WorldWideScience

Sample records for pionic atoms

  1. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  2. Observation of the E2 nuclear resonance effect in some pionic atoms

    International Nuclear Information System (INIS)

    Leon, M.; Bradbury, J.N.; Gram, P.A.M.; Hutson, R.L.; Schillaci, M.E.; Hargrove, C.K.

    1979-01-01

    The E2 nuclear resonance effect has been studied in the pionic atoms of 48 Ti, 104 Ru, 110 Pd, 111 112 Cd, and 150 Sm. For pionic 111 112 Cd, where the ''mixed-in'' level is directly observable, the measured effect agrees very well with theory. For pionic 110 Pd, the measurement confirms for the first time the prediction of Ericson et al. that the P-wave π-nucleus interaction becomes repulsive for large enough Z, but also implies a P-wave absorptive width smaller than predicted by standard optical potentials. The experimental results for 104 Ru and 150 Sm agree with simple theoretical model, while that for 48 Ti does not. (Auth.)

  3. Deeply bound pionic atoms

    International Nuclear Information System (INIS)

    Gillitzer, A.

    2001-01-01

    The formation of the pionic 2p and 1s states in (d, 3 He) transfer reactions on 208 Pb and 206 Pb has been investigated at the GSI fragment separator. Due to the clear separation of the (1s) π and (2p) π peaks in the excitation energy spectrum measured in the 206 Pb(d, 3 He) reaction, stringent constraints to the pion-nucleus potential can be deduced from the binding energy and width of the (1s) π state in 205 Pb. The perspectives of an experimental study of pionic 1s states in Sn isotopes planned for the near future are discussed. (orig.)

  4. Light pionic atoms perspectives for precision experiments

    International Nuclear Information System (INIS)

    Gotta, D.

    2005-01-01

    During the last decades high-precision spectroscopy of exotic-atom x-rays profited in particular in the case of pions from the increasing number of stopped particles provided by the cyclotron trap at the accelerator facility of the Paul-Scherrer-Institut (PSI) together with modern detector concepts like charge-coupled devices (CCDs) and crystal spectrometers. Presently, priority is given to the study of the strong-interaction effects in the most elementary system - pionic hydrogen. However, the systems with two or more nucleons are as fundamental for the development of a theoretical description of hadronic matter. Furthermore, the de-excitation of exotic atoms involves a variety of atomic processes, which become accessible in detail due to the high resolution achievable with crystal spectrometers, e. g., parallel transitions, line splittings, broadenings and intensity distributions. In addition, first successful attempts for a microscopic description of the atomic cascade are available now, which should be subject to stringent tests both for atoms and molecules. (author)

  5. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    Martino, Trassinelli

    2005-12-01

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π - ) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  6. Experimental projects for spectroscopy of pionic atoms and N*(1535) in nuclei

    International Nuclear Information System (INIS)

    Itahashi, Kenta

    2010-01-01

    This article briefly summarizes two experimental projects to study the chiral dynamics both in the meson and in the baryon sectors, namely, 'Precision spectroscopy of pionic atoms' and 'N * (1535) production and its in-medium spectroscopy'. (author)

  7. Description of the general properties of pionic atoms

    International Nuclear Information System (INIS)

    Cervantes S, B.R.

    1979-01-01

    The effects of the finite dimension of the nucleus and the strong interaction effects in the energy levels ls and 2p of pionic atoms are considered. The energy transition between these two levels are calculated using the method of perturbations of first order, considering a uniform distribution of nuclear charge, for the effect of the finite dimension of the nucleus and one local optical potential as a model for the strong interaction. The calculations were realized for 13 elements and the results were compared with the experimentally obtained, founding a relative difference around of 4%. In conclusion the author observed that the effects of the finite dimension and the strong interaction can be considered as first order perturbations in light atoms, and for heavy atoms this effects can be considered as of second order or higher perturbations. (author)

  8. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    International Nuclear Information System (INIS)

    Itahashi, Kenta; Ahn, DeukSoon; Berg, Georg P.A.; Dozono, Masanori; Etoh, Daijiro; Fujioka, Hiroyuki; Fukuda, Naoki; Fukunishi, Nobuhisa; Geissel, Hans; Haettner, Emma; Hashimoto, Tadashi; Hayano, Ryugo S.; Hirenzaki, Satoru; Horii, Hiroshi; Ikeno, Natsumi; Inabe, Naoto; Iwasaki, Masahiko; Kameda, Daisuke; Kawase, Shouichiro; Kisamori, Keiichi; Kiyokawa, Yu; Kubo, Toshiyuki; Kusaka, Kensuke; Matsushita, Masafumi; Michimasa, Shin’ichiro; Mishima, Go; Miya, Hiroyuki; Murai, Daichi; Nagahiro, Hideko; Nishi, Takahiro; Ota, Shinsuke; Sakamoto, Naruhiko; Sekiguchi, Kimiko; Suzuki, Hiroshi; Suzuki, Ken; Takaki, Motonobu; Takeda, Hiroyuki; Tanaka, Yoshiki K.; Uesaka, Tomohiro; Wada, Yasumori; Watanabe, Yuni N.; Weick, Helmut; Yamakami, Hiroki; Yanagisawa, Yoshiyuki; Yoshida, Koichi

    2016-01-01

    We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  9. Pionic hydrogen and friends

    Energy Technology Data Exchange (ETDEWEB)

    Gotta, D., E-mail: d.gotta@fz-juelich.de [Forschungszentrum Jülich GmbH and JHCP (Germany); Amaro, F. D. [Coimbra University, Department of Physics (Portugal); Anagnostopoulos, D. F. [University of Ioannina, Department of Materials Science and Engineering (Greece); Bühler, P. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Gorke, H. [Forschungszentrum Jülich GmbH and JHCP (Germany); Covita, D. S. [Coimbra University, Department of Physics (Portugal); Fuhrmann, H.; Gruber, A. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Hennebach, M. [Forschungszentrum Jülich GmbH and JHCP (Germany); Hirtl, A.; Ishiwatari, T. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Indelicato, P. [LKB, UPMC-Paris 6, ENS, CNRS (France); Jensen, T. S. [Ringkjøbing Gymnasium (Denmark); Bigot, E.-O. Le [LKB, UPMC-Paris 6, ENS, CNRS (France); Markushin, V. E. [Paul Scherrer Institut (PSI) (Switzerland); Marton, J. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Nekipelov, M. [Forschungszentrum Jülich GmbH and JHCP (Germany); Pomerantsev, V. N.; Popov, V. P. [Skobeltsyn Institut of Nuclear Physics, Lomonossov Moscow State University (Russian Federation); Santos, J. M. F. dos [Coimbra University, Department of Physics (Portugal); and others

    2015-08-15

    Pion-nucleon scattering lengths are directly related to the ground-state level shift and broadening in pionic hydrogen as well as to the pionic deuterium level shift. The level broadening in deuterium measures the strength of pion threshold-production in proton-proton reactions. However, collisional processes during the atomic de-excitation cascade considerably complicate the analysis of X-ray line shapes in order to extract the hadronic broadening. Therefore, additionally the purely electromagnetic twin system muonic hydrogen was studied. Results of these experiments performed at PSI by using a high-resolution crystal spectrometer are discussed in the context with a new analysis approach for the hadronic broadening.

  10. Deeply bound pionic states and modifications of hadrons

    International Nuclear Information System (INIS)

    Hirenzaki, S.

    2000-01-01

    We have studied the structure and formation of mesic atoms and mesic nuclei theoretically. The latest results on the deeply bound pionic atoms, the kaonic atoms and the sigma states are reported. (author)

  11. Pion-transfer (n,d) and (d, 3He) reactions leading to deeply bound pionic atoms

    International Nuclear Information System (INIS)

    Toki, H.; Hirenzaki, S.; Yamazaki, T.

    1990-11-01

    Theoretical studies are given on the (n,d) and (d, 3 He) reactions leading to deeply bound pionic atoms in heavy nuclei of configuration [(nl) π ·j n -1 ]J. The cross sections for various pionic and neutron-hole configurations in the case of a 208 Pb target are calculated at incident energies 300-1000 MeV/u by using the effective number approach and the eikonal approximation for distortion. The effective number with a pion in the 1s or 2p state and a neutron hole in the i 13/2 orbit peaks around the same incident energy (T n =600 MeV) as the elementary cross section n+n→d+π - , where the momentum transfer matches the angular-momentum transfer of L=5∼7. The DWIA cross section for (n,d) producing a pion in the 1s or 2p orbit at T n =600 MeV is found to be around 42 or 75 μb/sr, respectively. At T n =350 MeV, where the momentum transfer is small, quasi-substitutional states of configurations [(2p) π (3p 1/2 ) n -1 ]L=0 and [(2p) π (3p 3/2 ) n -1 ]L=0 are preferentially populated with cross sections of 190 and 380 μb/sr, respectively. The (d, 3 He) cross sections are estimated to be an order of magnitude smaller than the (n,d) cross sections. Thus, the (n,d) and (d, 3 He) reactions are found to be suited for the production of deeply bound pionic atoms. (author)

  12. Short range correlations in the pion s-wave self-energy of pionic atoms

    OpenAIRE

    Salcedo, L. L.; Holinde, K.; Oset, E.; Schütz, C.

    1995-01-01

    We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave $\\pi N$ amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected ...

  13. Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lenghts

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.

    1991-01-01

    Analysing pionic-atom data of isoscalar nuclei within the relativistic mean-field (RMF) theory, we determine the pseudoscalar πNN mixing parameter x=0.24±0.06 (syst.) and the strength of the nuclear scalar meson field for pions, S π =-34±14 (syst.) MeV. We show that these values are compatible with the elementary π-N interaction. Our RMF model provides a solution to the long-standing problem of the s-wave repulsion. (orig.)

  14. Experimental determination of the relativistic fine-structure splitting in pionic Ti and Fe atoms

    International Nuclear Information System (INIS)

    Wang, K.; Boehm, F.; Bovet, E.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.; Kunselman, A.R.

    1980-01-01

    Using a high-resolution crystal spectrometer we have measured the relativistic angular-momentum splittings of the 5g-4f and 5f-4d transitions in pionic Ti and Fe atoms. The observed fine-structure splittings of 85.3 +- 3.0 eV in π - Ti and 158.5 +- 7.8 eV in π - Fe agree with the calculated splittings of 88.5 and 167.6 eV, respectively, arising from the Klein-Gordon equation and from small corrections due to vacuum polarization, strong interaction, and electron screening

  15. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  16. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  17. Experimental verification of the relativistic fine-structure term of the Klein-Gordon equation in pionic titanium atoms

    International Nuclear Information System (INIS)

    Delker, L.; Dugan, G.; Wu, C.S.; Lu, D.C.; Caffrey, A.J.; Cheng, Y.T.; Lee, Y.K.

    1979-01-01

    A newly designed, large-aperture and high-resolution bent-crystal spectrometer has been used to observe high-intensity sources of pionic x rays. The pionic x-ray source was a target of natural titanium which was placed adjacent to a copper pion-production target in the external beam of the Nevis synchrocyclotron. The energy difference between the 5g → 4f and 5f → 4d transitions in pionic titanium was measured to be 87.6 +- 1.8 eV. Comparison with the prediction of the Klein-Gordon equation is made

  18. Electric quadrupole moments and strong interaction effects in pionic atoms of 165Ho, 175Lu, 176Lu, 179Hf and 181Ta

    International Nuclear Information System (INIS)

    Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.

    1981-05-01

    The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)

  19. High-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei by pion-transfer reactions of inverse kinematics using the GSI cooler ring ESR

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1991-02-01

    Many studies published in the past are reviewed first in relation to high-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei. The report then describes a procedure for applying the method of inverse kinematics to the case of (d, 3 He) reactions. The (d, 3 He) reaction in inverse kinematics is feasible from practical viewpoints. Thus a discussion is made of the inverse kinematics in which a heavy-ion beam ( 208 Pb for instance) with a projectile kinetic energy hits a deuteron target and ejected recoil 3 He nuclei are measured in the forward direction. The recoil momentum is calculated as a function of the Q value. Analysis shows that the recoil spectroscopy with inverse kinematics can be applied to the case of (d, 3 He) reaction, which will yield a very high mass resolution. The experimental setup for use in the first stage is then outlined, and a simple detector configuration free of magnetic field is discussed. These investigations demonstrate that the (d, 3 He) reaction in inverse kinematics provides a promising tool for obtaining high-resolution spectra of deeply-bound pionic atoms. (N.K.)

  20. Mesonic atoms. Technical progress report

    International Nuclear Information System (INIS)

    Kunselman, R.

    1981-01-01

    Research on mesic atoms during 1981 is reported. This includes measurement of x-rays from pionic hydrogen and pionic deuterium; muonic K, L, and M x-ray spectra of mercury 199 and mercury 201; and pionic chromium 54, scandium 45, vanadium 51, manganese 55, and iron

  1. Compilation of data from hadronic atoms

    International Nuclear Information System (INIS)

    Poth, H.

    1979-01-01

    This compilation is a survey of the existing data of hadronic atoms (pionic-atoms, kaonic-atoms, antiprotonic-atoms, sigmonic-atoms). It collects measurements of the energies, intensities and line width of X-rays from hadronic atoms. Averaged values for each hadronic atom are given and the data are summarized. The listing contains data on 58 pionic-atoms, on 54 kaonic-atoms, on 23 antiprotonic-atoms and on 20 sigmonic-atoms. (orig./HB) [de

  2. Experimental determination of the relativistic fine structure splitting in a pionic atom

    International Nuclear Information System (INIS)

    Wang, K.-C.; Boehm, F.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.-L.; Kunselman, R.

    1978-01-01

    Using a high-resolution crystal spectrometer, the authors have measured the energy splitting of the pionic 5g-4f and 5f-4d transitions in Ti. The observed fine structure splitting agrees, within the experimental error of 3%, with the splitting arising from the calculated relativistic term and other small corrections for spinless particles. (Auth.)

  3. A high-accuracy extraction of the isoscalar πN scattering length from pionic deuterium data

    International Nuclear Information System (INIS)

    Phillips, Daniel R.; Baru, Vadim; Hanhart, Christoph; Nogga, Andreas; Hoferichter, Martin; Kubis, Bastian

    2010-01-01

    We present a high-accuracy calculation of the π(bar sign)d scattering length using chiral perturbation theory up to order (M π /m p ) 7/2 . For the first time isospin-violating corrections are included consistently. The resulting value of a π -bar d has a theoretical uncertainty of a few percent. We use it, together with data on pionic deuterium and pionic hydrogen atoms, to extract the isoscalar and isovector pion-nucleon scattering lengths from a combined analysis, and obtain a + (7.9±3.2)·10 -3 M π -1 and a-bar (86.3±1.0)·10 -3 M π -1 .

  4. Pionic background for nucleon-nucleon observables

    International Nuclear Information System (INIS)

    Ballot, J.L.; Robilotta, M.R.

    1992-01-01

    A method is presented that allows the unambiguous definition of the one pion exchange contribution to nucleon-nucleon scattering observables and then use it to determine those waves where values of phase shifts and mixing parameters may be understood as sums of pionic and non-pionic dynamical effects. This helps the assessment of the explicative power of the various existing phenomenological potentials and may eventually lead to ways of discriminating their effectiveness. (author) 16 refs.; 19 figs.; 2 tabs

  5. Pionic atom as a probe of origin of the Hadron Mass. Quantitative evaluation of the chiral condensate in a nuclear medium

    International Nuclear Information System (INIS)

    Suzuki, Ken; Itahashi, Kenta; Hirenzaki, Satoru

    2005-01-01

    Spontaneous breaking of chiral symmetry is believed to be the mechanism which endows nucleus their large masses. The order parameter of the symmetry breaking is the chiral condensate, whose magnitude is predicted to decrease linearly as the nuclear density is increased. The reduction of quark condensate was quantitatively studied from recent precise measurement of deeply bound pionic 1s states on three tin (Sn) isotopes. We made use of the Gell-Mann-Oakes-Renner relation which connects the magnitude of quark-codensate to a pion decay constant, and then used the Tomozawa-Weinberg relation which relates the pion decay constant to an isovector strength of the pion-nucleus potential. The potential strength was determined by fitting the measured pionic 1s-state binding energies. The result shows that the quark-condensate strength is reduced by about 35% at normal nuclear density, compared with the ''vacuum'' value obtained from pionic hydrogen X-ray measurements. This is the first quantitative deduction of the quark condensate modification at finite nuclear density, and is an important step towards understanding the origin of hadron masses. (author)

  6. On the chemistry of the lightest exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.

    1980-01-01

    The chemical aspects of formation of three hydrogen-like exotic atoms, positronium, muonium and pionic hydrogen are discussed. For positronium two formation mechanisms, the Ore model with hot-atom reactions, and the spur reaction model are set against experimental observations in solutions. The use of pionic hydrogen atoms in obtaining information on the bond properties of hydrogen is illustrated by recent experiments performed in JINR. The use of negative pions in chemistry is demonstrated by electronic structure investigations performed in Dubna. The probability W that in a chemical system containing bound hydrogen atoms a stopped negative pion is captured by a proton reflects the bond properties of hydrogen. Recent results haVe shown that the hydrogen bond formation in liquid water and the coordination of water molecules in aquacomplexes lead to significant decreases in probability W for water. A comparison of the chemical uses of the exotic atoms shows that positronium and muonium inform us on intermolecular level probing a small environment of a few molecules while the pionic hydrogen atoms deliver information on the chemical bond of hydrogen, i.e. on intramolecular level

  7. Quantum-electrodynamics corrections in pionic hydrogen

    NARCIS (Netherlands)

    Schlesser, S.; Le Bigot, E. -O.; Indelicato, P.; Pachucki, K.

    2011-01-01

    We investigate all pure quantum-electrodynamics corrections to the np --> 1s, n = 2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order alpha 5. These values are needed to extract an accurate strong interaction

  8. Exotic aspects of hadronic atoms-anomalous quasi-stabilities

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1993-07-01

    Recently revealed, but hitherto unknown, new aspects of hadronic atoms, namely, anomalous quasi-stabilities of negative hadrons, are discussed. One is on long-lived antiprotonic helium atoms, characterized as 'atomic exotic halo' and the other is on deeply bound pionic atoms, characterized as 'nuclear exotic halo'. (author)

  9. The pion-nucleon scattering lengths from pionic hydrogen and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H.-C.; Badertscher, A.; Goudsmit, P.F.A.; Janousch, M.; Leisi, H.J.; Matsinos, E.; Sigg, D.; Zhao, Z.G. [ETH Zurich, Inst. for Particle Physics, Zurich (Switzerland); Chatellard, D.; Egger, J.P. [Neuchatel Univ. (Switzerland). Inst. de Physique; Gabathuler, K.; Hauser, P.; Simons, L.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Rusi El Hassani, A.J. [Dept. de Physique, Faculte des Sciences et Technique, Tanger (Morocco)

    2001-07-01

    This is the final publication of the ETH Zurich-Neuchatel-PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3p-1s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3p-1s transition experiments we obtain the strong-interaction energy level shift {epsilon}{sub 1s} = -7.108{+-}0.013 (stat.){+-}0.034 (syst.) eV and the total decay width {gamma}{sub 1s} = 0.868{+-}0.040 (stat.){+-}0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic {pi}N s-wave scattering amplitude a{sub {pi}{sup -}p{yields}{pi}{sup -}p} = 0.0883{+-}0.0008 m{sub {pi}}{sup -1} for elastic scattering and a{sub {pi}{sup -}p{yields}{pi}{sup 0}n} = -0.128{+-}0.006 m{sub {pi}} {sup -1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector {pi}N scattering lengths (within the framework of isospin symmetry) are found to be b{sub 0} = -0.0001{sup +0.0009}{sub -0.0021} m{sub {pi}}{sup -1} and b{sub 1} = -0.0885{sup +0.0010}{sub -0.0021} m{sub {pi}} {sup -1}, respectively. Using the GMO sum rule, we obtain from b{sub 1} a new value of the {pi}N coupling constant (g{sub {pi}}{sub N} = 13.21{sub -0.05}{sup +0.11}) from which follows the Goldberger-Treiman discrepancy {delta}{sub GT}=0.027{sub -0.008}{sup +0.012}. The new values of b{sub 0} and g{sub {pi}}{sub N} imply an increase of the nucleon sigma term by at least 9 MeV. (orig.)

