10-01

    Clastic pipes occur throughout much of the Phanerozoic strata of the Colorado Plateau and provide a unique opportunity to test the validly of various deformation and triggering mechanism hypotheses in the context of their tectono-stratigraphic and paleoenvironmental settings. Pipes dominantly occur in Jurassic strata and preferentially in eolian (especially interdune), sabkha, and fluvial deposits because these sediments contained interbedded fine-grained and water-saturated, high-porosity, coarse-grained facies. The greatest geographic concentrations of pipes occur in three trends: (1) a northeast trend from the Lake Powell to Moab areas of southern and southeastern Utah, (2) an east-west trend in northern Arizona within and north of the Grand Canyon, and (3) a west-northwest-east-southeast trend along Interstate 40 west of Albuquerque, New Mexico. Many pipes formed due to liquefaction and fluidization and were potentially triggered by seismic activity originating from basement-cored uplifts within the Colorado Plateau, although other trigger mechanisms cannot be completely eliminated. Some breccia pipes within northern Arizona that are rooted in karst are the exception to this interpretation. Pipes possess unique depositional and triggering requirements and thus provide an excellent opportunity to understand the interplay of sedimentology and tectonics within continental systems.

  18. Analytical study on creep behavior of a tube of coolant piping system in nuclear power plant. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Noriyuki [Kyushu Univ., Fukuoka (Japan); Hagihara, Seiya [Saga Univ., Saga (Japan); Chino, Eiichi; Maeda, Akio [MRI Systems Inc., Tokyo (Japan); Maruyama, Yu; Hashimoto, Kazuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    During severe accident of a light water reactor (LWR), reactor coolant piping would be damaged when the piping is subjected to high internal pressure and very high temperature due to heat transfer from high-temperature gas and decay heat from wall-deposited fission product (FP), both from degraded core. In such a case, high-temperature fast creep deformation could be the main cause for the pipe failure. For the evaluation of piping integrity during severe accidents, a method to predict such high-temperature fast creep deformation should be developed, using a creep constitutive equation considering tertiary creep behavior which has not been considered well in the pipe failure analyses. In this study, a creep constitutive equation was developed first based on the Kachanov-Ravotnov isotropic damage rule that considers the tertiary creep behavior. JAERI creep tensile test data for both nuclear-grade cold-drawn SUS316N and hot-extruded SUS316 materials were used to determine coefficients of the developed constitutive equation. Using the developed constitutive equation, finite element analyses were performed for local creep deformation of coolant piping under two temperature conditions: uniform temperature and temperature gradient. The analytical results indicated the damage variable being integrated following the evolution of creep damage can indicate pipe wall internal damage condition quantitatively. The damage variable was confirmed further to be able to reproduce the observation in JAERI piping failure tests, that is, pipe failure from the wall outside. (author)

  19. Finite element thermal analysis of the fusion welding of a P92 steel pipe

    Directory of Open Access Journals (Sweden)

    A. H. Yaghi

    2012-05-01

    Full Text Available Fusion welding is common in steel pipeline construction in fossil-fuel power generation plants. Steel pipes in service carry steam at high temperature and pressure, undergoing creep during years of service; their integrity is critical for the safe operation of a plant. The high-grade martensitic P92 steel is suitable for plant pipes for its enhanced creep strength. P92 steel pipes are usually joined together with a similar weld metal. Martensitic pipes are sometimes joined to austenitic steel pipes using nickel based weld consumables. Welding involves severe thermal cycles, inducing residual stresses in the welded structure, which, without post weld heat treatment (PWHT, can be detrimental to the integrity of the pipes. Welding residual stresses can be numerically simulated by applying the finite element (FE method in Abaqus. The simulation consists of a thermal analysis, determining the temperature history of the FE model, followed by a sequentially-coupled structural analysis, predicting residual stresses from the temperature history.

    In this paper, the FE thermal analysis of the arc welding of a typical P92 pipe is presented. The two parts of the P92 steel pipe are joined together using a dissimilar material, made of Inconel weld consumables, producing a multi-pass butt weld from 36 circumferential weld beads. Following the generation of the FE model, the FE mesh is controlled using Model Change in Abaqus to activate the weld elements for each bead at a time corresponding to weld deposition. The thermal analysis is simulated by applying a distributed heat flux to the model, the accuracy of which is judged by considering the fusion zones in both the parent pipe as well as the deposited weld metal. For realistic fusion zones, the heat flux must be prescribed in the deposited weld pass and also the adjacent pipe elements. The FE thermal results are validated by comparing experimental temperatures measured by five thermocouples on the

  20. Flat heat pipe design, construction, and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  1. Osmotically driven flows and maximal transport rates in systems of long, linear porous pipes

    CERN Document Server

    Rademaker, Hanna; Bohr, Tomas

    2016-01-01

    We study the flow of water and solutes in linear cylindrical pipes with semipermeable walls (membranes), driven by concentration differences across the membranes, inspired by the sieve tubes in conifer needles. The aim is to determine the efficiency of such systems. For single pipes, we assume that the velocity at the entrance (the tip of the needle) is zero, and we determine the velocity profile throughout the pipe and the outflow at the end of the pipe, where the pressure is specified. This is done for the particular case where the concentration of the solute is constant inside the pipe, and it is shown that the system has a characteristic length scale $L_{\\text{eff}}$ depending on the pipe radius, the permeability of the wall and the viscosity of the fluid such that pipes with lengths $L \\gg L_{\\text{eff}}$ will contain a stagnant zone from the entrance, where the velocity is very small. The outflow comes from a region of length $L_{\\text{eff}}$ near the end, and the increase of velocity, if the pipe is ma...

  2. Perceptions of Turkish University Students about the Effects of Water Pipe Smoking on Health.

    Science.gov (United States)

    Sahin, Sevil; Cinar, Nursan

    2015-01-01

    The popularity of the water pipe, also referred to as hookah, narghile, shisha or hubble-bubble, has increased tremendously during the past few decades. This study was conducted to determine student water pipe smoking status and perceptions about the effects of water pipe smoking on health in a state university in Ankara. This cross-sectional study was conducted between September 2014 and January 2015. The data were collected with a questionnaire and "The Scale of Perception about the Effects of Water Pipe Smoking on Health". The data obtained were evaluated in IBM SPSS (version 20.0) statistical package program in computer. One-way analysis of variance (ANOVA) was used for the analyses by checking homogeneity of variances and Student's t-test. Values of pPerception about the effects of water pipe smoking on health and gender variable, the scores obtained by the females students were higher than those of the male students with a statistically significant difference (t=7.525, puniversity students have wrong knowledge on the dangers of water pipe smoking. There was a high prevalence of using water pipes among university students. Gender significantly affected the perceptions about the effect of water pipe smoking on health in our sample.

  3. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    Science.gov (United States)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  4. Capillary layer structure effect upon heat transfer in flat heat pipes

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    The research presented in this paper aimed to determine the maximum heat transfer a heat pipe can achieve. To that purpose the structure of the capillary layer which can be deposited on the walls of the heat pipe was investigated. For the analysis of different materials that can produce capillarity, the present study takes into account the optimal thickness needed for this layer so that the accumulated fluid volume determines a maximum heat transfer. Two materials that could be used to create a capillary layer for the heat pipes, were investigated, one formed by sintered copper granules (the same material by which the heat pipe is formed) and a synthetic material (cellulose sponge) which has high absorbing proprieties. In order to experimentally measure and visualize the surface characteristics for the considered capillary layers, laser profilometry was employed.

  5. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a.... If the covering of the piping is not removed, the test pressure shall be maintained on the piping...

  6. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Qualification of Pipe B Appendix B to Part 192... Pipe I. Listed Pipe Specifications API 5L—Steel pipe, “API Specification for Line Pipe” (incorporated by reference, see § 192.7). ASTM A53/A53M—Steel pipe, “Standard Specification for Pipe, Steel Black...

  7. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  8. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Ki; Lee, Young-Hie, E-mail: yhlee@kw.ac.kr [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); Lee, Seung-Hwan [Department of Electronics Materials Engineering, Kwangwoon University, Seoul (Korea, Republic of); R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); In Kim, Soo; Woo Lee, Chang [Department of Nano and Electronic Physics, Kookmin University, Seoul (Korea, Republic of); Rag Yoon, Jung [R and D Center, Samwha Capacitor, Yongin (Korea, Republic of); Lee, Sung-Gap [Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University, Jinju (Korea, Republic of)

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  9. 46 CFR 169.652 - Bilge piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge piping. 169.652 Section 169.652 Shipping COAST... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... than 120 feet in length the bilge pipe must be not less than one and one-half inches. Piping on...

  10. China Steel Pipes Demand Rising Steadily

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Steel pipes industry is an industry to play a decisive role in the national economic development. During the Tenth Five-Year Plan period, the steel pipes output has been increased distinctly. Based on experts forecast,the steel pipes demand in China will still be in tendency of increase during the Eleventh FiveYear Plan period, which will doubtlessly bring new opportunity and challenge to the steel pipes enterprises in China.

  11. 46 CFR 76.15-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.15-15 Section 76.15-15 Shipping COAST GUARD... Extinguishing Systems, Details § 76.15-15 Piping. (a) The piping, valves, and fittings shall have a bursting pressure of not less than 6,000 p.s.i. (b) All piping, in nominal sizes not over 3/4 inch, shall be...

  12. Assessment of the integrity of welded pipes

    OpenAIRE

    Šarkoćević, Živče; Arsić, Miodrag; Sedmak, Aleksandar; MEĐO, Bojan; Mišić, Milan; id_orcid 0000-0003-0550-1851

    2014-01-01

    The subject of the paper is analysis of the integrity of welded pipes made of API J55 steel by high frequency contact welding (HF). Experimental research on the mechanical properties of the base material was conducted on pipes withdrawn from exploatation after 70 000 hours at service. Defect influence of the surface crack on the integrity of pipes was tested using hydrostatic pressure of pipes with axial surface crack in the base material. Fracture behaviour was tested using modified compact ...

  13. BIMORPH PIEZOELECTRIC ACTUATOR FOR SMALL PIPE ROBOT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experimental bimorph piezoelectric element (PZT) actuator for small pipe robot is developed. The robotcan move in φ 20 mm pipe, and can carry a CCD camera for detecting cracks or fine holes on inner surface of pipe. Thevelocity of the robot can reach 17~22 mm/s for vertical pipe up/down, respectively. Moving principle and its perfor-mance characteristics are presented.

