Pion nucleus scattering lengths
International Nuclear Information System (INIS)
Huang, W.T.; Levinson, C.A.; Banerjee, M.K.
1971-09-01
Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs
Recent developments in the understanding of pion-nucleus scattering
International Nuclear Information System (INIS)
Johnson, M.B.
1983-01-01
A development of the theory of pion-nucleus scattering is given in a field theoretical framework. The theory is designed to describe pion elastic scattering and single- and double-charge exchange to isobaric analog states. An analysis of recent data at low and resonance energies is made. Strong modifications to the simple picture of the scattering as a succession of free pion-nucleon interactions are required in order to understand the data. The extent to which the experiment is understood in terms of microscopic theory is indicated. 71 references
Invariant potential for elastic pion--nucleus scattering
International Nuclear Information System (INIS)
Cammarata, J.B.; Banerjee, M.K.
1976-01-01
From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus, an invariant potential for crossing symmetric elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the exclusion principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frame, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed
Pion inelastic scattering and the pion-nucleus effective interaction
International Nuclear Information System (INIS)
Carr, J.A.
1983-01-01
This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion
Pion-nucleus scatter and the Pauli principle
International Nuclear Information System (INIS)
Dover, C.B.; Lemmer, R.H.
1976-01-01
A density expansion of the pion self-energy for pions in nuclear matter is reexamined. It is shown that a single hole-line expansion of the self-energy (i) is equivalent to using a strongly quenched πN scattering amplitude in the medium, and (ii) results in an inconsistent treatment of the virtual pions necessarily present in a field-theoretic description of the problem. Exchange of intermediate pions gives rise to nucleon-nucleon, as well as pion-nucleon scattering diagrams that both contribute to the pion self-energy in an essential way. The nucleon-nucleon scattering proceeds, for instance, via a one-pion-exchange potential that is, however, highly nonstatic for energy transfers between nucleons close to the incident energy. Such interactions are singled out automatically for special treatment in a field-theory approach to the problem, and should not be introduced in an ad hoc manner as part of an empirical NN interaction in nuclear matter. We evaluate the coherent and charge exchange contributions to the pion-nucleus optical potential, proportional to the total density and the neutron-proton density difference, respectively. The Pauli principle is found to provide a small correction to the coherent part, both in the hole-line and density expansion formalisms. However, the charge exchange part of the potential is almost completely damped at low energies in the hole-line expansion, while the inclusion of backward-going graphs (random-phase-approximation-type correlations) restores it to its value based on free space πN charge exchange amplitudes (i.e., no net Pauli effect)
Pion-nucleus scattering around the (3,3) resonance
International Nuclear Information System (INIS)
Rahman, M.A.; Sen Gupta, H.M.; Rahman, M.
1989-09-01
Elastic scattering of π ± are studied on 28 Si, 40 Ar, 40,48 Ca, 90 Zr and 208 Pb at energies around the (3,3) resonance within the framework of the strong absorption model of Frahn and Venter. The parameters thus obtained are used in the analysis of the inelastic scattering of pions leading to the lowest 2 ± state in 28 Si. A reasonably good account of the scattering processes (elastic and inelastic) is given by the simple model. (author). 13 refs, 8 figs, 3 tabs
Pion-nucleus scattering in the isobar formalism
International Nuclear Information System (INIS)
Moniz, E.J.
1978-06-01
Lectures on the isobar-hole model for pion reactions include the isobar as an explicit degree of freedom and the connection with a purely pion and nucleon system, the formalism and its relation to the pion optical potential, the extended schematic model for pion scattering, a simple spinless s-wave model, application to pion-oxygen 16 scattering and comparison with elastic scattering data. In this way the extent is shown to which microscopic treatment of the many-body dynamics explains the data and the extent to which additional physical input is required. Another test is the various inelastic processes. Inclusive reactions are briefly discussed. 37 references
Information on pion-nucleus optical potentials from elastic scattering
International Nuclear Information System (INIS)
Friedman, E.
1983-02-01
Data on the elastic scattering of pions by nuclei between 20 and 230 MeV is analyzed in an almost model-independent fashion. The real part of the potential, which is described by a bias-free Fourier-Bessel series, is found to have the typical Kisslinger or Laplacian-like shape between 30 and 80 MeV
Kinematic aspects of pion-nucleus elastic scattering
International Nuclear Information System (INIS)
Weiss, D.L.; Ernst, D.J.
1982-01-01
The inclusion of relativistic kinematics in the theory of elastic scattering of pions from nuclei is examined. The investigation is performed in the context of the first order impulse approximation which incorporates the following features: (1) Relative momentum are defined according to relativistic theories consistent with time reversal invariance. (2) The two-nucleon interaction is a new, multichannel, separable potential model consistent with the most recent data derived from a recent nonpotential model of Ernst and Johnson. (3) The recoil of the pion-nucleon interacting pair and its resultant nonlocality are included. (4) The Fermi integral is treated by an optimal factorization approximation. It is shown how a careful definition of an intrinsic target density leads to an unambiguous method for including the recoil of the target. The target recoil corrections are found to be large for elastic scattering from 4 He and not negligible for scattering from 12 C. Relativistic potential theory kinematics, kinematics which result from covariant reduction approaches, and kinematics which result from replacing masses by energies in nonrelativistic formulas are compared. The relativistic potential theory kinematics and covariant reduction kinematics are shown to produce different elastic scattering at all pion energies examined (T/sub π/<300 MeV). Simple extensions of nonrelativistic kinematics are found to be reasonable approximations to relativistic potential theory
Invariant potential for elastic pion--nucleus scattering. Technical report No. 75-075
International Nuclear Information System (INIS)
Cammarata, J.B.; Banerjee, M.K.
1975-04-01
From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus an invariant potential for crossing symmetric, elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the Exclusion Principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frames, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed. (9 figures) (U.S.)
A new version of PIRK (elastic pion-nucleus scattering) to handle differing proton and neutron radii
International Nuclear Information System (INIS)
Funsten, H.O.
1979-01-01
This program is a modification of the Eisenstein-Miller program (1974) for calculating elastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the use of separate proton and neutron radii for the nuclear density function rho(r). (Auth.)
New entropic uncertainty relations and tests of PMD-SQS-optimal limits in pion-nucleus scattering
International Nuclear Information System (INIS)
Ion, D.B.; Ion, M.L.
2002-01-01
In this paper we define a new kind of quantum entropy, namely, the nonextensivity conjugated entropy S Jθ (p,q) bar.Then we prove the optimal nonextensivity conjugated entropic uncertainty relations (ONC-EUR) as well as optimal nonextensivity conjugated entropic uncertainty bands (ONC E UB). The results of the first experimental test of ONC-EUB in the pion-nucleus scattering, obtained by using 49-sets of experimental phase shift analysis, are presented. So, strong evidences for the saturation of the PMD-SQS-optimum limit are obtained with high accuracy (confidence level > 99%) for the nonextensivities: 1/2 ≤ p ≤ 2/3 and q = p/(2p-1). (authors)
International Nuclear Information System (INIS)
Funsten, H.O.
1979-01-01
This is a modification of the Eisenstein-Miller program for calculation of collective inelastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the additional use of microscopic (shell model) proton and neutron form factors. It also incorporates separate proton and neutron radii for the nuclear density rho(r) generating the distorted wave optical potential. (Auth.)
Binding and Pauli principle corrections in subthreshold pion-nucleus scattering
International Nuclear Information System (INIS)
Kam, J. de
1981-01-01
In this investigation I develop a three-body model for the single scattering optical potential in which the nucleon binding and the Pauli principle are accounted for. A unitarity pole approximation is used for the nucleon-core interaction. Calculations are presented for the π- 4 He elastic scattering cross sections at energies below the inelastic threshold and for the real part of the π- 4 He scattering length by solving the three-body equations. Off-shell kinematics and the Pauli principle are carefully taken into account. The binding correction and the Pauli principle correction each have an important effect on the differential cross sections and the scattering length. However, large cancellations occur between these two effects. I find an increase in the π- 4 He scattering length by 100%; an increase in the cross sections by 20-30% and shift of the minimum in π - - 4 He scattering to forward angles by 10 0 . (orig.)
Negative pion-nucleus elastic scattering at 20 and 40 MeV
International Nuclear Information System (INIS)
Burleson, G.; Blanpied, G.; Cottingame, W.; Daw, G.; Park, B.; Seth, K.K.; Barlow, D.; Iversen, S.; Kaletka, M.; Nann, H.; Saha, A.; Smith, D.; Redwine, R.P.; Burger, W.; Farkhondeh, M.; Saghai, B.; Anderson, R.
1994-01-01
Differential cross sections for the elastic scattering of 20 and 40 MeV π - by nuclei ranging from 12 C to 208 Pb are reported. Comparisons are made with the predictions of the Michigan State University (MSU) optical potential
Large-angle theory for pion-nucleus scattering at high energies
International Nuclear Information System (INIS)
Hoock, D.W. Jr.
1978-01-01
An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections
An improved optical potential for low-energy pion-nucleus scattering
International Nuclear Information System (INIS)
Khankhasaev, M.Kh.; Topil'skaya, N.S.
1988-01-01
A new procedure for calculating the imaginary part the of Stricker, McManus and Carr (SMC) optical potential is proposed. It is based on an approximate expression for the pion-nucleon scattering amplitude including nuclear structure effects. It is shown that the resulting potential with the absorption parameters fitted to the pionic atom data provides a good description of the scattering up to 50 MeV
Galilei-invariant theory of low energy pion-nucleus scattering
International Nuclear Information System (INIS)
Mach, R.
1980-01-01
The scattering of a particle by a system of bound scatterers is investigated and reasons are given why the optical model and other models based on the standard impulse approximation violate the Galilei invariance. It is shown how this deficiency can be removed. Further, the validity of factojzation approximation is studied. In the case of Galilei-invariant models, there exists a unique combination of effective target particle momenta in the initial and final states, by means of which the optical potential can be expressed in factorized form (elementary scattering matrix by form factor of the composed target) while the error caused by the factorization procedure is of the order of projectile over target particle mass squared
Galileo-invariant theory of low energy pion-nucleus scattering. III
International Nuclear Information System (INIS)
Mach, R.
1983-01-01
Using two versions of the Galileo-invariant optical model, π - - 4 He elastic scattering cross sections were calculated in the energy interval 50 to 260 MeV. Level shifts and widths of several light π-mesoatoms were estimated in the Born approximation. Whereas the (A+1)-body model appears to be more suitable in the resonance region, the two-body model yields surprisingly good results for both the low-energy scattering and the characteristics of π-mesoatoms. (author)
Negative pion-nucleus elastic scattering at 30 and 50 MeV
International Nuclear Information System (INIS)
Seth, K.K.; Barlow, D.; Iversen, S.; Kaletka, M.; Nann, H.; Smith, D.; Artuso, M.; Burleson, G.; Blanpied, G.; Daw, G.; Burger, W.J.; Redwine, R.P.; Saghai, B.; Anderson, R.
1990-01-01
Differential cross sections for the elastic scattering of 30 and 50 MeV π - by nuclei ranging from 12 C to 208 Pb have been measured using a range spectrometer. Comparison is made with the predictions of a recent optical-model calculation and the general nature of discrepancies is discussed
Galileo-invariant theory of low energy pion-nucleus scattering
International Nuclear Information System (INIS)
Mach, R.
1980-01-01
Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The first, the two-body model, has been obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the second model, the (A+1)-body dynamics has been taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation
Galileo-invariant theory of low energy pion-nucleus scattering. II
International Nuclear Information System (INIS)
Mach, R.
1983-01-01
Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The former, the two-body model, was obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the latter model, the (A+1)-body dynamics was taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation. (author)
International Nuclear Information System (INIS)
Afnan, I.R.
1977-04-01
The latest developments in the construction of pion-nucleus optical potential are presented and a comparison with the latest data on π+ 12 C is made. The suggested mechanisms for the (p,π) reaction are discussed with a comparison of the theoretical results with experiment. (Author)
International Nuclear Information System (INIS)
Takahashi, Toshiyuki
1995-11-01
Differential cross sections of the pion elastic scattering in the GeV/c region were systematically measured by using a newly constructed superconducting kaon spectrometer at KEK. The pion incident momenta were 610, 710, 790, and 895 MeV/c for 12 C(π - , π - ) 12 C and 790 MeV/c for 208 Pb(π ± , π ± ) 208 Pb. We have obtained the cross sections with absolute normalization uncertainty of about 10%. The π - -p scattering data measured with a CH target agree well with the phase-shift calculations, which confirms the accuracy of the absolute values of the cross sections. The angular distributions of the differential cross sections for 12 C were compared with calculations by a first-order optical potential model. The calculation reproduces the data at forward scattering-angle regions except at 610 MeV/c, although it underestimates at large-angle region. The present data at 790 MeV/c are in between the BNL data at 800 MeV/c and the calculation, although our data are consistent with the BNL data within their systematic errors. The incident momentum dependence of σ total , σ R , and σ elastic , which were extracted by fitting the angular distributions, is different from that of the calculation with free π-N elementary amplitudes. It is well explained by taking account of Fermi motion. The 208 Pb data are well reproduced by the optical potential model. The root mean square radius of the neutron distribution has been deduced from π + and π - elastic scattering for the first time. Although the result has a model ambiguity, it agrees with that deduced from the proton elastic scattering. It is, however, smaller than the prediction of the relativistic Hartree calculation. (author). 55 refs
Pion nucleus optical potential
International Nuclear Information System (INIS)
Kam, J. de.
1981-01-01
The main goal of the investigations, presented is to establish the contributions to the optical potential, coming from scattering processes which involve 1p-1h nuclear states in the intermediate scattering system. The effects of the Pauli principle corrections and the binding corrections are studied in detail. A phenomenological study of pion absorption effects is also presented. The calculations all concern π- 4 He scattering. The simplicity of the 4 He structure makes the π- 4 He system quite an ideal tool for studying the reaction mechanism. (Auth.)
Pion-nucleus cross sections approximation
International Nuclear Information System (INIS)
Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.
1990-01-01
Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs
Experimental studies of pion-nucleus interactions at intermediate energies
International Nuclear Information System (INIS)
1991-01-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure
Experimental studies of pion-nucleus interactions at intermediate energies
International Nuclear Information System (INIS)
1992-01-01
This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle
Pion-nucleus forward scattering amplitudes at Δ(3,3) energies for π+---12C, 40Ca and 48Ca
International Nuclear Information System (INIS)
Dragoset, W.H. Jr.