  10. Pionic 4f→3d transition in 181Ta, natural Re, and 209Bi and the strong interaction level shift and the strong interaction level shift and width of the pionic 3d state

    International Nuclear Information System (INIS)

    Konijn, J.; Panman, J.K.; Koch, J.H.; Doesburg, W. van; Ewan, G.T.; Johansson, T.; Tibell, G.; Fransson, K.; Tauscher, L.

    1979-01-01

    Owing to a powerful Compton-suppression technique it was possible to observe for the first time the pionic 4f→3d X-ray transition in elements heavier than A=150. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 as well as the quadrupole splitting of the 3d levels have been measured in Ta, Re and Bi. Thus in addition to the strongly shifted and broadened 5g→4f transitions, a second, strongly affected line is available for these elements. For the pionic 4f levels, standard optical potentials fit the strong interaction shifts and broadenings quite well. The now observed, deeper-lying 3d states in Ta, Re and Bi have shifts and widths that differ by a factor of 2 or more from the standard optical potential predictions. From the observed relative X-ray intensities of the pionic cascade the strong interaction widths of the 5g and 4f levels are also extracted. (Auth.)

  11. High-precision measurement of strong-interaction effects in pionic deuterium

    International Nuclear Information System (INIS)

    Strauch, Thomas

    2009-01-01

    The hadronic ground state shift ε 1s and width Γ 1s in pionic deuterium were measured with high precision at the pion factory of the Paul Scherrer Institut (PSI), Switzerland (PSI-Experiment R-06.03). In this experiment the πD(3p-1s) X-ray transition of about 3 keV was measured using a high-resolution Bragg crystal spectrometer equipped with a large-area position sensitive CCD detector. The characteristic X-radiation stems from a de-excitation cascade of the pionic atom. In order to produce an intense X-ray source, the cyclotron trap was used to stop pions in a cryogenic D 2 target after winding up the pion beam in a magnetic field. The hadronic shift ε 1s is obtained from the measured transition energy by comparison to the pure electromagnetic value, where the determination of the broadening Γ 1s requires the precise knowledge of the spectrometer response, obtained from measurements of narrow X-ray transitions from highly ionised atoms, produced in an electron cyclotron resonance ion trap. As the formation rate is assumed to be density dependent, the πD(3p-1s) X-ray energy was measured at three different D 2 pressures. Another cascade process (Coulomb de-excitation) transforms the energy release of de-excitation steps into kinetic energy of the collision partners leading to a Doppler broadening of subsequent X-ray transitions. The hadronic broadening Γ 1s is only obtained after deconvolution of the spectrometer response function and the contributions from Doppler broadening. No energy dependence of the πD(3p-1s) was found, and it is concluded that radiative de-excitation from molecular states is negligible within the experimental accuracy. Hence, the result for the shift reads ε 1s = (-2.325±0.031) eV, corresponding to an accuracy of 1.3% and represents the average of the three measured densities. The uncertainty is dominated by the accuracy of the gallium Kα 2 transition used for the energy calibration. From the analysis of the Doppler broadening no

  12. Cascade Processes in Muonic Hydrogen Atoms

    International Nuclear Information System (INIS)

    Faifman, M. P.; Men'Shikov, L. I.

    2001-01-01

    The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.

  13. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  14. Cascade in muonic and pionic atoms with Z = 1

    International Nuclear Information System (INIS)

    Markushin, V.E.

    1999-01-01

    Recent theoretical and experimental studies of the exotic atoms with Z = 1 are reviewed. An interplay between the atomic internal and external degrees of freedom is essential for a good description of the atomic cascade. The perspective of ab initio cascade calculations is outlined

  15. Pionic X-ray intensities from C, CH2 and CD2

    International Nuclear Information System (INIS)

    Daniel, H.; Seki, R.

    1980-01-01

    The relative intensities of the carbon Lsub(α) and Lsub(β) pionic X-ray lines from graphite, polyethylene, and deuterated polyethylene have been measured. No differences between CH 2 and CD 2 were observed, but differences were found between graphite and the two polyethylene targets. (orig.)

  16. High-precision measurement of strong-interaction effects in pionic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Thomas

    2009-06-30

    The hadronic ground state shift {epsilon}{sub 1s} and width {gamma}{sub 1s} in pionic deuterium were measured with high precision at the pion factory of the Paul Scherrer Institut (PSI), Switzerland (PSI-Experiment R-06.03). In this experiment the {pi}D(3p-1s) X-ray transition of about 3 keV was measured using a high-resolution Bragg crystal spectrometer equipped with a large-area position sensitive CCD detector. The characteristic X-radiation stems from a de-excitation cascade of the pionic atom. In order to produce an intense X-ray source, the cyclotron trap was used to stop pions in a cryogenic D{sub 2} target after winding up the pion beam in a magnetic field. The hadronic shift {epsilon}{sub 1s} is obtained from the measured transition energy by comparison to the pure electromagnetic value, where the determination of the broadening {gamma}{sub 1s} requires the precise knowledge of the spectrometer response, obtained from measurements of narrow X-ray transitions from highly ionised atoms, produced in an electron cyclotron resonance ion trap. As the formation rate is assumed to be density dependent, the {pi}D(3p-1s) X-ray energy was measured at three different D{sub 2} pressures. Another cascade process (Coulomb de-excitation) transforms the energy release of de-excitation steps into kinetic energy of the collision partners leading to a Doppler broadening of subsequent X-ray transitions. The hadronic broadening {gamma}{sub 1s} is only obtained after deconvolution of the spectrometer response function and the contributions from Doppler broadening. No energy dependence of the {pi}D(3p-1s) was found, and it is concluded that radiative de-excitation from molecular states is negligible within the experimental accuracy. Hence, the result for the shift reads {epsilon}{sub 1s} = (-2.325{+-}0.031) eV, corresponding to an accuracy of 1.3% and represents the average of the three measured densities. The uncertainty is dominated by the accuracy of the gallium K{alpha}{sub 2

  17. Formation of fast exotic atoms by radiative Coulomb capture

    International Nuclear Information System (INIS)

    Chatterjee, L.; Das, G.; Chakravorty, A.; Goswami, R.; Mondal, S.K.

    1993-01-01

    Interesting surprises in some exotic atom kinetics have been reported recently. These involve muonic atom transfer cross sections, nuclear pion capture and the q 1s effect in μCF. These can be explained if the exotic atom population contains a contributing fast component. Such fast atoms can be formed by radiative continuum to bound transitions of fast (keV) muons or pions. Cross sections for formation of such fast pionic and muonic atoms and their velocity distributions are reported. The possibility of these processes competing with the thermalisation channels and contributing effectively to the exotic atom population discussed. (orig.)

  18. The quadrupole moment and strong interaction parameters from muonic and pionic X-ray studies of 237Np

    International Nuclear Information System (INIS)

    Laat, C.T.A.M. de; Taal, A.; Duinker, W.; Konijn, J.; Petitjean, C.; Reist, H.W.; Mueller, W.; Commission of the European Communities, Geel

    1987-01-01

    The X-ray spectrum of muonic and pionic 237 Np has been investigated with muons and pions stopped in a NpO 2 target. The nuclear spectroscopic quadrupole moment was determined to be Q=3.886±0.006 b from the splittings of the muonic 5g→4f hyperfine complexes. The B(E2)↓-values for the first and second excited states were evaluated as 3.17±0.08 and 2.77±0.10 e 2 b 2 , respectively. A comparison between the muonic and pionic 5g→4f hyperfine complexes yields the strong interaction parameter for the pionic 4f state. For the first time a change of sign as function of Z for the strong interaction quadrupole shift ε 2 (4f) has been observed. The standard optical model predictions agree reasonably well with the measured strong interaction monopole shift, ε 0 (4f), and width, Γ 0 (4f), while they disagree with the experimental value for ε 2 . A stronger s-wave repulsion in the optical potential could explain this effect. (orig.)

  19. Non-pionic effects in deuteron asymptotic observables

    International Nuclear Information System (INIS)

    Ballot, J.L.; Robilotta, M.R.

    1991-01-01

    It is well known that pion dynamics dominates deuteron asymptotic observables, especially η, the D/S ratio and Q, the quadrupole moment. A procedure has been discussed earlier that allows the unambiguous determination of the pion contribution to these observables as function of the pion-nucleon coupling constant. This problem is discussed in the framework of a specific model for the nucleon-nucleon interaction, namely the potential developed by the Tourreil, Rouben and Sprung. The contribution of non-pionic dynamics to deuteron asymptotic observables is investigated. It is shown that effects due to ρ and ω exchanges are negligible. (K.A.) 8 refs., 1 fig., 1 tab

  20. Evidence of central repulsion potential from pionic decay of s-shell Λ-hypernuclei

    International Nuclear Information System (INIS)

    Kumagai-Fuse, I.; Okabe, S.; Akaishi, Y.

    1994-10-01

    Pionic decays of A=4 and 5 hypernuclei are discussed to obtain information about a nucleus-Λ potential. Results for the available decay widths support as a whole that the nucleus-Λ potential has central repulsion not only in A=5 but also in A=4 hypernuclei. (author)

  1. Pionic 4f-3d X-rays from 208Pb and 209Bi

    International Nuclear Information System (INIS)

    Olin, A.; Forsman, J.W.; MacDonald, J.A.; Marshall, G.M.; Numao, T.; Poffenberger, P.R.; Van Esbroek, P.; Kunselman, A.R.; Olaniyi, B.H.

    1985-01-01

    The X-ray energies and widths of the pionic 4f-3d and 5g-4f transitions have been measured in 208 Pb and 209 Bi. The 3d widths obtained are in reasonable agreement with theory, and do not support the anomalously small values previously reported. (orig.)

  2. Pionic annihilation of antiprotons stopped on 3He

    International Nuclear Information System (INIS)

    Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F.; Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Guaraldo, C.; Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M.; Zenoni, A.

    1990-01-01

    The pionic annihilation of antiprotons stopped on 3 He nuclei in a self-shunted streamer chamber exposed to the antiproton beam of LEAR is studied. The data concern charged-particle multiplicity distributions, branching ratios for different final states, the probability of final-state interaction, π - , π + , p and d momentum spectra, like and unlike pion angular correlations, π and other charged-particle angular correlations. The comparison of the 3 He data with those obtained on 1 H, 2 H and 4 He does not reveal relevant effects due to the increase of the nucleon number; the small differences can be seen as due to a weak final-state interaction. (orig.)

  3. Quadrupole interactions in pionic and muonic tantalum and rhenium

    International Nuclear Information System (INIS)

    Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.

    1981-01-01

    The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)

  4. Pionic annihilation of antiprotons stopped on sup 3 He

    Energy Technology Data Exchange (ETDEWEB)

    Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A. (Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica Istituto Nazionale di Fisica Nucleare, Pavia (Italy)); Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F. (Turin Univ. (Italy). Ist. di Fisica Generale Istituto Nazionale di Fisica Nucleare, Turin (Italy)); Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I. (Joint Inst. for Nuclear Research, Dubna (USSR)); Guaraldo, C. (Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Lodi Rizzini, E. (Brescia Univ. (Italy). Dipt. di Automazione Industriale Istituto Nazionale di Fisica Nucleare, Turin (Italy)); Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M. (Bergen Univ. (Norway). Dept. of Physics); Breivik, F.O.; Jacobsen, T.; Soerensen, S.O. (Oslo Univ. (Norway). Physics Dept.); Balestra

    1990-11-26

    The pionic annihilation of antiprotons stopped on {sup 3}He nuclei in a self-shunted streamer chamber exposed to the antiproton beam of LEAR is studied. The data concern charged-particle multiplicity distributions, branching ratios for different final states, the probability of final-state interaction, {pi}{sup -}, {pi}{sup +}, p and d momentum spectra, like and unlike pion angular correlations, {pi} and other charged-particle angular correlations. The comparison of the {sup 3}He data with those obtained on {sup 1}H, {sup 2}H and {sup 4}He does not reveal relevant effects due to the increase of the nucleon number; the small differences can be seen as due to a weak final-state interaction. (orig.).

  5. Pionic Contribution to Neutrinoless Double Beta Decay

    CERN Document Server

    Vergados, J D; Toki, H

    2010-01-01

    It is well known that neutrinoless double decay is going to play a crucial role in settling the neutrino properties, which cannot be extracted from the neutrino oscillation data. It is, in particular, expected to settle the absolute scale of neutrino mass and determine whether the neutrinos are Majorana particles, i.e. they coincide with their own antiparticles. In order to extract the average neutrino mass from the data one must be able to estimate the contribution all possible high mass intermediate particles. The latter, which occur in practically all extensions of the standard model, can, in principle, be differentiated from the usual mass term, if data from various targets are available. One, however, must first be able reliably calculate the corresponding nuclear matrix elements. Such calculations are extremely difficult since the effective transition operators are very short ranged. For such operators processes like pionic contributions, which are usually negligible, turn out to be dominant. We study s...

  6. Real-pion states formed by virtual-pion beam

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-04-01

    Deeply bound pionic states are discussed from various points of view; highly excited nuclear states as a cluster family of pionic bound states, Σ atom/Σ hypernuclei, halo-like density distributions, virtual pion beam to produce pionic states, etc. (author)

  7. Calculation of the density shift and broadening of the transition lines in pionic helium: Computational problems

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Bulgarian Academy of Sciences, INRNE (Bulgaria)

    2015-08-15

    The potential energy surface and the computational codes, developed for the evaluation of the density shift and broadening of the spectral lines of laser-induced transitions from metastable states of antiprotonic helium, fail to produce convergent results in the case of pionic helium. We briefly analyze the encountered computational problems and outline possible solutions of the problems.

  8. A phenomenological determination of the pion-nucleon scattering lengths from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2005-01-01

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon scattering length, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order (alpha)**2 log(alpha) in the limit of a short-range hadronic interaction. We infer a charged pion-proton scattering length of 0.0870(5) in units of inverse pion mass, which gives for the charged pion-proton-neutron coupling, through the GMO relation, a value of 14.04(17).

  9. Hadronic atoms and leptonic conservations: Final technical report, February 1, 1984-January 31, 1987

    International Nuclear Information System (INIS)

    Kunselman, R.

    1987-01-01

    X rays from pionic atoms were studied to determine nuclear distributions, to determine pion-nuclear interaction parameters, and to test energy calculations; x rays from sigmonic and kaonic atoms were studied to determine the sigma-minus magnetic moment, as well as to determine sigma-nuclear interaction parameters, and to determine the sigma-minus and kaon mass. A search for the rare decay μ + → e + γ at a sensitivity less than 10 -13 is being constructed. A more sensitive search was begun for muonium conversion μ + e - → μ - e + . 6 refs

  10. On the nucleon renormalization in many nucleon problems due to pionic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.; Sawicki, M.; Furui, Sadataka.

    1985-01-01

    Conceptual problems of unified two-nucleon force models are discussed. The force models are based on the pion-nucleon vertex and attempt a description of the nucleon-nucleon interaction below and above pion threshold. The conceptual problems arise from the nucleon renormalization due to pionic degrees of freedom. Keeping channels with a single pion only no renormalization procedure can be given which is consistent in the one-nucleon and in the many-nucleon systems. The medium dependence of the one-pion exchange potential is illustrated. (author)

  11. E2 nuclear resonance effects in pionic and kaonic atoms

    International Nuclear Information System (INIS)

    Batty, C.J.; Biagi, S.F.; Blecher, M.

    1977-09-01

    The attenuation due to the E2 nuclear resonance effect has been measured in hadronic atoms using pions with 111 Cd and 112 Cd, and for kaons with 122 Sn. Energies of the relevant X-ray and γ-ray transitions and of the X-ray cascade intensities have also been measured so as to give a self-consistent set of information. The results are found to be in very good agreement with theoretical calculations. (author)

  12. A high resolution reflecting crystal spectrometer to measure 3 keV pionic hydrogen and deuterium X-rays

    International Nuclear Information System (INIS)

    Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Knecht, L.; Leisi, H.J.; Schroeder, H.C.; Sigg, D.; Zhao, Z.G.; Chatellard, D.; Egger, J.P.; Jeannet, E.; Aschenauer, E.C.; Gabathuler, K.; Simons, L.M.; Rusi El Hassani, A.J.

    1993-01-01

    A reflecting crystal spectrometer consisting of three cylindrically bent quartz (110) crystals is described. It was designed to measure the 3 keV K β X-rays from pionic hydrogen and deuterium. Charge coupled devices (CCDs) were used as X-ray detectors. Projecting the reflexes of all three crystals on one common focus, an instrumental energy resolution below 1 eV was obtained at an energy of 2.9 keV. (orig.)

  13. NΔ-NN interaction in the pionic disintegration of the deuteron

    International Nuclear Information System (INIS)

    Tanabe, H.; Ohta, K.

    1987-07-01

    The cross sections for the pionic disintegration of the deuteron in the Δ-resonance region are calculated based on a unitary three-body model. The NΔ-NN transition potential is constructed from the πN P 11 and P 33 scattering amplitudes extrapolated to the off-shell region, and from the πNN three-body propagator. The idea of the two-potential model for the P 11 wave is extended to the P 33 wave. The parameters of the model are deduced from the fits to the πN scattering phase shifts. It is found that the off-shell P 11 and P 33 scattering amplitudes behave quite similarly to the monopole form factor with a cut-off momentum Λ = 600 MeV/c as obtained earlier in the perturbation model by Gibbs, Gibson, and Stephenson. It is also found that the backward-propagating-pion component of the πNN propagator, which is often ignored in three-body calculations, is crucial to reproduce the magnitude of the total cross section. The three-body calculation is compared to the perturbation calculations. The second-order perturbation gives the results which closely approximate the full-order three-body calculation. (author)

  14. Capture and transfer of pions in hydrogenous materials

    International Nuclear Information System (INIS)

    Armstrong, D.S.