  14. Analysis of Municipal Pipe Network Franchise Institution

    Science.gov (United States)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  15. Thermal Performance of a Heat Pipe for Hybrid Control Rod in Advanced In-core Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    In this research, an innovative hybrid heat pipe system is designed for advanced in-core decay heat removal concept. Heat pipe is a device that transfer heat from pipe's hotter end to the colder end by phase change and convection of working fluid. The concept of the hybrid heat pipe system is that the control rod can have not only the original function of neutron absorber but also the function of the heat removal. If the function of heat pipe is applied to the control rods, the limited heat removal capacity can be extended because control rods are inserted to the reactor at initial state of accident using gravitational force. The neutron absorber-based heat pipe is designed to apply them to nuclear systems. However, thermosyphon and heat pipe are competitive as passive decay heat removal device in large scale. Thus, stainless steel 316L thermosyphon and heat pipe having sheath outer diameter of 3/4 inch (17.4 mm inner diameter), and the length of 1000 mm were tested. Effects on whether there is a wick structure on the heat pipe or not on the heat removal capacity were studied. To confirm the heat removal capacity of heat pipe, and heat transfer coefficient were measured for each specimen.

  16. Three-Dimensional, Multi-scale, and Multi-variance Dispersivity Upscaling for Hierarchical Sedimentary Deposit using Parallel Computing

    Science.gov (United States)

    Zhang, M.; Zhang, Y.; Lichtner, P. C.

    2013-12-01

    A high-resolution non-stationary hydraulic conductivity (K) model, or a fully heterogeneous (FHM), is generated from an experimental stratigraphy which exhibits realistic sedimentary heterogeneity at multiple scales. Based on this model, a set of hierarchical hydrostratigraphic models (HSMs) with decreasing heterogeneity resolutions are created. These models contain 8, 3, and 1 stratigraphic unit(s), respectively, that are irregular in shape and hierarchical in structure. For all models, increasing system ln(K) variances - 0.1, 1.0, 4.5 - are tested, leading to a suite of 12 conceptual aquifer models. Using a numerical upscaling technique, equivalent K tensors are first computed for each unit of the HSMs. For all the variances tested, significant accuracy is achieved with the upscaled K in terms of capturing both the hydraulic head and flow connectivity of the FHM, i.e., mean relative error in head predictions ranging from 1% to 10% (higher error correlates to higher variances). Among the HSMs, the 8-unit model, given its higher stratigraphic resolution, is always the most accurate flow predictor. The same suite of HSMs is then subject to a novel dispersivity scaling analysis whereas upscaled dispersivities are computed with both stochastic and deterministic methods. For this analysis, a parallel random walk particle tracking code (RWPT), which accounts for the divergence of the dispersion tensors, is developed and verified with 100,000 particles (Zhang & Zhang, 2013). This new code leads to significantly improved accuracy and efficiency in modeling transport. Interestingly, for all the HSMs, at all the variances tested, the effect of divergence of the dispersion coefficient on solute plume migration and its spatial moments is negligible, suggesting that this term can be neglected in future simulations. When comparing the transport prediction of the FHM against those of the HSMs with upscaled dispersivities, plume trajectory, breakthrough curve, and the arrival

  17. Smoking water pipe is injurious to lungs

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  18. 46 CFR 108.449 - Piping tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests. (a... piping installation. (b) When tested with CO2 or other inert gas under a pressure of 70 kilograms...

  19. 14 CFR 29.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  20. 46 CFR 76.10-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.10-15 Section 76.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 76.10-15 Piping. (a) All piping, valves, and fittings shall meet the applicable requirements...

  1. 49 CFR 195.128 - Station piping.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Station piping. 195.128 Section 195.128 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.128 Station piping. Any pipe to be installed in a station that...

  2. 46 CFR 193.10-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Piping. 193.10-15 Section 193.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 193.10-15 Piping. (a) All piping, valves, and fittings, shall meet...

  3. 46 CFR 95.10-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.10-15 Section 95.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-15 Piping. (a) All piping, valves, and fittings shall meet the...

  4. 14 CFR 25.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 25.1123 Section 25.1123... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant and auxiliary power unit installations, the following apply: (a) Exhaust piping must be heat...

  5. 46 CFR 132.110 - Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 132.110 Section 132.110 Shipping COAST GUARD....110 Piping. (a) Except as provided for liftboats by § 134.180 of this subchapter, each fitting, flange, valve, and run of piping must meet the applicable requirements of part 128 of this subchapter....

  6. Thermodynamic aspects of heat pipe operation

    Science.gov (United States)

    Richter, Robert; Gottschlich, Joseph

    1990-01-01

    An expanded heat pipe operating model is described which includes thermodynamic and heat transfer considerations to reconcile disparities between actual and theoretical heat pipe performances. The analysis shows that thermodynamic considerations can explain the observed heat pipe performance limitations. A full understanding of thermodynamic processes could lead to advanced concepts for thermal transport devices.

  7. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  8. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  9. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe...

  10. 46 CFR 76.25-30 - Piping.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where...

  11. 33 CFR 127.1101 - Piping systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Piping systems. 127.1101 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems. Each piping system within the marine transfer area for LHG used for the transfer of LHG must meet the...

  12. 46 CFR 56.10-5 - Pipe.

    Science.gov (United States)

    2010-10-01

    ...) Ferrous pipe. ASTM Specification A 53 (incorporated by reference, see § 56.01-2) furnace welded pipe shall... found from Table 56.60-1(a). (3) Copper-nickel alloys may be used for water and steam service within the... specifically permitted by this part. (6) Aluminum-alloy pipe or tube along with similar junction equipment may...

  13. Investigation of guided waves propagation in pipe buried in sand

    Energy Technology Data Exchange (ETDEWEB)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  14. This is not a Pipe

    DEFF Research Database (Denmark)

    Just, Sine Nørholm

    2016-01-01

    or unwilling to listen to, let alone engage with, emotionally guided bottom-up participation. Using an illustrative case of a Danish public debate over an alleged ban on liquorice pipes, this article argues that the disconnect between invitation and participation may be explained by the fact...

  15. Investigation of sand in piping

    Directory of Open Access Journals (Sweden)

    Nađ Laslo

    2012-01-01

    Full Text Available For the investigation of the grain size distribution of the material washed out from the piping, we used 20 samples originating from different places on the Danube and the Tisza rivers. The grading characteristics of these samples were investigated based on selected grain sizes and the uniformity of gradients. Based on the investigations it has become possible to identify which grain size fractions are likely to be washed out, and how to characterize those fractions. Based on the grain size distribution curves it has been made possible to define the boundaries of the zone susceptible to piping. The zone limits of granular soils liquefied by earthquakes and the zone limits of the soil out washed from piping are very similar. This apparent correspondence already formerly raised the hypothetic question of whether piping occurring during high flood can be simulated by shape to similar surface liquefaction phenomena experienced during earthquakes, as in both cases a volcanic cone is formed through the crater of which water is constantly issuing, dragging away solid particles.

  16. Localized turbulence in pipe flow

    NARCIS (Netherlands)

    Kuik, D.J.

    2011-01-01

    In this thesis the transition to turbulence in pipe flow is investigated. At low Reynolds numbers, the flow returns to the laminar state spontaneously. At high Reynolds number a small perturbation causes the flow to suddenly become turbulent. In the intermediate regime localized turbulence is observ

  17. Methods for Analyzing Pipe Networks

    DEFF Research Database (Denmark)

    Nielsen, Hans Bruun

    1989-01-01

    to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...

  18. Spinning pipe gas lens revisited

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-01-01

    Full Text Available The graded index (GRIN-like) medium generated by gas inside a heated steel pipe when rotated about its longitudinal axis has the ability to focus a laser beam. While the effective focal length of such a system has previously been studied...

  19. Characterization of the excavation disturbance caused by boring of the experimental full scale deposition holes in the Research Tunnel of Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J. [Saanio and Riekkola Oy, Helsinki (Finland)

    1997-09-01

    Three holes, the size of deposition holes, were bored in the Research Tunnel using a novel full-face boring technique. During the boring test, procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. Evaluation of the quality of the hole included studies of the geometry of the holes, measurements of surface roughness using a laser profilometer, rock mechanical determinations and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, the He-gas method and the {sup 14}C-polymethylmethacrylate ({sup 14}C-PMMA) method. It was found that there is a distinct disturbed zone adjacent to the surface of the full scale deposition holes which can be divided into three different zones. The zones are as follows: a crushed zone penetrating to a depth of about 3 mm from the surface, a fractured zone extending to a depth of 6 - 10 mm from the crushed zone and a micro fractured zone extending to a depth of 15 - 31 mm from the fractured zone. The porosity of the rock in the disturbed zone measured using the {sup 14}C-PMMA method was clearly greater than the porosity of undisturbed rock to a depth of about 11 mm. The values of permeability and effective diffusion coefficient in the disturbed zone measured in a direction perpendicular to the disturbed surface were found to be approximately one order of magnitude larger than those of undisturbed rock. The degree of disturbance was found to be greater where higher levels of thrust had been employed during the boring process. The results obtained also suggest that the disturbance caused by using 4- and 5-row cutters in the cutter head is more pronounced than the disturbance caused when using 5- and 6-row cutters 31 refs, 118 figs, 15 tabs

  20. Preliminary Design of IHTS Piping Support for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Hyun; Koo, Gyeong-Hoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A pipe support is a designed element that transfer the load from pipe to the supporting structures. Providing sufficient pipe wall thickness and installing proper supports are most important elements for structural integrity of the piping system. Piping supports are generally referred to as device used in supporting the weight of the piping. The weight includes that of the pipe proper, the content the pipe carries, and the pipe converting, such as insulation. A FE analysis was performed to select variable spring hanger of IHTS hot-leg piping for PGSFR. The calculated values will be used to design variable spring hanger.

  1. Identifying thermal cycling mechanisms in PWR branch line piping

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.T. [EPRI, Charlotte, NC (United States); Keller, J.D.; Bilanin, A.J. [Continuum Dynamics, Inc., Ewing, NJ (United States)

    2002-07-01

    Predicting the onset and the characteristics of thermal cycling in pressurized water reactor (PWR) branch line piping systems is critical to formulation of thermal fatigue screening tools. The complex nature of the underlying thermal-hydraulic phenomena, however, significantly complicates prediction using analytical models or direct numerical simulations. Instead, it is necessary to perform scaled experiments to identify the physical mechanisms and to gather data for formulation of semi-empirical models for the thermal cycling phenomena. Through the EPRI Materials Reliability Program a test program is underway to identify and develop semi-empirical correlations for the physical thermalhydraulic mechanisms that cause thermal cycling in dead-ended PWR branch line piping systems. Three series of tests are being performed in this test program: configuration tests on a representative up-horizontal (UH) branch line piping geometry, configuration tests on a representative down-horizontal (DH) branch line piping geometry, and high Reynolds number tests to assess penetration of secondary flow structures into a dead-ended branch line. Results from UH and DH configuration tests indicate that random turbulence penetration is not sufficient for thermal cycling to occur. Rather a swirling flow structure, representative of a large, 'corkscrew' vortical structure, is required for thermal cycling. Scale tests on the UH configuration have simulated cycling phenomena observed in full-scale plant data and have been used to determine parametric sensitivities in formulating a predictive model for the thermal cycling. Data indicate that the mechanism for thermal cycling in UH configurations is stochastic but scales with the leak rate from the valve. The critical dependent variables are reduced to several non-dimensional scaling curves, resulting in a semiempirical predictive model. This paper discusses the test program and the results obtained to date. Application of these

  2. Fossil Fumarolic Pipes in the Tshirege Member of the Bandelier Tuff

    Science.gov (United States)

    Caporuscio, F. A.; Gardner, J. N.; Schultz-Fellenz, E. S.; Lewis, C. J.; Kelley, R. E.; Greene, M. K.