1978-01-01
Using the LAMPF P 3 channel, small angle elastic cross sections and total cross sections were measured for π +- -- 12 C, 40 Ca and 48 Ca at incident pion kinetic energies spanning the energy region of the Δ(3,3) resonance. The sigma/sub EL/ experiment employed a spectrometer consisting of two magnets and six MWPC to measure scattering angles and momenta. For the sigma/sub T/ experiment six MWPC were positioned about the target in the beam to measure the deflection or absorption of the incident pions. Both experiments monitored the Jacobian cusp of the π → μ + ν decay to achieve absolute normalization. The two complementary data sets allowed the nuclear forward scattering amplitudes, f/sub N/(0), to be completely determined. The sigma/sub EL/ data were fit by a phenomenological small angle scattering model developed by Bethe and modified by West and Yennie. Due to the presence of nuclear-Coulomb interference in the elastic cross sections, both the magnitude and sign of Re f/sub N/ were determined by the fits. The Re f/sub N/ results were used in the sigma/sub T/ analysis to calculate corrections for the nuclear and nuclear-Coulomb interference amplitudes. Im f/sub N/ was calculated from the sigma/sub T/ results via the optical theorem. The overall self-consistencies of the data were checked by inserting IM f/sub N/ as a fixed parameter into the sigma/sub EL/ fits and comparing the resulting Re f/sub N/ to the original Re f/sub N/. It was determined that Re f/sub N/(0) has a zero near 180 MeV for both 12 C and 40 Ca. For 48 Ca, however, the Re f/sub N/ obtained by fitting with the West-Yennie formula was quite charge dependent and did not exhibit a zero in the energy range investigated. The differences in the 40 Ca, 48 Ca total cross sections were compared to a simple Kisslinger optical model calculation. The model indicated that the RMS neutron radius of 48 Ca exceeds the proton radius by 0.10 +- 0.06 fm
Off-shell sensitivity, repulsive correlations and the pion-nucleus optical potential
Energy Technology Data Exchange (ETDEWEB)
Keister, B D [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics
1977-07-01
Repulsive nucleon-nucleon correlations tend to reduce the dependence of pion-nucleus elastic scattering upon the off-shell pion-nucleon dynamics. However, optical potential calculations can in practice be quite sensitive to the particular choice of off-shell model parameters. It is argued that this sensitivity results from the nature of the optical potential as a one-body operator which introduces extra off-shell dependence not found in physical many-body process itself. Thus, one must be very careful in any attempt to extract correlation or off-shell information, or to predict pion-nucleus phase shifts, by means of an optical potential theory. Results of model calculations are presented for purposes of illustration.
International Nuclear Information System (INIS)
Burleson, G.R.
1987-01-01
We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs
Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies
International Nuclear Information System (INIS)
1990-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei
Pion, pion-pion, and pion-nucleus interactions
Mukhin, K N; Tikhonov, V N
2002-01-01
This survey is devoted to describing the early studies of 1.1. Gurevich on pion physics that were performed by the photoemulsion method and the studies of the pion-pion interaction that were made by his colleagues on the basis of the hydrogen-bubble-chamber and the magnetic-spectrometer method (as well-as on the basis of the photoemulsion method). Two approaches-an extrapolation of experimental data from the physical region to the pion pole and a theoretical calculation based on the Roy integral equations-are used to deduce information about the pion-pion interaction. The first results obtained for pion-pion and pion-nucleus interactions in the experiments that are being currently performed in Brookhaven and at CERN ( pi pi interaction) and at TRIUMF (Canada) and in Brookhaven (pion-nucleus interaction) are presented, along with the existing theoretical concepts in these realms of physics. (80 refs).
On the hadron formation time in pion-nucleus interaction
International Nuclear Information System (INIS)
Bravina, L.V.; Korotkikh, V.L.; Sarycheva, L.I.; Sivoklokov, S.Yu.
1992-01-01
Differences in the observable characteristics of pion-nucleus interactions at high energy are investigated for two definitions of the hadron formation time. The Monte Carlo simulation of hadron-nucleus interactions and quark-gluon string model for hadron-hadron collisions are used. It is shown that the momentum spectrum of the protons in the target fragmentation region is most sensitive to the definition of the formation time. The inclusive meson and meson resonance spectra are similar in the both versions. 20 refs.; 4 figs.; 1 tab
International Nuclear Information System (INIS)
1988-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs
High resolution studies of pion-nucleus reaction mechanism
International Nuclear Information System (INIS)
Morris, C.L.
1983-01-01
Pion inelastic scattering is generally well described as a first order process using the DWIA. This is especially true for a large body of inelastic scattering data to low-lying collective states which is well-described by form factors obtained in (e,e') and the DWIA. Some data for which this model does not work are presented. Higher order reaction mechanisms have been invoked to explain some of these data. However, no model of these second order processes gives a satisfactory explanation of the entire data set. Experimentally, more data for pion-induced transitions to low-spin unnatural-parity states which have been studied by other probes would be useful in sorting out the reaction mechanisms responsible for the anomalous cross sections observed for the 1 + states in 12 C. Theoretically, a consistent evaluation of possible second-order diagrams in inelastic scattering, such as is being attempted for DCX 22 , would be useful
Pion-nucleus total cross sections in the (3, 3) resonance region
International Nuclear Information System (INIS)
Carroll, A.S.; Chiang, I.; Dover, C.B.; Kycia, T.F.; Li, K.K.; Mazur, P.O.; Michael, D.N.; Mockett, P.M.; Rahm, D.C.; Rubinstein, R.
1976-01-01
The results of total cross section measurements are presented for π +- on targets of natural Li, C, Al, Fe, Sn, and Pb in the region of 65--320 MeV laboratory kinetic energy. The data are fitted with a simple phenomenological model, which allows one to extract the A dependence of the peak energy and the width which characterize the pion-nucleus interaction
Probing nuclear correlations with pion-nucleus double charge exchange
International Nuclear Information System (INIS)
Ginocchio, J.N.
1988-01-01
In this paper we have calculated the lowest order pion double charge reaction mechanism using shell model wavefunctions of medium weight nuclei. We have the sequential reaction mechanism in which the pion undergoes two single-charge exchange scatterings on the valence neutrons. The distortion of the incoming, intermediate, and outgoing pion are included. The closure approximation is made for the intermediate states with an average excitation energy used in the pion propagator. The double-charge exchange is assumed to take place on the valence nucleons which are assumed to be in one spherical shell model orbital. 34 refs., 5 figs., 3 tabs
On the imaginary part of the S-wave pion-nucleus optical potential
International Nuclear Information System (INIS)
Germond, J.F.; Lombard, R.J.
1991-01-01
The contribution of pion absorption to the imaginary part of the S-wave pion-nucleus optical potential is calculated with Slater determinantal antisymmetrized nuclear wave funtions, taking fully into accout the spin and isospin degrees of freedom. The potential obtained has an explicit dependence on the proton and neutron nuclear densities whose coefficients are directly related to the two-nucleon absorption coupling constants. The values of these coefficients extracted from mesic atoms data are in good agreement with those deduced from exclusive pion absorption experiments in 3 He, but larger than the predictions of the pion rescattering model. (orig.)
Low and intermediate energy pion-nucleus interactions in the cascade-exciton model
International Nuclear Information System (INIS)
Mashnik, S.G.
1993-01-01
A large variety of experimental data on pion-nucleus interactions in the bombarding energy range of 0-3000 MeV, on nucleon-induced pion production and on cumulative nucleon production, when a two-step process of pion production followed by absorption on nucleon pairs within a target is taken into account, are analyzed with the Cascade-Exciton Model of nuclear reactions.Comparison is made with other up-to-date models of these processes. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed
Pion-nucleus double charge exchange and the nuclear shell model
International Nuclear Information System (INIS)
Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B.
1988-01-01
The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear structure. The reaction mechanism and nuclear structure aspects of the process are separated using both the plane-wave and distorted-wave impulse approximations. Predictions are made employing both the seniority model and a full shell model (with a single active orbit). Transitions to the double analog state and to the ground state of the residual nucleus are computed. The seniority model yields particularly simple relations among double charge exchange cross sections for nuclei within the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing ideas to single charge exchange are also presented
International Nuclear Information System (INIS)
1987-01-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1985-87. These studies have involved investigations of nucleon-nucleon and pion-nucleus interactions. They have been carried out at the LAMPF accelerator at the Los Alamos National Laboratory, at the SIN laboratory near Zurich, Switzerland, and at the TRIUMF accelerator in Vancouver, Canada. 86 refs., 5 figs
International Nuclear Information System (INIS)
1993-01-01
This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991-94 under a grant from the U.S. Department of Energy. Most of these studies involved investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, at Indiana University (IUCF), and at TRIUMF in Vancouver, Canada, as collaborative efforts among several laboratories and universities. We have also worked on plans and preparations for new experiments involving studies of the quark structure of nucleons and nuclei, which would be carried out at Fermilab (FNAL), near Chicago, and at the HERA facility at the DESY laboratory in Hamburg, Germany. The NMSU personnel included two faculty members, five postdoctoral research associates, nine graduate students, and one undergraduate student
Geissel, H.; Gilg, H.; Gillitzer, A.; Hayano, R. S.; Hirenzaki, S.; Itahashi, K.; Iwasaki, M.; Kienle, P.; Münch, M.; Münzenberg, G.; Schott, W.; Suzuki, K.; Tomono, D.; Weick, H.; Yamazaki, T.; Yoneyama, T.
2002-03-01
We observed well-separated 1s and 2p π- states in 205Pb in the 206Pb(d,3He) reaction at Td = 604.3 MeV. The binding energies and the widths determined are B1s = 6.762+/-0.061 MeV, Γ1s = 0.764+0.171-0.154 MeV, B2p = 5.110+/-0.045 MeV, and Γ2p = 0.321+0.060-0.062 MeV. They are used to deduce the real and imaginary strengths of the s-wave part of the pion-nucleus interaction, which translates into a positive mass shift of π- in 205Pb.
International Nuclear Information System (INIS)
Durand, Gerard.
1974-01-01
First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr
International Nuclear Information System (INIS)
Geissel, H.; Gilg, H.; Gillitzer, A.
2001-06-01
We observed well separated 1s and 2p π - states in 205 Pb in the 206 Pb(d, 3 He) reaction at T d = 604.3 MeV. The binding energies and the widths determined are: B 1s = 6.768 ± 0.044 (stat) ± 0.041 (syst) MeV, Γ 1s = 0.778 -0.130 +0.150 (stat) ± 0.055 (syst) MeV, B 2p = 5.110 ± 0.015 (stat) ± 0.042 (syst) MeV, and Γ 2p = 0.371 ± 0.037 (stat) ± 0.048 (syst) MeV. They are used to deduce the real and imaginary strengths of the s-wave part of the pion-nucleus interaction, yielding 26.1 -1.5 +1.7 MeV as a pion mass shift in the center of 205 Pb. (orig.)
Scattering of low-energy pions by p-shell nuclei
International Nuclear Information System (INIS)
Khankhasaev, M.Kh.
1987-01-01
Low-energy pion-carbon scattering (up to 50 MeV) is analysed in the framework of the unitary approach based on the method of evolution in the coupling constant. It is shown that at pion energy ∼ 50 MeV the differential cross section arises as a result of the strong interference between the pure potential scattering and absorption channels. In this energy region the scattering data are very sensitive to the dynamics of the pion-nucleus interaction
International Nuclear Information System (INIS)
Barashenkov, V.S.
1990-01-01
The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab
Self-consistent theory of hadron-nucleus scattering. Application to pion physics
International Nuclear Information System (INIS)
Johnson, M.B.
1980-01-01
The requirement of using self-consistent amplitudes to evaluate microscopically the scattering of strongly interacting particles from nuclei is developed. Application of the idea to a simple model of pion-nucleus scattering is made. Numerical results indicate that the expansion of the optical potential converges when evaluated in terms of fully self-consistent quantities. A comparison of the results to a recent determination of the spreading interaction in the phenomenological isobar-hole model shows that the theory accounts for the sign and magnitude of the real and imaginary part of the spreading interaction with no adjusted parameters. The self-consistnt theory has a strong density dependence, and the consequences of this for pion-nucleus scattering are discussed. 18 figures, 1 table
Investigation of pion-nucleus interactions
International Nuclear Information System (INIS)
Moore, C.F.
1991-09-01
The double isovector giant state has been observed in the (π - , π + ) ΔT z = +2 double-charge-exchange reaction on 13 C, 27 Al, 40 Ca, 56 Fe, 59 Co, and 93 Nb. The resonances observed in the (π - , π + ) reaction are closely related via Coulomb displacement energy and isospin symmetry to the resonances measured in the inverse (π + , π - ) reaction on the same nuclei. The new observations provide a direct determination of the upper isospin component of the double giant dipole state, which is generally very weak in the (π + , π - ) reaction. The comparison between the double dipole in the two double-charge-exchange modes gives valuable information on the isospin splitting and the Pauli-blocking effects for isotensor transitions
Investigation of pion-nucleus interactions
International Nuclear Information System (INIS)
Moore, C.F.
1992-09-01
This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The research activities involved experiments done with the Energetic Pion Channel and Spectrometer (EPICS), the Low Energy Pion Channel (LEP), the Pion and Particle Physics Channel (P 3 ), the High Resolution Spectrometer (HRS), and planning a new experimental program associated with the new high-resolution Neutral Meson Spectrometer (NMS) at LAMPF. A brief overview of work supported by this grant is given followed by an account of the study of the double giant resonances in pion double charge exchange on 51 V, 115 In, and 197 Au. This report contains a list of published papers and preprints, abstracts, and invited talks. These papers summarize experiments involving participants supported by this grant and indicate the work accomplished by these participants in this program of medium energy nuclear physics research. Lists of the most recent proposals on which we have participation at LAMPF, proposals which have been approved this past year to run as experiments, personnel who have participated in this research program are included. The research cited in this report is, in many cases, the collaborative effort of many groups associated with research at LAMPF
A theory of low energy π-3He elastic scattering
International Nuclear Information System (INIS)
Geffen, F.M.M. van.