    1990-05-01

    Pionic hydrogen is a short-lived exotic hydrogen isotope in which a negative pion replaces the atomic electron. The formation and subsequent interactions of pionic hydrogen are discussed, with emphasis on the process of pion transfer. Recent results using the pion charge-exchange reaction (π - , π 0 ) obtained at TRIUMF are reviewed. (Author) (35 refs., 3 tabs., 9 figs.)

  15. Hadronic atoms and ticklish nuclei: the E2 nuclear resonance effect

    International Nuclear Information System (INIS)

    Leon, M.

    1975-06-01

    The E2 nuclear resonance effect in hadronic atoms offers a way to increase the hadronic information that can be obtained from hadronic x-ray experiments. The effect occurs when an atomic deexcitation energy closely matches a nuclear excitation energy, so that some configuration mixing occurs. It shows up as an attenuation of some of the hadronic x-ray lines from a resonant versus a normal isotope target. The effect was observed very clearly in pionic cadmium in a recent LAMPF experiment. A planned LAMPF experiment will use the nuclear resonance effect to determine whether the p-wave π-nucleus interaction does indeed become repulsive for Z greater than or equal to 35 as predicted. The effect also appears in the kaonic molybdenum data taken at LBL because several of the stable molybdenum isotopes are resonant. A number of promising cases for π - , K - , anti p, and Σ - atoms are discussed and a spectacular and potentially very informative experiment on anti p- 100 Mo is proposed. (9 figures, 9 tables) (U.S.)

  16. Unified analysis of pionic atoms and low-energy pion-nuclear scattering: hybrid analysis

    International Nuclear Information System (INIS)

    Seki, R.; Masutani, K.; Yazaki, K.

    1983-01-01

    Using the method of effective nuclear density, we apply a simple, π-nucleus optical potential (without rho 2 terms and the Lorentz-Lorenz effect) to π - atoms and low-energy π-nucleus elastic scatterings. Data of both phenomena are analyzed in a unified, hybrid (phenomenological and theoretical) manner: The π - -atom data are analyzed first to determine phenomenologically the potential parameters at threshold. The parameters are then extrapolated successfully up to 50 MeV incident pion laboratory energy by a microscopic calculation in which the energy-dependence correction is made after including the Fermi-averaging and Pauli-blocking effects. In contrast to other work, our potential includes the minimum number of the parameters that describe the full information content of the data. We can thus conclude that these effects are the important microscopic corrections for the extrapolation, but neither the Lorentz-Lorenz effect nor some highly nonlocal effects are crucial ones. The potential we have used has angular transformation terms which are also found to be crucial in the unified treatment. During the course of this work we have found an interesting behavior of the terms. A short account of its discussion is also presented

  17. Extracting the σ-term from low-energy pion-nucleon scattering

    Science.gov (United States)

    Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.

    2018-02-01

    We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.

  18. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  19. Reduction of the chiral order parameter by a nuclear medium

    International Nuclear Information System (INIS)

    Kienle, P.; Yamazaki, Toshimizu

    2001-01-01

    We propose a model independent procedure to deduce from the 1s-binding energy of heavy, neutron rich pionic atoms, the isovector scattering length b 1 of the pion nucleus interaction. It is related to the pion decay constant f π , the order parameter of spontaneous chiral symmetry breaking and thus to the value of the chiral quark condensate. Based on the results with pionic 205 Pb, we find with the assertion that only the isovector part of the pion-nucleus interaction be modified by a QCD effect, a reduction of the quark condensate by 30% in a 205 Pb nucleus. Forthcoming experiments to measure pionic 1s-binding energies in Sn-isotopes, including isotope shifts, will yield decisive information on the quark condensate without assertion. (orig.)

  20. Double-Pionic Fusion of Nuclear Systems and the ''ABC'' Effect: Approaching a Puzzle by Exclusive and Kinematically Complete Measurements

    International Nuclear Information System (INIS)

    Bashkanov, M.; Clement, H.; Doroshkevich, E.; Khakimova, O.; Kren, F.; Meier, R.; Pricking, A.; Skorodko, T.; Wagner, G. J.; Bargholtz, C.; Geren, L.; Lindberg, K.; Tegner, P.-E.; Zartova, I.; Berlowski, M.; Stepaniak, J.; Bogoslawsky, D.; Ivanov, G.; Jiganov, E.; Morosov, B.

    2009-01-01

    The ABC effect--a puzzling low-mass enhancement in the ππ invariant mass spectrum, first observed by Abashian, Booth, and Crowe--is well known from inclusive measurements of two-pion production in nuclear fusion reactions. Here we report on the first exclusive and kinematically complete measurements of the most basic double-pionic fusion reaction pn→dπ 0 π 0 at beam energies of 1.03 and 1.35 GeV. The measurements, which have been carried out at CELSIUS-WASA, reveal the ABC effect to be a (ππ) I=L=0 channel phenomenon associated with both a resonancelike energy dependence in the integral cross section and the formation of a ΔΔ system in the intermediate state. A corresponding simple s-channel resonance ansatz provides a surprisingly good description of the data

  1. Three-body dynamics in one dimension: a test model for the three-nucleon system with irreducible pionic diagrams

    International Nuclear Information System (INIS)

    Melde, T.; Canton, L.; Svenne, J.P.

    2002-01-01

    We formulate the three-body problem in one dimension in terms of the (Faddeev-type) integral equation approach. As an application, we develop a spinless, one-dimensional (1-D) model that mimics three-nucleon dynamics in one dimension. Using simple two-body potentials that reproduce the deuteron binding, we obtain that the three-body system binds at about 7.5 MeV. We then consider two types of residual pionic corrections in the dynamical equation; one related to the 2π-exchange three-body diagram, the other to the 1π-exchange three-body diagram. We find that the first contribution can produce an additional binding effect of about 0.9 MeV. The second term produces smaller binding effects, which are, however, dependent on the uncertainty in the off-shell extrapolation of the two-body t-matrix. This presents interesting analogies with what occurs in three dimensions. The paper also discusses the general three-particle quantum scattering problem, for motion restricted to the fall line. (author)

  2. Precise X-Ray spectroscopy of the hydrogenlike and heliumlike heavy ions and of the exotic atoms

    International Nuclear Information System (INIS)

    Manil, B.

    2001-10-01

    In this thesis, we present four experiments designed to study hydrogenlike and heliumlike heavy ions, or exotic atoms. These experiments have been run at the Gesellschaft fur Schwerionenforchung (GSI) and the Paul Scherrer Institut (PSI). In the first part of this text, we begin with the description of a focusing, curved-crystal spectrometer in transmission geometry, coupled with a microstrip, germanium position-sensitive detector, which diffract X-ray photons in the range 50-100 keV. With this spectrometer, which can be mounted on the GSI accelerator, we will increase, by one order of magnitude, the accuracy on the measurement of the 1 s Lamb shift in hydrogenlike uranium ions, in order to test QED in strong coulomb field. Next, we detail an experiment that will soon give a new value of the charged-pion mass with a relative accuracy of 1 ppm. For that, we perform X-ray spectroscopy of pionic nitrogen, at PSI. The experimental set-up is made up of a cyclotron trap, a spherical Bragg-crystal focusing spectrometer, in reflection geometry, and a CCD sensitive-position cooled detector. This set-up allows also test QCD and chiral perturbation theory by measurements of radiative transitions of pionic hydrogen. The main subject of the second part is a lifetime measurement of the metastable 2 3 P 0 state in heliumlike gold ions, by Beam Foil Spectroscopy. With this experiment, which provides an important test of relativistic many-body theory, we give, for the first time, an accurate value of the lifetime of this state for an ion with a Z larger than 64, our result is τ(exp) = (22.12 ± 1.21) ps

  3. Precision calculation of the {pi}{sup -}d scattering length and its impact on threshold {pi}N scattering

    Energy Technology Data Exchange (ETDEWEB)

    Baru, V. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hoferichter, M.; Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Nogga, A. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Phillips, D.R., E-mail: phillips@phy.ohiou.ed [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States)

    2011-01-03

    We present a calculation of the {pi}{sup -}d scattering length with an accuracy of a few percent using chiral perturbation theory. For the first time isospin-violating corrections are included consistently. Using data on pionic deuterium and pionic hydrogen atoms, we extract the isoscalar and isovector pion-nucleon scattering lengths and obtain a{sup +}=(7.6{+-}3.1).10{sup -3}M{sub {pi}}{sup -1} and a{sup -}=(86.1{+-}0.9).10{sup -3}M{sub {pi}}{sup -1}. Via the Goldberger-Miyazawa-Oehme sum rule, this leads to a charged-pion-nucleon coupling constant g{sub c}{sup 2}/4{pi}=13.69{+-}0.20.

  4. Determination of the pion-nucleon coupling constant and scattering lengths

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2002-01-01

    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.17+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0786(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0017+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0900+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pi...

  5. A Monte Carlo calculation of the pionium break-up probability with different sets of pionium target cross sections

    International Nuclear Information System (INIS)

    Santamarina, C; Schumann, M; Afanasyev, L G; Heim, T

    2003-01-01

    Chiral perturbation theory predicts the lifetime of pionium, a hydrogen-like π + π - atom, to better than 3% precision. The goal of the DIRAC experiment at CERN is to obtain and check this value experimentally by measuring the break-up probability of pionium in a target. In order to accurately measure the lifetime one needs to know the relationship between the break-up probability and the lifetime to 1% accuracy. We have obtained this dependence by modelling the evolution of pionic atoms in the target using Monte Carlo methods. The model relies on the computation of the pionium-target-atom interaction cross sections. Three different sets of pionium-target cross sections with varying degrees of complexity were used: from the simplest first-order Born approximation involving only the electrostatic interaction to a more advanced approach, taking into account multiphoton exchanges and relativistic effects. We conclude that, in order to obtain the pionium lifetime to 1% accuracy from the break-up probability, the pionium-target cross sections must be known with the same accuracy for the low excited bound states of the pionic atom. This result has been achieved, for low Z targets, with the two most precise cross section sets. For large Z targets only the set accounting for multiphoton exchange satisfies the condition

  6. Double pionic fusion. Towards an understanding of the ABC puzzle by exclusive measurements

    International Nuclear Information System (INIS)

    Bashkanov, M.

    2006-01-01

    The ABC effect is a huge unexpected enhancement at twice the pion mass in the invariant mass spectrum of two pions, which are generated in double-pionic fusion to bound nuclear systems. This peculiar phenomenon has been missing a conclusive explanation all the time since it has been discovered 1960 in single-arm measurements of 3 He ejectiles in the reaction pd→ 3 HeX. One reason for this failure has been that all measurements to this subject have been inclusive, i.e., lacking the full experimentally accessible information. Hence exclusive measurements were performed at CELSIUS/WASA at an energy of T p =0.895 GeV, where the ABC effect is expected to be strongest. For the first time exclusive data of solid statistics for both the pd→ 3 Heπ 0 π 0 and pd→ 3 Heπ + π - reactions were obtained including also results for the three-pion production total cross-section. The new data are consistent with the previous inclusive data. They provide, however, much more additional information, which rule out all previous explications of the ABC effect. The now available kinematically complete set of data reveals that the low ππ-mass enhancement (ABC-effect): - is not necessarily associated with a high ππ-mass enhancement, - is always connected with the simultaneous excitation of two Δ resonances, - is of scalar-isoscalar nature, i.e. a σ-channel phenomenon, - requires dynamics in the reaction system, which has not been considered hitherto. Various possible solutions are discussed, however, all of them demand a high attraction in the ΔΔ system - a point, which has never been touched so far in theoretical and experimental investigations. For this data analysis new powerful methods based on neural nets have been developed. Their current and possible future applications are discussed. (orig.)

  7. Theoretical research in intermediate energy nuclear physics: Final report

    International Nuclear Information System (INIS)

    Seki, R.

    1987-01-01

    This paper discusses the progress that has been made on the following problems: a numerical calculation of Skyrmiron scattering; (e,e'p) at high momentum transfer; spin-orbit nucleon-nucleon potential from Skyrme model; pionic atom anomaly; and field theory problems. The problems deal with various topics in intermediate-energy nuclear physics

  8. Double pionic fusion. Towards an understanding of the ABC puzzle by exclusive measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bashkanov, M.

    2006-07-01

    The ABC effect is a huge unexpected enhancement at twice the pion mass in the invariant mass spectrum of two pions, which are generated in double-pionic fusion to bound nuclear systems. This peculiar phenomenon has been missing a conclusive explanation all the time since it has been discovered 1960 in single-arm measurements of {sup 3}He ejectiles in the reaction pd{yields} {sup 3}HeX. One reason for this failure has been that all measurements to this subject have been inclusive, i.e., lacking the full experimentally accessible information. Hence exclusive measurements were performed at CELSIUS/WASA at an energy of T{sub p}=0.895 GeV, where the ABC effect is expected to be strongest. For the first time exclusive data of solid statistics for both the pd{yields}{sup 3}He{pi}{sup 0}{pi}{sup 0} and pd{yields}{sup 3}He{pi}{sup +}{pi}{sup -} reactions were obtained including also results for the three-pion production total cross-section. The new data are consistent with the previous inclusive data. They provide, however, much more additional information, which rule out all previous explications of the ABC effect. The now available kinematically complete set of data reveals that the low {pi}{pi}-mass enhancement (ABC-effect): - is not necessarily associated with a high {pi}{pi}-mass enhancement, - is always connected with the simultaneous excitation of two {delta} resonances, - is of scalar-isoscalar nature, i.e. a {sigma}-channel phenomenon, - requires dynamics in the reaction system, which has not been considered hitherto. Various possible solutions are discussed, however, all of them demand a high attraction in the {delta}{delta} system - a point, which has never been touched so far in theoretical and experimental investigations. For this data analysis new powerful methods based on neural nets have been developed. Their current and possible future applications are discussed. (orig.)

  9. Physics at the AD/PS/SPS - PLEASE NOTE CHANGE OF ROOM!(2/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 2: QCD and hadron physics: COMPASS, NA61, DIRAC The lecture will discuss the research done at the COMPASS, SHINE and DIRAC experiments at the SPS and PS. COMPASS studies nucleon structure and hadron spectroscopy, SHINE searches for the critical point and onset of deconfinement in heavy ion collisions while DIRAC studies the pi-pi scattering length in pionic atoms.

  10. Determination of the pion-nucleon coupling constant and scattering lengths

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2002-01-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π - p and π - d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g c 2 (GMO)/4π=14.11±0.05(statistical)±0.19(systematic) or f c 2 /4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (a π - p +a π - n )/2=[-12±2(statistical)±8(systematic)]x10 -4 m π -1 and (a π - p -a π - n )/2=[895±3(statistical)±13 (systematic)]x10 -4 m π -1 . For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length

  11. 8. Biennial session on nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    In this biennial, some importance have been accorded deliberately to heavy ion experiment planning at very high energy and on results than can be waited for. Besides these collisions, different subjects are dealt with such as kaon scattering, hot nuclei, electron channeling photon and pion reactions in light nuclei, new forms of radioactivity, exotic nuclei, theoretical processing of nuclear dynamics, bag models, and pionic atoms [fr

  12. An improved optical potential for low-energy pion-nucleus scattering

    International Nuclear Information System (INIS)

    Khankhasaev, M.Kh.; Topil'skaya, N.S.

    1988-01-01

    A new procedure for calculating the imaginary part the of Stricker, McManus and Carr (SMC) optical potential is proposed. It is based on an approximate expression for the pion-nucleon scattering amplitude including nuclear structure effects. It is shown that the resulting potential with the absorption parameters fitted to the pionic atom data provides a good description of the scattering up to 50 MeV

  13. How Precisely can we Determine the $\\piNN$ Coupling Constant from the Isovector GMO Sum Rule?

    CERN Document Server

    Loiseau, B; Thomas, A W

    1999-01-01

    The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths.

  14. Lowest Q2 Measurement of the γ*p→ Δ Reaction: Probing the Pionic Contribution

    Energy Technology Data Exchange (ETDEWEB)

    Stave, Sean C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-06-01

    The first excited state of the proton, the Delat, can be reached through a magnetic dipole spin flip of one of the quarks (M1) or through electric and Coulomb quadrupole terms (E2 and C2) which indicate a deviation from spherical symmetry. The quark models using the color hyperfine interaction underestimate the size of the quadrupole terms by more than an order of magnitude. Models using the pion cloud do a much better job of describing the data. This is expected due to the spontaneous breaking of chiral symmetry which leads to a cloud of virtual p wave pions which introduce the non-spherical amplitudes. The data presented in this work fill gaps in the low Q², long distance region where the pion cloud is expected to dominate and to produce significant Q2 variation. The p(e¯, ép)π° reaction was measured in the Δ region at Q² = 0.060 (GeV/c)², the lowest Q² to date for pion electroproduction, utilizing out-of-plane magnetic spectrometers at the Mainz Microtron in Germany. This work reports results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios obtained from fitting the new data with models using a three parameter, resonant multipole fit: M³/²1+ = (40.33 +- 0.63stat+syst +-model)(10-³/mπ+), E2/M1=Re(E³/²1+M³/²1+) = (-2.28+- 0.29stat+syst +- 0.20model)%, and C2/M1 =Re(S³/²1+/M³/²1+) poles disagree with predictions of the quark models but are in reasonable agreement with a chiral extrapolation of lattice QCD, chiral effective field theory and dynamical model results confirming the dominance and general Q² variation of the long range pionic contribution. While there is qualitative agreement with the models, there is no quantitative agreement thus indicating the need for further improvement of the models.

  15. Passages of high energy hadrons through atomic nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    2001-01-01

    The subject matter in this paper are descriptions of more important results of investigations of the intranuclear matter properties by means of hadronic probes (pionic, e.g.). The projectile-nucleus collisions occurred in liquid xenon in the 180 litre xenon bubble chamber. The chamber in the experiments was practically a total 4π angle aperture for detection of the secondary products from the hadron-nucleus collision reactions. All the π +-0 mesons were practically registered with an efficiency near to 100 %. The hadron passages through nuclei (through layers of intranuclear matter) in their pure sort, when multiparticle creation does not occur, were observed. Conclusive information, obtained on the hadron passages, is presented here. It may be used for new nuclear power technology, in radioactive waste neutralization, in other works on intranuclear matter properties

  16. Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule

    Science.gov (United States)

    Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.

    2011-12-01

    We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  17. Precision determination of pion mass using X-ray CCD spectroscopy

    CERN Document Server

    Nelms, N; Augsburger, M A; Borchert, G; Chatellard, D; Daum, M; Egger, J P; Gotta, D; Hauser, P; Indelicato, P J; Jeannet, E; Kirch, K; Schult, O W B; Siems, T; Simons, L M; Wells, A

    2002-01-01

    An experiment is described which aims to determine the charged pion mass to 1 ppm or better, from which a new determination of the upper limit of the muon neutrino mass is anticipated. The experimental approach uses a high-intensity negative pion beam (produced at the PSI 590 MeV proton cyclotron), injected into a cyclotron trap and stopped inside a gas-filled target chamber, to form highly excited exotic atoms of pionic nitrogen and muonic oxygen. The energy of photons, emitted during de-excitation, is directly proportional to the mass of the pion or muon. These soft X-ray emission spectra are measured using a high-precision crystal spectrometer, with an array of six, high quantum efficiency X-ray position resolving CCDs at the focus. To achieve sub-ppm accuracy, simultaneous calibration of the pionic nitrogen line is provided by measurement of an adjacent muonic oxygen line, whose energy is known to 0.3 ppm. The high precision of the experiment offers a new opportunity to determine the pion mass to the leve...