    2008-12-01

    The geology exposed on the walls (3000 m2) of a large pit in the Bandelier Tuff gives unparalled 3-D exposures of many structures that develop in thick deposits of pyroclastic flows. Subunits of the Tshirege Member of the Bandelier Tuff, erupted at 1.25 Ma, exhibit distinct rubble-filled fissures, or pipes, that range in width from centimeters to meters. The fissures exhibit zones of fines depletion, indurated wall structures, upward flaring geometry to the top of the host unit, and fissure-filling blocks of the host unit as well as rubble derived from overlying pyroclastic units. In the units directly overlying the fissures are intensely fractured in- place rubble zones. Additionally, the fissures appear to be regularly spaced at about 4.5 or 7.5 meters apart. All these field characteristics are indicative of fumarolic activity. Petrographic, XRD, and XRF studies of distinct pipes were done to investigate the physical changes imparted to the tuff by the fumarolic activity. Petrography indicates that the pipe wall and pipe centers are enriched in tridymite and potassium feldspar. These minerals fill the void spaces in pumice and groundmass void spaces of the pipe wall rocks, imparting the indurated nature. Other mineralogic indicators of late stage fumarolic gas phase deposition are optically continuous, feathery overgrowths on sanidine phenocrysts and scapolite in pipe centers. Also, clinopyroxenes in the overlying rubble zones have oxidized rims indicative of highly oxidizing gases emanating from the fumarolic pipes below. XRD analyses of rubble zones above the pipes show decreased cristobalite (4 wt. %) and feldspar (9 wt. %), and increased clay contents (12 to 26 wt. %). This change from feldspar and cristobalite to clay suggests an acidic nature of fumarolic gases. XRF analyses show trends in bulk chemistry consistent with fumarolic data from other tuffs. The data indicate that there have been systematic changes in the geochemistry of the fissures readily

  3. Underground pipe inspection device and method

    Science.gov (United States)

    Germata, Daniel Thomas [Wadsworth, IL

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  4. Vortex breakdown in simple pipe bends

    Science.gov (United States)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  5. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    Directory of Open Access Journals (Sweden)

    Hideharu Shimizu, Shuji Nagano, Akira Uedono, Nobuo Tajima, Takeshi Momose and Yukihiro Shimogaki

    2013-01-01

    Full Text Available Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs, with a low dielectric constant (k-value and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  6. Five layers in a turbulent pipe flow

    Science.gov (United States)

    Lee, Jinyoung; Ahn, Junsun; Sung, Hyung Jin

    2016-11-01

    The scaling laws governing the five layers of the mean velocity distribution of a turbulent pipe flow were characterized using the available DNS data (Reτ = 544 , 934, 3008). Excluding the very near-wall and core regions, the buffer, meso- and log layers were identified by examining the streamwise mean momentum equation and the net force spectra. The (outer) log layer was located in the overlap region where the viscous force was negligible. Another (inner) log layer was observed in the buffer layer, in which the viscous force was directly counterbalanced by the turbulent inertia. A meso-layer between the buffer and outer log layers was found to feature viscous effects. The acceleration force of the large-scale motions (LSMs) penetrated the outer log layer at higher Reynolds numbers, as observed in the net force spectra. The acceleration force of the LSMs became strong and was counterbalanced by the deceleration force of the small-scale motions (SSMs), indicating that the inner and outer length scales contributed equally to the meso-layer. The outer log layer was established by forming an extended connection link between the meso- and outer layers. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  7. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  8. Condensation pool experiments with steam using DN200 blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. [Lappeenranta Univ. of Technology (Finland)

    2005-08-01

    This report summarizes the results of the condensation pool experiments with steam using a DN200 blowdown pipe. Altogether five experiment series, each consisting of several steam blows, were carried out in December 2004 with a scaled-down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to increase the understanding of different phenomena in the condensation pool during steam discharge. (au)

  9. Atomic scale modelling of nanosize Ni sub 3 Al cluster beam deposition on Al, Ni and Ni sub 3 Al (1 1 1) surfaces

    CERN Document Server

    Kharlamov, V S; Hou, M

    2002-01-01

    The slowing down of Ni sub 3 Al clusters on a Al, Ni and Ni sub 3 Al (1 1 1) surfaces is studied by atomic scale modelling. The semi-grand canonical metropolis Monte Carlo is used for the preparation of isolated clusters at thermodynamic equilibrium. The cluster deposition on the surface is studied in detail by classical Molecular Dynamics simulations that include a model to account for electron-phonon coupling. Long- and short-range orders in the cluster are evaluated as functions of temperature in an impact energy range between 0 and 1.5 eV/atom. The interaction between the Ni sub 3 Al cluster and an Al surface is characterised low short range (chemical) disorder. No sizeable epitaxy is found, subsequent to the impact. In contrast, in the case of Ni and Ni sub 3 Al substrates, which are harder materials than aluminium, the chemical disorder is higher and epitaxial accommodation is possible. With these substrates, chemical disorder in the cluster is an increasing function of the impact energy, as well as of ...

  10. A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran

    Science.gov (United States)

    Abedi, Maysam; Mostafavi Kashani, Seyed Bagher; Norouzi, Gholam-Hossain; Yousefi, Mahyar

    2017-04-01

    In this paper, an application of a knowledge-driven mineral prospectivity mapping (MPM) approach so-called ;the evidential belief functions (EBFs) using Dempster-Shafer's rule of combination; is proposed. This technique is used to weight and integrate a large scale exploration dataset in order to localize prospects for definition of further exploration drilling sites. In this study, exploration datasets of Seridune copper deposit in the Kerman province, SE Iran used for the methodology. In this regard, geophysical evidence layers extracted from interpretation of magnetic and electrical surveys, geological evidence layers derived via the geological datasets (i.e. lithology, fault and alteration), and geochemical evidence maps were generated and integrated for MPM. Furthermore, various MPM approaches including outranking, index overlay and fuzzy logic methods were examined for comparison with the introduced method. To evaluate and compare the efficiency of the methods, the productivity of the drilled boreholes (Cu concentration multiplied by its ore thickness along each drilled borehole) was used to validate the generated prospectivity models. The results showed higher efficiency of the Dempster-Shafer's model in comparison with the prospectivity models generated using other MPM approaches.

  11. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  12. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Ginige, Maneesha P; Wylie, Jason; Plumb, Jason

    2011-02-01

    Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (∼1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall

  13. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Volk; Cem Sarica

    2003-10-01

    -Phase Studies, with a focus on heat transfer and paraffin deposition at various pipe inclinations, which will be used to enhance the paraffin deposition code for gas-liquid flow in pipes. (3) Deposition Physics and Water Impact Studies, which will address the aging process, improve our ability to characterize paraffin deposits and enhance our understanding of the role water plays in paraffin deposition in deepwater pipelines. As in the previous two studies, knowledge gained in this suite of studies will be integrated into a state-of-the-art three-phase paraffin deposition computer program.

  14. Effects of copper(II) and copper oxides on THMs formation in copper pipe.

    Science.gov (United States)

    Li, Bo; Qu, Jiuhui; Liu, Huijuan; Hu, Chengzhi

    2007-08-01

    Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu(2)O, CuO and Cu(OH)(2) or CuCO(3). Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu(2)O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7.

  15. CFD simulation for atomic layer deposition on large scale ceramic membranes%大尺寸陶瓷膜原子层沉积过程的CFD模拟

    Institute of Scientific and Technical Information of China (English)

    朱明; 汪勇

    2016-01-01

    Ceramic membranes are widely used in liquid filtration for their superior chemical resistance, temperature stability and mechanical robustness. Their performance can be further improved by surface modifications, such as liquid phase reactions, which are typically too complicated to control. Atomic layer deposition (ALD), a deposition technique of self-limiting gas/solid phase chemical reactions for growing atomic scale thin films, has been extremely useful for precisely regulating nanoscale pore structures, especially modification and functionalization of porous separation membranes. Most existing ALD equipment are designed for silicon wafer substrate in semiconductor industry, thus design optimization on ALD processes of both precursor flow and surface reactions are needed for application in large-scale ceramic membranes. Computerized fluid dynamics (CFD) modeling was used to investigate ALD process on 1-meter-long single-channeled ceramic membrane by considering both boundary conditions and surface chemical reactions of two precursors pulsed alternatively into the channel. The simulations fitted well with the experimental data at average difference of 1.69% and thus an ALD model for two-way alternatively pulsed rotation was proposed, which would be very helpful in equipment design and process optimization of ALD for large scale ceramic membranes.%陶瓷膜具有耐高温、耐酸碱、强度高等优点,在液体分离领域得到了广泛应用。对陶瓷膜进行表面改性,可进一步提升其性能,但基于表面化学反应的改性方法工艺过程复杂,难于控制。原子层沉积(atomic layer deposition,ALD)是基于表面自限制化学反应过程的气固相薄膜沉积技术,可以在纳米尺度精确调控孔道结构,特别适用于多孔分离膜的改性和功能化。目前尚无适用于大尺寸陶瓷膜的ALD设备,需要对ALD过程进行专门的优化设计。通过CFD模型对1 m长的单通道陶瓷膜的ALD

  16. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750......-800 oC respectively. The deposit formation process was studied quantitatively though the mass uptake data from the load-cell of the probe, while camera pictures were used to qualitatively verify the obtained mass uptake data and to explain the deposit buildup/shedding mechanisms. The collected deposits...... along with the fly ash and bottom ash from the plant were characterized extensively by SEM-EDS, ICP-OES/IC and XRD. Based on the results from the present work, the deposit formation and shedding mechanisms under different operational conditions were proposed and discussed. The influence of coal ash...

  17. 46 CFR 154.310 - Cargo piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo piping systems. 154.310 Section 154.310 Shipping... Arrangements § 154.310 Cargo piping systems. Cargo liquid or vapor piping must: (a) Be separated from other piping systems, except where an interconnection to inert gas or purge piping is required by §...

  18. 46 CFR 154.500 - Cargo and process piping standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo and process piping standards. 154.500 Section 154... Equipment Cargo and Process Piping Systems § 154.500 Cargo and process piping standards. The cargo liquid and vapor piping and process piping systems must meet the requirements in §§ 154.503 through...

  19. 46 CFR 154.522 - Materials for piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Materials for piping. 154.522 Section 154.522 Shipping... Process Piping Systems § 154.522 Materials for piping. (a) The materials for piping systems must meet § 154.625 for the minimum design temperature of the piping, except the material for open ended...