1991-01-01
The main aim of this work is the construction of a first-order optical potential for the scattering of pions by 3 He at low energy with as few approximations as possible. In particular the Fermi motion is treated extremely carefully by using microscopic 3 He wave functions and by performing the complete Fermi-integral. Differential cross-sections and analyzing powers have been calculated. In a detailed comparison between the first-order optical with one which results from using the semi-factored approximation, it became clear that the latter has the following shortcomings: 1. the dependence of the subenergy on the pion-nucleus scattering angle, and 2. the independence of this energy on the relative motion of the spectator nucleons. (author). 101 refs.; 15 figs.; 3 tabs
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
International Nuclear Information System (INIS)
Dedonder, J.-P.
1979-01-01
This work is devoted to the study of elastic hadron nucleus scattering. At first, an asymptotic evaluation leads to a closed, analytic expression of the eikonal amplitude. This approximate expression displays the role and the influence of the nuclear paremeters in, e.g., p-nucleus scattering around 1 GeV. Pion-nucleus scattering around the 3-3 resonance is then studied. A 3 body model calculation (pion, bound nucleon and residual nucleus represented by a potential) allows to study the importance of binding effects in this problem dominated by the strong energy dependence of the elementary amplitude. The last part is devoted to the construction in momentum space of a realistic optical potential and its comparison with experimental data. The scalling of π + and π - on neighbouring isotopes should allow the measure of the differences between the proton and neutron distributions in nuclei [fr
Low energy pion-16O scattering
International Nuclear Information System (INIS)
Wafelbakker, C.K.
1981-01-01
In spite of some outward appearances, the modern microscopic theories of the pion-nucleus (πA) interaction are not fundamentally very different from each other. They can all be derived from the same source, multiple-scattering theory. They all treat the first-order optical potential in a comparatively detailed way and in all of them it is necessary to incorporate higher-order effects in general and pion-annihilation in particular phenomenologically. Basically the same physical features can be embodied in all of them. The presentation of the theoretical scheme underlying the present thesis is designed to stress this conceptual unity of current πA theory. In this thesis the methods developed by De Kam to incorporate Pauli- and binding-corrections to the impulse-approximation first-order optical potential for 4 He are extended to a more complicated nucleus, 16 O, for the first time. In concreto two situations are considered: π- 16 O scattering at energies below nucleon-knockout threshold (13.5 MeV) - 7 and 12 MeV - and at energies 40 and 49.7 MeV, above nucleon-knockout threshold but still well within the low-energy region. (Auth.)
Pion-nucleus interactions and the STAR experiment at RHIC
International Nuclear Information System (INIS)
Moore, C.F.
1993-09-01
This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) during the calendar years 1990--1993 and on the STAR experiment at RHIC under grant DE-FGO5-87ER40343 between the University of Texas at Austin and the United States Department of Energy. A brief overview of work supported by this grant is given in Section 2. An account of the study of the double giant resonances in pion double charge exchange forms Section 3. This report contains a list of published papers and preprints in Section 6, invited talks in Section 7, and abstracts in Section 8. These papers summarize experiments involving participants supported by this grant and indicate the work accomplished by these participants in this program of medium energy nuclear physics research. Section 9 contains a list of personnel who have participated in this research program
A study of compound particles in pion-nucleus interactions
International Nuclear Information System (INIS)
Ahmad, Tufail
2012-01-01
In this paper, the phenomenon of multiparticle production has been studied using the nuclear emulsion technique. Nuclear emulsion is a material which memorises the tracks of charged particles. When an incident particle interacts with the nuclei of the emulsion, secondary particles are produced. These secondary particles are classified into three categories viz., shower (Ns), grey (Ng) and black (Nb) particles. The investigation of particle-nucleus collisions is fundamental for understanding the nature of the interaction process. In such studies most of the attention was paid to the relativistic charged particles that is showers (1-3). From the survey of literature it is found that slow particles (grey and black) are less studied in comparison to charged shower particles. Grey particles may provide some valuable information and it may be taken as good measure of number of collisions made by the incident particle
Conjugate pair of non-extensive statistics in quantum scattering
International Nuclear Information System (INIS)
Ion, D.B.; Ion, M.L.D.
1999-01-01
In this paper, by defining the Fourier transform of the scattering amplitudes as a bounded linear mapping from the space L 2p to the space L 2q when 1/(2p)+1/(2q)=1, we introduced a new concept in quantum physics in terms of Tsallis-like entropies S J (p) and S θ (q), namely, that of conjugate pair of non-extensive statistics. This new concept is experimentally illustrated by using 88 + 49 sets of pion-nucleon and pion-nucleus phase shifts. From the experimental determination of the (p,q) - non-extensivity indices by choosing the pairs for which the [χ L 2 (p) + χ θ 2 (q min )] - optimal - test function is minimum we get the conjugate pair of [(p min ,J),(q min , θ)]- non-extensive statistics with 0.50 ≤ p min ≤ 0.60. This new non-extensive statistical effect is experimentally evidenced with high degree of accuracy (CL≥ 99%). Moreover, it is worth to mention that the modification of the statistics has been more efficient than the modification of the PMD-SQS-optimum principle in obtaining the best overall fitting to the experimental data. (authors)
Self-consistent theory of hadron-nucleus scattering. Application to pion physics
International Nuclear Information System (INIS)
Johnson, M.B.
1981-01-01
The first part of this set of two seminars will consist of a review of several of the important accomplishments made in the last few years in the field of pion-nucleus physics. Next I discuss some questions raised by these accomplishments and show that for some very natural reasons the commonly employed theoretical methods cannot be applied to answer these questions. This situation leads to the idea of self-consistency, which is first explained in a general context. The remainder of the seminars are devoted to illustrating the idea within a simple multiple-scattering model for the case of pion scattering. An evaluation of the effectiveness of the self-consistent requirment to produce a solution to the model is made, and a few of the questions raised by recent accomplishments in the field of pion physics are addressed in the model. Finally, the results of the model calculation are compared to experimental data and implications of the results discussed. (orig./HSI)
International Nuclear Information System (INIS)
Matthews, S.K.
1993-11-01
Several experiments have measured nominally-charge-symmetric scattering of pions from tritium ( 3 H) and 3 He. These experiments have covered incident pion energies from 142 MeV to 295 MeV and scattering angles up to 110 degrees in the laboratory. The results have been used to study charge-symmetry breaking and nuclear scattering systematics. In the work I have extended these measurements to angles near 180 degrees for pion energies of 142 MeV, 180 MeV, 220 MeV, and 256 MeV, which bracket the Δ 33 pion-nucleon resonance. This is the most extensive set of πT and π 3 He data in this kinematical region. It will allow tests of scattering theory of pion-nucleus interactions and charge-symmetry breaking in back-angle scattering, and, within the limits of these two theories, it may help improve our understanding of the structure of these nuclei
International Nuclear Information System (INIS)
Huefner, J.
1975-01-01
Are pions a good tool to study nuclei. If the emphasis of this question rests on ''tool'', the answer must be ''not yet.'' The reason: one does not even understand how a pion interacts with a nucleus. This is part of the many-body problem for strongly interacting particles and its study is a basic problem in physics. One must investigate questions like: Can one understand pion-nucleus interactions from pion-nucleon physics. How does a Δ-resonance look in nuclei. Once one has solved those basic problems, there will be spinoffs in medical, technical and nuclear areas. Then pions can be used as a tool to study nuclear properties
The angle-angular momentum and entropic uncertainty relations for quantum scattering
International Nuclear Information System (INIS)
Ion, D.B.; Ion, M.L.
1999-01-01
Recently the entropic uncertainty relations are obtained in a more general form by using Tsallis-like entropies for the quantum scattering. Hence, using Riesz theorem, the state-independent entropic angle-angular momentum uncertainty relations are proved for the Tsallis-like scattering entropies of spinless particles. The generalized entropic inequalities for the Tsallis-like entropies are presented. The two upper bounds are optimal bounds and can be obtained via Lagrange multipliers by extremizing the Tsallis-like entropies subject to the normalization constraints, respectively. The proof of the lower bound is provided by considering the condition that the angular distribution of probability, P(x) has, everywhere, a finite magnitude. Next, by using the Riesz Theorem a general result was obtained, appearing as inequalities valid for the case of hadron-hadron scattering. An important entropic uncertainty relation for the scattering of spinless particle was thus obtained. For σ el and dσ/dΩ, fixed from experiment, we proved that the optimal scattering entropies are the maximum possible entropies in the scattering process. In as previous paper it was shown that the experimental values of the entropies for the pion--nucleus scatterings are systematically described by the optimal entropies, at all available pion kinetic energies. In this sense the obtained results can also be considered as new experimental signatures for the validity of the principle of minimum distance in space of scattering states. The extension of the optimal state analysis to the generalized non-extensive statistics case, as well as, a test of the entropic inequalities, can be obtained in similar way by using non-extensive optimal entropies. Since this kind of analysis is more involved the numerical examples will be given in a following more extended paper. Finally, we believe that the results obtained here are encouraging for further investigations of the entropic uncertainty relations as well
Theoretical studies in nuclear physics
International Nuclear Information System (INIS)
Landau, R.H.; Madsen, V.A.
1991-01-01
This report discusses: Imaginary Optical Potential; Isospin Effects; Scattering and Charge Exchange Reactions; Pairing Effects; bar K Interactions; Momentum Space Proton Scattering; Computational Nuclear Physics; Pion-Nucleus Interactions; and Antiproton Interactions
Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section
International Nuclear Information System (INIS)
Silbar, R.R.
1979-01-01
It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references
Formal solutions of inverse scattering problems. III
International Nuclear Information System (INIS)
Prosser, R.T.
1980-01-01
The formal solutions of certain three-dimensional inverse scattering problems presented in papers I and II of this series [J. Math. Phys. 10, 1819 (1969); 17 1175 (1976)] are obtained here as fixed points of a certain nonlinear mapping acting on a suitable Banach space of integral kernels. When the scattering data are sufficiently restricted, this mapping is shown to be a contraction, thereby establishing the existence, uniqueness, and continuous dependence on the data of these formal solutions
International Nuclear Information System (INIS)
Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.
2004-01-01
The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)
Donne, A. J. H.
1994-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
International Nuclear Information System (INIS)
Sitenko, A.
1991-01-01
This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
International Nuclear Information System (INIS)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required
Energy Technology Data Exchange (ETDEWEB)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.
New singularities in nonrelativistic coupled channel scattering. II. Fourth order
International Nuclear Information System (INIS)
Khuri, N.N.; Tsun Wu, T.
1997-01-01
We consider a two-channel nonrelativistic potential scattering problem, and study perturbation theory in fourth order for the forward amplitude. The main result is that the new singularity demonstrated in second order in the preceding paper I also occurs at the same point in fourth order. Its strength is again that of a pole. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees
International Nuclear Information System (INIS)
1991-02-01
The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
De Wolf, E.A.
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.
International Nuclear Information System (INIS)
Wolf, E.A. de
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)
Theoretical aspects of lepton-hadron scattering
International Nuclear Information System (INIS)
Drell, S.D.
1992-01-01
In this paper, I will emphasize two points on Theoretical Aspects of Lepton-Hadron Scattering: (1) The crucial importance of testing the ''exact'' sum rules as tests of the local current algebra. Discrepancies, if found, between experiment and theory cannot be ''interpreted away'' in terms of more complex parton wave functions for the hadronic ground state. The three sum rules of interest are those of Adler, Bjorken, and Gross and Llewellyn-Smith. (2) An understanding of the corrections to scaling in QCD and what they teach us
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
La nouvelle vague in polarized neutron scattering
International Nuclear Information System (INIS)
Mezei, F.
1986-01-01
Polarized neutron research, like many other subjects in neutron scattering developed in the footsteps of Cliff Shull. The classical polarized neutron technique he pioneered was generalized around 1970 to vectorial beam polarizations and this opened up the way to a ''nouvelle vague'' of neutron scattering experiments. In this paper I will first reexamine the old controversy on the question whether the nature of the neutron magnetic moment is that of a microscopic dipole or of an Amperian current loop. The problem is not only of historical interest, but also of relevance to modern applications. This will be followed by a review of the fundamentals on spin coherence effects in neutron beams and scattering, which are the basis of vectorial beam polarization work. As an example of practical importance, paramagnetic scattering will be discussed. The paper concludes with some examples of applications of the vector polarization techniques, such as study of ferromagnetic domains by neutron beam depolarization and Neutron Spin Echo high resolution inelastic spectroscopy. The sample results presented demonstrate the new opportunities this novel approach opened up in neutrons scattering research. (orig.)
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
Determinantal method for complex angular momenta in potential scattering
Energy Technology Data Exchange (ETDEWEB)
Lee, B. W. [University of Pennsylvania, Philadelphia, PA (United States)
1963-01-15
In this paper I would like do describe a formulation of the complex angular momenta in potential scattering based on the Lippmann-Schwinger integral equation rather than on the Schrödinger differential equation. This is intended as a preliminary to the paper by SAWYER on the Regge poles and high energy limits in field theory (Bethe-Salpeter amplitudes), where the integral formulation is definitely more advantageous than the differential formulation.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Scattering and multiple scattering in disordered materials
International Nuclear Information System (INIS)
Weaver, R.L.; Butler, W.H.
1992-01-01
The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena
International Nuclear Information System (INIS)
Lee, H.C.; Saharia, A.N.; Thomas, A.W.
1979-12-01
Invited talks presented at a two-week workshop on pion-nucleon interactions are briefly presented and a summary of the discussions that took place is added. Topics covered include quantum chromodynamics and the weak NNπ vertex, pionic effects in the weak decays of nuclei, the isobar-doorway approach to the pion-nucleus interaction, multiple scattering approaches, the phenomenology of non-elastic reactions within the isobar-doorway picture, a field theory of pion-nucleus interaction, and the quark structure of the nucleon in nuclei. (LL)
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...
Scatter from optical components
International Nuclear Information System (INIS)
Stover, J.C.
1989-01-01
This book is covered under the following topics: measurement and analysis techniques; BRDF standards, comparisons, and anomalies; scatter measurement of several materials; scatter from contaminations; and optical system contamination: effects, measurement, and control
Electron scattering from tetrahydrofuran
International Nuclear Information System (INIS)
Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P
2012-01-01
Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.