  18. Remarks on the pion–nucleon σ-term

    Energy Technology Data Exchange (ETDEWEB)

    Hoferichter, Martin, E-mail: mhofer@uw.edu [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States); Ruiz de Elvira, Jacobo; Kubis, Bastian [Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, JARA-HPC, and JARA-FAME, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-09-10

    The pion–nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion–nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion–nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  19. Remarks on the pion–nucleon σ-term

    Directory of Open Access Journals (Sweden)

    Martin Hoferichter

    2016-09-01

    Full Text Available The pion–nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion–nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion–nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  20. Remarks on the pion-nucleon σ-term

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  1. A phenomenological π-p scattering length from pionic hydrogen

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Wycech, S.

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a h extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α 2 logα using an extended charge distribution. A hadronic πN scattering length a h π - p =0.0870(5)m π -1 is deduced leading to a πNN coupling constant from the GMO relation g c 2 /(4π)=14.04(17)

  2. A phenomenological $\\pi^{-}p$ scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a/sup h/ extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order alpha /sup 2/ log alpha using an extended charge distribution. A hadronic pi N scattering length a/sub pi -p//sup h/ = 0.0870(5)m/sub pi //sup -1/ is deduced leading to a pi NN coupling constant from the GMO relation g/sub c //sup 2//(4 pi ) = 14.04(17). (28 refs).

  3. Decay of bubble of disoriented chiral condensate

    International Nuclear Information System (INIS)

    Gani, V.A.; Kudryavtsev, A.E.; Belova, T.I.

    1999-01-01

    The space-time structure for the process of decay of a bubble of hypothetical phase -disoriented chiral condensate (DCC) i discussed. The evolution of the initial classical field configuration corresponding to the bubble of DCC is studied, both numerically and analytically. The decay of this initial configuration depends crucially on self-interaction of the pionic fields. It is shown that in some cases this self-interaction leads to the formation of sort of breather solution, formed from pionic fields situated in the center of the initial bubble of DCC. This breather looks like a long-lived source of pionic fields [ru

  4. Theoretical research in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Seki, R.

    1991-01-01

    This report discusses progress that has been made on the following six problems: (1) final state interactions in (e,e'p) at high momentum transfer; (2) a numerical calculation of skyrmion-antiskyrmion annihilation; (3) pion-nucleus interactions above 0.5 GeV/c; (4) pionic atom anomaly; (5) baryon interactions in Skyrme model; and (6) large N c quantum hydrodynamics. The problems deal with various topics in intermediate-energy nuclear physics. Since we plan to continue the investigation of these problems in the third year, we describe the plan of the investigation together

  5. Precision calculation of threshold {pi}{sup -}d scattering, {pi}N scattering lengths, and the GMO sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Baru, V. [Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44870 Bochum (Germany); Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hoferichter, M., E-mail: hoferichter@hiskp.uni-bonn.de [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Nogga, A. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2011-12-15

    We use chiral perturbation theory (ChPT) to calculate the {pi}{sup -}d scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) , where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a{sup +} and a{sup -}. We study isospin-breaking contributions to the three-body part of a{sub {pi}}{sup -}{sub d} due to mass differences, isospin violation in the {pi}N scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a{sub {pi}}{sup -}{sub d} due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  6. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  7. A phenomenological {pi}{sup -}p scattering length from pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, T.E.O.; Loiseau, B.; Wycech, S

    2004-07-29

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a{sup h} extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order {alpha}{sup 2}log{alpha} using an extended charge distribution. A hadronic {pi}N scattering length a{sup h}{sub {pi}{sup -}}{sub p}=0.0870(5)m{sub {pi}}{sup -1} is deduced leading to a {pi}NN coupling constant from the GMO relation g{sub c}{sup 2}/(4{pi})=14.04(17)

  8. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  9. Decay of hypernuclei

    International Nuclear Information System (INIS)

    Bando, H.

    1985-01-01

    The pionic and non-mesonic decays of hypernuclei are discussed. In the first part, various decay processes which could be useful to obtain information of hypernuclear structure are discussed. The experimental data concerning the pionic and non-mesonic decays are discussed in the second part. As the experimental data, there are only few lifetime data and some crude data on the non-mesonic to π decay ratio. In the third and the fourth parts, some theoretical analyses are made on the pionic and the nonmesonic decays. DDHF calculation was performed for Λ and N systems by using Skyrme type ΛN and NN effective interactions. A suppression factor of the order of 10 -3 for A nearly equal 100 was obtained. (Aoki, K.)

  10. Measurement of the charged pion mass using a low-density target of light atoms

    Directory of Open Access Journals (Sweden)

    Trassinelli M.

    2016-01-01

    Full Text Available We present a new evaluation of the negatively charged pion mass based on the simultaneous spectroscopy of pionic nitrogen and muonic oxygen transitions using a gaseous target composed by a N2/O2 mixture at 1.4 bar. We present the experimental set-up and the methods for deriving the pion mass value from the spatial separation from the 5g − 4f πN transition line and the 5g − 4f μO transition line used as reference. Moreover, we discuss the importance to use dilute targets in order to minimize the influence of additional spectral lines from the presence of remaining electrons during the radiative emission. The occurrence of possible satellite lines is investigated via hypothesis testing methods using the Bayes factor.

  11. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  12. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  13. Review of recent experiments in intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P D [Carnegie-Mellon Univ., Pittsburgh, PA (USA)

    1978-01-01

    The data generated at intermediate-energy accelerator facilities has expanded rapidly over the past few years. A number of recent experiments chosen for their impact on nuclear structure questions are reviewed. Proton scattering together with pionic and muonic atom X-ray measurements are shown to be giving very precise determinations of gross nuclear properties. Pion scattering and reaction data although less precise, are starting to generate a new understanding of wave functions of specific nuclear states. Specific examples where new unpublished data are now available are emphasized. In addition, other medium-energy experiments that are starting to contribute to nuclear structure physics are summarized.

  14. Experimental study on pion capture by hydrogen bound in molecules

    International Nuclear Information System (INIS)

    Horvath, D.; Aniol, K.A.; Entezami, F.; Measday, D.F.; Noble, A.J.; Stanislaus, S.; Virtue, C.J.

    1988-08-01

    An experiment was performed at TRIUMF to study the formation of pionic hydrogen atoms and molecules in solids, particularly in groups of organic molecules of slightly different structure in order to help further clarify the problem. The nuclear capture of pions by hydrogen was measured using the charge exchange of stopped pions. The coincident photons emitted by the decaying π 0 mesons were detected by TRIUMF's two large NaI spectrometers. New experimental results were obtained for the capture probability of stopped π - mesons in the nuclei of hydrogen atoms, chemically bound in molecules of some simple hydrides, acid anhydrides, and sugar isomers. A linear relation was found between pion capture in hydrogen and melting point in sugar isomers. The pion capture probability in acid anhydrides is fairly well described by a simple atomic capture model in which the capture probability on the hydrogen dramatically increases as the hydrogen atom is separated from the strongly electronegative C 2 O 3 group. Both effects are consistent with a correlation between pion capture and electron density on hydrogen atoms. (Author) (38 refs., 4 tabs., 7 figs.)

  15. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  16. Determination of the negatively charged pion-proton scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2003-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to the hadronic scattering length extracted from a hydrogenic atom with an extended charge and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) in the limit of a non-relativistic approach. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.00(19).

  17. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  18. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  19. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  20. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  1. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  2. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  3. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  4. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  5. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  6. Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions

    International Nuclear Information System (INIS)

    Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg

    2010-01-01

    Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.

  7. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  8. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  9. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  10. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  11. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  12. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  13. Angular momentum coupling in atom-atom collisions

    International Nuclear Information System (INIS)

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  14. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  15. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  16. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  17. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  18. Role of atom--atom inelastic collisions in two-temperature nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Kunc, J.A.

    1987-01-01

    The contribution of inelastic atom--atom collisions to the production of electrons and excited atoms in two-temperature (with electron temperature T/sub e/, atomic temperature T/sub a/, and atomic density N/sub a/), steady-state, nonequilibrium atomic hydrogen plasma is investigated. The results are valid for plasmas having large amounts of atomic hydrogen as one of the plasma components, so that e--H and H--H inelastic collisions and interaction of these atoms with radiation dominate the production of electrons and excited hydrogen atoms. Densities of electrons and excited atoms are calculated in low-temperature plasma, with T/sub e/ and T/sub a/≤8000 K and 10 16 cm -3 ≤N/sub a/≤10 18 cm -3 , and with different degrees of the reabsorption of radiation. The results indicate that inelastic atom--atom collisions are important for production of electrons and excited atoms in partially ionized plasmas with medium and high atomic density and temperatures below 8000 K

  19. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  20. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  3. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  4. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  5. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  6. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  7. Atomic mirrors for a Λ-type three-level atom

    International Nuclear Information System (INIS)

    Felemban, Nuha; Aldossary, Omar M; Lembessis, Vassilis E

    2014-01-01

    We propose atom mirror schemes for a three-level atom of Λ-type interacting with two evanescent fields, which are generated as a result of the total internal reflection of two coherent Gaussian laser beams at the interface of a dielectric prism with vacuum. The forces acting on the atom are derived by means of optical Bloch equations, based on the atomic density matrix elements. The theory is illustrated by setting up the equations of motion for 23 Na atom. Two types of excited schemes are examined, namely the cases in which the evanescent fields have polarization types of σ + −σ − and σ + −π. The equations are solved numerically and we get results for atomic trajectories for different parameters. The performance of the mirror for the two types of polarization schemes is quantified and discussed. The possibility of reflecting atoms at pre-determined directions is also discussed. (paper)

  8. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  9. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  10. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  11. Deeply bound π- states in 207Pb formed in the 208Pb(d,3He) reaction. II. Deduced binding energies and widths and the pion-nucleus interaction

    Science.gov (United States)

    Itahashi, K.; Oyama, K.; Hayano, R. S.; Gilg, H.; Gillitzer, A.; Knülle, M.; Münch, M.; Schott, W.; Kienle, P.; Geissel, H.; Iwasa, N.; Münzenberg, G.; Hirenzaki, S.; Toki, H.; Yamazaki, T.

    2000-08-01

    We find a remarkable agreement of the excitation energy spectrum of the 208Pb(d,3He) reaction measured at Td=600 MeV near the π- production threshold with its theoretical prediction. Their comparison leads us to assign the distinct narrow peak observed at about 5 MeV below the threshold to the formation of bound pionic states π-⊗207Pb of the quasisubstitutional configurations (2p)π-(3p3/2,3p1/2)-1n. A small bump observed on the tail of the peak is assigned to the pionic 1s state. The binding energies (Bnl) and the widths (Γnl) of the pionic orbitals are deduced to be B2p=5.13+/-0.02 (stat)+/-0.12 (syst) MeV and Γ2p=0.43+/-0.06 (stat)+/-0.06 (syst) MeV by decomposing the experimental spectrum into the pionic 1s and 2p components. While B2p and Γ2p are determined with small ambiguity, B1s and Γ1s are strongly correlated with each other, and are affected by the relative 1s/2p cross section ratio assumed, since the 1s component is observed only as an unresolved bump. Thus, we have to allow large uncertainties 6.6 MeV

  12. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  13. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  14. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  15. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  16. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  17. Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'

    International Nuclear Information System (INIS)

    Broniowski, W.

    1992-01-01

    This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs

  18. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  19. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    Baylis, W.E.; Drake, G.W.

    1999-01-01

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  20. A low-cost vaporization-atomization system for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bruhn F, C.G.; Ambiado V, F.; Woerner V, R.

    1990-01-01

    A low-cost vaporization-atomization system for atomic absorption spectrometry is developed as an alternative to the use of a graphite furnace in electrothermal atomic absorption spectrometry. (Author)

  1. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  2. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  3. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  4. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  5. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  6. Decay of long-lived autoionization atomic states in atom collisions

    International Nuclear Information System (INIS)

    Krakov, B.G.

    1994-01-01

    Radiationless decay of long-lived autoionization states of helium atoms in atom collisions is investigated. It is shown that the states may decay in atom collisions due to softening of the selection rules

  7. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  8. Ab initio calculation atomics ground state wave function for interactions Ion- Atom

    International Nuclear Information System (INIS)

    Shojaee, F.; Bolori zadeh, M. A.

    2007-01-01

    Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.

  9. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    International Nuclear Information System (INIS)

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)

  10. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  11. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  12. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  13. Rapid prototyping of versatile atom chips for atom interferometry applications.

    Science.gov (United States)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  14. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  15. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  16. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  17. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  18. 58. annual symposium of the Austrian Physical Society. Conference programme

    International Nuclear Information System (INIS)

    Oswald, J.

    2008-01-01

    Full text: This annual conference consisted of a plenary session, oral and poster sessions on the research fields of: acoustics; atoms, quantum optics and plasma (doped helium droplets, biomolecules studies in super fluid helium droplets, quantum physics with neutrons); solid state physics (terahertz quantum-cascade lasers, semiconductors nanostructures, magnetic studies on steel pipeline tubes, magnetic characterization magnetic materials, spin properties of confined electrons); physics history; nuclear and particle physics (antiprotonic helium - hyperfine structure, pionic atoms (hydrogen), CMS experiment at LHC (level 1-trigger, super symmetry), vertex reconstruction toolkit RAVE, silicon strip detectors, chiral transition temperature, quantum physics - Bell theorem, Bethe-Salpeter equation, plane static magnetic field, low-lying eigen modes of the dirac operator, SU(3) potentials by thick-center-vortex-model); medical, bio - and environmental physics; neutrons and synchrotron radiation physics (neutron holography - advances, atomic diffusion by XPCS, micro-diffraction experiments, cold three-axis spectrometer - next generation, superconductive radio resonating cavities- roughness, neutron polarization); surfaces and thin films (carbon monoxide adsorption on metal surfaces, laser - assisted deposition, nanostructures (magnetic properties, semiconductors, electronic structure, erosion, crystal growth, adsorption, sputtering)); physics - industry - energy; besides a poster session on polymer physics and the Max Auwaerter symposium are included. Those contributions which are in the INIS subject scope are indexed individually. (nevyjel)

  19. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  20. Electronic structure of atoms: atomic spectroscopy information system

    International Nuclear Information System (INIS)

    Kazakov, V V; Kazakov, V G; Kovalev, V S; Meshkov, O I; Yatsenko, A S

    2017-01-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists. (paper)

  1. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  2. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  3. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    Science.gov (United States)

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  4. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  5. Experiments with Rydberg atoms on a current-carrying atom chip

    NARCIS (Netherlands)

    Cisternas San Martín, N.V.

    2018-01-01

    On one side, atom-chip experiments have demonstrated to be a versatile tool to study quantum physics in cold atoms systems. On the other side, Rydberg atoms have exaggerated properties that makes them good candidates to study quantum information and quantum simulations protocols. In this thesis both

  6. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  7. Entanglement dynamics between an isolated atom and a moving atom in the cavity

    International Nuclear Information System (INIS)

    Xiao-Juan, Deng; Mao-Fa, Fang; Guo-Dong, Kang

    2009-01-01

    The entanglement dynamics between an isolated atom and a moving atom interacting with a cavity field is investigated. The results show that there appears sudden death of entanglement between the isolated atom and the moving atom and that the time of entanglement sudden death (ESD) is independent of the initial state of the system. It is interesting that the isolated atom can also entangle with a cavity field, though they do not interact with each other originally, which stems from the fact that the entanglement between the isolated atom and the moving atom may turn into the entanglement between the isolated atom and the cavity. (general)

  8. Do atoms and anti-atoms obey the same laws of physics?

    CERN Multimedia

    Jeffrey Hangst

    2010-01-01

    ALPHA physicists have recently succeeded in trapping anti-atoms for the first time. Being able to hold on to the simplest atoms of antimatter is an important step towards the collaboration’s ultimate goal: precision spectroscopic comparison of hydrogen and antihydrogen. The question they are seeking to answer: do atoms and anti-atoms obey the same laws of physics? The Standard Model says that they must.   The ALPHA Collaboration celebrates the successful results. The ALPHA collaboration has taken it up a gear and trapped 38 atoms of antihydrogen for the first time. Antihydrogen atoms have been mass-produced at the Antiproton Decelerator (AD) since 2002, when ATHENA (ALPHA’s predecessor) and ATRAP learned how to mix clouds of antiprotons and positrons at cryogenic temperatures. However, these anti-atoms were not confined, and flew off in a few microseconds to meet their fate: annihilation with matter in the walls of the experiment. ALPHA uses antiprotons produced at...

  9. Design and Construction of an Atomic Clock on an Atom Chip

    International Nuclear Information System (INIS)

    Reinhard, Friedemann

    2009-01-01

    We describe the design and construction of an atomic clock on an atom chip, intended as a secondary standard, with a stability in the range of few 10 -13 at 1 s. This clock is based on a two-photon transition between the hyperfine states |F = 1; m F = -1> and |2; 1> of the electronic ground state of the 87 Rb atom. This transition is interrogated using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on an atom chip. We describe a theoretical model of the clock stability and the design and construction of a dedicated apparatus. It is able to control the magnetic field at the relative 10 -5 level and features a hybrid atom chip, containing DC conductors as well as a microwave transmission line for the clock interrogation. (author)

  10. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-08-01

    We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

  12. The GMO sumrule and the πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2000-01-01

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π - p and π - d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data g c 2 (GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or f c 2 / 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π - p and π - d scattering lengths our analysis leads also to accurate values for (1/2)(a π - p +a π - n ) and (1/2) (a π - p -a π - n ). (orig.)

  13. The GMO Sumrule and the πNN Coupling Constant

    Science.gov (United States)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).