  20. 46 CFR 119.730 - Nonferrous metallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nonferrous metallic piping materials. 119.730 Section... INSTALLATION Piping Systems § 119.730 Nonferrous metallic piping materials. (a) Nonferrous metallic piping materials are acceptable for use in the following: (1) Non-vital systems; (2) Aluminum fuel piping on...

  1. Evaluation of burst pressure prediction models for line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xian-Kui, E-mail: zhux@battelle.org [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States); Leis, Brian N. [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States)

    2012-01-15

    Accurate prediction of burst pressure plays a central role in engineering design and integrity assessment of oil and gas pipelines. Theoretical and empirical solutions for such prediction are evaluated in this paper relative to a burst pressure database comprising more than 100 tests covering a variety of pipeline steel grades and pipe sizes. Solutions considered include three based on plasticity theory for the end-capped, thin-walled, defect-free line pipe subjected to internal pressure in terms of the Tresca, von Mises, and ZL (or Zhu-Leis) criteria, one based on a cylindrical instability stress (CIS) concept, and a large group of analytical and empirical models previously evaluated by Law and Bowie (International Journal of Pressure Vessels and Piping, 84, 2007: 487-492). It is found that these models can be categorized into either a Tresca-family or a von Mises-family of solutions, except for those due to Margetson and Zhu-Leis models. The viability of predictions is measured via statistical analyses in terms of a mean error and its standard deviation. Consistent with an independent parallel evaluation using another large database, the Zhu-Leis solution is found best for predicting burst pressure, including consideration of strain hardening effects, while the Tresca strength solutions including Barlow, Maximum shear stress, Turner, and the ASME boiler code provide reasonably good predictions for the class of line-pipe steels with intermediate strain hardening response. - Highlights: Black-Right-Pointing-Pointer This paper evaluates different burst pressure prediction models for line pipes. Black-Right-Pointing-Pointer The existing models are categorized into two major groups of Tresca and von Mises solutions. Black-Right-Pointing-Pointer Prediction quality of each model is assessed statistically using a large full-scale burst test database. Black-Right-Pointing-Pointer The Zhu-Leis solution is identified as the best predictive model.

  2. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    Science.gov (United States)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  3. Piping inspection carriage having axially displaceable sensor

    Science.gov (United States)

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  4. Wave Propagation in Pipe-like Structures

    DEFF Research Database (Denmark)

    Morsbøl, Jonas

    Pipe-like shell structures are found in a wide range of practical applications such as: Wind turbine towers, jet engines, brass instruments, and piping systems. For many of these applications, structural vibrations play an important role for their performance. This thesis will in particular focus...... on how the curvature on a thin-walled pipe, as well as a changing radius along a straight thin-walled pipe, affects the waveguide properties. It shows that the waveguide properties of curved pipes roughly can be divided into three regimes: The curved beam regime, the cylinder regime, and the torus regime....... In the curved beam regime the waveguide properties of the pipe can be approximated by classical curved beam theory while in the cylinder regime they can be approximated by cylindrical shell theory. In the torus regime none of the two other regimes apply, and a full-blown shell model is needed. For the straight...

  5. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  6. Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop heat pipe and loop heat pipe (LHP) working fluids for what is known as the intermediate...

  7. The deposit size frequency method for estimating undiscovered uranium deposits

    Science.gov (United States)

    McCammon, R.B.; Finch, W.I.

    1993-01-01

    The deposit size frequency (DSF) method has been developed as a generalization of the method that was used in the National Uranium Resource Evaluation (NURE) program to estimate the uranium endowment of the United States. The DSF method overcomes difficulties encountered during the NURE program when geologists were asked to provide subjective estimates of (1) the endowed fraction of an area judged favorable (factor F) for the occurrence of undiscovered uranium deposits and (2) the tons of endowed rock per unit area (factor T) within the endowed fraction of the favorable area. Because the magnitudes of factors F and T were unfamiliar to nearly all of the geologists, most geologists responded by estimating the number of undiscovered deposits likely to occur within the favorable area and the average size of these deposits. The DSF method combines factors F and T into a single factor (F??T) that represents the tons of endowed rock per unit area of the undiscovered deposits within the favorable area. Factor F??T, provided by the geologist, is the estimated number of undiscovered deposits per unit area in each of a number of specified deposit-size classes. The number of deposit-size classes and the size interval of each class are based on the data collected from the deposits in known (control) areas. The DSF method affords greater latitude in making subjective estimates than the NURE method and emphasizes more of the everyday experience of exploration geologists. Using the DSF method, new assessments have been made for the "young, organic-rich" surficial uranium deposits in Washington and idaho and for the solution-collapse breccia pipe uranium deposits in the Grand Canyon region in Arizona and adjacent Utah. ?? 1993 Oxford University Press.

  8. Pipes under internal pressure and bending

    CERN Document Server

    Catinaccio, A

    2009-01-01

    This article covers the general behaviour of a straight uniform pipe, with built-in open ends, subject to internal pressure and in plane bending or curvature. It is intended as a summary of the basic equations driving the unintuitive phenomena of bending and instability of pipes under internal pressure. The analysis covers in addition the investigation of opposite pressure stabilisation effects that can be observed in some orthotropic material pipes like composite pressure hoses.

  9. Effect of Glass Reinforced Epoxy (GRE) pipe filled with Geopolymer Materials for Piping Application: Compression Properties

    OpenAIRE

    2016-01-01

    The aim of this paper is to achieve the highest compressive strength of glass reinforced epoxy pipe with the geopolymer filler content of weight percentage that were used in glass reinforced epoxy pipe. The samples were prepared by using the filament winding method. The effect of weight percentage of geopolymer materials in epoxy hardener was studied under mechanical testing, which is using the compression test. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled wi...

  10. Experimental study on rack cooling system based on a pulsating heat pipe

    Science.gov (United States)

    Lu, Qianyi; Jia, Li

    2016-02-01

    A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.

  11. Development of bore tools for pipe inspection

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Reactor (ITER), replacement and maintenance on in-vessel components requires that all cooling pipes connected be cut and removed, that a new component be installed, and that all cooling pipes be rewelded. After welding is completed, welded area must be inspected for soundness. These tasks require a new work concept for securing shielded area and access from narrow ports. Tools had to be developed for nondestructive inspection and leak testing to evaluate pipe welding soundness by accessing areas from inside pipes using autonomous locomotion welding and cutting tools. A system was proposed for nondestructive inspection of branch pipes and the main pipe after passing through pipe curves, the same as for welding and cutting tool development. Nondestructive inspection and leak testing sensors were developed and the basic parameters were obtained. In addition, the inspection systems which can move inside pipes and conduct the nondestructive inspection and the leak testing were developed. In this paper, an introduction will be given to the current situation concerning the development of nondestructive inspection and leak testing machines for the branch pipes. (author)

  12. Plastic pipe systems failure investigation and diagnosis

    CERN Document Server

    Farshad, Mehdi

    2011-01-01

    Industrial and domestic piping is increasingly made from various plastics and composites, and these materials withstand heavy use over long periods. They are, however, affected by environmental and other factors over time and can degrade, causing major problems within piping systems. Farshad's book deals with why plastic pipes and systems fail, and with how to investigate and diagnose such failures. Pipes may buckle, fracture, change in dimensions and colour, blister and delaminate, corrode through stress, be abraded and obstructed: all these cause problems and lead to loss of efficient operat

  13. Fracture mechanics parameters of multilayer pipes

    Directory of Open Access Journals (Sweden)

    Šestáková L.

    2007-10-01

    Full Text Available Multilayer pipes consisting of different materials are frequently used in praxis because of partial improvement of the properties of pipe systems. To estimate lifetime of these pipes the basic fracture parameters have to be determined. In this work finite element calculations are applied in order to estimate the stress intensity factor K and T-stress values for a new type of non-homogenous C-shape specimen. The application of calculated K and T values to laboratory estimation of fracture toughness and its transferability to real pipe system is discussed.

  14. Water pipe smoking and dermatologic consequences.

    Science.gov (United States)

    Wollina, U

    2015-08-01

    Water pipe smoking is a recently growing addiction worldwide. It has become popular in Africa and the Western World and enfaces a renaissance in Middle East and Asia. The smoking technique leads to a different exposure to potential hazardous compounds compared to cigarette or classical pipe smoking. The common assumption that water pipe smoking is less dangerous to health is not substantiated by scientific data. Non-tobacco-based preparations reduce the exposure to nicotine but may contain equal or even higher concentrations of other toxic compounds. The medical literature on adverse effect of water pipe smoking on skin and oral mucosa is reviewed but future research is a demand.

  15. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Shu-Hao; Lu, Ming-De; Tung, Yung-Liang; Tuan, Hsing-Yu

    2013-10-22

    We report the development of Co9S8 nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co9S8 nanocrystal is carried out via a noninjection reaction by mixing anhydrous CoCl2 with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co9S8 nanocrystals possess excellent catalytic ability with respect to I(-)/I3(-) redox reactions. The Co9S8 nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co9S8 thin films on different substrates by using a spray deposition technique. These Co9S8 films are used as counter electrodes assembled with dye-adsorbed TiO2 photoanodes to fabricate DSSC devices having a working area of 2 cm(2) and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm(2)-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries.

  16. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Science.gov (United States)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  17. Effect of vibration loading on the fatigue life of part-through notched pipe

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Rahul [Nuclear Power Corporation of India Limited, Mumbai (India); Singh, P.K., E-mail: singh_pawank@yahoo.com [Bhabha Atomic Research Centre, Mumbai (India); Pukazhendi, D.M. [Structural Engineering research Centre, Chennai (India); Bhasin, V.; Vaze, K.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Mumbai (India)

    2011-10-15

    A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading. - Highlights: > Vibration loading affects fatigue crack growth rate. > Crack initiation life depends on crack tip radius. > Crack initiation life depends on the characteristic distance. > Characteristic distance depends on the loading conditions. > Vibration + cyclic load gives lower fatigue life.

  18. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  19. Vortex induced vibrations of pipe in high waves. Field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen Ottesen, N.-E.; Pedersen, B.

    1999-07-01

    Vortex induced vibrations have been measured full scale on an instrumented pipe placed vertically in the crest zone of high and steep waves. The Reynolds numbers were in the range 105 to 106. It was found that the vortex induced vibrations in the wave motion were generated within a reduced velocity range of 4 and 8. The vibrations grew intermittently with the passing waves. The vibrations took place in 2-3 modes simultaneously. One mode, however, dominated over the other. The growths of the VIV using a modal analysis were consistent with a basic correlation length of 3 diameters for a stationary pipe with a linear growth of the correlation length of 10 diameter for each 0.1 diameter amplitude. (au)

  20. Centrifuge modeling of PGD response of buried pipe

    Institute of Scientific and Technical Information of China (English)

    Michael O'Rourke; Vikram Gadicherla; Tarek Abdoun

    2005-01-01

    A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented.The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics,(diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results.