International Nuclear Information System (INIS)
Doll, P.
1990-02-01
Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de
Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data
International Nuclear Information System (INIS)
Lovesey, S.W.
1987-05-01
The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)
Roessli, B.; Böni, P.
2000-01-01
The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.
Strangeness production with protons and pions
International Nuclear Information System (INIS)
Dover, C.B.
1993-01-01
We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei
Scattering with polarized neutrons
International Nuclear Information System (INIS)
Schweizer, J.
2007-01-01
In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)
Neutron scattering and magnetism
International Nuclear Information System (INIS)
Mackintosh, A.R.
1983-01-01
Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)
Stationary theory of scattering
International Nuclear Information System (INIS)
Kato, T.
1977-01-01
A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)
Introduction to neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
International Nuclear Information System (INIS)
Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.
1987-01-01
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging
Wu Ta You
1962-01-01
This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati
Cross plane scattering correction
International Nuclear Information System (INIS)
Shao, L.; Karp, J.S.
1990-01-01
Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution
International Nuclear Information System (INIS)
Kuehnelt, H.
1975-01-01
We discuss a few properties of scattering amplitudes proved within the framework of the field theory and their significance in the derivation of quantitative statements. The state of the boundaries for the scattering lengths is to be especially discussed as well as the question as to how far it is possible to exclude various solutions from phase displacement analyses. (orig./LH) [de
Modelling Hyperboloid Sound Scattering
DEFF Research Database (Denmark)
Burry, Jane; Davis, Daniel; Peters, Brady
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....
Donne, A. J. H.
1996-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
Concentric layered Hermite scatterers
Astheimer, Jeffrey P.; Parker, Kevin J.
2018-05-01
The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.
International Nuclear Information System (INIS)
Kraushaar, J.J.
1987-01-01
This report summarizes work carried out between October 1, 1986 and October 1, 1987 in the Nuclear Physics Laboratory of the Department of Physics at the University of Colorado, Boulder. Other efforts in the laboratory, such as development of an R.F. cavity for an advanced hadron facility accelerator, beam pickoff devices, a buncher for the LAMPF proton beam, and the US-Brazil Cooperative Science Program are described
Energy Technology Data Exchange (ETDEWEB)
Benson, Richard Scott [Minnesota U.
1989-12-01
The construction and performance of a high energy particle calorimeter is described. Its operation in Fermilab's experiment 706 during 1987 through 1988 is discussed in the context of the experimental objectives. Correlations between the measured energy of particles striking this detector with kinematics of the remainder of the event is investigated. Comparisons to a monte carlo simulation are presented.
Introductory theory of neutron scattering
International Nuclear Information System (INIS)
Gunn, J.M.F.
1986-12-01
The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)
Diffuse scattering of neutrons
International Nuclear Information System (INIS)
Novion, C.H. de.
1981-02-01
The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Light scattering studies at UNICAMP
International Nuclear Information System (INIS)
Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.
1975-01-01
Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...
Scattering on magnetic monopoles
International Nuclear Information System (INIS)
Petry, H.R.
1980-01-01
The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)
Deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-03-01
The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)
Electron scattering from pyrimidine
International Nuclear Information System (INIS)
Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo
2014-01-01
Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.
Gravitational Bhabha scattering
International Nuclear Information System (INIS)
Santos, A F; Khanna, Faqir C
2017-01-01
Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
International Nuclear Information System (INIS)
1991-07-01
This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs
International Nuclear Information System (INIS)
Peterson, G.A.
1989-01-01
We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs
Deep inelastic lepton scattering
International Nuclear Information System (INIS)
Nachtmann, O.
1977-01-01
Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de
Small angle neutron scattering
International Nuclear Information System (INIS)
Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.
1976-09-01
A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope
International Nuclear Information System (INIS)
Aprile-Giboni, E.; Cantale, G.; Hausammann, R.
1983-01-01
Using the PM1 polarized proton beam at SIN and a polarized target, the elastic pp scattering as well as the inelastic channel pp → π + d have been studied between 400 and 600 MeV. For the elastic reaction, a sufficient number of spin dependent parameters has been measured in order to do a direct reconstruction of the scattering matrix between 38 0 /sub cm/ and 90 0 /sub cm/. 10 references, 6 figures
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2016-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Electron scattering off nuclei
International Nuclear Information System (INIS)
Gattone, A.O.
1989-01-01
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es
Cold moderator scattering kernels
International Nuclear Information System (INIS)
MacFarlane, R.E.
1989-01-01
New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs
Quantum Optical Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær
. In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...
Energy Technology Data Exchange (ETDEWEB)
ZALIZNYAK,I.A.; LEE,S.H.
2004-07-30
Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern
Gomez, Humberto
2016-06-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.
Electromagnetic scattering theory
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
Neutron scattering. Experiment manuals
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
International Nuclear Information System (INIS)
Christillin, P.
1986-01-01
The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)
Diffraction in nuclear scattering
International Nuclear Information System (INIS)
Wojciechowski, H.
1986-01-01
The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)
Proton nuclear scattering radiography
International Nuclear Information System (INIS)
Saudinos, J.
1982-04-01
Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed
Slow neutron scattering experiments
International Nuclear Information System (INIS)
Moon, R.M.
1985-01-01
Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2014-01-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
International Nuclear Information System (INIS)
McCarthy, I.E.
1991-07-01
The coupled-channels-optical method has been implemented using two different approximations to the optical potential. The half-on-shell optical potential involves drastic approximations for numerical feasibility but still gives a good semiquantitative description of the effect of uncoupled channels on electron scattering from hydrogen, helium and sodium. The distorted-wave optical potential makes no approximations other than the weak coupling approximation for uncoupled channels. In applications to hydrogen and sodium it shows promise of describing scattering phenomena excellently at all energies. 27 refs., 5 figs
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
International Nuclear Information System (INIS)
Wagner, P.
1976-04-01
Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism
International Nuclear Information System (INIS)
Johnson, R.C.
1980-01-01
High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)
Critical scattering by bubbles
International Nuclear Information System (INIS)
Fiedler-Ferrari, N.; Nussenzveig, H.M.
1986-11-01
We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt
Radiation scattering techniques
International Nuclear Information System (INIS)
Edmonds, E.A.
1986-01-01
Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2016-07-01
This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
International Nuclear Information System (INIS)
Windmolders, R.
1989-01-01
In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)
Deeply Virtual Neutrino Scattering
International Nuclear Information System (INIS)
Ales Psaker
2007-01-01
We investigate the extension of the deeply virtual Compton scattering process into the weak interaction sector. Standard electromagnetic Compton scattering provides a unique tool for studying hadrons, which is one of the most fascinating frontiers of modern science. In this process the relevant Compton scattering amplitude probes the hadron structure by means of two quark electromagnetic currents. We argue that replacing one of the currents with the weak interaction current can promise a new insight. The paper is organized as follows. In Sec. II we briefly discuss the features of the handbag factorization scheme. We introduce a new set of phenomenological functions, known as generalized parton distributions (GPDs) [1-6], and discuss some of their basic properties in Sec. III. An application of the GPD formalism to the neutrino-induced deeply virtual Compton scattering in the kinematics relevant to future high-intensity neutrino experiments is given in Sec. IV. The cross section results are presented in Sec. V. Finally, in Sec. VI we draw some conclusions and discuss future prospects. Some of the formal results in this paper have appeared in preliminary reports in Refs. [7] and [8], whereas a comprehensive analysis of the weak neutral and weak charged current DVCS reactions in collaboration with W. Melnitchouk and A. Radyushkin has been presented in Ref. [9
Symposium on neutron scattering
International Nuclear Information System (INIS)
Lehmann, M.S.; Saenger, W.; Hildebrandt, G.; Dachs, H.
1984-01-01
Extended abstracts of the named symposium are presented. The first part of this report contains the abstracts of the lectures, the second those of the posters. Topics discussed on the symposium include neutron diffraction and neutron scattering studies in magnetism, solid state chemistry and physics, materials research. Some papers discussing instruments and methods are included too. (GSCH)
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
International Nuclear Information System (INIS)
Santoso, B.
1976-01-01
Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)
Electron Scattering on deuterium
International Nuclear Information System (INIS)
Platchkov, S.
1987-01-01
Selected electron scattering experiments on the deuteron system are discussed. The main advantages of the electromagnetic probe are recalled. The deuteron A(q 2 ) structure function is analyzed and found to be very sensitive to the neutron electric form factor. Electrodisintegration of the deuteron near threshold is presented as evidence for the importance of meson exchange currents in nuclei [fr
Parity violating electron scattering
International Nuclear Information System (INIS)
McKeown, R.D.
1990-01-01
Previous measurements of parity violation in electron scattering are reviewed with particular emphasis on experimental techniques. Significant progress in the attainment of higher precision is evident in these efforts. These pioneering experiments provide a basis for consideration of a future program of such measurements. In this paper some future plans and possibilities in this field are discussed
International Nuclear Information System (INIS)
Mermaz, M.C.
1984-01-01
Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative
Multienergy anomalous diffuse scattering
Czech Academy of Sciences Publication Activity Database
Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Lausi, A.; Busetto, E.
2008-01-01
Roč. 100, č. 19 (2008), 195504/1-195504/4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA100100529 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffuse scattering * x-rays * structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008
Correlation in atomic scattering
International Nuclear Information System (INIS)
McGuire, J.H.
1987-01-01
Correlation due to the Coulomb interactions between electrons in many-electron targets colliding with charged particles is formulated, and various approximate probability amplitudes are evaluated. In the limit that the electron-electron, 1/r/sub i//sub j/, correlation interactions are ignored or approximated by central potentials, the independent-electron approximation is obtained. Two types of correlations, or corrections to the independent-electron approximation due to 1/r/sub i//sub j/ terms, are identified: namely, static and scattering correlation. Static correlation is that contained in the asymptotic, e.g., bound-state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is new and is considered in some detail. Expressions for a scattering correlation amplitude, static correlation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high collision velocity and compared. At high velocities the direct and rearrangement amplitudes dominate. At very high velocities, ν, the rearrangement amplitude falls off less rapidly with ν than the direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Comparisons with experimental observations are discussed
Superradiative scattering magnons
International Nuclear Information System (INIS)
Shrivastava, K.N.
1980-01-01
A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)
Directory of Open Access Journals (Sweden)
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
Small angle neutron scattering
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Thermal-neutron multiple scattering: critical double scattering
International Nuclear Information System (INIS)
Holm, W.A.
1976-01-01
A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer
FDTD scattered field formulation for scatterers in stratified dispersive media.
Olkkonen, Juuso
2010-03-01
We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.
Electroweak physics and electron scattering
International Nuclear Information System (INIS)
Henley, E.M.; Hwang, W.Y.P.
1988-01-01
The electroweak theory is developed and applied to electron scattering from nucleons and light nuclei. It is shown that these scatterings can be used to test the standard theory and probe structure effects. 33 refs., 5 figs
Regge poles and alpha scattering
International Nuclear Information System (INIS)
Ceuleneer, R.
1974-01-01
The direct Regge pole model as a means of describing resonances in elastic particle scattering has been used for the analysis of the so-called ''anormalous large angle scattering'' of alpha particles by spinless nuclei. (Z.M.)
Electromagnetic scattering from random media
Field, Timothy R
2009-01-01
- ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework
Isobar propagation in the nuclear medium
International Nuclear Information System (INIS)
Moniz, E.J.
1976-01-01
It is argued that introduction of the isobar degree of freedom in describing pion-nucleus interactions provides a convenient, unified framework within which to discuss both many-body corrections to the standard multiple scattering approach and the properties of the Δ(1232) in nuclear matter. Important aspects of isobar-nucleus dynamics, namely, isobar-hole interactions and Δ self-energy modifications, are discussed in the context of pion elastic scattering and incoherent pion production
CONFERENCE: Elastic and diffractive scattering
Energy Technology Data Exchange (ETDEWEB)
White, Alan
1989-09-15
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.
Electron scattering on molecular hydrogen
International Nuclear Information System (INIS)
Wingerden, B. van.
1980-01-01
The author considers scattering phenomena which occur when a beam of electrons interacts with a molecular hydrogen gas of low density. Depending on the energy loss of the scattered electrons one can distinguish elastic scattering, excitation and (auto)ionization of the H 2 -molecule. The latter processes may also lead to dissociation. These processes are investigated in four experiments in increasing detail. (Auth.)
Scattering Of Nonplanar Acoustic Waves
Gillman, Judith M.; Farassat, F.; Myers, M. K.
1995-01-01
Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
2014-11-04
Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...
Scattering theory and chemical reactions
International Nuclear Information System (INIS)
Kuppermann, A.
1988-01-01
In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt
International Nuclear Information System (INIS)
Zakharov, V.I.
1977-01-01
The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model
Semiclassical scattering theory
International Nuclear Information System (INIS)
Di Salvo, A.
1985-01-01
It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined
International Nuclear Information System (INIS)
Combes, J.M.
1980-10-01
A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories
International Nuclear Information System (INIS)
Cable, J.W.
1987-01-01
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs
Scattering of charged particles
International Nuclear Information System (INIS)
Barrachina, R.O.; Macek, J.H.
1989-01-01
Different methods of avoiding the known difficulties of the Coulomb potential scattering theory are reviewed. Mulherin and Zinnes' [J. Math. Phys. 11, 1402 (1976)] ''distorted'' free waves and van Haeringen's [J. Math. Phys. 17, 995 (1976)] Coulomb asymptotic states are considered. The equivalence of both approaches on the energy shell is shown. Actually the possibility of deriving the first method within van Haeringen's formalism by means of a distorted wave procedure is demonstrated
International Nuclear Information System (INIS)
Vernon, M.F.
1983-07-01
The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included
Analytic nuclear scattering theories
International Nuclear Information System (INIS)
Di Marzio, F.; University of Melbourne, Parkville, VIC
1999-01-01
A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed
Polarimetric neutron scattering
International Nuclear Information System (INIS)
Tasset, F.
2001-01-01
Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)
Czech Academy of Sciences Publication Activity Database
Banakh, T.; Bonnet, R.; Kubiś, Wieslaw
2014-01-01
Roč. 2, č. 1 (2014), s. 5-10 ISSN 2299-3231 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : scattered compact space * mean operation Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/taa.2014.2.issue-1/taa-2014-0002/taa-2014-0002.xml
Neutron scattering in Australia
International Nuclear Information System (INIS)
Knott, R.B.