  14. Chemical reactions of recoil atoms and thermal atoms of tritium with haloid benzenes

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1978-01-01

    Radiochemical yields have been determined for the products of substitution of hydrogen atoms and halides in Cl-, Br-, and I-benzenes with tritium atoms obtained during thermal dissociation of T 2 and with recoil atoms T arising in nuclear reaction 6 Li(n, P)T. It is shown that in the series of Cl-, Br-, and I-benzenes yields of the products of substitution of halides atoms with tritium grow, whereas those of hydrogen atom substitution change only little. The correlation nature of the yields of substitution products of halide atoms with tritium remains constant in a wide range of the initial kinetic energies of T atoms for the recoil atoms with E 0 =2.7 MeV and for the completely thermolized atoms during thermal dissociation of T 2

  15. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  16. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  17. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  18. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  19. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  20. Cold experiment of slag centrifugal granulation by rotary atomizer: Effect of atomizer configuration

    International Nuclear Information System (INIS)

    Wu, Jun-Jun; Wang, Hong; Zhu, Xun; Liao, Qiang; Li, Kai

    2017-01-01

    Centrifugal granulation has recently been employed to produce small blast furnace slag particles, so as to recover the waste heat from the high-temperature molten blast furnace slag. An appropriate atomizer enables centrifugal granulation to become a better cost-effective process for particle production. Thus, increasing emphasis has been placed on influence of atomizer configuration on granulation. In present study, three groups of atomizers were specially designed and the granulation performance of each atomizer was experimentally tested during cold experiments. The influences of atomizer configuration on granulation modes and droplet characteristics were investigated visually. Two modified correlations were proposed to predict the granulating droplet size by means of data fitting. The results indicated that the rotary cup atomizers can inhibit the film formation in contrast to rotary disc atomizer. Moreover, atomizers with outer angle of 90° was capable of producing smaller droplets. The revised correlation as well as the newly-developed correlation including the influence of atomizer configurations, presented in good agreement with the experiment data. In addition, an analysis on atomizer design was conducted to provide a good insight for industrialization. It was recommended to adopt cup-like atomizer in granulation for its ability to produce fine particles with smaller atomizer size.

  1. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  2. Atom-atom interactions around the band edge of a photonic crystal waveguide

    Science.gov (United States)

    Hood, Jonathan D.; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E.; Kimble, H. J.

    2016-09-01

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x)∝e±ikxxE(x)∝e±ikxx outside the bandgap to localized fields E(x)∝e-κx|x|E(x)∝e-κx|x| within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D1D1 line of atomic cesium for N¯=3.0±0.5N¯=3.0±0.5 atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  3. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  4. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  5. Observation of atomic arrangement by using photoelectron holography and atomic stereo-photograph

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Guo, Fang Zhun; Agui, Akane; Matsui, Fumihiko; Daimon, Hiroshi

    2006-01-01

    Both a photoelectron holography and atomic stereo-photograph are the atomic structure analysis methods on the basis of photoelectron diffraction. They have six special features such as 1) direct determination of atomic structure, 2) measurement of three dimensional atomic arrangements surrounding of specific element in the sample, 3) determination of position of atom in spite of electron cloud, 4) unnecessary of perfect periodic structure, 5) good sensitivity of structure in the neighborhood of surface and 6) information of electron structure. Photoelectron diffraction, the principle and measurement system of photoelectron holography and atomic stereo-photograph is explained. As application examples of atomic stereo-photograph, the single crystal of cupper and graphite are indicated. For examples of photoelectron holography, Si(001)2p and Ge(001)3s are explained. (S.Y.)

  6. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  7. prepared via atom transfer radical polymerization, reverse atom

    Indian Academy of Sciences (India)

    Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and ... Zydex Industries, 25-A Gandhi Oil Mill Compound, Gorwa, Vadodara 390 016, India; Rubber Technology Centre, Indian Institute of Technology Kharagpur, ...

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  9. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  10. Small-angle scattering of ions or atoms by atomic hydrogen

    International Nuclear Information System (INIS)

    Franco, V.

    1982-01-01

    A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies

  11. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    Science.gov (United States)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  12. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  13. 0.75 atoms improve the clock signal of 10,000 atoms

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K.; Peise, Jan

    2017-01-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case.......75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based...... on atomic squeezed vacuum....

  14. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.

  15. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  16. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  17. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  18. ‘Which-way’ collective atomic spin excitation among atomic ensembles by photon indistinguishability

    International Nuclear Information System (INIS)

    Zhang Guowan; Bian Chenglin; Chen, L Q; Ou, Z Y; Zhang Weiping

    2012-01-01

    In spontaneous Raman scattering in an atomic ensemble, a collective atomic spin wave is created in correlation with the Stokes field. When the Stokes photons from two or more such atomic ensembles are made indistinguishable, a ‘which-way’ collective atomic spin excitation is generated among the independent atomic ensembles. We demonstrate this phenomenon experimentally by reading out the atomic spin excitations and observing interference between the read-out beams. When a single-photon projective measurement is made on the indistinguishable Stokes photons, this simple scheme can be used to entangle independent atomic ensembles. Compared to other currently used methods, this scheme can be easily scaled up and has greater efficiency. (paper)

  19. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  20. Clarifying atomic weights: A 2016 four-figure table of standard and conventional atomic weights

    Science.gov (United States)

    Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.

    2017-01-01

    To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium); for example, the standard atomic weight of nitrogen became the interval [14.00643, 14.00728]. CIAAW recognized that some users of atomic weight data only need representative values for these 12 elements, such as for trade and commerce. For this purpose, CIAAW provided conventional atomic weight values, such as 14.007 for nitrogen, and these values can serve in education when a single representative value is needed, such as for molecular weight calculations. Because atomic weight values abridged to four figures are preferred by many educational users and are no longer provided by CIAAW as of 2015, we provide a table containing both standard atomic weight values and conventional atomic weight values abridged to four figures for the chemical elements. A retrospective review of changes in four-digit atomic weights since 1961 indicates that changes in these values are due to more accurate measurements over time or to the recognition of the impact of natural isotopic fractionation in normal terrestrial materials upon atomic weight values of many elements. Use of the unit “u” (unified atomic mass unit on the carbon mass scale) with atomic weight is incorrect because the quantity atomic weight is dimensionless, and the unit “amu” (atomic mass unit on the oxygen scale) is an obsolete term: Both should be avoided.

  1. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  2. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  3. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  4. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  5. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  6. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  7. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  8. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  9. Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope

    Science.gov (United States)

    Yao, Zhan-Wei; Lu, Si-Bin; Li, Run-Bing; Luo, Jun; Wang, Jin; Zhan, Ming-Sheng

    2018-01-01

    We propose and demonstrate a method for calibrating atomic trajectories in a large-area dual-atom-interferometer gyroscope. The atom trajectories are monitored by modulating and delaying the Raman transition, and they are precisely calibrated by controlling the laser orientation and the bias magnetic field. To improve the immunity to the gravity effect and the common phase noise, the symmetry and the overlap of two large-area atomic interference loops are optimized by calibrating the atomic trajectories and by aligning the Raman-laser orientations. The dual-atom-interferometer gyroscope is applied in the measurement of the Earth's rotation. The sensitivity is 1.2 ×10-6 rad s -1 Hz-1/2, and the long-term stability is 6.2 ×10-8 rad/s at 2000 s.

  10. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  11. Influence of the atomic structure on the quantum state of sputtered Ir atoms

    International Nuclear Information System (INIS)

    Bastiaansen, J.; Philipsen, V.; Lievens, P.; Silverans, R.E.; Vandeweert, E.

    2004-01-01

    The probability of the ejection of a neutral atom in a specific quantum state after keV-ion beam sputtering is often interpreted in terms of the interaction between the atomic states of the escaping atom and the electronic states of the solid. In this work, we examined this interplay in the sputtering of iridium as this element has--unlike the elements employed in previous investigations--a complex atomic structure due to strong configuration interactions. Double-resonant two-photon laser ionization is used to probe the sputtered Ir atoms yielding information about the probability for an ejected atom to populate a specific atomic state and its escape velocity. The qualitative features of the corresponding population partition and state-selective velocity distributions show the influence of the excitation energy and the electronic structure of the different atomic states. A comparison is made between the experimental data and predictions from the resonant electron transfer description

  12. AtomPy: A Cloud Atomic-data Service for Astrophysical Applications

    Science.gov (United States)

    Mendoza, Claudio; Boswell, J. S.; Bautista, M.

    2013-06-01

    Apart from our long-term commitment to the computing of accurate atomic data for astrophysical applications, we have also been interested in the problems of data access and dissemination. In this respect, one of us took part in the developments of TIPTOPbase [1, 2, 3], the astrophysical opacity server referred to as OPserver [4, 5], and, more recently, of the Virtual Atomic and Molecular Data Center [6, 7]. Our present effort is now with the establishment of a cloud atomic data web service, AtomPy, implemented by means of SOAP web services, Google Drive spreadsheets and Python modules. In the present poster we will describe the outline of this ambitious project, illustrated with some prototypes that are already operational.

  13. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    Science.gov (United States)

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  15. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  16. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    Directory of Open Access Journals (Sweden)

    Qiufeng Yan

    2018-03-01

    Full Text Available Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured at various voltages, and the influence of the micro-tapered aperture and its variation on the atomization rate was characterized. The resonance frequency of the piezoelectric vibrator was obtained using a laser vibrometer, and the atomization rates were measured at each resonance frequency. From experiments, we found that the atomization rates at the first five resonance frequencies increased as the working frequency increased. At the fifth resonance frequency (121.1 kHz, the atomization rate was maximized (0.561 mL/min, and at the sixth resonance frequency (148.3 kHz, the atomization rate decreased significantly (0.198 mL/min. The experimental results show that the vibration characteristics of the piezoelectric vibrator have a relatively strong impact on the atomization rate. This research is expected to contribute to the manufacture of micro-tapered aperture atomizers.

  17. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer.

    Science.gov (United States)

    Yan, Qiufeng; Zhang, Jianhui; Huang, Jun; Wang, Ying

    2018-03-21

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured at various voltages, and the influence of the micro-tapered aperture and its variation on the atomization rate was characterized. The resonance frequency of the piezoelectric vibrator was obtained using a laser vibrometer, and the atomization rates were measured at each resonance frequency. From experiments, we found that the atomization rates at the first five resonance frequencies increased as the working frequency increased. At the fifth resonance frequency (121.1 kHz), the atomization rate was maximized (0.561 mL/min), and at the sixth resonance frequency (148.3 kHz), the atomization rate decreased significantly (0.198 mL/min). The experimental results show that the vibration characteristics of the piezoelectric vibrator have a relatively strong impact on the atomization rate. This research is expected to contribute to the manufacture of micro-tapered aperture atomizers.

  18. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  19. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    OpenAIRE

    Qiufeng Yan; Jianhui Zhang; Jun Huang; Ying Wang

    2018-01-01

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured...

  20. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    Science.gov (United States)

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  1. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  2. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  3. Polarizational radiation or 'atomic' bremsstrahlung

    International Nuclear Information System (INIS)

    Ya Amusia, M.

    1992-01-01

    It is demonstrated that a new kind of continuum spectrum radiation exists, where the mechanism of formation is quite different from that of ordinary bremsstrahlung. The latter originates due to slowing down of the charged projectile in the target field, while the former, called polarization radiation or 'atomic' bremsstrahlung, is a result of radiation either of the target or the projectile particles dipolarly polarized during the collision process. Not only general formulae, but also results of concrete calculations are presented. These demonstrate, that for electron-atom collisions the atomic contribution to the total bremsstrahlung spectrum becomes dominant for photon energies near and above the atomic ionization potential. As to atom-atom or ion-atom collisions, the bremsstrahlung spectrum is completely determined by the atomic contribution. The specific features of the case when the incoming particles are relativistic are discussed at length. A number of examples of colliding pairs are considered, for which the atomic bremsstrahlung process is quite essential: A bare nucleus and an atom, pair of atoms, at least one of which is excited, electron, or atom interacting with a molecule. The same mechanism is essential also in formation of radiation in nuclear and elementary particle collisions. (orig.)

  4. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  5. 55. Annual symposium of the Austrian Physical Society. Abstracts

    International Nuclear Information System (INIS)

    Vogl, G.; Sepiol, B.

    2005-01-01

    Full text: The 55 th Annual Symposium of the Austrian Physical Society was held from 27.-29. September 2005 at the University of Vienna (Austria), it consisted of a plenary session, oral and poster sessions devoted to: acoustics; women and physics; atomic-, molecular- and plasma physics; solid physics; nuclear and particle physics; medical-, bio-and environmental physics; neutrons and synchrotron radiation physics; surface and thin film analysis and quantum electronics, electrodynamics and optics. Topics such as graphs quantization, molecular interferometry, Brownian movement, ion beam diagnostics, electron emission, optical pumping, Bose-Einstein condensates, molecular matter waves, double-wall carbon nanotubes, quantum dots, ferromagnetic nanocomposites, nanowires, transmission electron microscopy analysis of nanostructures, nanocrystals studies, atomic defects in intermetallic compounds, electron energy loss spectroscopy of intermetallic compounds, CHIRALTEM project, covariance data, nuclear astrophysics, kaonic atoms, pionic hydrogen, geometric phase measurements with neutrons, International linear collider project, ATLAS muon spectrometer, ATLAS detector, LHC's protection system, baryon structure, QCD, lattice QCD, coherent tomography, light microscopy, high resolution magnetic resonance imaging, polymer gel dosimetry, radon microdosimetry, traffic air pollutants, BVOC seasonal variations, biogenic VOC emissions, ice dating, synchrotron small angle x-ray diffraction, small angle neutron scattering, stepped surfaces oxidation, grazing incidence synchrotron reflexion studies, magnetic thin films, atoms quantum dynamics, quantum entanglement, BEC and quantum gases experiments were discussed. This book of abstracts contains their summaries and those contributions which are in the INIS subject scope are indexed individually. (nevyjel)

  6. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  7. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  8. Use of pseudopotentials in atom-atom (or molecule) collisions

    International Nuclear Information System (INIS)

    Pascale, J.

    1985-09-01

    Knowledge of interactions between ions, atoms or molecules is fundamental for interpretating or predicting collisional processes which may occur under various circumstances. The aim of this paper is to demonstrate the usefulness of using semiempirical effective interactions (more particularly, emphasis will be put on the pseudopotential approach) in the study of atom-atom (or molecule) collisions. We would like to show that if the semiempirical effective interactions are carefully defined, their use in molecular-structure calculations and in collision problems can give quite accurate results. We will limit our examples to one-electron systems. We consider the M-atom-He systems as a first example. For these systems, recent molecular-structure calculations have been carried out using an 1-dependent semiempirical pseudopotential approach and they have been tested against numerous experimental data in extensive calculations of cross sections for intra-and-inter-doublet transitions in the M-atom in collisions with He. Our second example will concern the M-H 2 systems, for which semiempirical pseudopotential molecular-structure calculations have been performed very recently using an one-electron two-center model. The results of these calculations are quite encouraging and we foresee the use of the pseudopotential approach in future studies of some reactive scattering processes

  9. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  10. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  11. Performance of Twin-Fluid Atomizers for Atomization of Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2015-01-01

    Full Text Available Presented paper deals with a comparison of two internally mixing twin fluid atomizers. The well - known Y- jet atomizer and so called outside-in-liquid effervescent atomizer (OUIL were investigated. The working regimes were defined by the pressure drop (Δp and the gas to the liquid ratio (GLR. The internal and the external two-phase flows of both atomizers were studied. The influence of the mixing mechanism on the internal flow was evaluated by the gas to the liquid momentum ratio (Φ. In advance, the stability of the separated flow (liquid film was examined in term of the critical wavelength of the surface disturbances (λc. The external flow was observed by the high – speed camera. The influence of the basic forces on the deformation of the liquid was determined by a dimensionless criterion w·μ / σ. The values of Φ 3, where the liquid momentum overcomes the gas momentum. The values of w·μ / σ> 20 for both atomizers indicates the dominant influence of the viscosity and the drag force on the breakup process.

  12. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  13. Pion-cloud corrections to the relativistic S + V harmonic potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1988-01-01

    Pionic corrections to the mass spectrum of low-lying s-wave baryons are incorporated in a relativistic independent quark model with equally mixed Lorentz scalar and vector harmonic potentials. (M.W.O.) [pt

  14. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  15. Atomic masses 1995. The 1995 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1995-01-01

    The 1995 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment or systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  16. Atomic masses 1993. The 1993 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1993-01-01

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  17. The exhibition Lumiere d'Atomes (Atoms light)

    International Nuclear Information System (INIS)

    Foos, Jacques

    1995-01-01

    Full text: This exhibition has been conceived in order to show for everybody, whatever his scientific level, the peaceful uses of transformations (natural or made by Man) and energetic possibilities of the atomic nucleus. The key-ideas of this exhibition were-: - nuclear applications a world of high technology; - nuclear industry men as the others; - nuclear energy an energetic independence. 6 themes were proposed: 1- Atoms and radioactivity; 2- The nuclear power stations; 3- The nuclear fuel cycle; 4- Surety and environment; 5- The other uses of radioactivity; 6- The French choice: The world nuclear data. This exhibition that comprises information posters, paintings, demonstration models, films and video games, was shown for the first time in Paris in april 1991. From this time, it was shown in many regional cities, with the help of SFEN members. 'Lumiere d'Atomes' received in 1991 the SFEN prize for its information on nuclear energy. (author)

  18. Atomic energy law in Indonesia Perundang-undangan tenaga atom di Indonesia/

    International Nuclear Information System (INIS)

    Poernomo, Moendi.

    1980-01-01

    Levels of the development of the National Atomic Energy Agency of Indonesia covering the reorganization and the president's decree concerning the agency since 1958 are presented. The National Atomic Energy Agency BATAN is responsible for application of radioactive materials over the country and the protection of the general public against radioactive hazards. BATAN's missions are embodied with the atomic energy law. (SMN)

  19. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  20. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  1. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza

    2014-05-01

    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  2. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  3. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  4. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  5. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  6. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  7. Report on the atom what you should know about atomic energy

    CERN Document Server

    Dean, Gordon

    1954-01-01

    The American approach to the atom ; Uranium is where you find it ; the production line: ore to bombs ; the expanding programme ; the headaches ; the pay-off: weapons ; the military and the atoms ; power: the peaceful goals, first phase ; power: the peaceful goals, second goals ; radioisotopes: servants of man ; the quest for knowledge ; secrecy, security and spies ; the international atom ; behind the Iron Curtain ; the way ahead.

  8. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  9. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  10. The atomic conflict

    International Nuclear Information System (INIS)

    Mez, L.

    1981-01-01

    This book provides a general view at the atomic programmes of several countries and makes an attempt to unmask the atomic industrial combines with their interlockings. The governments role is analysed as well as the atomic policy of the parties, union-trades and associations. Then, the anti-atomic movements in those countries, their forms of resistance, the resonance and the alternative proposals are presented. The countries concerned are Australia, the FRG, COMECON, Danmark, the EG, Finland, France, Great Britain, Ireland, Japan, the Netherlands, Norway, Austria, Sweden, Switzerland, Spain and the USA. For the pocket book version, Lutz Mez adds an updating epilogue which continues with the developments until springtime 1981. (orig./HP) [de

  11. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.

    Science.gov (United States)

    Vera, J A; Leong, M B; Stevenson, C L; Petrucci, G; Winefordner, J D

    1989-12-01

    The performance of graphite-tube electrothermal atomizers is evaluated for laser-excited atomic-fluorescence spectrometry for several elements. Three pulsed laser systems are used to pump tunable dye lasers which subsequently are used to excite Pb, Ga, In, Fe, Ir, and Tl atoms in the hot graphite tube. The dye laser systems used are pumped by nitrogen, copper vapour and Nd:YAG lasers. Detection limits in the femtogram and subfemtogram range are typically obtained for all elements. A commercial graphite-tube furnace is important for the successful utilization of the laser-based method when the determination of trace elements is intended, especially when complicated matrices may be present.