  1. Kovar Micro Heat Pipe Substrates for Microelectronic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Burchett, Steven N.; Kravitz, Stanley H.; Robino, Charles V.; Schmidt, Carrie; Tigges, Chris P.

    1999-04-01

    We describe the development of a new technology for cooling microelectronics. This report documents the design, fabrication, and prototype testing of micro scale heat pipes embedded in a flat plate substrate or heat spreader. A thermal model tuned to the test results enables us to describe heat transfer in the prototype, as well as evaluate the use of this technology in other applications. The substrate walls are Kovar alloy, which has a coefficient of thermal expansion close to that of microelectronic die. The prototype designs integrating micro heat pipes with Kovar enhance thermal conductivity by more than a factor of two over that of Kovar alone, thus improving the cooling of micro-electronic die.

  2. Film Coating Process Research and Characterization of TiN Coated Racetrack-type Ceramic Pipe

    CERN Document Server

    Wang, Jie; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiangtao; Hong, Yuanzhi; Wang, Yong

    2015-01-01

    TiN film was coated on the internal face of racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. According to the AFM, SEM, XPS test results,these properties were analyzed, such as TiN film roughness and surface morphology. At the same time, the deposition rates were studied under two types' cathode, Ti wires and Ti plate. According to the SEM test results, Ti plate cathode can improve the TiN/Ti film deposition rate obviously.

  3. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  4. Buckling Characteristics of Cylindrical Pipes

    Institute of Scientific and Technical Information of China (English)

    Toshiaki Sakurai

    2015-01-01

    This paper describes the buckling pattern of the body frame by energy absorbed efficiency of crashworthiness related toresearch of the buckling characteristics of aluminum cylindrical pipes with various diameters formed mechanical tools. Experimentswere performed by the quasi-static test without lubrication between specimen and equipment. According to the change in the radiusversus thickness of the specimen, the buckling phenomena are transformed from folding to bellows and the rate of energy absorptionis understood. In crashworthiness, frames are characterized by the folding among three patterns from the absorbed energy efficiencypoint of view and weight reduction. With the development of new types of transport such as electric vehicles, innovated bodystructure should be designed.

  5. INFLUENCE OF PIPE ANGLE ON BEDLOAD TRANSPORT IN AN INCLINED PIPE

    Institute of Scientific and Technical Information of China (English)

    David M. ADMIRAAL

    2003-01-01

    A number of reservoirs in Nebraska have been retrofitted with sediment bypass systems to extend their lifespan. The bypass systems are best suited for rerouting sediment that travels as bedload since bedload is relatively easy to capture at reservoir inlets. Because of their size, the captured sediment particles sometimes travel as bedload in the bypass system as well. Studies have been done to quantify head losses in horizontal pipes with different water and sediment flow rates, and the results have been used to assess the practicality of bypass systems for specific prototypes. However, much less has been done to evaluate the performance of inclined pipes for bypassing sediment. Furthermore, little has been done to understand how bedforms influence head losses in the pipes. In order to better understand the behavior of sediment transport within pipes, an experimental apparatus was constructed to simulate a range of sediment loading rates, water flow rates, and pipe inclination angles. Three pressure taps with a spacing of 1.5 m were installed in the pipe at a location sufficiently downstream from the inlet. One section of the pipe was replaced with an acrylic pipe of equivalent internal diameter so that bedform shapes and sizes could be measured for different flow conditions. For each flow condition, the pressure drop in the pipe and the sediment transport rate are recorded over time. For coarse sediment, the inclination angle ofthe pipe and the sediment transport rate both have a strong influence on flow properties, and, thus, head losses in the pipe.

  6. PE管管材性能探讨%Pipe Performance of PE Pipe

    Institute of Scientific and Technical Information of China (English)

    李子臣

    2011-01-01

    目前中国的塑料管道正在稳步发展,其中PE管强劲的发展势头最为令人瞩目.PE管的使用领域广泛,其中给水管和燃气管是其两个最大的应用市场.本文简单阐述了PE管的组成成分,对比分析了PE管的性能,最后论述了PE管的用途.%At present, China's plastic pipe is steadily developing, and strong momentum of development of the PE pipe is the most remarkable. PE pipe has a wide use, in which water pipe and gas pipe are two largest markets for application. This paper briefly describes the composition of PE pipe, makes comparative analysis of its performance, and finally discusses the use of PE pipe.

  7. 碳酸钙在流动过冷沸腾条件下的结垢机理研究%Mechanism of Calcium Carbonate Scale Deposition under Subcooled Flow Boiling Conditions

    Institute of Scientific and Technical Information of China (English)

    邢晓凯; 马重芳; 陈永昌

    2005-01-01

    Fouling of heat transfer surfaces during subcooled flow boiling is a frequent engineering problem in process industries. It has been generally observed that the deposits in such industrial systems consist mainly of calcium carbonate (CaCO3), which has inverse solubility characteristics. This investigation focused on the mechanism to control deposition and the morphology of crystalline deposits. A series of experiments were carried out at different surface and bulk temperatures, fluid velocities and salt ion concentrations. It is shown that the deposition rate is controlled by different mechanism in the range of experimental parameters, depending on salt ion concentration. At higher ion concentration, the fouling rate increases linearly with surface temperature and the effect of flow velocity on deposition rate is quite strong, suggesting that mass diffusion controls the fouling process.On the contrary, at lower ion concentration, the fouling rate increases exponentially with surface temperature and is independent of the velocity, illustrating that surface reaction controls the fouling process. By analysis of the morphology of scale, two types of crystal (calcite and aragonite) are formed. The lower the temperature and ion concentration, the longer the induction period and the higher the percentage of calcite precipitated.

  8. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  9. 49 CFR 230.62 - Dry pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  10. Technical Study of Slotted Pipe Working

    Institute of Scientific and Technical Information of China (English)

    Yang Helai; Su Feng

    1996-01-01

    @@ Introduction Slotted pipe is a kind of tool used in the oilfield for drilling wells to proof sand. There are many difficulties in working out several thousands seams which are about 0.3mm to 0.6 mm wide on a 10 meter long alloy steel pipe,and the types are various, such as straight and trapezoid.

  11. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  12. Updating piping probabilities with survived historical loads

    NARCIS (Netherlands)

    Schweckendiek, T.; Kanning, W.

    2009-01-01

    Piping, also called under-seepage, is an internal erosion mechanism, which can cause the failure of dikes or other flood defence structures. The uncertainty in the resistance of a flood defence against piping is usually large, causing high probabilities of failure for this mechanism. A considerable

  13. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to...

  14. Heat pipe thermosyphon heat performance calculation

    Science.gov (United States)

    Novomestský, Marcel; Kapjor, Andrej; Papučík, Štefan; Siažik, Ján

    2016-06-01

    In this article the heat performance of the heat pipe thermosiphon is achieved through numerical model. The heat performance is calculated from few simplified equations which depends on the working fluid and geometry. Also the thermal conductivity is good to mentioning, because is really interesting how big differences are between heat pipes and full solid surfaces.

  15. Energy Industry:Hunger for Steel Pipe?

    Institute of Scientific and Technical Information of China (English)

    Berry Chen

    2009-01-01

    @@ After the ups and downs of Chinese steel pipe market in 2008, industry structure changes are taking place quietly. Some enterprises with high-end oil and natural gas pipes and high-pressure boiler tubes have not been much offected in this storm, and won good market demand, while others with low-end products have been eliminated.

  16. Water driven turbine/brush pipe cleaner

    Science.gov (United States)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  17. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  18. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070291 Gong Ping (Northern Fujian Geological Party, Shaozou 354000) Discussion on Geological Characteristics and Control Factors of the Shimen Au-polymetallic Deposit in Zhenghe County, Fujian Province (Geology of Fujian, ISSN1001-3970, CN38-1080/P, 25(1), 2006, p.18-24, 2 illus., 2 tables, 1 ref.) Key words: gold deposits, polymetallic deposits, Fujian Province

  19. Multi scale study of carbon deposits collected in Tore-Supra and TEXTOR tokamaks; Etude multi echelle des depots carbones collectes dans les tokamaks Tore Supra et TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M

    2007-06-15

    Tokamaks are devices aimed at studying magnetic fusion. They operate with high temperature plasmas containing hydrogen, deuterium or tritium. One of the major issue is to control the plasma-wall interaction. The plasma facing components are most often in carbon. The major drawback of carbon is the existence of carbon deposits and dust, due to erosion. Dust is potentially reactive in case of an accidental opening of the device. These deposits also contain H, D or T and induce major safety problems when tritium is used, which will be the case in ITER. Therefore, the understanding of the deposit formation and structure has become a main issue for fusion researches. To clarify the role of the deposits in the retention phenomenon, we have done different complementary characterizations for deposits collected on similar places (neutralizers) in tokamaks Tore Supra (France) and TEXTOR (Germany). Accessible microporous volume and pore size distribution of deposits has been determined with the analysis of nitrogen and methane adsorption isotherms using the BET, Dubinin-Radushkevich and {alpha}{sub s} methods and the Density Functional Theory (DFT). To understand growth mechanisms, we have studied the deposit structure and morphology. We have shown using Transmission Electron Microscopy (TEM) and Raman micro-spectrometry that these deposits are non amorphous and disordered. We have also shown the presence of nano-particles (diameter between 4 and 70 nm) which are similar to carbon blacks: nano-particle growth occurs in homogeneous phase in the edge plasma. We have emphasised a dual growth process: a homogenous and a heterogeneous one. (author)

  20. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  1. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  2. Field experience with a novel pipe protection and monitoring system for large offshore pipeline construction projects

    Energy Technology Data Exchange (ETDEWEB)

    Magerstaedt, Michael; Blitz, Gunther [ROSEN Swiss AG, Stans (Switzerland); Sabido, Carlos E. [ROSEN Technology and Research Center, Lingen (Germany)

    2012-07-01

    For pipe joints stored during large-scale offshore pipeline construction projects, corrosion protection as well as protection from physical damage of pipelines is very important. Integrity Management does not just start with the operation of a pipeline. In the past, with the much lower risks and cost at stake in on shore constriction, this factor was often overlooked. Sometimes, newly laid pipelines failed upon hydrostatic testing or even during operation. Causes were corrosion or damage the pipe joints took before pipeline laying. For offshore projects, the cost and consequences associated with such failures are orders of magnitude higher and must be avoided by all means. Within six months from the conception of the idea, a system was developed and deployed that protected (and in part still protects) a large number of pipe joints used in a European offshore gas pipeline project more than 2000 km. The pipe joints were physically protected from corrosion, interior contamination, and condensation. At the same time, the system provided real-time monitoring of more than 100'000 pipe joints stored at 5 storage yards distributed over 3 countries with distances of more than 1200 km apart from each other. Every single joint was identified with its location and status at every time during the storage period. Any third-party interference was transmitted to a central control room in real time as well. Protection of the pipe joints was provided vs.: corrosion of pipe joint end cutbacks exposed to the maritime climate for up to 2 years; contamination of the pipe interior by: foreign material, dirt, water, ice, animals. Third party damage to the pipe joints; damage to the protection system or to the transmission network; fire; theft of pipe joints or other equipment. System features were: modular pipe caps that, protect the pipe interior, cover both inner and outer cutback, allow ventilation of the pipe interior, continuously monitor each pipe joint for third party damage

  3. Heat pipe central solar receiver. Semiannual progress report, September 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1977-09-01

    It is proposed to develop a solar-to-gas heat exchanger for a Central Solar Receiver Power Plant. The concept employs heat pipes to transfer the concentrated solar flux to the gaseous working medium of a Brayton cycle conversion system. During early phases of the program, an open air cycle with recuperator and a turbine inlet temperature of 800/sup 0/C was selected as the optimum design. The predicted cycle efficiency is 33 percent and the overall solar-to-electric efficiency is 20 percent. Three potential receiver configurations were also identified during the initial phases of the program. Optimum heat pipe diameter is approximately 5 cm for all three receiver configurations, and typical lengths are 2 to 3 meters. The required number of heat pipes for a 10 MWe receiver ranges from 2000 to 8000. Heat transport requirements per pipe vary from 4 to 18 Kw. Several wick structures were developed and evaluated in subscale heat pipe tests using sodium as the working fluid. One full scale heat pipe (5 cm diameter by 183 cm long) was developed and tested with sodium as the working fluid.