1994-01-01
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains
Neutron scattering in Australia
Energy Technology Data Exchange (ETDEWEB)
Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)
1994-12-31
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.
International Nuclear Information System (INIS)
Queen, N.M.
1978-01-01
This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire
1983-01-01
The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.
International Nuclear Information System (INIS)
Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor
2014-01-01
Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)
Scattering of intermediate energy protons
International Nuclear Information System (INIS)
Chaumeaux, Alain.
1980-06-01
The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr
Energy Technology Data Exchange (ETDEWEB)
Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)
2010-02-15
We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low
International Nuclear Information System (INIS)
Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.
2010-01-01
We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be
Nuclear theory research. Technical progress report
International Nuclear Information System (INIS)
1982-01-01
Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential
Analytical calculations of multiple scattering for high energy photons and neutrons
International Nuclear Information System (INIS)
Thoe, R.S.
1994-04-01
Radiography of large dense objects often require the use of highly penetrating radiation. For example, a couple of centimeters of steel attenuates 50 keV x-rays by a factor of approximately 10 -14 whereas this same amount of steel would attenuate a 500 keV photon beam by only a factor of about 0.25. However, this increase in penetrating power comes with a price. In the case of x-radiation there are two bills to pay: (1) For projection radiography, this increase in penetration directly causes a corresponding decrease in resolution. (2) This increase in penetration occurs in a region where the interaction of radiation and matter is changing from absorption to scattering. In the above example the fraction of scattering goes from about 0.1 at 50 keV to over 0.99 at 500 keV. These scattered photons can significantly degrade contrast. In order to overcome some of these difficulties, radiography using scattered photons has been studied by myself and numerous other authors. In all the above cases, calculation of the intensity of scattered radiation is of primary importance. In cases where scattering is probable, multiple scattering can also be probable. Calculations of multiple scattering are generally very difficult and usually require the use of extremely sophisticated Monte Carlo simulations. It is not unusual for these calculations to require several hours of CPU time on some of the worlds largest and fastest supercomputers. In this paper I will present an alternative approach. I will present an analytical solution to the equations of double scattering, and show how this solution can extended to the case of higher order scattering. Finally, I will give numerical examples of these solutions and compare them to solutions obtained by Monte Carlo simulations
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Some results on inverse scattering
International Nuclear Information System (INIS)
Ramm, A.G.
2008-01-01
A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)
Scattering Solar Thermal Concentrators
Energy Technology Data Exchange (ETDEWEB)
Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)
2015-01-31
This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the
Inelastic scattering of neutrons
International Nuclear Information System (INIS)
Sal'nikov, O.A.
1984-06-01
The paper reviews the main problems concerning the mechanism of the inelastic scatterings of neutrons by nuclei, concentrating on the different models which calculate the angular distributions. In the region of overlapping levels, both the compound nucleus mechanism and the preequilibrium Griffin (exciton) model are discussed, and their contribution relative to that of a direct mechanism is considered. The parametrization of the level density and of the nuclear moment of inertia are also discussed. The excitation functions of discrete levels are also presented, and the importance of elucidating their five structure (for practical calculations, such as for shielding) is pointed out
Proton nuclear scattering radiography
International Nuclear Information System (INIS)
Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.
1982-10-01
Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed
International Nuclear Information System (INIS)
Pizzi, J.R.
1975-01-01
In a first part, the kinematical conditions which are chosen to study quasi free scattering reactions are presented, as well as the impulse approximation which is used to interpret the experimental data. Then, the evolution of the study of these reactions in the last few years is analyzed. Three recent experiments are presented and discussed. Two of them deal with α-clusters studied by (p,pα) reaction at 157 and 600MeV. The third is concerned with d, t and 3 He clusters studied by (p,px) reaction at 75MeV [fr
Single Crystal Diffuse Neutron Scattering
Directory of Open Access Journals (Sweden)
Richard Welberry
2018-01-01
Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.
Brillouin scattering at high pressures
International Nuclear Information System (INIS)
Grimsditch, M.; Polian, A.
1988-02-01
Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted
Inelastic scattering and deformation parameters
International Nuclear Information System (INIS)
Ford, J.L.C. Jr.
1978-01-01
In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory
Weak Deeply Virtual Compton Scattering
International Nuclear Information System (INIS)
Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin
2006-01-01
We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities
Scattering theory for Stark Hamiltonians
International Nuclear Information System (INIS)
Jensen, Arne
1994-01-01
An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs
CONFERENCE: Elastic and diffractive scattering
International Nuclear Information System (INIS)
White, Alan
1989-01-01
Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago
Light scattering by small particles
Hulst, H C van de
1981-01-01
""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties
Light Scattering at Various Angles
Latimer, Paul; Pyle, B. E.
1972-01-01
The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610
Dispersion Decay and Scattering Theory
Komech, Alexander
2012-01-01
A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role i
Introduction to Schroedinger inverse scattering
International Nuclear Information System (INIS)
Roberts, T.M.
1991-01-01
Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)
A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees
2016-09-01
Trees by DaHan Liao Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings...for Evaluating Electromagnetic Scattering from Trees by DaHan Liao Sensors and Electron Devices Directorate, ARL...Technique for Evaluating Electromagnetic Scattering from Trees 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
International Nuclear Information System (INIS)
Spencer, R.L.
1979-03-01
The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit
Multichannel Thomson scattering apparatus
International Nuclear Information System (INIS)
Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.
1977-07-01
A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element
Surface enhanced Raman scattering
Furtak, Thomas
1982-01-01
In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...
Light scattering by soap films
Vrij, A.
A theory is constructed describing the scattering from a liquid film (e.g., a soap film) of a light beam polarized normal to the plane of incidence. This scattering is due to the small irregular corrugations caused by thermal motion. The interference of the reflected incident beam with its multiple
Dynamic measurement of forward scattering
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen; Rusch, W.
1975-01-01
A dynamic method for the measurement of forward scattering in a radio anechoic chamber is described. The quantity determined is the induced-field-ratio (IFR) of conducting cylinders. The determination of the IFR is highly sensitive to 1) multiple scattering between the cylinder and the obpring...
Polarization phenomena in inelastic scattering
International Nuclear Information System (INIS)
Verhaar, B.J.
1974-01-01
An attempt is made to clarify the principles of inelastic scattering using the distorted wave Born approximation, concentrating on inelastic proton scattering. The principle aspects and merits of the microscopic description and the necessity of including the N-N spin orbit force are discussed. (7 figures) (U.S.)
International Nuclear Information System (INIS)
Dehnhard, D.
1986-11-01
Pion and proton scattering experiments were done on a variety of nuclei at the Los Alamos Meson Physics Facility. The data were used to test nuclear structure models and models of the pion-nucleus interaction, as well as assumptions about the basic nucleon-nucleon interaction. Included in this report are descriptions of completed work, work in progress, and a list of publications. 63 refs., 24 figs., 1 tab
[Studies in intermediate energy nuclear physics
International Nuclear Information System (INIS)
Peterson, R.J.
1993-01-01
This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities
Delbrueck scattering of monoenergetic photons
International Nuclear Information System (INIS)
Kahane, S.
1978-05-01
The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)
Neutron scattering and physisorption
International Nuclear Information System (INIS)
Marlow, I.; Thomas, R.K.; Trewern, T.D.
1977-01-01
Neutron scattering experiments on methane and ammonia adsorbed on a graphitized carbon black are described. Diffraction from adsorbed deuterated methane shows that, at a coverage of 0.7, it forms an epitaxial layer with a √3x√3 structure. Between 50 and 60 K it undergoes a phase transition from two-dimensional solid to liquid (bulk melting point=89.7 K). Similar results are obtained for deuterated methane on a sample of graphon intercalated with potassium. From the effect of adsorbed methane on the intensities of 001 peaks of both substrates the carbon atom of the methane is estimated to be 3.3+-0.2 A from the surface. Ammonia-d 3 on graphon behaves quite differently from methane. It follows a type III isotherm and at low temperatures desorbs from the surface to form bulk ammonia. This has anomalous melting properties which are shown to be related to adsorption isobars for the system. The detailed interpretation of the results emphasizes the close link between adsorption and heterogeneous nucleation. Quasielastic experiments on the ammonia-graphon system show that the adsorbed ammonia is undergoing translational diffusion on the surface which is much faster than in the bulk. This is attributed to the breaking up of the hydrogen bonded network normally present in t
Time delay of quantum scattering processes
International Nuclear Information System (INIS)
Martin, P.A.
1981-01-01
The author presents various aspects of the theory of the time delay of scattering processes. The author mainly studies non-relativistic two-body scattering processes, first summarizing briefly the theory of simple scattering systems. (Auth.)
Scattering of electromagnetic waves by obstacles
Kristensson, Gerhard
2016-01-01
The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.
Chaotic scattering and quantum dynamics
International Nuclear Information System (INIS)
Doron, Eyal.
1992-11-01
The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)
Light scattering reviews 9 light scattering and radiative transfer
Kokhanovsky, Alexander A
2014-01-01
This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.
Effect of multiple scattering on lidar measurements
International Nuclear Information System (INIS)
Cohen, A.
1977-01-01
The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed
Vector boson scattering at CLIC
Energy Technology Data Exchange (ETDEWEB)
Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)
2016-07-01
Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.
Output factors and scatter ratios
Energy Technology Data Exchange (ETDEWEB)
Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S
1979-07-01
Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.
Electron scattering for exotic nuclei
International Nuclear Information System (INIS)
Suda, T.
2013-01-01
An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained
Interstellar scattering and resolution limitations
International Nuclear Information System (INIS)
Dennison, B.
1987-01-01
Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources. 14 references
Pelletron general purpose scattering chamber
International Nuclear Information System (INIS)
Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh
1993-01-01
A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs
Inelastic light scattering in crystals
Sushchinskii, M. M.
The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.
Laser light scattering basic principles and practice
Chu, Benjamin
1994-01-01
Geared toward upper-level undergraduate and graduate students, this text introduces the interdisciplinary area of laser light scattering, focusing chiefly on theoretical concepts of quasielastic laser scattering.
Disadvantage factor for anisotropic scattering
International Nuclear Information System (INIS)
Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.
1990-01-01
The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters
Inequalities for scattering phase shifts
International Nuclear Information System (INIS)
Baumgartner, B.; Grosse, H.
1985-01-01
A recently developed method, which was used to derive bounds on energy levels, is applied to continuous spectra and gives relations between scattering phase shifts of various angular momenta. (Author)
Determination of multiple scattering effects
International Nuclear Information System (INIS)
Langevin, M.
1981-01-01
The integration of Sigmund and Winterbon numerical values is extended to the reduced thickness tau=2000. The diagram obtained allows a simple determination of the multiple scattering effect for different targets and projectiles [fr
Compton scattering at high intensities
Energy Technology Data Exchange (ETDEWEB)
Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)
2009-12-01
High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.
Bibliography for thermal neutron scattering
International Nuclear Information System (INIS)
Sakamoto, M.; Chihara, J.; Nakahara, Y.; Kadotani, H.; Sekiya, T.
1976-12-01
It contains bibliographical references to measurements, calculations, reviews and basic studies on thermal neutron scatterings and dynamical properties of condensed matter. About 2,700 documents up to the end of 1975 are covered. (auth.)
Integration rules for scattering equations
International Nuclear Information System (INIS)
Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-01-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
Applications of thermal neutron scattering
International Nuclear Information System (INIS)
Kostorz, G.
1978-01-01
Although in the past neutrons have been used quite frequently in the study of condensed matter, a more recent development has lead to applications of thermal neutron scattering in the investigation of more practical rather than purely academic problems. Physicists, chemists, materials scientists, biologists, and others have recognized and demonstrated that neutron scattering techniques can yield supplementary information which, in many cases, could not be obtained with other methods. The paper illustrates the use of neutron scattering in these areas of applied research. No attempt is made to present all the aspects of neutron scattering which can be found in textbooks. From the vast amount of experimental data, only a few examples are presented for the study of structure and atomic arrangement, ''extended'' structure, and dynamic phenomena in substances of current interest in applied research. (author)
Cardona, Manuel
2007-01-01
This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
2014-11-04
Nov 4, 2014 ... Research Center for Electron-Photon Science, Tohoku University, 1-2-1 ... nuclei precisely determined by elastic scattering [1]. .... In order to fulfill these requirements, a window-frame shaped dipole magnet with a gap.
Resonantly scattering crystals and surfaces
International Nuclear Information System (INIS)
Gunn, J.M.F.; Mahon, P.J.
1990-12-01
We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)
Primer on laser scattering diagnostics
International Nuclear Information System (INIS)
Jahoda, F.C.
1978-07-01
The theory of laser scattering is presented in abbreviated format, with emphasis on physical interpretation, followed by sections on laser sources, practical considerations in designing experiments, and current developments in extending the techniques to multispace and multitime point measurements
Wavepacket scattering in potential theory
International Nuclear Information System (INIS)
Weber, T.A.; Hammer, C.L.
1977-01-01
A contour integration technique is developed which enforces the initial conditions for wavepacket-potential scattering. The expansion coefficients for the exact energy eigenstate expansion are automatically expressed in terms of the plane wave expansion coefficients of the initial wavepacket, thereby simplifying what is usually a tedious, mathematical process. The method is applicable regardless of the initial spatial separation of the wavepacket from the scattering center
Phonon scattering by isotopic impurities
International Nuclear Information System (INIS)
Dacol, D.K.
1974-06-01
The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory
International Nuclear Information System (INIS)
Bagger, J.; Valencia, G.
1990-01-01
We use higher-order chiral Lagrangians to study W L W L scattering at the SSC. We analyze a model that is consistent with crossing, unitarity and chiral symmetry, with no resonant behavior at SSC energies. The only signal is a slightly enhanced rate for W L W L scattering. Our results indicate the level of sensitivity that must be reached before the SSC can be assured of discovering the mechanism for electroweak symmetry breaking. 19 refs., 4 figs., 2 tabs
Group theory approach to scattering
International Nuclear Information System (INIS)
Wu, J.