  12. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  13. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures

  14. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  15. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  16. Pharao: study of an atomic clock using laser-cooled atoms and realization of a prototype

    International Nuclear Information System (INIS)

    Lemonde, P.

    1997-01-01

    Thermal jets and atomic fountains are two different principles on which atomic clocks are based. In atomic fountains the velocity of atoms can be reduced to a few cm/s so the classical limitations of thermal jets such as phase shift between two Ramsey impulses, second order Doppler effect become negligible. The new limitations set by atomic fountain clocks are now collisions between cold atoms and the radiation emitted by the black body. Weightlessness leads to a different running of the atomic clock and can imply an enhancement of its performances. In micro-gravity an interatomic interaction time of several seconds can be reached. The application of such atomic clocks can go beyond time or frequency metrology. This work is dedicated to the development of a spatial atomic clock to fully use the extremely low velocity of laser-cooled atoms and to quantify what can be expected of weightlessness. This study has involved the realization of a prototype and its testing in a zero-g plane. The experimental results are presented and it is highlighted that an accuracy and a one-day stability of 10 -16 are within reach with an optimized version of this atomic clock. (A.C.)

  17. Self-lacing atom chains

    International Nuclear Information System (INIS)

    Zandvliet, Harold J W; Van Houselt, Arie; Poelsema, Bene

    2009-01-01

    The structural and electronic properties of self-lacing atomic chains on Pt modified Ge(001) surfaces have been studied using low-temperature scanning tunnelling microscopy and spectroscopy. The self-lacing chains have a cross section of only one atom, are perfectly straight, thousands of atoms long and virtually defect free. The atomic chains are composed of dimers that have their bonds aligned in a direction parallel to the chain direction. At low temperatures the atomic chains undergo a Peierls transition: the periodicity of the chains doubles from a 2 x to a 4 x periodicity and an energy gap opens up. Furthermore, at low temperatures (T<80 K) novel quasi-one-dimensional electronic states are found. These quasi-one-dimensional electronic states originate from an electronic state of the underlying terrace that is confined between the atomic chains.

  18. Pion-nuclear many body problems

    International Nuclear Information System (INIS)

    Weise, W.

    1981-01-01

    This chapter examines pion-nucleus scattering data produced at the meson factories in order to gain information about the ''optical'' branches of the pion-nuclear excitation spectrum. Discusses basic meson-baryon effective Lagrangians and elementary processes; pion-baryon vertex form factors; the spin-isospin dependent baryon-baryon interaction; pions in nuclear matter; nuclear spin-isospin correlations; the baryon-hole model; photon-induced excitation of baryon-hole states; high momentum transfer properties of pion-like nuclear states; a response function for pionic low-frequency modes in finite nuclei; and applications. Finds that there is no clear evidence for pionic critical opalescence, as in agreement with the expectation that the minimal density for the appearance of a pion condensate is certainly not lower than two or three times nuclear matter density

  19. Theory of inclusive pionic reactions

    International Nuclear Information System (INIS)

    Oset, E.; Salcedo, L.L.; Strottman, D.

    1985-01-01

    A theory is developed for all the inclusive pion nuclear reactions, quasielastic, single charge exchange, double charge exchange and absorption, around the resonance region. The theory is based on the isobar hole model and makes an expansion in the number of particle-hole excitations. Up to 3p3h for pion absorption and 2p2h for quasielastic or charge exchange, where good convergence is found, are considered. The results obtained with this theory agree remarkably well with experiment for the different reactions and different nuclei in a wide region of energies around resonance

  20. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  1. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  2. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  3. Design and performance of a high intensity copper atom beam source nozzle for use in inelastic atom--atom collision experiments

    International Nuclear Information System (INIS)

    Santavicca, D.A.

    1975-01-01

    The research was aimed at developing a neutral copper atom beam source which could be used to study the collision cross sections for electronic excitation of neutral copper atoms in collision with neutral argon atoms. Of particular interest is the excitation from the ground state to the two upper laser levels at 3.80 and 3.82 electron volts

  4. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  5. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  6. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  7. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  8. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  9. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  10. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  11. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  12. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  13. Cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Shigematsu, I.; Kagan, A.

    1986-01-01

    This book presents information on the following topics: sampling of atomic bomb survivors and method of cancer detection in Hiroshima and Nagasaki; atomic bomb dosimetry for epidemiological studies of survivors in Hiroshima and Nagasaki; tumor and tissue registries in Hiroshima and Nagasaki; the cancer registry in Nagasaki, with atomic bomb survivor data, 1973-1977; cancer mortality; methods for study of delayed health effects of a-bomb radiation; experimental radiation carcinogenesis in rodents; leukemia, multiple myeloma, and malignant lymphoma; cancer of the thyroid and salivary glands; malignant tumors in atomic bomb survivors with special reference to the pathology of stomach and lung cancer; colorectal cancer among atomic bomb survivors; breast cancer in atomic bomb survivors; and ovarian neoplasms in atomic bomb survirors

  14. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  15. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Ryo, E-mail: ishikawa@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656 (Japan); Lupini, Andrew R. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinuma, Yoyo [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Pennycook, Stephen J. [Department of Materials Science and Engineering, The University of Tennessee, 328 Ferris Hall, Knoxville, TN 37996 (United States)

    2015-04-15

    To fully understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us to measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation. - Highlights: • We theoretically demonstrate 3D near-atomic depth resolution imaging by large-angle illumination STEM. • This method can be useful to identify the depth of single dopants, single vacancies within materials. • This method can be useful to determine reconstructed surface atomic structures.

  16. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  17. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  18. AtomDB Progress Report: Atomic data and new models for X-ray spectroscopy.

    Science.gov (United States)

    Smith, Randall K.; Foster, Adam; Brickhouse, Nancy S.; Stancil, Phillip C.; Cumbee, Renata; Mullen, Patrick Dean; AtomDB Team

    2018-06-01

    The AtomDB project collects atomic data from both theoretical and observational/experimental sources, providing both a convenient interface (http://www.atomdb.org/Webguide/webguide.php) as well as providing input to spectral models for many types of astrophysical X-ray plasmas. We have released several updates to AtomDB in response to the Hitomi data, including new data for the Fe K complex, and have expanded the range of models available in AtomDB to include the Kronos charge exchange models from Mullen at al. (2016, ApJS, 224, 2). Combined with the previous AtomDB charge exchange model (http://www.atomdb.org/CX/), these data enable a velocity-dependent model for X-ray and EUV charge exchange spectra. We also present a new Kappa-distribution spectral model, enabling plasmas with non-Maxwellian electron distributions to be modeled with AtomDB. Tools are provided within pyAtomDB to explore and exploit these new plasma models. This presentation will review these enhancements and describe plans for the new few years of database and code development in preparation for XARM, Athena, and (hopefully) Arcus.

  19. Laser-excited atomic fluorescence spectrometry in a pressure-controlled electrothermal atomizer.

    Science.gov (United States)

    Lonardo, R F; Yuzefovsky, A I; Irwin, R L; Michel, R G

    1996-02-01

    A theoretical model was developed to describe the loss of analyte atoms in graphite furnaces during atomization. The model was based on two functions, one that described the supply of analyte by vaporization, and another that described the removal of the analyte by diffusion. Variation in working pressure was shown to affect the competition between these two processes. Optimal atomization efficiency was predicted to occur at a pressure where the supply of the analyte was maximized, and gas phase interactions between the analyte and matrix were minimized. Experiments to test the model included the direct determination of phosphorus and tellurium in nickel alloys and of cobalt in glass. In all cases, reduction in working pressure from atmospheric pressure to 7 Pa decreased sensitivity by 2 orders of magnitude, but improved temporal peak shape. For the atomization of tellurium directly from a solid nickel alloy, and the atomization of cobalt from an aqueous solution, no change in sensitivity was observed as the working pressure was reduced from atmospheric pressure to approximately 70 kPa. If a reduction in working pressure affected only the diffusion of the analyte, poorer sensitivity should have been obtained. Only a commensurate increase in analyte vaporization could account for maintained sensitivity at lower working pressures. Overall, analyte vaporization was not dramatically improved at reduced working pressures, and maximum atomization efficiency was found to occur near atmospheric pressure.

  20. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  1. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  2. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  3. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  4. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  5. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  7. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  8. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  9. Experimental realization of suspended atomic chains composed of different atomic species

    International Nuclear Information System (INIS)

    Bettini, Jefferson; Ugarte, Daniel; Sato, Fernando; Galvao, Douglas Soares; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira

    2006-01-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  10. Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms

    International Nuclear Information System (INIS)

    Schmid, Sandra Isabelle; Evers, Joerg

    2010-01-01

    The resonance fluorescence emitted by a system of two dipole-dipole interacting nearby four-level atoms in a J=1/2↔J=1/2 configuration is studied. This setup is the simplest realistic model system which provides a complete description of the (inter-atomic) dipole-dipole interaction for arbitrary orientation of the inter-atomic distance vector, and at the same time allows for intra-atomic spontaneously generated coherences. Our main interest is the interplay of both these different coupling mechanisms. We discuss different methods to analyze the contribution of the various vacuum-induced coupling constants to the total resonance fluorescence spectrum. These allow us to find a dressed state interpretation of the contribution of the different inter-atomic dipole-dipole couplings to the total spectrum. We further study the role of the spontaneously generated coherences, and identify two different contributions to the single-particle vacuum-induced couplings. We show that they have a noticeable impact on the total resonance fluorescence spectrum down to small inter-atomic distances, even though the dipole-dipole coupling constants then are much larger in magnitude than the the single-particle coupling constants. Interestingly, we find that the inter-atomic couplings can induce an effect of the intra-atomic spontaneously generated coherences on the observed spectra which is not present in single-atom systems.

  11. Efficient atom localization via probe absorption in an inverted-Y atomic system

    Science.gov (United States)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  12. Hanbury Brown and Twiss and other atom-atom correlations: advances in quantum atom optics

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fifty years ago, two astronomers, R. Hanbury Brown and R. Q. Twiss, invented a new method to measure the angular diameter of stars, in spite of the atmospheric fluctuations. Their proposal prompted a hot debate among physicists : how might two particles (photons), emitted independently (at opposite extremities of a star) , behave in a correlated way when detected ? It was only after the development of R Glauber's full quantum analysis that the effect was understood as a two particle quantum interference effect. From a modern perspective, it can be viewed as an early example of the amazing properties of pairs of entangled particles. The effect has now been observed with bosonic and fermionic atoms, stressing its fully quantum character. After putting these experiments in a historical perspective, I will present recent results, and comment on their significance. I will also show how our single atom detection scheme has allowed us to demonstrate the creation of atom pairs by non linear mixing of matter wa...

  13. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, G.L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Wildman, R.B.; Jones, B.T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2011-02-28

    A new metallic atomization cell is used for trace metal determinations by tungsten coil atomic absorption spectrometry and tungsten coil atomic emission spectrometry. Different protecting gas mixtures are evaluated to improve atomic emission signals. Ar, N{sub 2}, CO{sub 2} and He are used as solvents, and H{sub 2} and C{sub 2}H{sub 2} as solutes. A H{sub 2}/Ar mixture provided the best results. Parameters such as protecting gas flow rate and atomization current are also optimized. The optimal conditions are used to determine the figures of merit for both methods and the results are compared with values found in the literature. The new cell provides a better control of the radiation reaching the detector and a small, more isothermal environment around the atomizer. A more concentrated atomic cloud and a smaller background signal result in lower limits of detection using both methods. Cu (324.7 nm), Cd (228.8 nm) and Sn (286.3 nm) determined by tungsten coil atomic absorption spectrometry presented limits of detection as low as 0.6, 0.1, and 2.2 {mu}g L{sup -1}, respectively. For Cr (425.4 nm), Eu (459.4 nm) and Sr (460.7 nm) determined by tungsten coil atomic emission spectrometry, limits of detection of 4.5, 2.5, and 0.1 {mu}g L{sup -1} were calculated. The method is used to determine Cu, Cd, Cr and Sr in a water standard reference material. Results for Cu, Cd and Cr presented no significant difference from reported values in a 95% confidence level. For Sr, a 113% recovery was obtained.

  14. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  15. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  16. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  17. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  18. Beyond the Atom

    Science.gov (United States)

    Cox, John

    2011-08-01

    1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.

  19. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  20. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  1. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  2. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  3. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  4. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  5. Phase space overpopulation at CERN and possible explanations

    International Nuclear Information System (INIS)

    Pratt, S.

    1998-01-01

    By combining information from correlations from Pb+Pb collisions at CERN, one comes to the conclusion that pionic phase space is significantly overpopulated compared to expectations based on chemical equilibrium. A variety of explanations will be addressed. (author)

  6. Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Page, Zachariah A. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Liu, Feng [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Russell, Thomas P. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Emrick, Todd [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA

    2014-01-01

    <p>Ionic liquids (ILs) were utilized for the rapid air-stable Suzuki polymerization of polar zwitterionic thiophene monomers, precluding the need for volatile organic solvents, phosphine ligands and phase transfer catalysts typically used in conjugated polymer synthesis.

  7. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  8. Push-Pull Laser-Atomic Oscillator

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Happer, W.

    2007-01-01

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs

  9. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  10. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  11. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  12. Giant light enhancement in atomic clusters

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Gadomskaya, I. V.; Altunin, K. K.

    2009-01-01

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  13. Signature of Plausible Accreting Supermassive Black Holes in Mrk 261/262 and Mrk 266

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian

    2013-01-01

    Full Text Available We address the neutrino radiation of plausible accreting supermassive black holes closely linking to the 5 nuclear components of galaxy samples of Mrk 261/262 and Mrk 266. We predict a time delay before neutrino emission of the same scale as the age of the Universe. The ultrahigh energy neutrinos are produced in superdense protomatter medium via simple (quark or pionic reactions or modified URCA processes (G. Gamow was inspired to name the process URCA after the name of a casino in Rio de Janeiro. The resulting neutrino fluxes for quark reactions are ranging from to , where is the opening parameter. For pionic and modified URCA reactions, the fluxes are and , respectively. These fluxes are highly beamed along the plane of accretion disk, peaked at ultrahigh energies, and collimated in smaller opening angle .

  14. Charged pion coherent production in nucleus-nucleus collisions at incident energies between 86 and 330 MeV/nucleon

    International Nuclear Information System (INIS)

    Fassnacht, P.

    1984-01-01

    We have studied pion production in nucleus-nucleus collisions at foward angles for about twenty projectile target combinations. The incident energies were below or around 300 MeV/nucleon which is the threshold of the elementary reaction NN → NNπ. The study of the inclusive spectra shows some new ideas: shell effects in pion production, collective resonances excitations. These spectra have been analyzed following different models: hard-scattering models which describe the interaction on the basis of the elementary reaction NN → NNπ, statistical model and the pionic cloud model which is a coherent description of the interaction. In the study of the exclusive reactions, we established some empiric rules concerning the cross-section variations. These exclusive spectra were then analyzed in the framework of two-models: the semi-phenomenological model and the pionic fusion [fr

  15. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  16. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  17. Atomic displacement distributions for light energetic atoms incident on heavy atom targets

    International Nuclear Information System (INIS)

    Brice, D.K.

    1975-01-01

    The depth distributions of atomic displacements produced by 4 to 100 keV H, D, and He ions incident on Cr, Mo, and W targets have been calculated using a sharp displacement threshold, E/sub d/ = 35 eV, and a previously described calculational procedure. These displacement depth distributions have been compared with the depth distributions of energy deposited into atomic processes to determine if a proportionality (modified Kinchin--Pease relationship) can be established. Such a relationship does exist for He ions and D ions incident on these metals at energies above 4 keV and 20 keV, respectively. For H ions the two distributions have significantly different shapes at all incident energies considered

  18. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  19. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  20. Selective hydrogen atom abstraction by hydrogen atoms in photolysis and radiolysis of alkane mixtures at 770 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Kinugawa, K.; Eguchi, M.; Guedes, S.M.L.

    1977-01-01

    Selective hydrogen atom abstraction reaction by H atoms, has been found in Isobutane, 2,2,3,3-tetramethylbutane(TMB), cyclopropane matrices besides neopentane matrix. The selective hydrogen atom abstraction reaction in neopentane-isobutane mixture is affected by the difference of kinetic energies of H atoms. The reaction occurs more favorably with decreasing the kinetic energy of H atoms. Competitive reaction between c-C 6 H 12 and Hi for H atoms has been studied in the radiolysis and photolysis of neo-C 5 H 12 HI mixture at 77 K. The rate constants of these reactions in neopentane matrix are quite different from these of thermal H atom reaction, but similar to those of hot H atom reaction. Importance of the selective hydrogen atom abstraction reaction by H atoms is pointed out in the radical formation in the radiolysis of pure TMB at 77 K [pt

  1. Atoms in Slovakia

    International Nuclear Information System (INIS)

    Danis, D.; Feik, K.; Florek, M.; Kmosena, J.; Chrapan, J.; Morovic, M.; Slugen, V.; Seliga, M.; Valovic, J.

    2006-01-01

    In this book the history of development of using of nuclear energy in the Slovak Republic as well as in the Czechoslovakia (before 1993 year) is presented. The aim of the book is to preserve the memory of the period when the creation and development of nuclear physics, technology, nuclear medicine, radioecology and energetics in Slovakia occurred - as witnessed by people who experienced this period and to adapt it to future generations. The Editorial board of the SNUS collected the views of 60 contributors and distinguished workers - Slovakian experts in nuclear science, education and technology. Calling upon a wide spectrum of experts ensured an objective historical description of the period. A huge amount of subjective views on recent decades were collected and supported by a wealth of photographic documentation. This created a synthesised reflection on the history of the 'atoms' in Slovakia. The book contains 15 tables, 192 black and white and 119 colour pictures from around the world and from places involved in the compilation of the study and with the study of atomic science in Slovakia. The main chapters are as follows: Atoms in the world, Atoms in Slovakia, Atoms in the educational system, Atoms in health services (Radiology, Nuclear medicine, Radiation protection, the Cyclotron centre of the Slovak Republic), Radioecology, Other applications of irradiation, Nuclear energetics (Electric energy in the second half of the 20 th century, NPP Bohunice, NPP Mochovce, the back-end of Nuclear energetics, Big names in Nuclear energetics in Slovakia), Chronology and an Appendix entitled 'Slovak companies in nuclear energetics'

  2. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  3. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  4. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  5. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  7. A linear atomic quantum coupler

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and computer Science, Faculty of Science, Suez Canal University 41522, Ismailia (Egypt); Wahiddin, M R B, E-mail: el_orany@hotmail.co, E-mail: faisal.orany@mimos.m, E-mail: mridza@mimos.m [Cyberspace Security Laboratory, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia)

    2010-04-28

    In this paper we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of which includes a localized atom. These waveguides are placed close enough to allow exchange of energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way as the Jaynes-Cummings model (JCM) and with the atom-mode system in the second waveguide via the evanescent wave. We present the Hamiltonian for this system and deduce its wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional coupler the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit a long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions the system can yield the results of the two-mode JCM.