  4. Bending of pipes with inconel cladding; Curvamento de tubos revestidos com inconel

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [PROTUBO, Macae, RJ (Brazil)

    2008-07-01

    The pipes used in offshore equipment, such as wet Christmas trees, sub sea manifolds and rigid platform risers, as well as some pipes for refineries and ships, must have mechanical resistance to high pressure and also be resistant to corrosion from acids. Some special materials, such as stainless steel, duplex and super duplex steel are used to resolve this problem, but the cost is very high. Besides the problem of cost, these materials have other drawbacks, such as the difficulty of welding them, a technology mastered in few countries. As a better alternative, the use has been increasing of carbon steel and API pipes coated internally with inconel by welding deposition. This groundbreaking technology, of proven efficiency, has a far superior cost-benefit relation. Carbon steel and API pipes, besides having better mechanical resistance to high pressure and corrosion resistance, can be fabricated with technology mastered worldwide. Nickel alloys, such as inconel, are highly resistant to corrosion and temperature, and in these aspects are better than stainless steels. The pipes for transportation equipment and for refining hydrocarbons, as mentioned above, require various turns and special geometries, which generally are solved by the use of bends and spools made by high-frequency induction. This technology, already well established for various carbon and stainless steels, was developed to work with pipes coated internally with inconel (inconel cladding). Therefore, our work describes the process of fabricating bends from API steel pipes with inconel cladding, demonstrating the efficacy of this technology along with its quality gains and cost reduction. (author)

  5. Seismic fragility analysis of seismically isolated nuclear power plants piping system

    Energy Technology Data Exchange (ETDEWEB)

    Salimi Firoozabad, Ehsan, E-mail: e.salimi@pusan.ac.kr [Department of Civil and Environmental Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Jeon, Bub-Gyu, E-mail: bkjeon79@pusan.ac.kr [KOCED Seismic Simulation Test Center, Pusan National University, Yangsan Campus Mulgeum, Yangsan, Kyungsangnam (Korea, Republic of); Choi, Hyoung-Suk, E-mail: engineer@pusan.ac.kr [KOCED Seismic Simulation Test Center, Pusan National University, Yangsan Campus Mulgeum, Yangsan, Kyungsangnam (Korea, Republic of); Kim, Nam-Sik, E-mail: nskim@pusan.ac.kr [Department of Civil and Environmental Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-04-01

    Highlights: • The critical points of a seismically isolated NPP piping system are identified. • The simulation results are validated through a monotonic and cyclic test of the critical points. • The conditional mean spectrum method is used to scale the selected records. • The fragility curves of the NPP piping system are estimated. • Computation of the fragility parameters is addressed. - Abstract: Nuclear power plants are high risk facilities due to the possibility of sudden seismic events, because any possible failure could initiate catastrophic radioactive contamination. The seismic fragility analysis of NPPs and related equipments (such as piping systems) is a proven method to determine their performance against any possible earthquake. In this study the Brookhaven National laboratory benchmark model of a piping system was considered for the fragility analysis. A tensile test was conducted to define the material properties. An initial seismic analysis of the piping system is performed to indicate the critical sections of the piping system. Numerical analysis was validated through a monotonic and cyclic loading experiment of two identified critical points of the piping system. The tests were conducted at the Korea Construction Engineering Development (KOCED) Seismic Simulation Test Center, Pusan National University, Korea. Fragility curves were expressed for critical points of the system as a function of the spectral acceleration of the records and the maximum relative displacement. The standard deviation of the response and capacity were calculated using mathematical formulas, assuming that those follow a log-normal distribution. We determined that the fragility curve of a pipe elbow must be derived for both the opening and closing mode, regarding the difference between the capacities of the elbow on those modes. The high confidence of low probability of failure for the considered fragility functions in a straight section in any direction is

  6. PipeOnline 2.0: automated EST processing and functional data sorting.

    Science.gov (United States)

    Ayoubi, Patricia; Jin, Xiaojing; Leite, Saul; Liu, Xianghui; Martajaja, Jeson; Abduraham, Abdurashid; Wan, Qiaolan; Yan, Wei; Misawa, Eduardo; Prade, Rolf A

    2002-11-01

    Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, unannotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annotated database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org.

  7. PipeOnline 2.0: automated EST processing and functional data sorting

    Science.gov (United States)

    Ayoubi, Patricia; Jin, Xiaojing; Leite, Saul; Liu, Xianghui; Martajaja, Jeson; Abduraham, Abdurashid; Wan, Qiaolan; Yan, Wei; Misawa, Eduardo; Prade, Rolf A.

    2002-01-01

    Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, un-annotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annota ted database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org. PMID:12409467

  8. Intermittent gravity-driven flow of grains through narrow pipes

    Science.gov (United States)

    Alvarez, Carlos A.; de Moraes Franklin, Erick

    2017-01-01

    Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.

  9. Pipe flow of pumping wet shotcrete based on lubrication layer.

    Science.gov (United States)

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    Wet shotcrete can reduce dust and improve supporting strength, however, safe and efficient pipage is a key technical part of wet shotcrete process. The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests. The experimental results show there was a linear relationship between pressure loss and flow rate. Combined with the Buckingham rheological equation, the computing equations of the yield shear stress and plastic viscosity were deduced through linear regression. A simple analytical method allowing for a rough estimation of the pumping pressure was proposed and used when considering the lubrication layer of wet shotcrete in pipes. In addition, two kinds of particulate distributive models were established along the time axial to analyze the formation of lubrication layer which is related with particles migration. By computational fluid dynamics simulation, the lubrication layer thickness of different mix proportions was estimated. A new method for measuring the thickness of lubrication layer was proposed to verify it by binarization processing. Finally, according to the comparative analysis of experiments, simulation and computed value, it can be seen that the lubrication layer plays a key role in the process of wet shotcrete flow and with the increase of lubrication layer thickness pipe pressure declines gradually.

  10. Young starless cores embedded in the magnetically dominated Pipe Nebula

    CERN Document Server

    Frau, Pau; Beltran, Maria T; Morata, Oscar; Masque, Josep Maria; Busquet, Gemma; Alves, Felipe O; Sanchez-Monge, Alvaro; Estalella, Robert; Franco, Gabriel A P

    2010-01-01

    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be threaded by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show av...

  11. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  12. Thermal behavior investigation of silicon-Pyrex micro heat pipe

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2014-02-01

    Full Text Available High heat flux is the major reason for the malfunctioning or shortened life of high-power light-emitting diodes (LEDs or integrated circuit (IC components. Cooling technical devices have been widely studied in recent years. A heat pipe made of silicon wafer and Pyrex 7740 has been used in the experiments. Silicon-to-Pyrex bonding is used for the visualization of the flow behavior of the working liquid in heat transfer. A thermal behavior testing system for micro heat pipes (MHPs, including a vacuum chamber, heat flux sensors and thermocouples, was designed and established. The experiments revealed the characteristics of the MEMS heat pipe in LEDs heat transfer, and the maximum equivalent thermal conductivity of the MHPs was 10.6 times that of the silicon wafer. Furthermore, the structure of MHP can be optimized based on these experimental results. They can also be the experimental basis for theoretical study of two-phase flow on the micro scale.

  13. Up-scaled Teer-UDP850/4 Unbalanced Magnetron Deposition System Used for Mass-Production of CrTiAlN Hard Coatings

    Institute of Scientific and Technical Information of China (English)

    ZHANGGuo-jun; YANGShi-cai; JIANGBai-ling; BAILi-jing; CHENDi-chum; WENXiao-bin; TEERD.G.

    2004-01-01

    Up-sca]ed deposition process of Teer-UDP850/4 has been established and used for massive production of CrTiAlN hard coatings in applications of anti-wear, cutting and forming tools. This deposition system uses four magnetrons that are arranged by unbalanced magnets to fomt closed magnetic field enabling the system running in high current density. Elemental metals of Cr, Ti and Al are used as the target materials which are co-deposited with nitrogen forming nlultialloy nitride, nanoscale multi-layer or superlattice hard coatings. The stthstrate turntable is designed as planet rotation mechanism with three folds so that components or tools with complicate geometry can be uniformly coated onto all their surfaces and cutting edges. The pawer units for the magnetrons are straight dc whilst the substrate is biased by pulsed de. Two solid heaters are installed in the system to enable running a wide range of deposition temperature from 200℃ to 500℃. The pumping system is powerful that incorporated with a polycold to pump the system to a good vacuum in a very shori time. A front door and a movable substrate table are available to benefit easily loading and unloading. Deposition procedure. properties and performance of the coatings is also presented in this paper.

  14. Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.A.; Robino, C.V.

    1999-02-22

    The authors have developed a new type of heat spreader based on the integration of heat pipes directly within a thin planar structure suitable for use as a heat spreader or as the base layer in a substrate. The process uses micromachining methods to produce micron scale patterns that act as a wick in these small scale heat pipes. By using silicon or a low expansion metal as the wall material of these spreaders, they achieve a good match to the thermal coefficient of expansion of the die. The match allows the use of a thin high performance die attachment even on large size die. The embedded heat pipes result in high effective thermal conductivity for the new spreader technology.