1985-01-01
For certain physical systems, there exists a dynamical group which contains the operators connecting states with the same energy but belonging to potentials with different strengths. This group is called the potential group of that system. The SO(2,1) potential groups structure is introduced to describe physical systems with mixed spectra, such as Morse and Poeschl-teller potentials. The discrete spectrum describes bound states and the continuous spectrum describes bound states and the continuous spectrum describes scattering states. A solvable class of one-dimensional potentials given by Natanzon belongs to this structure with an SO(2,2) potential group. The potential group structure provides us with an algebraic procedure generating the recursion relations for the scattering matrix, which can be formulated in a purely algebraic fashion, divorced from any differential realization. This procedure, when applied to the three-dimensional scattering problem with SO(3,1) symmetry, generates the scattering matrix of the Coulomb problem. Preliminary phenomenological models for elastic scattering in a heavy-ion collision are constructed on the basis. The results obtained here can be regarded as an important extension of the group theory techniques to scattering problems similar to that developed for bound state problems
Scattered light characterization of FORTIS
McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey
2017-08-01
We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.
Reduction of the chiral order parameter by a nuclear medium
International Nuclear Information System (INIS)
Kienle, P.; Yamazaki, Toshimizu
2001-01-01
We propose a model independent procedure to deduce from the 1s-binding energy of heavy, neutron rich pionic atoms, the isovector scattering length b 1 of the pion nucleus interaction. It is related to the pion decay constant f π , the order parameter of spontaneous chiral symmetry breaking and thus to the value of the chiral quark condensate. Based on the results with pionic 205 Pb, we find with the assertion that only the isovector part of the pion-nucleus interaction be modified by a QCD effect, a reduction of the quark condensate by 30% in a 205 Pb nucleus. Forthcoming experiments to measure pionic 1s-binding energies in Sn-isotopes, including isotope shifts, will yield decisive information on the quark condensate without assertion. (orig.)
Polaron scattering by an external field
International Nuclear Information System (INIS)
Kochetov, E.A.
1980-01-01
The problem of polaron scattering by an external field is studied. The problem is solved using the stationary scattering theory formalism based on two operators: the G Green function operator and the T scattering operator. The dependence of the scattering amplitude on the quasi particle structure is studied. The variation approach is used for estimation of the ground energy level
High frequency and pulse scattering physical acoustics
Pierce, Allan D
1992-01-01
High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
Applications of inverse and algebraic scattering theories
Energy Technology Data Exchange (ETDEWEB)
Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics
1997-06-01
Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.
Scattering in relativistic particle mechanics
International Nuclear Information System (INIS)
De Bievre, S.
1986-01-01
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed
Polarization recovery through scattering media.
de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie
2017-09-01
The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.
Theoretical nuclear physics. Task B. Technical progress report, August 1, 1982-September 30, 1983
International Nuclear Information System (INIS)
1983-01-01
Progress is reported on the following studies: (a) double delta interactions in pion double charge exchange; (b) isovector correlations in pion-nucleus scattering; (c) nuclear structure effects in pion single charge exchange; (d) a perspective on sequential transfer reactions; (e) inelastic and charge exchange scattering theory; (f) magnitude of the first order DWBA description of the two nuclear transfer reactions; (g) nonlocality effects on deuteron transfer reactions; (h) evaluation of external radial integrals in inelastic electron scattering; (i) experimental observables as a function of Dirac invariant amplitudes; (j) Dirac shell-model wavefunctions in inelastic electron scattering; and (k) impulse approximation Dirac theory of inelastic proton nucleus collective excitations. Publications are listed
Scattering of accelerated wave packets
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Quantum scattering at low energies
DEFF Research Database (Denmark)
Derezinski, Jan; Skibsted, Erik
2009-01-01
For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...... of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use...... of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0 . This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities....
SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS
Directory of Open Access Journals (Sweden)
M.Benhamou
2004-01-01
Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.
Kerr scattering coefficients via isomonodromy
Energy Technology Data Exchange (ETDEWEB)
Cunha, Bruno Carneiro da [Departamento de Física, Universidade Federal de Pernambuco,50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio [International Institute of Physics, Federal University of Rio Grande do Norte,Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)
2015-11-23
We study the scattering of a massless scalar field in a generic Kerr background. Using a particular gauge choice based on the current conservation of the radial equation, we give a generic formula for the scattering coefficient in terms of the composite monodromy parameter σ between the inner and the outer horizons. Using the isomonodromy flow, we calculate σ exactly in terms of the Painlevé V τ-function. We also show that the eigenvalue problem for the angular equation (spheroidal harmonics) can be calculated using the same techniques. We use recent developments relating the Painlevé V τ-function to Liouville irregular conformal blocks to claim that this scattering problem is solved in the combinatorial sense, with known expressions for the τ-function near the critical points.
Wigner representation in scattering problems
International Nuclear Information System (INIS)
Remler, E.A.
1975-01-01
The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger
Huang diffuse scattering of neutrons
International Nuclear Information System (INIS)
Burkel, E.; Guerard, B. v.; Metzger, H.; Peisl, J.
1979-01-01
Huang diffuse neutron scattering was measured for the first time on niobium with interstitially dissolved deuterium as well as on MgO after neutron irradiation and Li 7 F after γ-irradiation. With Huang diffuse scattering the strength and symmetry of the distortion field around lattice defects can be determined. Our results clearly demonstrate that this method is feasible with neutrons. The present results are compared with X-ray experiments and the advantages of using neutrons is discussed in some detail. (orig.)
[Inelastic electron scattering from surfaces
International Nuclear Information System (INIS)
1993-01-01
This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned
Scattering behaviour of Janus particles
Kaya, H
2002-01-01
Recent advances in polymer synthesis has produced so-called Janus micelles: tailor-made copolymer structures in which the blocks constitute separate moieties. We present expressions for the form factors, P(Q), and the radii of gyration, R sub g , of Janus particles with spherical and cylindrical morphology and check their validity by comparison to simulated scattering data, calculated from Monte Carlo generations of the pair-distance distribution function, p(r). The effect of block incompatibilities on the scattering is briefly discussed. (orig.)
Summary of neutron scattering lengths
International Nuclear Information System (INIS)
Koester, L.
1981-12-01
All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)
High energy elastic hadron scattering
International Nuclear Information System (INIS)
Fearnly, T.A.
1986-04-01
The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described
Electron scattering off palladium isotopes
International Nuclear Information System (INIS)
Laan, J.B. van der.
1986-01-01
The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm -1 . (Auth.)
Commercial applications of neutron scattering
International Nuclear Information System (INIS)
Hutchings, M.T.
1993-01-01
The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)
Nucleon-nucleon scattering data
International Nuclear Information System (INIS)
Bystricky, J.; Lehar, F.
1981-01-01
The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)
Optical scattering measurement and analysis
Stover, John C
2012-01-01
Newly included are scatter models for pits and particles as well as the use of wafer scanners to locate and size isolated surface features. New sections cover the multimillion-dollar wafer scanner business, establishing that microroughness is the noise, not the signal, in these systems. Scatter measurements, now routinely used to determine whether small-surface features are pits or particles and inspiring new technology that provides information on particle material, are also discussed. These new capabilities are now supported by a series of international standards, and a new chapter reviews t
Thomson scattering if FIR radiation
International Nuclear Information System (INIS)
Evans, D.E.
1976-12-01
The frequency spectrum of radiation scattered by collective density fluctuations of electrons in a hot plasma is influenced by ion and electron temperatures, impurity concentration and plasma effective charge, magnetic field, and the level of microturbulence. A pulsed laser suitable for measuring collective scattering in a tokamak will have infrared wavelength, power of the order of MWs and bandwidth of a few 10s of MHz. The extent to which these conditions can be met by optically pumped submillimetre lasers, including narrow band oscillators, amplifiers and superradiance - injection assemblies operated in CH 3 F and D 2 O, under development at the Culham Laboratory, is discussed. (author)
Detection of explosives by neutron scattering
International Nuclear Information System (INIS)
Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.
1998-01-01
For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds
Alpha particle collective Thomson scattering in TFTR
International Nuclear Information System (INIS)
Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.
1993-01-01
A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques
Scattering by two spheres: Theory and experiment
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...
Fagfællebedømte papers i Dansk Vejtidsskrift
DEFF Research Database (Denmark)
Bolet, Lars
2008-01-01
Dansk Vejtidsskrift tilbyder fremover at gennemføre fagfællebedømmelse af videnskabelige vej- og trafikartikler, der optages i bladet. Baggrunden for tilbudet er de skærpede krav om bedømmelse af forskning. Tilbudet giver danske og andre skandinaviske forskere mulighed for fortsat at få merit for...
Transition radiation and transition scattering
International Nuclear Information System (INIS)
Ginzburg, V.L.
1982-01-01
Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)
Nuclear matter and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Scattering theory and automorphic functions
International Nuclear Information System (INIS)
Lachaud, G.
1982-01-01
After a consideration of the Fourier expansion of an automorphic function corresponding to the group SL(2,R) and a description of the Eisenstein series the author describes the application of these results to the quantum mechanical scattering theory using the group SO(2,R). (HSI)
Antiproton-Proton Glory Scattering
2002-01-01
This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).
Kaspar, Jan; Deile, M
The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...
Neutron scattering science in Australia
Energy Technology Data Exchange (ETDEWEB)
Knott, Robert [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)
1999-10-01
Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)
Towards a nonpotential scattering theory
International Nuclear Information System (INIS)
Mignani, R.
1985-01-01
We present a formal approach to nonpotential scattering theory (i.e. scattering under unrestricted nonlocal non-Hamiltonian forces), based on the generalization of the concept of scattering matrix (and related topics) to the Lie-isotopic and Lie-admissible case. In the time-dependent formalism, the main taks is the determination of the evolution operator, from which the S matrix is found as a double infinite limit. The study of time-development operators is carried out in detail in the isotopic case, and involves the isotopic generalizations of Moller wave operators, in- and out-states, and temporal (retarded and advanced) propagators. We give also expansion techniques for the S matrix, which extend to the Lie-isotopic formulation the Feynman-Dyson perturbation series, the Magnus expansion, and the Wei-Norman theorem. In the time-independent approach, we solve the isotopic Schroedinger eigenvalue equation by exploiting the properties of isotopic Green operators, Lippmann-Schwinger equations, and incoming and outgoing states, which turn out to be suitable generalizations of the conventional ones. The changes in cross sections due to nonpotential forces are explicitly worked out in some simple cases. A purely algebraic approach to nonpotential scattering, essentially based on the properties of the isowave operators, is presented. The Lie-admissible formulation of the main results is briefly outlined
Intrabeam scattering in the HEB
International Nuclear Information System (INIS)
Larson, D.J.
1994-03-01
A study of Intrabeam Scattering (IBS) in the High Energy Booster (HEB) is presented. Piwinski's formulas for IBS are presented and evaluated for the HEB. A computer code written to evaluate Piwinski's formulas is discussed. The result of the study is that IBS should not be a problem for the HEB, although the safety factor is not enormous
Recent results in Rayleigh scattering
International Nuclear Information System (INIS)
Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva
1997-01-01
New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)
Theoretical challenges in neutron scattering
International Nuclear Information System (INIS)
Lovesey, S.W.
1985-07-01
Topics in the interpretation of neutron scattering experiments from paramagnets and quantum fluids are used to illustrate the puissance of the technique in condensed matter research, and to record some fundamental shortcomings in the available theory of many-particle systems. (author)
Scattering Amplitudes from Intersection Theory.
Mizera, Sebastian
2018-04-06
We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.
International Nuclear Information System (INIS)
Sirota, S.
1987-01-01
Aspects of the nuclear structure of 100 Ru whe investigated by means of the scattering of 100 Ru (p,p') 100 Ru* with 16 MeV protons, where 21 states were investigated. The emergent protons were analysed by a magnetic spectrograph, of the enge type with a typical resolution of ≅ 9 KeV. (A.C.A.S.) [pt
Geometric scattering in robotic manipulation
Stramigioli, Stefano; van der Schaft, Arjan; Maschke, B.M.; Melchiorri, C.
2002-01-01
In this paper, we study the interconnection of two robots, which are modeled as port-controlled Hamiltonian systems through a transmission line with time delay. There will be no analysis of the time delay, but its presence justifies the use of scattering variables to preserve passivity. The
Neutron scattering science in Australia
International Nuclear Information System (INIS)
Knott, Robert
1999-01-01
Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)
Coupling between minimum scattering antennas
DEFF Research Database (Denmark)
Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans
1974-01-01
Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...
Bibliography for thermal neutron scattering
International Nuclear Information System (INIS)
Sakamoto, Masanobu; Chihara, Junzo; Gotoh, Yorio; Kadotani, Hiroyuki; Sekiya, Tamotsu.
1979-09-01
Bibliographic references are given for measurements, calculations, reviews and basic studies of thermal neutron scattering and dynamical properties of condensed matter. This is the sixth edition covering 3,326 articles collected up to 1978. The edition being the final issue of the present bibliography series, a forthcoming edition will be published in a new form of bibliography. (author)
Scattering theory and orthogonal polynomials
International Nuclear Information System (INIS)
Geronimo, J.S.
1977-01-01
The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms
Gamma holography from multiple scattering
International Nuclear Information System (INIS)
Coussement, R.
2007-01-01
Since the introduction of heterodyne methods for synchrotron radiation (Cousesement et al. in Phys. Rev. B 54:16003, 1996; Callens et al. in Phys. Rev. 67:104423, 2003) one observes interferences between two scattering amplitudes; the scattering amplitude of resonant nuclei in a reference sample and the scattering amplitude of nuclei in the sample under investigation. Theses interferences can easily been observed as resonances in velocity spectra when one uses a time integrated method. They can also been observed as quantum beats, when one would use the time differential method. For both methods it is important that one uses a reference sample and therefore both methods disserved the name 'heterodyne methods.' As theses interferences are a product of two scattering amplitudes, the amplitude of a wave scattered form the investigated sample can be known with its phase. But it is assumed that the reference wave is known in advance by a proper choice of the reference sample. At first sight it is very likely that multiple scattering would add more complexity but in this paper it is claimed that on the contrary it provide a bonus, especially for single crystals. It provokes only a line broadening and a line shift of the resonances in the velocity spectra (or a change in the damping and frequency of the quantum beats when the time spectra are registered). Moreover these changes in the line shapes can easily be measured and they provide all the information needed to reconstruct a 3-D picture of the atomic arrangement of resonant nuclei and moreover they distinguish between different hyperfine sites. The method may be more practical for measurements on synchrotron radiation but it does also apply to velocity spectra obtained from resonant scattering with strong sources. The use of radioactive sources suffer from the disadvantage of poorer statistics or much longer accumulation times but they enjoy the advantage to be table-top and at-home experiments. As strong sources are
Neutron scattering and models: Silver
International Nuclear Information System (INIS)
Smith, A.B.