  8. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  9. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    International Nuclear Information System (INIS)

    Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I.

    2005-01-01

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He * and Na atoms near metal, semiconductor, and dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at short separations with an error less than 1% one should use the complete optical-tabulated data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different kinds

  10. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  11. Optics with an Atom Laser Beam

    International Nuclear Information System (INIS)

    Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman

    2001-01-01

    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly

  12. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  13. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  14. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  15. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle

  16. Big Atoms for Small Children: Building Atomic Models from Common Materials to Better Visualize and Conceptualize Atomic Structure

    Science.gov (United States)

    Cipolla, Laura; Ferrari, Lia A.

    2016-01-01

    A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).

  17. Atomic bomb cataracts

    International Nuclear Information System (INIS)

    Shiraeda, Kanji

    1992-01-01

    Eye disturbance caused by atomic bomb radiation can be divided into three groups: direct injury immediately after exposure, eye lesions associated with radiation syndrome, and delayed disturbance. The crystalline lens of the eye is the most radiosensitive. Atomic bomb cataract has been investigated in a number of studies. The first section of this chapter discusses radiation cataract in terms of the incidence and characteristics. The second section deals with atomic bomb cataract, which can be diagnosed based on the four criteria: (1) opacity of the crystalline lens, (2) a history of proximal exposure, (3) lack of eye disease complicating cataract, and (4) non-exposure to radiation other than atomic bombing. The prevalence of cataract and severity of opacity are found to correlate with exposure doses and age at the time of exposure. Furthermore, it is found to correlate with distance from the hypocenter, the condition of shielding, epilation, and the presence or absence or degree of radiation syndrome. (N.K.)

  18. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  19. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  20. Modular L-design of hydride atomizers for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rezacova, Olga; Dedina, Jiri

    2009-01-01

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 μg ml - 1 does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 μg ml - 1 ; interferent concentration of 1 μg ml - 1 causing 20% signal depression.

  1. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  2. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.

    1994-01-01

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  3. Muonic atoms with vacant electron shells

    International Nuclear Information System (INIS)

    Bacher, R.; Gotta, D.; Simons, L.M.; Missimer, J.; Mukhopadhyay, N.C.

    1985-01-01

    We show that the cascade in muonic atoms with Z<20 ejects sufficient atomic electrons to ionize an isolated muonic atom completely. In gases, the rates with which electrons refill the atomic shell can be accurately deduced from measured and calculated electron transfer cross sections. Thus, we can conclude that completely ionized muonic atoms can be prepared in gases, and that they remain isolated for long enough times at attainable pressures to facilitate studies of fundamental interactions in muonic atoms

  4. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  5. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  6. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  7. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.

    2011-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  8. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  9. Atomization process for metal powder

    International Nuclear Information System (INIS)

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  10. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  11. Elementary Atom Interaction with Matter

    OpenAIRE

    Mrowczynski, Stanislaw

    1998-01-01

    The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...

  12. Atoms stories; Histoire d`atomes

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P; Bordry, M [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    1988-12-31

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  13. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  14. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  15. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  16. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  17. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  18. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  19. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  20. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  1. Modular L-design of hydride atomizers for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rezacova, Olga [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, Prague 2, CZ 128 43 (Czech Republic); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic)], E-mail: dedina@biomed.cas.cz

    2009-07-15

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 {mu}g ml{sup - 1} does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 {mu}g ml{sup - 1}; interferent concentration of 1 {mu}g ml{sup - 1} causing 20% signal depression.

  2. Efficient Atomic One-Qubit Phase Gate Realized by a Cavity QED and Identical Atoms System

    International Nuclear Information System (INIS)

    He Yong; Jiang Nianquan

    2010-01-01

    We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate. (general)

  3. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  4. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  5. Empirical atom model of Vegard's law

    International Nuclear Information System (INIS)

    Zhang, Lei; Li, Shichun

    2014-01-01

    Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model

  6. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  7. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    1970-01-01

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA) [fr

  8. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  9. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  10. The atomic energy basic law

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  11. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  12. Atom Optics in a Nutshell

    Science.gov (United States)

    Meystre, Pierre

    This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.

  13. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  14. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  15. Near relativistic study of binded levels in atoms. Application to alkaline atoms

    International Nuclear Information System (INIS)

    Varade, A.; Delgado-Barrio, G.; Villarreal, P.

    1985-01-01

    A model is described for the calculation of the atomic binding energies. The Pauli equation has been solved with a local potential. The results for alkaline atoms are reported here and compared with the perturbative calculation and experimental data. (author)

  16. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  17. Phase space overpopulation at CERN and possible explanations

    International Nuclear Information System (INIS)

    Pratt, S.

    1999-01-01

    Complete text of publication follows. By combining information from correlations from Pb+Pb collisions at CERN, one comes to the conclusion that pionic phase space is significantly overpopulated compared to expectations based on chemical equilibrium. A variety of explanations will be addressed. (author)

  18. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    Science.gov (United States)

    Lopez, Nicolas; Tsai, Shan-Wen

    2009-11-01

    Cold atom experiments have observed atom-molecule mixtures by tuning the interactions between particles.footnotetextM.L. Olsen, J. D. Perreault, T. D. Cumby, and D. S. Jin, Phys. Rev. A 80, 030701(R) (2009) We study many particle interactions by examaning a simple model that describes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. A set of functional Renomalization Group equationsfootnotetextR. Shankar, Rev. Mod. Phys., Vol 66 No. 1, January 1994^,footnotetextS.W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005) describing these processes are set up and solved numerically. The Self Energy of the fermions are attained as a function of frequency and we search for frequency dependent instabilities that could denote a transition from a disordered liquid to a BCS phase. (Financial support from NSF DMR-084781 and UC-Lab Fees Research Program.)

  19. State-selective imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.

    2008-01-01

    Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We

  20. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  1. Atoms: for war or peace

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, K V

    1981-08-01

    History of nuclear power generation starting from the experimental split of uranium atom in 1938 to the establishment of the International Atomic Energy Agency is traced. In India, the Atomic Energy Commission was established with the major objective of developing nuclear power to make up India's deficiencies in energy sources. It is noted that from the very beginning the commission's activities were covered under a blanket of secrecy. According to the author, India's atomic energy programme stagnated after Dr. Bhabha's death. The Department of Atomic Energy diverted its attention to the nuclear explosion which was carried out in 1974. This event caused a great setback to the collaboration with Canada and USA in the nuclear power programme. The resulting problems are still not fully solved. The author maintains that the Department of Atomic Energy should have confined its efforts to the reactor development with special reference to the fast breeder reactor so that thorium can be utilised to the maximum advantage.

  2. A kilobyte rewritable atomic memory

    Science.gov (United States)

    Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander

    The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.

  3. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  4. Magnetic trapping of Rydberg atoms

    NARCIS (Netherlands)

    Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2016-01-01

    Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam

  5. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  6. Giant atoms cast long shadow

    International Nuclear Information System (INIS)

    Amato, I.

    1996-01-01

    Atoms swollen with energy can serve as supersensitive detectors. They also probe the shadow realm where the quantum world of the atom gives way to the familiar classical world. Created in the laboratory, where they live for a few milliseconds inside vacuum chambers, Rydberg atoms acquire their girth when one or sometimes two of their electrons are excited to very high energy levels, displacing them far from the nuclear core. This article describes the atoms, the history of their identification, and future possibilities. 2 figs

  7. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  8. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  9. Melting point gram-atomic volumes and enthalpies of atomization for liquid elements

    International Nuclear Information System (INIS)

    Lamoreaux, R.H.

    1976-01-01

    Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points are collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities

  10. Atomic Australia: 1944-1990

    International Nuclear Information System (INIS)

    Cawte, Alice.

    1992-01-01

    This book tells how successive Australian governments pursued the elusive uranium dream. With Australian uranium committed to the West's atomic arsenals, Australia seemed set to become a nation powered by the atom. But by the mid-1950 the Australian government learnt that their expectations were premature, if not unrealistic. The background of the creation of the Australian Atomic Energy Commission is also given along with the examination of the uranium controversies of the 1970s and 1980s. 150 refs

  11. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  12. Hydrogen-like atom in laser field: Invariant atomic parameters in the ground state

    International Nuclear Information System (INIS)

    Bondarev, I.V.; Kuten, S.A.

    1994-07-01

    The invariant atomic parameters (dynamical vector and tensor polarizabilities) of hydrogen-like atom in the ground 1S 1/2 state are calculated analytically by means of the Laplace transform of the radial Schroedinger equation. The obtained analytical expressions have been written in the compact form as a sum of linear and squared combinations of Gauss hypergeometric functions 2 F 1 . The frequency dependence of the invariant atomic parameters is analyzed. (author). 24 refs, 1 fig

  13. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment.

    Science.gov (United States)

    Pacheco, Alexander B; Reyes, Andrés; Micha, David A

    2006-10-21

    The absorption of light during atomic collisions is treated by coupling electronic excitations, treated quantum mechanically, to the motion of the nuclei described within a short de Broglie wavelength approximation, using a density matrix approach. The time-dependent electric dipole of the system provides the intensity of light absorption in a treatment valid for transient phenomena, and the Fourier transform of time-dependent intensities gives absorption spectra that are very sensitive to details of the interaction potentials of excited diatomic states. We consider several sets of atomic expansion functions and atomic pseudopotentials, and introduce new parametrizations to provide light absorption spectra in good agreement with experimentally measured and ab initio calculated spectra. To this end, we describe the electronic excitation of the valence electron of excited alkali atoms in collisions with noble gas atoms with a procedure that combines l-dependent atomic pseudopotentials, including two- and three-body polarization terms, and a treatment of the dynamics based on the eikonal approximation of atomic motions and time-dependent molecular orbitals. We present results for the collision induced absorption spectra in the Li-He system at 720 K, which display both atomic and molecular transition intensities.

  14. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  15. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  16. Precision measurement with atom interferometry

    International Nuclear Information System (INIS)

    Wang Jin

    2015-01-01

    Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. (topical review)

  17. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  18. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  19. Controlling the atom

    International Nuclear Information System (INIS)

    Mazuzan, G.T.; Walker, J.S.

    1984-01-01

    The authors trace the early history of nuclear power regulation in the US. Focusing on the Atomic Energy Commission, they describe the role of other groups that figured in the development of regulatory policies, including the Congressional Joint Committee on Atomic Energy, other federal agencies, state governments, the nuclear industry, and scientific organizations. They consider changes in public perceptions of and attitudes toward atomic energy and the dangers of radiation exposure. The basic purpose of the book is to provide the Nuclear Regulatory Commission and the general public with information on the historical antecedents and background of regulatory issues so that there will be continuity in policy decisions. The book concludes with an annotated bibliography of selected references. 19 figures

  20. Atomic energy indemnification system in Japan

    International Nuclear Information System (INIS)

    Hoshino, Eiichi

    1980-01-01

    The Japanese legislation on the indemnification by atomic energy enterprisers for atomic energy damages, published in 1961 and enforced in 1962, includes the law concerning indemnification for atomic energy damages and the law concerning atomic energy damage indemnification contracts (hereafter referred to as ''the law concerning indemnification contracts''). While the Japanese laws are same as the foreign legislation in the provisions of the responsibility of atomic energy damages without the error of atomic energy enterprisers, exemption reasons are more important in this respect. When damages are due to exceptionally grave natural disasters or social disturbances, atomic energy enterprisers are exempted from the responsibility. Indemnification amounts are determined, but the Japanese laws do not limit then, different from the foreign regulations. The periods for demanding indemnification are not defined particularly in the law concerning indemnification contracts, and the general basic rules of the civil law are applied. As a result, the demand right terminates in 3 years after the injured persons find damage and offenders, and in 20 years since the unlawful act (Article 724, Civil law). The indemnification liability for atomic energy damages is focused on atomic energy enterprisers concerned in the same way as the foreign laws. The measures for assuring the execution of indemnification responsibility consist in principle of the firm conbination of the liability insurance contracts with private insurance companies and the indemnification contracts for atomic energy damages with the state. The damages of employes suffered in works are excluded from indemnification, which has been the main issue of discussion since the enactment of atomic energy laws. (Okada, K.)

  1. Microwave multiphoton excitation of helium Rydberg atoms: The analogy with atomic collisions

    International Nuclear Information System (INIS)

    van de Water, W.; van Leeuwen, K.A.H.; Yoakum, S.; Galvez, E.J.; Moorman, L.; Bergeman, T.; Sauer, B.E.; Koch, P.M.

    1989-01-01

    We study multiphoton transitions in helium Rydberg atoms subjected to a microwave electric field of fixed frequency but varying intensity. For each principal quantum number in the range n=25--32, the n 3 S to n 3 (L>2), n=25--32, transition probability exhibits very sharp structures as a function of the field amplitude. Their positions could be reproduced precisely using a Floquet Hamiltonian for the interaction between atom and field. Their shapes are determined by the transients of field turn-on and turn-off in a way that makes a close analogy with the theory of slow atomic collisions

  2. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  3. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  4. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    1963-01-01

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  5. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  6. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  7. Atomic squeezed states on an atom-chip

    International Nuclear Information System (INIS)

    Maussang, Kenneth

    2010-01-01

    In this thesis, we describe the construction of an experiment, allowing to produce 87 Rb Bose-Einstein condensates on an atom chip, and then split them in a double well potential. An accurate imaging system has been developed, in order to be able to measure the absolute value of the populations of the double well within a very low noise level, almost limited by the optical shot noise. We measure atom number statistics after splitting, and directly observe number squeezed states, down to -4.9 dB at low temperatures, compared to a classical gas, of independent particles. The dependence in temperature of fluctuations has been also studied. For a thermal gas, Poissonian fluctuations are given by the probability distribution of the macroscopic configurations with a given atom number difference. In the degenerate regime, the entropy effect which favors small number differences vanishes, leading to super-Poissonian fluctuations, to more than +3.8 dB close to transition temperature. At low temperatures, the interaction energy cost associated with number fluctuations exceeds the available thermal energy, leading to sub-Poissonian fluctuations. Those two behaviours have been theoretically explained, both with a simple analytical model and a numerical one. We also measured the evolution of the relative phase between the two clouds, and its collapse due to interactions, allowing us to claim that this splitter is a coherent one. (author)

  8. Multielectron effects in atomic processes

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.

    1999-01-01

    One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru

  9. Atoms as many-body systems

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2011-01-01

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  10. Atoms as many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya, E-mail: amusia@vms.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Ioffe Physical-technical Institute, RAS, St. Petersburg (Russian Federation)

    2011-09-16

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  11. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  12. Towards Long-Distance Atom-Photon Entanglement

    International Nuclear Information System (INIS)

    Rosenfeld, W.; Hocke, F.; Henkel, F.; Krug, M.; Volz, J.; Weber, M.; Weinfurter, H.

    2008-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length to a receiver 3.5 m apart. In addition, we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well-defined spin states. We find that the state of the single atom dephases on a time scale of 150 μs, which represents an important step towards long-distance quantum networking with individual neutral atoms

  13. Rutherford-Bohr atom

    Science.gov (United States)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  14. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  15. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  16. Drug: D01122 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01122 Drug Ibuprofen piconol (JP17/USAN); Staderm (TN) ... C19H23NO2 D01122.gif ... A...pionic acid derivative Active form of prodrug: Ibuprofen [DR:D00126] PTGS1 (COX1) [HSA:5742] [KO:K00509]; PT

  17. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  18. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  19. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters

  20. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  1. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  2. Atom optics in the time domain

    Science.gov (United States)

    Arndt, M.; Szriftgiser, P.; Dalibard, J.; Steane, A. M.

    1996-05-01

    Atom-optics experiments are presented using a time-modulated evanescent light wave as an atomic mirror in the trampoline configuration, i.e., perpendicular to the direction of the atomic free fall. This modulated mirror is used to accelerate cesium atoms, to focus their trajectories, and to apply a ``multiple lens'' to separately focus different velocity classes of atoms originating from a point source. We form images of a simple two-slit object to show the resolution of the device. The experiments are modelled by a general treatment analogous to classical ray optics.

  3. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  4. Cold atoms in optical cavities and lattices

    International Nuclear Information System (INIS)

    Horak, P.

    1996-11-01

    The thesis is organized in three chapters covering different aspects of the interaction of atoms and light in the framework of theoretical quantum optics. In chapter 1 a special case of a microscopic laser where one or two atoms interact with several quantized cavity modes is discussed. In particular I investigate the properties of the light field created in one of the cavity modes. It is shown that a single-atom model already predicts average photon numbers in agreement with a semiclassical many-atom theory. The two-atom model exhibits additional collective features, such as superradiance and subradiance. In chapter 2 effects of the photon recoil on cold atoms in the limit of long-lived atomic transitions are investigated. First, I demonstrate that, in principle, relying on this scheme, a continuous-wave laser in the ultraviolet frequency domain could be established. Second, the splitting of an atomic beam into two coherent subbeams is discussed within the same scheme. Such beamsplitters play an important role in high-precision measurements using atomic interferometers. Finally, chapter 3 deals with cooling and trapping of atoms by the interaction with laser light. I discuss the properties and the light scattering of atoms trapped in a new light field configuration, a so-called dark optical superlattice. In principle, such systems allow the trapping of more than one atom in the ground state of a single optical potential well. This could give rise to the observation of e.g. atom-atom interactions and quantum statistical effects. (author)

  5. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  6. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  7. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  8. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  9. Knowledge Extraction from Atomically Resolved Images.

    Science.gov (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  10. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  11. Optical lattice clock with strontium atoms: a second generation of cold atom clocks

    International Nuclear Information System (INIS)

    Le Targat, R.

    2007-07-01

    Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10 -16 . It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 → J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S 0 → 3P 0 transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 μK. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope 87 Sr, at a level of a few 10 -15 . (author)

  12. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  13. German atomic low meeting 2004

    International Nuclear Information System (INIS)

    Ossenbuehl, F.

    2005-01-01

    The conference report on the German atomic law meeting 2004 contains 14 contributions on the German atomic legislation within four parts: Damage precaution in the operational phase; Legal general requirements for the final disposal - considerations ''de lege lata'' and ''de lege ferenda''. Financing of the site searching by a statutory company (''Verbandsmodell''). Atomic supervision authority - federal executive administration or federal self administration?

  14. Study of atomic and condensed atomic indices for reactive sites of ...

    Indian Academy of Sciences (India)

    Unknown

    function indices in the framework of the AIM method of Bader.15 The atomic and group ... P Kolandaivel et al. 592. FF values. One of the reasons, they have argued, is that according to the analytic definition of FF it is valid only when ∆N → 0. In that case, the fluctuation in ..... In their work, they have concluded that the N atom ...