  15. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    Science.gov (United States)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  16. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    Previous studies have shown that polyurethane insulation (PUR foam) on district heating pipes acts as protection against water if it is of good quality, i.e. free from cracks, cavities and other defects. On the other hand water vapour easily diffuses through PUR foam. However this is not a problem as long as the steel pipe is warmer than the surface layer, since the high temperature will prevent the vapour from condensating. What will happen with the insulation of a casing free district heating pipe where the ground water level occasionally reaches above the pipe has not been studied in detail. The current project has studied to what extent moisture enters the PUR foam insulation of two approximately one meter long district heating pipes without casing which have been in the ground for four years. Occasionally, the ground-water has entirely covered the pipes. In addition, the foam has been studied with respect to damage from the surrounding backfill material. Test specimens were taken out of the casing free pipes and were analysed with respect to moisture content. Additional measurements were done with a moisture indicator, and the electric resistance between the steel pipes and the four surveillance wires in each pipe was measured. The results from the various measurement techniques were the compared. The results show that the PUR foam remains dry as long as the service pipe is hot if no defects, such as crack and cavities, are present. Close to the service pipe, the foam actually dries out over time. The moisture content of the middle layer remains more or less constant. Only the colder parts on the outside exhibit an increase in moisture content. It was also seen that defects may lead to water ingress with subsequent humidification of the foam. However, the damaged foam area is limited. This is not the case for a regular pipe with a vapour tight casing, where experience show that moisture tend to spread along the pipe. The pipes were buried in sand and no

  17. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  18. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  19. Equivalent thermal conductivity of heat pipes

    Institute of Scientific and Technical Information of China (English)

    Zesheng LU; Binghui MA

    2008-01-01

    In precision machining, the machining error from thermal distortion carries a high proportion of the total errors. If a precision machining tool can transfer heat fast, the thermal distortion will be reduced and the machining precision will be improved. A heat pipe working based on phase transitions of the inner working liquid transfers heat with high efficiency and is widely applied in spaceflight and chemical industries. In mechanics, applications of heat pipes are correspondingly less. When a heat pipe is applied to a hydrostatic motor-ized spindle, the thermal distortion cannot be solved dur-ing the heat transfer process because thermal conductivity or equivalent thermal conductivity should be provided first for special application in mechanics. An equivalent thermal conductivity model based on equivalent thermal resistances is established. Performance tests for a screen wick pipe, gravity pipe, and rotation heat pipe are done to validate the efficiency of the equivalent thermal conduc-tivity model. The proposed model provides a calculation method for the thermal distortion analysis of heat pipes applied in the motorized spindle.

  20. Research of Spined Heat-Exchanging Pipes

    Directory of Open Access Journals (Sweden)

    Akulov Kirill

    2016-01-01

    Full Text Available Work is devoted to a research of spined heat-exchanging pipes that are assumed to use in air-cooler exchangers (ACE. The proposed new geometry of finning allows intensifying heat exchange and improving the efficiency of air coolers. It is caused by the increased area of finned surface with a value of finning ratio (the ratio of the area of the smooth pipe to a finned one to 42.7, while in the commercially available ACE, the figure is 22. Besides, the geometrical arrangement of the pin fins turbulizes the airflow. It should be mentioned that an easier method of manufacturing of heat exchanging pipes is proposed to use, which will reduce their costs. The proposed heat exchange pipes are made by winding cut aluminum strip to the supporting pipe or stretching stamped blanks on it. To increase the efficiency of the heat exchange surface pin fins should be as thin and long as possible; however, their strength should be sufficient for deformation-free operation. Fins should be staggered to maximize the distance between them. Spined heat-exchange pipes are designed to operate in a commercially produced ACE and their service is carried out similarly to commercially produced transversely finned pipes.

  1. Methods for Analyzing Pipe Networks

    DEFF Research Database (Denmark)

    Nielsen, Hans Bruun

    1989-01-01

    The governing equations for a general network are first set up and then reformulated in terms of matrices. This is developed to show that the choice of model for the flow equations is essential for the behavior of the iterative method used to solve the problem. It is shown that it is better...... to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...... demonstrated that this method offers good starting values for a Newton-Raphson iteration....

  2. Optimal transient growth in turbulent pipe flow

    Institute of Scientific and Technical Information of China (English)

    Yang SONG; Chunxiao XU; Weixi HUANG; Guixiang CUI

    2015-01-01

    The optimal transient growth process of perturbations driven by the pressure gradient is studied in a turbulent pipe flow. A new computational method is proposed, based on the projection operators which project the governing equations onto the sub-space spanned by the radial vorticity and radial velocity. The method is validated by comparing with the previous studies. Two peaks of the maximum transient growth am-plification curve are found at different Reynolds numbers ranging from 20 000 to 250 000. The optimal flow structures are obtained and compared with the experiments and DNS results. The location of the outer peak is at the azimuthal wave number n=1, while the location of the inner peak is varying with the Reynolds number. It is observed that the velocity streaks in the buffer layer with a spacing of 100δv are the most amplified flow structures. Finally, we consider the optimal transient growth time and its dependence on the azimuthal wave length. It shows a self-similar behavior for perturbations of different scales in the optimal transient growth process.

  3. Aggregate and Mineral Resources, PhosphateDeposits1988-This data set represents phosphate deposit areas in Utah., Published in 2001, Smaller than 1:100000 scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Aggregate and Mineral Resources dataset, published at Smaller than 1:100000 scale, was produced all or in part from Hardcopy Maps information as of 2001. It is...

  4. Determination of geomagnetic archaeomagnitudes from clay pipes

    Science.gov (United States)

    Games, K. P.; Baker, M. E.

    1981-02-01

    Archaeomagnitude determinations of a selection of clay pipes dateable to AD 1645+/-10 as well as studies of pottery samples from the same site and of the same age have been made. Values of the magnitude of the ancient magnetic field (Banc), were obtained from two pottery sherds, two pipe bowls and three pipe stems. The values from the sherds and bowls agree within 2% and compare well with the average value of the magnitude of the magnetic field for the seventeenth century as determined by other archaeomagnetic studies. However, the pipe stems give values of Banc which are significantly less than those from the bowls and pottery. We have not yet been able to explain this and thus we suggest that reliable archaeomagnitude determinations can be made from the bowls of clay pipes but not from the stems. Nevertheless, this result provides a new source of material for investigating variations in the geomagnetic field strength over the past 400 yr. Clay pipes have been manufactured in England since the end of the sixteenth century. In the firing process some pipes were broken and disposed of without ever having been smoked. One such collection, discovered at Rainford, Lancashire, in 1978, consisted of a series of discrete dumps including pipes, kiln debris and a small collection of contemporary used earthenware sherds. The internal consideration of the dumps suggested a very short period of activity and archaeologists (P. Davey, personal communication) ascribe all the material to the period 1645+/-10 yr. With such well-dated material, we set out to check whether or not reliable archaeomagnitudes could be obtained from the pipes.

  5. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  6. 46 CFR 182.720 - Nonmetallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Nonmetallic piping materials. 182.720 Section 182.720... TONS) MACHINERY INSTALLATION Piping Systems § 182.720 Nonmetallic piping materials. (a) Rigid... systems where permitted by paragraph (e) of this section. (c) Nonmetallic piping must not be used...

  7. 46 CFR 119.720 - Nonmetallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nonmetallic piping materials. 119.720 Section 119.720 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... Piping Systems § 119.720 Nonmetallic piping materials. Nonmetallic piping materials,...

  8. 46 CFR 58.25-20 - Piping for steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping for steering gear. 58.25-20 Section 58.25-20... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-20 Piping for steering gear. (a) Pressure piping must... actuating system including the reservoir. The storage tank must be permanently connected by piping so...

  9. 46 CFR 153.294 - Marking of piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Marking of piping systems. 153.294 Section 153.294... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.294 Marking of piping systems. (a) Each cargo piping...

  10. 46 CFR 153.280 - Piping system design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  11. 46 CFR 182.710 - Piping for vital systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Piping for vital systems. 182.710 Section 182.710... TONS) MACHINERY INSTALLATION Piping Systems § 182.710 Piping for vital systems. (a) Vital systems are... section is a non-vital system. (c) Piping used in a vital system must: (1) Be composed of...

  12. 46 CFR 116.970 - Protection against hot piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe...

  13. 46 CFR 154.512 - Piping: Thermal isolation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Thermal isolation. 154.512 Section 154.512 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... and Process Piping Systems § 154.512 Piping: Thermal isolation. Low temperature piping must...

  14. 46 CFR 182.730 - Nonferrous metallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Nonferrous metallic piping materials. 182.730 Section... (UNDER 100 GROSS TONS) MACHINERY INSTALLATION Piping Systems § 182.730 Nonferrous metallic piping materials. (a) Nonferrous metallic piping materials are acceptable for use in the following: (1)...

  15. 46 CFR 154.516 - Piping: Hull protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Hull protection. 154.516 Section 154.516... and Process Piping Systems § 154.516 Piping: Hull protection. A vessel's hull must be protected from...-522), at: (a) Each piping connection dismantled on a routine basis; (b) Cargo discharge and...

  16. 46 CFR 61.15-15 - Other piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Other piping. 61.15-15 Section 61.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-15 Other piping. (a) All other piping systems shall be...

  17. 46 CFR 154.528 - Piping joints: Flange type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping joints: Flange type. 154.528 Section 154.528... and Process Piping Systems § 154.528 Piping joints: Flange type. (a) A flange must be one of the following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for...

  18. 46 CFR 153.910 - Cargo piping plan.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo piping plan. 153.910 Section 153.910 Shipping... Information § 153.910 Cargo piping plan. No person may operate a tankship unless the tankship has a cargo piping plan that: (a) Shows all cargo piping on the tankship; (b) Shows all cargo valving, pumps,...

  19. 46 CFR 154.519 - Piping relief valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping relief valves. 154.519 Section 154.519 Shipping... Process Piping Systems § 154.519 Piping relief valves. (a) The liquid relief valve that protects the cargo piping system from liquid pressure exceeding the design pressure must discharge into: (1) A cargo...

  20. 46 CFR 56.30-3 - Piping joints (reproduces 110).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping joints (reproduces 110). 56.30-3 Section 56.30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-3 Piping joints (reproduces 110). The type...

  1. 46 CFR 153.292 - Separation of piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Separation of piping systems. 153.292 Section 153.292... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.292 Separation of piping systems. Cargo piping systems must...

  2. 46 CFR 119.710 - Piping for vital systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping for vital systems. 119.710 Section 119.710... Piping Systems § 119.710 Piping for vital systems. (a) Vital systems are those systems that are vital to...-vital system. (c) Piping used in a vital system must meet § 56.60 in subchapter F of this...

  3. 46 CFR 154.514 - Piping: Electrical bonding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Electrical bonding. 154.514 Section 154.514 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that...

  4. 46 CFR 98.25-55 - Cargo piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo piping. 98.25-55 Section 98.25-55 Shipping COAST... Cargo piping. (a) Piping shall be of seamless steel meeting the requirements of § 56.60-1 of subchapter F (Marine Engineering) of this chapter. The piping shall be of not less than Schedule 40...

  5. 46 CFR 154.355 - Bow and stern loading piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Bow and stern loading piping. 154.355 Section 154.355... Arrangements § 154.355 Bow and stern loading piping. (a) Bow and stern loading piping must: (1) Meet § 154.310...; (3) Be clearly marked; (4) Be segregated from the cargo piping by a removable spool piece in...