1996-07-01
Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes
International Nuclear Information System (INIS)
Toki, Hiroshi; Yamazaki, Toshimitsu
1989-01-01
The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)
Bursting behaviours in cascaded stimulated Brillouin scattering
International Nuclear Information System (INIS)
Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang
2012-01-01
Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)
Scattering and transfer reactions with heavy ions
International Nuclear Information System (INIS)
Hussein, M.S.
From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt
Advantages of neutron scattering for biological structure analysis
International Nuclear Information System (INIS)
Schoenborn, B.P.
1975-01-01
The advantages and disadvantages of neutron scattering for protein crystallography, scattering from oriented systems, and solution scattering are summarized. Techniques for minimizing the disadvantages are indicated
Time-reversal of electromagnetic scattering for small scatterer classification
International Nuclear Information System (INIS)
Smith, J Torquil; Berryman, James G
2012-01-01
Time-reversal operators, or the alternatively labelled, but equivalent, multistatic response matrix methods, are used to show how to determine the number of scatterers present in an electromagnetic scattering scenario that might be typical of UneXploded Ordinance (UXO) detection, classification and removal applications. Because the nature of the target UXO application differs from that of many other common inversion problems, emphasis is placed here on classification and enumeration rather than on detailed imaging. The main technical issues necessarily revolve around showing that it is possible to find a sufficient number of constraints via multiple measurements (i.e. using several distinct views at the target site) to solve the enumeration problem. The main results show that five measurements with antenna pairs are generally adequate to solve the classification and enumeration problems. However, these results also demonstrate a need for decreasing noise levels in the multistatic matrix as the number n of scatterers increases for the intended practical applications of the method. (paper)
Scatter networks: a new approach for analysing information scatter
International Nuclear Information System (INIS)
Adamic, Lada A; Suresh, K; Shi Xiaolin
2007-01-01
Information on any given topic is often scattered across the Web. Previously this scatter has been characterized through the inequality of distribution of facts (i.e. pieces of information) across webpages. Such an approach conceals how specific facts (e.g. rare facts) occur in specific types of pages (e.g. fact-rich pages). To reveal such regularities, we construct bipartite networks, consisting of two types of vertices: the facts contained in webpages and the webpages themselves. Such a representation enables the application of a series of network analysis techniques, revealing structural features such as connectivity, robustness and clustering. Not only does network analysis yield new insights into information scatter, but we also illustrate the benefit of applying new and existing analysis techniques directly to a bipartite network as opposed to its one-mode projection. We discuss the implications of each network feature to the users' ability to find comprehensive information online. Finally, we compare the bipartite graph structure of webpages and facts with the hyperlink structure between the webpages
Spatial photon correlations in multiple scattering media
DEFF Research Database (Denmark)
Smolka, Stephan; Muskens, O.; Lagendijk, A.
2010-01-01
We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....
Nonstationary interference and scattering from random media
International Nuclear Information System (INIS)
Nazikian, R.
1991-12-01
For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields
Scattering of light and other electromagnetic radiation
Kerker, Milton
1969-01-01
The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan
Scattered X-ray beam nondestructive testing
International Nuclear Information System (INIS)
Harding, G.; Kosanetzky, J.
1988-01-01
X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt
Itahashi, K.; Oyama, K.; Hayano, R. S.; Gilg, H.; Gillitzer, A.; Knülle, M.; Münch, M.; Schott, W.; Kienle, P.; Geissel, H.; Iwasa, N.; Münzenberg, G.; Hirenzaki, S.; Toki, H.; Yamazaki, T.
2000-08-01
We find a remarkable agreement of the excitation energy spectrum of the 208Pb(d,3He) reaction measured at Td=600 MeV near the π- production threshold with its theoretical prediction. Their comparison leads us to assign the distinct narrow peak observed at about 5 MeV below the threshold to the formation of bound pionic states π-⊗207Pb of the quasisubstitutional configurations (2p)π-(3p3/2,3p1/2)-1n. A small bump observed on the tail of the peak is assigned to the pionic 1s state. The binding energies (Bnl) and the widths (Γnl) of the pionic orbitals are deduced to be B2p=5.13+/-0.02 (stat)+/-0.12 (syst) MeV and Γ2p=0.43+/-0.06 (stat)+/-0.06 (syst) MeV by decomposing the experimental spectrum into the pionic 1s and 2p components. While B2p and Γ2p are determined with small ambiguity, B1s and Γ1s are strongly correlated with each other, and are affected by the relative 1s/2p cross section ratio assumed, since the 1s component is observed only as an unresolved bump. Thus, we have to allow large uncertainties 6.6 MeV
Neutron scattering lengths of 3He
International Nuclear Information System (INIS)
Alfimenkov, V.P.; Akopian, G.G.; Wierzbicki, J.; Govorov, A.M.; Pikelner, L.B.; Sharapov, E.I.
1976-01-01
The total neutron scattering cross-section of 3 He has been measured in the neutron energy range from 20 meV to 2 eV. Together with the known value of coherent scattering amplitude it leads to the two sts of n 3 He scattering lengths
Scattering measurements in Tokamak type devices
International Nuclear Information System (INIS)
Matoba, Tohru
1975-03-01
Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)
Frequency shifts in stimulated Raman scattering
International Nuclear Information System (INIS)
Zinth, W.; Kaiser, W.
1980-01-01
The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)
Light scattering from crystals, glasses and liquids
International Nuclear Information System (INIS)
Subbaswamy, K.R.
1984-09-01
The theory of inelastic light scattering from a model system in the crystalline, disordered and liquid phases is analyzed. The roles of disorder induced first order scattering and second order scattering are clarified in the context of the classical liquid. The correlation functions appropriate for the various contributions are identified and useful ways of processing experimental data are pointed out. (author)
Tabachnick, Barbara Gerson
1979-01-01
The study was designed to investigate scatter produced by 105 learning disabled (LD) children (6 to 16 years old) and to compare Wechsler Intelligence Scale for Children-Revised (WISC-R) scatter with that produced by A. Kaufman's (1976) normal population. Range of scaled scores (i.e., scatter) was significantly greater for the LD group. (SBH)
Controlled light scattering in transparent polycrystalline ferroelectrics
International Nuclear Information System (INIS)
Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.
1977-01-01
Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization
Recent development in magnetic neutron scattering studies
International Nuclear Information System (INIS)
Endoh, Yasuo
1993-01-01
Neutron scattering results contain many new concepts in modern magnetism. We review here the most recent neutron magnetic scattering studies from so called '214' copper oxide lamellar materials, because a number of important developments in magnetism are condensed in this novel subject. We show that neutron scattering has played crucial role in our understanding of modern magnetism. (author)
Neutron scattering studies in the actinide region
International Nuclear Information System (INIS)
Kegel, G.H.R.; Egan, J.J.
1993-09-01
This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures
Intermediate energy nucleon-deuteron scattering theory.
Wilson, J. W.
1973-01-01
Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.
Quasielastic Neutron Scattering by Superionic Strontium Chloride
DEFF Research Database (Denmark)
Dickens, M. H.; Hutchings, M. T.; Kjems, Jørgen
1978-01-01
The scattering, from powder and single crystal samples, appears only above the superionic transition temperature, 1000K. The integrated intensity is found to be strongly dependent on the direction and magnitude of the scattering vector, Q, (which suggests the scattering is coherent) but does not ...
Photons emission processes in electron scattering
International Nuclear Information System (INIS)
Soto Vargas, C.W.
1996-01-01
The investigations involving the scattering sections arising in virtual an real photon emission processes of electron and positron scattering by an atomic nucleus, have the need for thorough and complete calculations of the virtual photon spectrum and then introduce the distorted wave formulation, which is mathematically involved an numerically elaborated, but accessible to its use in experimental electron scattering facilities. (author) [es
New Techniques in Neutron Scattering
DEFF Research Database (Denmark)
Birk, Jonas Okkels
potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA......, simulations and prototyping to optimize the instrument and ensure that it will deliver the predicted performance when constructed. During the design a new prismatic analyser concept that can be of interest to many other neutron spectrometers was developed. The design work was compiled into an instrument......Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...
Positron scattering from vinyl acetate
International Nuclear Information System (INIS)
Chiari, L; Brunger, M J; Zecca, A; Blanco, F; García, G
2014-01-01
Using a Beer–Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C 4 H 6 O 2 ) in the incident positron energy range 0.15–50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1–1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ∼2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect. (paper)
Electron scattering and nuclear structure
International Nuclear Information System (INIS)
Frois, B.
1987-01-01
The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Quantum scattering at low energies
DEFF Research Database (Denmark)
Derezinski, Jan; Skibsted, Erik
For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian......, including the energy . We show that the --matrices are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used...... from positive energies to the limiting energy . This change corresponds to the behaviour of the classical orbits. Under stronger conditions we extract the leading term of the asymptotics of the kernel of at its singularities; this leading term defines a Fourier integral operator in the sense...
Inelastic scattering. Time of flight
International Nuclear Information System (INIS)
Eccleston, R.
1999-01-01
It is the scattering function, S(Q,ω), which provides the link between the scattering data and the physical system being studied and is thereby the parameter of interest. The nature of the experiment will dictate the portions of momentum transfer - energy transfer space that is to be probed. The portions of Q-ω space that are accessible and the way it is covered determine the appropriateness of an instrument or technique to a particular experiment. One should also remember that if studying a polycrystalline of disordered material, momentum transfer need only by characterized by modulus Q whereas in studies of single crystals one is operating in four-dimensional Q x -Q y -Q z -ω space. (author)
International Nuclear Information System (INIS)
Wendin, G.
1979-01-01
The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references
Scattering characteristics from porous silicon
Directory of Open Access Journals (Sweden)
R. Sabet-Dariani
2000-12-01
Full Text Available Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet. In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.
Vector Boson Scattering at ATLAS
Ozcan, V E
2009-01-01
While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.
Vector Boson Scattering at ATLAS
Ozcan, V E
2008-01-01
While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.
Theory of Graphene Raman Scattering.
Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios
2016-02-23
Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.
Jets in deep inelastic scattering
International Nuclear Information System (INIS)
Joensson, L.
1995-01-01
Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)
Unifying relations for scattering amplitudes
Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao
2018-02-01
We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.
Periodic instantons and scattering amplitudes
International Nuclear Information System (INIS)
Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.
1991-04-01
We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)
Phase transitions and neutron scattering
International Nuclear Information System (INIS)
Shirane, G.
1993-01-01
A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)
Polarization transfer in inelastic scattering
International Nuclear Information System (INIS)
Moss, J.M.
1980-01-01
Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table
Study of quantum hadronic states using new optimum principles and new coherent production mechanisms
International Nuclear Information System (INIS)
Ion, D. B.; Ion, M. L.; Ion-Mihai, R.
2002-01-01
We introduced a new kind of quantum entropy for quantum scattering: conjugated nonextensivity entropy S Jθ bar (p,q). Using this new kind of nonextensive entropy we studied the nonextensive quantum scattering states of the hadronic interactions. We proved that probability distributions produced at quantum equilibrium coincide with optimal distributions given by the principle of minimum distance in the space of quantum scattering states. Using optimal states we proved new uncertainty relations and new entropic bands: For experimental tests we used the available phase shifts for the pion-nucleus scatterings and also for the pion-nucleon scatterings. Experimental tests of entropic bands and principle of maximum entropy for conjugated nonextensivity entropy are compared with entropic bands for usual entropy of joint probability S Jθ bar (p) and for pion-nucleus scatterings. Also given are the experimental tests of entropic bands and principle of maximum entropy for conjugated nonextensivity entropy compared with entropic bands for usual entropy of joint probability S Jθ bar (p) and for pion-nucleon scatterings.Our experimental tests proved the existence of the principle of limited entropic uncertainty in hadronic scattering. The experimental tests showed clearly that quantum elastic scattering is well described by the principle of minimum distance in the space of quantum states. By these results we obtained strong evidence for the nonextensivity of the hadronic scattering statistics. (authors)
Radiation scatter apparatus and method
International Nuclear Information System (INIS)
Molbert, J. L.; Riddle, E. R.
1985-01-01
A radiation scatter gauge includes multiple detector locations for developing separate and independent sets of data from which multiple physical characteristics of a thin material and underlying substrate may be determined. In an illustrated embodiment, the apparatus and method of the invention are directed to determining characteristics of resurfaced pavement by nondestructive testing. More particularly, the density and thickness of a thin asphalt overlay and the density of the underlying pavement may be determined
Scattering influence in mammographic image
International Nuclear Information System (INIS)
Poletti, Martin Eduardo; Almeida, Adelaide de
1996-01-01
The quantification of mammographic images affected by scattered radiation is studied. The average glandular dose as a function of kVp and breast thickness for breast composition 50/50% is also evaluated. The results show that the contrast decreases with increasing of kVp and breast thickness, and the average glandular dose increase with increasing breast thickness and decreases with increasing kVp
Material science and neutron scattering
International Nuclear Information System (INIS)
1983-01-01
Neutron scattering experiments complete and extend the condensed matter studies made with X and gamma rays. Then story show a permanent evolution of the instrumentation, methods and experimental techniques to improve the result quality. This is more especially important as neutron sources are weaker than photon and electron sources. Progress in this research domain is due, in most part, to discovery and development of materials for the different measurement device components [fr
Diffraction dissociation and elastic scattering
International Nuclear Information System (INIS)
Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.
1987-01-01
In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented
Inelastic neutron scattering from clusters
International Nuclear Information System (INIS)
Gudel, H.U.
1985-01-01
Magnetic excitations in clusters of paramagnetic ions have non-vanishing cross-sections for inelastic neutron scattering (INS). Exchange splittings can be determined, the temperature dependence of exchange can be studied, intra- and intercluster effects can be separated and magnetic form factors determined. INS provides a more direct access to the molecular properties than bulk techniques. Its application is restricted to complexes with no or few (< 10%) hydrogen atoms
Light scattering from superfluid fog
International Nuclear Information System (INIS)
Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A.