  15. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  16. Atomic Energy Commission (Amendment) Law, 1993

    International Nuclear Information System (INIS)

    1993-02-01

    The Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C.L. 308) seeks to amend the Atomic Energy Commission Act of 1963 (Act 204) so as to provide for the establishment of a Radiation Protection Board and other institutes under the Ghana Atomic Energy Commission. The Law further repeats the Atomic Energy Commission (Amendment) Law of 1982 (P.N.D.C.L. 37). (EAA)

  17. Harnessing the atom

    International Nuclear Information System (INIS)

    1999-01-01

    Splitting the atom has had a major impact on the history of the latter part of the 20th century. This film depicts the many benefits - and also drawbacks - of nuclear technology, and describes how the International Atomic Energy Agency performs its various tasks. It touches on challenges such as the choice between major energy sources, growing concerns about the global climate, and prospects for nuclear arms control and disarmament

  18. Interaction of complex atoms with radiation

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.

    1984-01-01

    Different manifestations of multielectron atomic structure under photoionization are discussed. Collectivization of external electron shells essential both in production cross section and in angular distribution as well as in photoelectron polarization are noted. In a wide range of quantum energies (of the order of ionization potential) an incident electron scattering on the atom irradiates quite differently than on the potential. It polarizes atoms mainly dipolarly, and virtually excited atom emits ''bremsstrahlung'' quantum. With energy growth of the incident electron at small momentum transferred to it by the atom the role of the second mechanism turns to be determinant

  19. Pursuit of the Kramers-Henneberger atom

    Science.gov (United States)

    Wei, Qi; Wang, Pingxiao; Kais, Sabre; Herschbach, Dudley

    2017-09-01

    Superstrong femtosecond pulsed lasers can profoundly alter electronic structure of atoms and molecules. The oscillating laser field drives one or more electrons almost free. When averaged over, the rapid oscillations combine with the static Coulomb potential to create an effective binding potential. The consequent array of bound states comprises the ;Kramers-Henneberger Atom;. Theorists have brought forth many properties of KH atoms, yet convincing experimental evidence is meager. We examine a remarkable experiment accelerating atoms (Eichmann et al., 2009). It offers tantalizing evidence for the KH atom, with prospects for firm confirmation by adjustment of laser parameters.

  20. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms

    International Nuclear Information System (INIS)

    Grucker, J.

    2007-12-01

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable 3 P 2 state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ( 3 P 2 ). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms

  1. Curious behavior of optically trapped neutral atoms

    International Nuclear Information System (INIS)

    Wieman, C.; Walker, T.; Sesko, D.; Monroe, C.

    1991-01-01

    We have studied the behavior of clouds of neutral atoms contained in a spontaneous force optical trap. Because of the low temperatures of the atoms ( 5 atoms. These include the expansion of the cloud as the number is increased and dramatic changes in the distribution of the atoms at higher numbers. We can explain much of the collective behavior using a simple model that includes a 1/r 2 force between the atoms arising from the multiple scattering of photons. Finally, we discuss the optical trapping of atoms directly from a low pressure vapor in a small glass cell. We have used these optically trapped atoms to load a magnetostatic trap in the same cell. This provided a high density sample of atoms with a temperature of less than 2 μK

  2. Transition from LEDCOP to ATOMIC

    International Nuclear Information System (INIS)

    Magee, N.H.; Abdallah, J.; Colgan, J.; Hakel, P.; Kilcrease, D.P.; Mazevet, S.; Sherrill, M.E.; Fontes, C.J.; Zhang, H.

    2004-01-01

    This paper discusses the development of the ATOMIC code, a new low to mid Z opacity code, which will replace the current Los Alamos low Z opacity code LEDCOP. The ATOMIC code is based on the FINE code, long used by the Los Alamos group for spectral comparisons in local thermodynamic equilibrium (LTE) and for non-LTE calculations, both utilizing the extensive databases from the atomic physics suite of codes based on the work of R.D. Cowan. Many of the plasma physics packages in LEDCOP, such as line broadening and free-free absorption, are being transferred to the new ATOMIC code. A new equation of state (EOS) model is being developed to allow higher density calculations than were possible with either the FINE or LEDCOP codes. Extensive modernization for both ATOMIC and the atomic physics code suites, including conversion to Fortran 90 and parallelization, are underway to speed up the calculations and to allow the use of expanded databases for both the LTE opacity tables and the non-LTE calculations. Future plans for the code will be outlined, including considerations for new generation opacity tables.

  3. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  4. Reflection-type hologram for atoms

    International Nuclear Information System (INIS)

    Shimizu, Fujio; Fujita, Jun-ichi

    2002-01-01

    A cold metastable neon atomic beam was manipulated with a reflective amplitude hologram that was encoded on a silicon surface. A black-and-white pattern of atoms was reconstructed on a microchannel plate detector. The hologram used the enhanced quantum reflection developed by authors and was made of a two-dimensional array of rectangular low and high reflective cells. The surface of the high reflective cell was composed of regularly spaced roof-shaped ridges, while the low reflective cell was simply a flat surface. The hologram was the first demonstration of reflective atom-optical elements that used universal interaction between a neutral atom and solid surface

  5. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    Science.gov (United States)

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  6. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V. Y. F. [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Complex Photonic Systems (COPS), MESA Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Spreeuw, R. J. C., E-mail: r.j.c.spreeuw@uva.nl [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Abarbanel, C.; Hadad, B.; Golan, E. [Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel); Folman, R. [Department of Physics and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  7. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  8. UNESCO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    Atomic energy has been of particular concern to UNESCO virtually since the founding of this United Nations agency with the mission of promoting the advancement of science along with education and culture. UNESCO has been involved in the scientific aspects of nuclear physics - notably prior to the creation of the International Atomic Energy Agency - but it has also focussed its attention upon the educational and cultural problems of the atomic age. UNESCO's sphere of action was laid down by its 1954 General Conference which authorized its Director-General to extend full co-operation to the United Nations in atomic energy matters, with special reference to 'the urgent study of technical questions such as those involved in the effects of radioactivity on life in general, and to the dissemination of objective information concerning all aspects of the peaceful utilization of atomic energy; to study, and if necessary, to propose measures of international scope to facilitate the use of radioisotopes in research and industry'. UNESCO's first action under this resolution was to call a meeting of a committee of experts from twelve nations to study the establishment of a system of standards and regulations for the preparation, distribution, transport and utilization of radioactive isotopes and tracer molecules

  9. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  10. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  11. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  12. Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions

    International Nuclear Information System (INIS)

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)

  13. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jun, E-mail: phyjiang@yeah.net [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Cheng, Yongjun, E-mail: cyj83mail@gmail.com [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 (China); Bromley, M.W.J., E-mail: brom@physics.uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075 (Australia)

    2015-01-15

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.

  14. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    International Nuclear Information System (INIS)

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.

    2015-01-01

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C 6 , C 8 and C 10 atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations

  15. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  16. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  17. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  18. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  19. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  20. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  1. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  2. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  3. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    Science.gov (United States)

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  4. Isotopic spin effect in three-pion Bose-Einstein correlations

    International Nuclear Information System (INIS)

    Suzuki, N.

    1998-01-01

    Bose-Einstein (BE) correlations of identical particles in multiple production processes are extensively studied last years because they give an information on the space-time region of interaction. The basic effect is analogous to Hanbury-Brown - Twiss (HBT) interferometry in optics and suggests statistical production of the particles (mainly π mesons). The possible presence of coherent pionic component (for example, in the case of disoriented chiral condensate formation) modifies the HBT effect. On the other hand, the pions (contrary to photons) are subject to isotopic spin (and electric charge) conservation and so they can not be emitted independently. While the corresponding change of the statistical part is not essential for large multiplicities, the coherent part changes substantially when isotopic spin conservation is taken into account. BE correlations of the pions in the presence of both statistical and coherent components are reconsidered taking into account isotopic spin conservation in the coherent part. That will result in appearance of additional contribution to pionic correlation function. (author)

  5. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  6. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  7. Atomic memory access hardware implementations

    Science.gov (United States)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  8. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao; Feng, Qiong; Cheng, Yingchun; Yao, Yingbang; Wang, Qingxiao; Li, Kun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2013-01-01

    and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal

  9. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  10. Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Xiong Hao; Zhang Duo

    2011-01-01

    The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because of the position-dependent atom-field interaction, the information about the position of the atom can be obtained via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.

  11. Atom lithography of Fe

    NARCIS (Netherlands)

    Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2004-01-01

    Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to

  12. Machine Learning Estimation of Atom Condensed Fukui Functions.

    Science.gov (United States)

    Zhang, Qingyou; Zheng, Fangfang; Zhao, Tanfeng; Qu, Xiaohui; Aires-de-Sousa, João

    2016-02-01

    To enable the fast estimation of atom condensed Fukui functions, machine learning algorithms were trained with databases of DFT pre-calculated values for ca. 23,000 atoms in organic molecules. The problem was approached as the ranking of atom types with the Bradley-Terry (BT) model, and as the regression of the Fukui function. Random Forests (RF) were trained to predict the condensed Fukui function, to rank atoms in a molecule, and to classify atoms as high/low Fukui function. Atomic descriptors were based on counts of atom types in spheres around the kernel atom. The BT coefficients assigned to atom types enabled the identification (93-94 % accuracy) of the atom with the highest Fukui function in pairs of atoms in the same molecule with differences ≥0.1. In whole molecules, the atom with the top Fukui function could be recognized in ca. 50 % of the cases and, on the average, about 3 of the top 4 atoms could be recognized in a shortlist of 4. Regression RF yielded predictions for test sets with R(2) =0.68-0.69, improving the ability of BT coefficients to rank atoms in a molecule. Atom classification (as high/low Fukui function) was obtained with RF with sensitivity of 55-61 % and specificity of 94-95 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  14. Nuclear and atomic physics at one gigaflop

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, J.B.

    1989-01-01

    A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems

  15. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    Science.gov (United States)

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  17. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates

    International Nuclear Information System (INIS)

    Joachim, C; Martrou, D; Gauthier, S; Rezeq, M; Troadec, C; Jie Deng; Chandrasekhar, N

    2010-01-01

    The scientific and technical challenges involved in building the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) are discussed. The practical, laboratory scale approach explored today to assemble a multi-access atomic scale precision interconnection machine is presented. Depending on the surface electronic properties of the targeted substrates, two types of machines are considered: on moderate surface band gap materials, scanning tunneling microscopy can be combined with scanning electron microscopy to provide an efficient navigation system, while on wide surface band gap materials, atomic force microscopy can be used in conjunction with optical microscopy. The size of the planar part of the circuit should be minimized on moderate band gap surfaces to avoid current leakage, while this requirement does not apply to wide band gap surfaces. These constraints impose different methods of connection, which are thoroughly discussed, in particular regarding the recent progress in single atom and molecule manipulations on a surface.

  18. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  19. CP violation in atoms

    International Nuclear Information System (INIS)

    Barr, S.M.

    1992-01-01

    Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs

  20. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  1. AtomDB: Expanding an Accessible and Accurate Atomic Database for X-ray Astronomy

    Science.gov (United States)

    Smith, Randall

    Since its inception in 2001, the AtomDB has become the standard repository of accurate and accessible atomic data for the X-ray astrophysics community, including laboratory astrophysicists, observers, and modelers. Modern calculations of collisional excitation rates now exist - and are in AtomDB - for all abundant ions in a hot plasma. AtomDB has expanded beyond providing just a collisional model, and now also contains photoionization data from XSTAR as well as a charge exchange model, amongst others. However, building and maintaining an accurate and complete database that can fully exploit the diagnostic potential of high-resolution X-ray spectra requires further work. The Hitomi results, sadly limited as they were, demonstrated the urgent need for the best possible wavelength and rate data, not merely for the strongest lines but for the diagnostic features that may have 1% or less of the flux of the strong lines. In particular, incorporation of weak but powerfully diagnostic satellite lines will be crucial to understanding the spectra expected from upcoming deep observations with Chandra and XMM-Newton, as well as the XARM and Athena satellites. Beyond incorporating this new data, a number of groups, both experimental and theoretical, have begun to produce data with errors and/or sensitivity estimates. We plan to use this to create statistically meaningful spectral errors on collisional plasmas, providing practical uncertainties together with model spectra. We propose to continue to (1) engage the X-ray astrophysics community regarding their issues and needs, notably by a critical comparison with other related databases and tools, (2) enhance AtomDB to incorporate a large number of satellite lines as well as updated wavelengths with error estimates, (3) continue to update the AtomDB with the latest calculations and laboratory measurements, in particular velocity-dependent charge exchange rates, and (4) enhance existing tools, and create new ones as needed to

  2. Influence of Na, K, Ca and Mg on lead atomization by tungsten coil atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Oliveira Pedro V. de

    2000-01-01

    Full Text Available The atomization of lead in an electrothermal tungsten coil atomizer in the presence and absence of Na+, K+, Ca2+ and Mg2+ was investigated with the objective of understanding the interference processes. The lead atomization was less affected by Ca2+ and Mg2+ than by Na+ and K+. In the absence of concomitants, lead atomization efficiency was improved by the presence of H2 (10% v/v in the purge gas composition, during pyrolysis and atomization steps. The interference caused by Na+ and Ca2+ was negligible when the pyrolysis step was accomplished without H2 in the purge gas composition. The results showed that Na+, K+, Ca2+ and Mg2+ are directly involved in competition reactions for H2 in condensed phase.

  3. Atomic phenomena in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination

  4. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  5. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  6. Energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Borie, E.; Rinker, G.A.

    1982-01-01

    The theory of muonic atoms is a complex and highly developed combination of nuclear physics, atomic physics, and quantum electrodynamics. Perhaps nowhere else in microscopic physics are such diverse branches so intimately intertwined and yet readily available for precise experimental verification or rejection. In the present review we summarize and discuss all of the most important components of muonic atom theory, and show in selected cases how this theory meets experimental measurements

  7. Atom loss resonances in a Bose-Einstein condensate.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2013-07-12

    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  8. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  9. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.

  10. Current Capability of Atomic Structure Theory

    International Nuclear Information System (INIS)

    Kim, Yong Ki

    1993-01-01

    Current capability of atomic structure theory is reviewed, and advantages, disadvantages and major features of popular atomic structure codes described. Comparisons between theoretical and experimental data on transition energies and lifetimes of excited levels are presented to illustrate the current capability of atomic structure codes.

  11. Vibration spectra of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Bourahla, B; Khater, A; Rafil, O; Tigrine, R

    2006-01-01

    This paper introduces a simple model for an atomic nanocontact, where its mechanical properties are analysed by calculating numerically the local spectral properties at the contact atom and the nearby atoms. The standard methodology for calculating phonon spectral densities is extended to enable the calculation of localized contact modes and local density of states (DOS). The model system considered for the nanocontact consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. The matching method is used, in the harmonic approximation, to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous nanocontact domain. The Green's functions yield the vibration spectra and the DOS for the atomic sites. These are numerically calculated for different cases of elastic hardening and softening of the nanocontact domain. The purpose is to investigate how the local dynamics respond to local changes in the elastic environment. The analysis of the spectra and of the DOS identifies characteristic features and demonstrates the central role of a core subset of these sites for the dynamics of the nanocontact. The system models a situation which may be appropriate for contact atomic force microscopy

  12. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  13. Simulation of coherent interactions between Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F.; Hernandez, J.V.; Topcu, T.; Noordam, L.D.

    2004-01-01

    The results of a theoretical investigation of the coherent interaction between many Rydberg atoms are reported. The atoms are assumed to move very little during the time range we investigate. We describe the basic interaction between atoms and show that (contrary to previous theoretical studies) the interaction between the atoms can be coherent. The band structure for a perfect lattice of atoms and the density of states for an amorphous distribution of atoms are presented. We also give results for when the atoms are roughly positioned in a lattice. Finally, we performed detailed calculations to understand when the Rydberg interactions are too strong for an essential states type of approximation. The relevance of our results to previous measurements in a Rydberg gas and to possible future experiments is discussed

  14. Atomic spectrometry based on metallic tube atomizers heated by flame: Innovative strategies from fundamentals to analysis

    International Nuclear Information System (INIS)

    Arruda, Marco Aurelio Zezzi; Figueiredo, Eduardo Costa

    2009-01-01

    This review describes recent developments in atomic absorption spectrometry using metallic tube atomizers heated by flames. Sample introduction in spray or gaseous form is emphasized, describing some proposed systems for this task and the fundamentals involved in each context. The latest challenges and future possibilities for use of metallic tubes in atomic/mass spectrometry are also considered.

  15. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  16. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  17. Laser control of atomic beam motion and applications

    International Nuclear Information System (INIS)

    Balykin, V.I.; Letokhov, V.S.

    1987-01-01

    The authors present the results of an experimental investigation of the control of atomic beam motion by the light pressure of laser radiation. Collimation, focusing and reflection of the atomic beam are considered. Collimation of the atomic beam is achieved by the interaction of laser radiation with atoms, when the light pressure force depends only on the atom's velocity. A similar regime of atomic beam interaction with radiation was performed with transversal irradiation of a beam by the axis-symmetrical field. The axis-symmetrical field was formed by laser radiation reflected from the conical mirror surface of a reflecting axicon. The axis of the atomic beam coincided with that of the axicon. The collimation regime was reached under negative detuning of the laser radiation frequency from the atomic transition frequency by a value equal to several homogeneous widths. With positive detuning by the same value the regime of beam decollimation was observed. The density of atoms on the beam axis was changed by 10 3 times, when the collimation regime was replaced by that of decollimation. Focusing of the atomic beam was achieved by light pressure dependent on the atomic coordinate. Focusing was performed within the field configuration formed by divergent laser Gaussian beams propagating in the direction +- X, +- Y of a Cartesian coordinate system. Waists of the laser beams were an equal distance from the atomic beam axis. With an atomic beam propagating along the z axis, expressions for local distance and a formula for the laser lens were obtained. Focusing of the atomic beam was experimentally accomplished, and the image of the atomic beam was received. In this work they also investigated reflection of the atomic beam by laser radiation. The possibility of creating the optics of a neutral atomic beam is shown

  18. Determination of cobalt in human liver by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Caldas, E.D.; Gine-Rosias, M.F.; Dorea, J.G.

    1991-01-01

    A detailed study of the use of electrothermal atomic absorption spectrometry for the determination of cobalt in human liver is described. Comparisons of sample digestion using nitric acid or nitric acid plus perchloric acid, atomization procedures and the application of palladium and magnesium nitrate chemical modifiers were studied using NBS SRM 1577a Bovine Liver. The best results were achieved with sample decomposition in nitric acid, atomization from the tube wall and no chemical modifier. Cobalt was determined in 90 samples of livers from foetuses and deceased newborns using the standard addition method with an average recovery of 99.8%. (author). 30 refs.; 4 figs.; 2 tabs

  19. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  20. Pion content of the nucleon in polarized semi-inclusive DIS

    Energy Technology Data Exchange (ETDEWEB)

    Melnitchouk, W. [Univ. of Regensburg (Germany); Thomas, A.W. [Univ. of Adelaide (Australia)

    1994-04-01

    An explicit pionic component of the nucleon may be identified by measuring polarized {Delta}{sup ++} fragments produced in deep-inelastic scattering (DIS) off polarized protons. The pion-exchange model predicts highly correlated polarizations of the {Delta}{sup ++} and target proton, in marked contrast with the competing diquark fragmentation process.