  6. 49 CFR 192.321 - Installation of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that...

  7. 49 CFR 192.121 - Design of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  8. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper pipe used in mains must have a minimum wall thickness of 0.065 inches (1.65 millimeters) and must be...

  9. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  10. 49 CFR 192.105 - Design formula for steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.105 Design formula for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following...

  11. 49 CFR 195.212 - Bending of pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2) Each...

  12. 46 CFR 154.548 - Cargo piping: Flow capacity.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo piping: Flow capacity. 154.548 Section 154.548... and Process Piping Systems § 154.548 Cargo piping: Flow capacity. Piping with an excess flow valve must have a vapor or liquid flow capacity that is greater than the rated closing flow under § 154.546....

  13. 49 CFR 192.275 - Cast iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  14. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline

    Science.gov (United States)

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-11-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition.

  15. Heat pipe testing program test plan

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W.B.

    1980-03-14

    A test plan is given which describes the tests to be conducted on several typical solar receiver heat pipes. The hardware to be used, test fixtures and rationale of the test program are discussed. The program objective is to perform life testing under simulated receiver conditions, and to conduct performance tests with selected heat pipes to further map their performance, particularly with regard to their transient behavior. Performance requirements are defined. Test fixtures designed for the program are described in detail, and their capabilities for simulating the receiver conditions and their limitations are discussed. The heat pipe design is given. (LEW)

  16. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available Spinning Pipe C MAFUSIRE1,2, A FORBES2, G SNEDDEN3, C MAHLASE3, MM MICHAELIS4 & M MATHUTHU1 1University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe 2CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 3CSIR Defence Peace Safety... this system. BEAM PROPAGATION THROUGH GAS LENSES The heated spinning pipe acts as a GRIN lens where the refractive index variation inside the pipe is given by The variable parameters of the gas lens in this work were the rotation...

  17. Investigation on Mechanical Property of Seamless Pipe

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-ming; YANG Xiao-yong; LIU Ye

    2004-01-01

    The mechanical properties of the steel pipe rolled with continuously casting round billet after determining the chemical composition in steel were studied. The results show that the total reduction ratio should be higher than 5.2 when the line pipes of grade B, grade 20 and other general seamless pipe were rolled with continuously casting round billet. And the total reduction ratio should be higher than 10.2 and the grain size should be controlled more than grade 7 for casing of oil countryside tubular goods (OCTG).

  18. Arterial gas occlusions in operating heat pipes

    Science.gov (United States)

    Saaski, E. W.

    1975-01-01

    The effect of noncondensable gases on high performance arterial heat pipes has been investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, have been used to postulate stability criteria for arterial heat pipes. Experimental observations of gas occlusions were made using a stainless steel heat pipe equipped with viewing ports, and the working fluids methanol and ammonia with the gas additives helium, argon, and xenon. Observations were related to gas transport models.

  19. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  20. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  1. Reliability of piping system components. Volume 4: The pipe failure event database

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R.; Erixon, S. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Tomic, B. [ENCONET Consulting GmbH, Vienna (Austria); Lydell, B. [RSA Technologies, Visat, CA (United States)

    1996-07-01

    Available public and proprietary databases on piping system failures were searched for relevant information. Using a relational database to identify groupings of piping failure modes and failure mechanisms, together with insights from published PSAs, the project team determined why, how and where piping systems fail. This report represents a compendium of technical issues important to the analysis of pipe failure events, and statistical estimation of failure rates. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A `data driven and systems oriented` analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failure. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 42 refs, 25 figs.

  2. Coolant choice for the central beryllium pipe of the BESIII beam pipe

    Science.gov (United States)

    Zheng, Li-Fang; Wang, Li; Wu, Ping; Ji, Quan; Li, Xun-Feng; Liu, Jian-Ping

    2010-07-01

    In order to take away much more heat on the BESIII beam pipe to guarantee the normal particle detection, EDM-1 (oil No.1 for electric discharge machining), with good thermal and flow properties was selected as the candidate coolant for the central beryllium pipe of the BESIII beam pipe. Its cooling character was studied and dynamic corrosion experiment was undertaken to examine its corrosion on beryllium. The experiment results show that EDM-1 would corrode the beryllium 19.9 μm in the depth in 10 years, which is weak and can be neglected. Finite element simulation and experiment research were taken to check the cooling capacity of EDM-1. The results show that EDM-1 can meet the cooling requirement of the central beryllium pipe. Now EDM-1 is being used to cool the central beryllium pipe of the BESIII beam pipe.

  3. Investigation and Analysis of Weld Induced Residual Stresses in Two Dissimilar Pipes by Finite Element Modeling

    Science.gov (United States)

    Nadimi, S.; Khoushehmehr, R. J.; Rohani, B.; Mostafapour, A.

    In the present study, Manual Metal Arc Welding (MMAW) of austenitic stainless steel to carbon steel were studied. The Schaeffler diagram were used in determining suitable filler metal for this process and then the finite element analysis of residual stresses in butt welding of two dissimilar pipes is performed with the commercial software ANSYS, which includes moving heat source, material deposit, temperature dependant material properties, metal plasticity and elasticity, transient heat transfer and mechanical analysis. The residual stresses distribution and magnitude in the hoop and axial directions in the inner and outer surfaces of two dissimilar pipes were obtained. Welding simulation considered as a sequentially coupled thermo-mechanical analysis and the element birth and death technique was employed for simulation of filler metal deposition.

  4. Alpha detection in pipes using an inverting membrane scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  5. Pressure Change in Tee Branch Pipe in Oscillatory Flow

    Directory of Open Access Journals (Sweden)

    Daisuke Sakamoto

    2013-01-01

    Full Text Available The purpose of this paper is to contribute to the understanding of unsteady flow of branch pipes in pneumatic systems. Branch pipes are used in pneumatic pipe systems in various industrial fields. To predict the unsteady pressure changes in the pneumatic piping systems, it is necessary that the dynamic characteristics of branch pipes are at hand, in addition to the dynamic characteristic of single pipe. However, while so many studies are accumulated for a single pipe dynamics, few studies have reported the pressure changes in branch pipes due to oscillatory flow. This paper reports an experimental study on the dynamic characteristics of the pressure change in a pneumatic branch pipe under given oscillatory flow. The paper also proposes a simulation method to predict the pressure changes in a pneumatic branch pipe under oscillatory flow. The validity of simulation is verified for oscillatory flows up to 5 Hz, comparing with the experimental results.

  6. EXPERIMENTAL INVESTIGATION OF CAVITATION IN A SUDDEN EXPANSION PIPE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-min; YANG Qing; WANG Yu-rong; XU Wei-lin; CHEN Jian-gang

    2011-01-01

    For sudden expansion pipes, experiments were carried out to study the cavitation inception for various enlargement ratios in high speed flows.The flow velocity of the prototype reaches 50 m/s in laboratory.The relationship between the expansion ratio and the incipient cavitation number is obtained.The scale and velocity effects are revealed.It is shown that Keller's revised formula should be modified to calculate the incipient cavitation number when the forecasted velocity of the flows in the prototype exceeds the experimental velocity.

  7. Low-frequency fluid waves in fractures and pipes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  8. Visualization of working fluid flow in gravity assisted heat pipe

    OpenAIRE

    Nemec Patrik; Malcho Milan

    2015-01-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fl...

  9. Optimizing the Pipe Diameter of the Pipe Belt Conveyor Based on Discrete Element Method

    Science.gov (United States)

    Guo, Yong-cun; Wang, Shuang; Hu, Kun; Li, De-yong

    2016-03-01

    In order to increase the transport volume of the pipe belt conveyor and reduce lateral pressure of the supporting roller set, this study aims to optimize the pipe diameter of the pipe belt conveyor. A mechanical model of the pipe belt conveyor with six supporting roller sets in the belt bearing section was built based on the infinitesimal method, and the formula for calculating the lateral pressure of each supporting roller was deduced on the basis of reasonable assumption. Simulated analysis was carried out on the operation process of the pipe belt conveyor by using the discrete element method. The result showed that, when the other conditions were certain, as the pipe diameter increased, the average lateral pressure of the supporting roller set increased, with a gradually decreasing increment, which was consistent with the calculated result of the theoretical formula. An optimized pipe diameter under the current conditions was obtained by fitting the curve of the formula for calculating the transport volume of the pipe belt conveyor and its simulation curve. It provided a certain reference value for improving the transport efficiency and prolonging the service life of the pipe belt conveyor.

  10. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  11. Reliability Estimation for Double Containment Piping

    Energy Technology Data Exchange (ETDEWEB)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  12. 75 FR 8113 - Drill Pipe From China

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective...

  13. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermacore Inc. proposes an innovative titanium heat pipe thermal plane for passive thermal control of individual cells within a fuel cell stack. The proposed...

  14. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  15. Heat transfer, thermal control, and heat pipes

    Science.gov (United States)

    Olstad, W. B.

    1980-01-01

    This volume provides information on recent progress in spacecraft thermal control and the supporting disciplines of conduction, thermal radiation, and heat pipe theory and application. Four problem areas are considered: conduction heat transfer, radiation heat transfer, thermal control, and heat pipes. The topics covered include finite-element methodology for transient conduction/forced-convection thermal analysis; effects of surface finish on thermal contact resistance between different materials; mathematical models for wide-band nongray gas radiation in spherical and cylindrical geometries; thermal design, analysis and testing of the Shuttle remote manipulator arm; porous heat pipe; and transient behavior of liquid trap heat-pipe thermal diodes. Also discussed is the thermal design concept for a high-resolution UV spectrometer.

  16. Rhode Island Piping Plover Restoration Project 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The recovery plan for Piping Plover on Rhode Island discusses the current status of the species, habitat requirements and limiting factors, recovery objectives and...

  17. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  18. Heat pipes made of roll bond panels

    Science.gov (United States)

    Moeller, M.; Heil, K.

    1983-06-01

    The use of large surfaced aluminum roll bond panels with an integral flow system as heat pipes is studied. With a suitable flow system e.g., parallel passages with a cross-connection, one single filling procedure is required for the operating medium. Adequate materials for the manufacture of heat pipes are Al 99,3; AlMn1, 5 and AlMn1, 5Sil,5. Peel, creep and burst tests as well as corrosion tests were made on specimens and structural elements of these materials. Results show that the use of such panels for heat pipe manufacturing is appropriate for limited maximum temperature applications. Prototypes of heat pipes and their characteristic features are described in view of their use as absorbers in solar collectors. Good heat exchange performances obtained.

  19. Acoustics of two-phase pipe flows

    OpenAIRE

    Dijk, van, Nico M.

    2005-01-01

    Acoustic signals that are recorded in oil pipelines contain information about the flow. In order to extract this information from the pressure recordings, detailed knowledge about the transmission properties of sound waves in the pipes is required.

  20. Jet pump assisted arterial heat pipe

    Science.gov (United States)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.