2003-01-01
The dynamics of the droplets of superfluid 4 He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time τ v =10 -5 s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it
Determination of the scattering amplitude
International Nuclear Information System (INIS)
Gangal, A.D.; Kupsch, J.
1984-01-01
The problem to determine the elastic scattering amplitude from the differential cross-section by the unitarity equation is reexamined. We prove that the solution is unique and can be determined by a convergent iteration if the parameter lambda=sin μ of Newton and Martin is bounded by lambda 2 approx.=0.86. The method is based on a fixed point theorem for holomorphic mappings in a complex Banach space. (orig.)
Resonant Impulsive Stimulated Raman Scattering
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A; Chesnoy, J
1988-03-15
Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.
Transition densities with electron scattering
International Nuclear Information System (INIS)
Heisenberg, J.
1985-01-01
This paper reviews the ground state and transition charge densities in nuclei via electron scattering. Using electrons as a spectroscopic tool in nuclear physics, these transition densities can be determined with high precision, also in the nuclear interior. These densities generally ask for a microscopic interpretation in terms of contributions from individual nucleons. The results for single particle transitions confirm the picture of particle-phonon coupling. (Auth.)
Resonant Impulsive Stimulated Raman Scattering
International Nuclear Information System (INIS)
Mokhtari, A.; Chesnoy, J.
1988-01-01
Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution
Spectroscopy, scattering, and KK molecules
Energy Technology Data Exchange (ETDEWEB)
Weinstein, J. [Univ. of Mississippi, University, MS (United States)
1994-04-01
The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.
Electron scattering by hydrogen atoms
International Nuclear Information System (INIS)
Fujii, D.H.
1981-02-01
A variational method to calculate the differential cross section of the electron-hydrogen atom scattering process is presented. The second Born approximation is calculated, through a variational calculation using the energy and electronic charge simultaneously as parameters, in order to calculate the differential cross section which is written in a fractional form according to the Schwinger variational principle. Effects due to the electron change are included in the calculations. (L.C.) [pt
Potential scattering of Dirac particles
International Nuclear Information System (INIS)
Thaller, B.
1981-01-01
A quantum mechanical interpretation of the Dirac equation for particles in external electromagnetic potentials is discussed. It is shown that a consequent development of the Stueckelberg-Feynman theory into a probabilistic interpretation of the Dirac equation corrects some prejudices concerning negative energy states, Zitterbewegung and bound states in repulsive potentials and yields the connection between propagator theory and scattering theory. Limits of the Dirac equation, considered as a wave mechanical equation, are considered. (U.K.)
International Nuclear Information System (INIS)
Volkov, M.K.; Osipov, A.A.
1983-01-01
The msub(π)asub(0)sup(1/2)=0.1, msub(π)asub(0)sup(3/2)=-0.1, msub(π)asub(0)sup((-))=0.07, msub(π)sup(3)asub(1)sup(1/2)=0.018, msub(π)sup(3)asub(1)aup(3/2)=0.002, msub(π)sup(3)asub(1)sup((-))=0.0044, msub(π)sup(5)asub(2)sup(1/2)=2.4x10sup(-4) and msub(π)sup(5)asub(2)sup(3/2)=-1.2x10sup(-4) scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interaction. The decay form factors of (rho, epsilon, S*) → 2π, (K tilde, K*) → Kπ are used. The q 2 -terms of the quark box diagrams are taken into account. It is shown that the q 2 -terms of the box diagrams give the main contribution to the s-wave scattering lengths. The diagrams with the intermediate vector mesons begin to play the essential role at calculation of the p- and d-wave scattering lengths
Glory scattering by black holes
International Nuclear Information System (INIS)
Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.
1985-01-01
We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes
Particle levitation and laboratory scattering
International Nuclear Information System (INIS)
Reid, Jonathan P.
2009-01-01
Measurements of light scattering from aerosol particles can provide a non-intrusive in situ method for characterising particle size distributions, composition, refractive index, phase and morphology. When coupled with techniques for isolating single particles, considerable information on the evolution of the properties of a single particle can be gained during changes in environmental conditions or chemical processing. Electrostatic, acoustic and optical techniques have been developed over many decades for capturing and levitating single particles. In this review, we will focus on studies of particles in the Mie size regime and consider the complimentarity of electrostatic and optical techniques for levitating particles and elastic and inelastic light scattering methods for characterising particles. In particular, we will review the specific advantages of establishing a single-beam gradient force optical trap (optical tweezers) for manipulating single particles or arrays of particles. Recent developments in characterising the nature of the optical trap, in applying elastic and inelastic light scattering measurements for characterising trapped particles, and in manipulating particles will be considered.
Sum rules in classical scattering
International Nuclear Information System (INIS)
Bolle, D.; Osborn, T.A.
1981-01-01
This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients
Early Years of Neutron Scattering and Its Manpower Development in Indonesia
International Nuclear Information System (INIS)
Marsongkohadi
2008-01-01
In this paper I shall give a short history of the development of neutron scattering at the Research Centre for Nuclear Techniques (PPTN), in Bandung, and the early development of a more advanced facilities at the Neutron Scattering Laboratory (NSL BATAN), Centre of Technology for Nuclear Industrial Materials, in Serpong. The first research reactor in Indonesia was the TRIGA MARK II in Bandung, which became operational in 1965, with a power of 250 KW, upgraded to 1 MW in 1971, and to 2 MW in 2000. The neutron scattering activities was started in 1967, with the design and construction of the first powder diffractometer, and put in operation in 1970. It was followed by the second instrument, the filter detector spectrometer built in 1975 in collaboration with the Bhabha Atomic Research Centre (BARC), India. A powder diffractometer for magnetic studies was built in 1980, and finally, a modification of the filter detector spectrometer to measure textures was made in 1986. A brief description of the design and construction of the instruments, and a highlight of some research topics will be presented. Early developments of neutron scattering activities at the 30 MW, RSG-GAS reactor in Serpong in choosing suitable research program, which will be mainly centred around materials testing/characterization, and materials/condensed matter researches has been agreed. Instrument planning and layout which were appropriate to carry out the program had been decided. Manpower development for the neutron scattering laboratory is a severe problem. The efforts to overcome this problem has been solved. International Cooperation through workshops and on the job trainings also support the supply of qualified manpower
Ultrastrong Coupling Few-Photon Scattering Theory
Shi, Tao; Chang, Yue; García-Ripoll, Juan José
2018-04-01
We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Medium energy ion scattering (MEIS)
International Nuclear Information System (INIS)
Dittmann, K.; Markwitz, A.
2009-01-01
This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A
Electron scattering by molecular oxygen
International Nuclear Information System (INIS)
Duddy, P.E.
1999-03-01
Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has
Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering
Dierker, S. B.; Aronson, M. C.
2018-05-01
We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.
Neutron Inelastic Scattering Study of Liquid Argon
Energy Technology Data Exchange (ETDEWEB)
Skoeld, K; Rowe, J M; Ostrowski, G [Solid State Science Div., Argonne National Laboratory, Argonne, Illinois (US); Randolph, P D [Nuclear Technology Div., Idaho Nuclear Corporation, Idaho Falls, Idaho (US)
1972-02-15
The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models
Source distribution dependent scatter correction for PVI
International Nuclear Information System (INIS)
Barney, J.S.; Harrop, R.; Dykstra, C.J.
1993-01-01
Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction
PREFACE: Atom-surface scattering Atom-surface scattering
Miret-Artés, Salvador
2010-08-01
It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties
Neutron scattering studies of magnetism in the high-Tc materials
International Nuclear Information System (INIS)
Sinha, S.K.
1990-01-01
In this paper, I shall attempt to review what has been learned about magnetism in the high-T c family of compounds using neutron scattering techniques. Whether or not it is true that magnetic effects are involved in an essential way in the mechanism for superconductivity in these materials (a point which has not yet been firmly established), they offer fascinating examples for the study of magnetism for its own sake, being realizations of spin 1/2 2D quantum antiferromagnets. Further, the rare earth spins in these materials also order at low temperatures reminiscent of the coexistence of antiferromagnetism and superconductivity in the earlier well-studied families of magnetic superconductors such as ErRh 4 B 4 and the Chevrel-phase compounds, with the difference that the ordering here is primarily 2D in character
Neutron transfer with anisotropic scattering
International Nuclear Information System (INIS)
El Wakil, S.A.; Haggag, M.H.; Saad, E.A.
1979-01-01
The finite slab problem is reduced to a semi-infinite one by adding an infinitesimally thick layer such that both the added layer and the total layer are semi-infinite. The relation between the reflection and transmission functions for a finite slab and those for an infinite one are obtained in terms of an operator which satisfies a semigroup equation. The method is applied to anisotropic scattering with azimuthal dependence. Numerical calculations are made and the results compared with those of other workers. (author)
Advances in neutron scattering spectroscopy
International Nuclear Information System (INIS)
White, J.W.
1977-01-01
Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)
Thermally stimulated scattering in plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
this experiment local heat conduction is of little importance and the dynamic evolution for the electron temperature is dominated by heating and energy exchange with the ion component. These features are incorporated in the analysis. The resulting set of equations gives a growth rate and characteristic scale size......A theory for stimulated scattering of a laser beam is formulated where the dominant nonlinearity is the ohmic heating of the plasma. The analysis is carried out with particular reference to experimental investigations of CO2 laser heating of linear discharge plasma. In the conditions characterizing...
Light scattering from superfluid fog
Energy Technology Data Exchange (ETDEWEB)
Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A
2003-05-01
The dynamics of the droplets of superfluid {sup 4}He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time {tau}{sub v}=10{sup -5} s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it.
Topics in deep inelastic scattering
International Nuclear Information System (INIS)
Wandzura, S.M.
1977-01-01
Several topics in deep inelastic lepton--nucleon scattering are discussed, with emphasis on the structure functions appearing in polarized experiments. The major results are: infinite set of new sum rules reducing the number of independent spin dependent structure functions (for electroproduction) from two to one; the application of the techniques of Nachtmann to extract the coefficients appearing in the Wilson operator product expansion; and radiative corrections to the Wilson coefficients of free field theory. Also discussed are the use of dimensional regularization to simplify the calculation of these radiative corrections
Scattering theory for Riemannian Laplacians
DEFF Research Database (Denmark)
Ito, Kenichi; Skibsted, Erik
In this paper we introduce a notion of scattering theory for the Laplace-Beltrami operator on non-compact, connected and complete Riemannian manifolds. A principal condition is given by a certain positive lower bound of the second fundamental form of angular submanifolds at infinity. Another...... condition is certain bounds of derivatives up to order one of the trace of this quantity. These conditions are shown to be optimal for existence and completeness of a wave operator. Our theory does not involve prescribed asymptotic behaviour of the metric at infinity (like asymptotic Euclidean or hyperbolic...
Coherence effects in radiative scattering
International Nuclear Information System (INIS)
Knoll, J.; Lenk, R.
1993-03-01
The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)
International Nuclear Information System (INIS)
Alberico, W.M.; Molinari, A.
1982-01-01
In this paper we briefly review the formalism of the nuclear Compton scattering in the frame of the low-energy theorems (LET). We treat the resonant terms of the amplitude, having collective intermediate nuclear states, as a superposition of Lorentz lines with energy, width and strength fixed by the photo-absorption experiments. The gauge terms are evaluated starting from a simple, but realistic, nuclear Hamiltonian. Dynamical nucleon-nucleon correlations are consistently taken into account, beyond those imposed by the Pauli principle. The comparison of the theoretical predictions with the data of elastic diffusion of photons from 208 Pb shows that LET are insufficient to account for the experiment. (orig.)
Fluence determination by scattering measurements
Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M
2000-01-01
An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).
Inelastic scattering from amorphous solids
International Nuclear Information System (INIS)
Price, D.L.
1985-08-01
The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs
Light scattering near phase transitions
Cummins, HZ
1983-01-01
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Small angle scattering and polymers
International Nuclear Information System (INIS)
Cotton, J.P.
1996-01-01
The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs
Hadron scattering, resonances, and QCD
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Monopole scattering with a twist
International Nuclear Information System (INIS)
Houghton, C.J.; Sutcliffe, P.M.
1996-01-01
By imposing certain combined inversion and rotation symmetries on the rational maps for SU(2) BPS monopoles we construct geodesics in the monopole moduli space. In the moduli space approximation these geodesics describe a novel kind of monopole scattering. During these scattering processes axial symmetry is instantaneously attained and, in some, monopoles with the symmetries of the regular solids are formed. The simplest example corresponds to a charge three monopole invariant under a combined inversion and 90 circle rotation symmetry. In this example three well-separated collinear unit charge monopoles coalesce to form first a tetrahedron, then a torus, then the dual tetrahedron and finally separate again along the same axis of motion. We explicitly construct the spectral curves in this case and use a numerical ADHMN construction to compute the energy density at various times during the motion. We find that the dynamics of the zeros of the Higgs field is extremely rich and we discover a new phenomenon; there exist charge k SU(2) BPS monopoles with more than k zeros of the Higgs field. (orig.)
Neutron scattering from quantum liquids
International Nuclear Information System (INIS)
Cowley, R.A.
1976-01-01
Recent neutron scattering measurements on the quantum liquids 4 He and 3 He are described. In the Bose superfluid there is a well-defined excitation for wave vectors less than 3.6 A -1 . In the Fermi liquid measurements are much more difficult because of the large absorption cross section, but measurements at the Institute Laue-Langevin have shown that there are no well-defined excitations at 0.63 0 K for wave vectors between 1.0 and 2.6 A -1 . The difference between these results is due to the existence of particle-hole excitations in the Fermi liquid into which collective excitations can decay. Because of the simplicity of the excitations in 4 He, it has become a testing ground for the effects of the interactions between the excitations. Measurements are described which show that while roton-roton interactions are attractive at small wave vectors they are repulsive at larger wave vectors. The scattering at large momentum transfer in 4 He has been measured, but its interpretation is still open to question
Interface detection by neutron scattering
International Nuclear Information System (INIS)
De Monchy, A.R.; Kok, C.A.; Dorrepaal, J.
1979-01-01
A method and apparatus for detecting an interface of materials having different hydrogen content present in a metal vessel or pipe eg. made of steel, are described. Steel walls of columns, reactors, pipelines etc can be monitored. It is very suitable for detection of liquid water or hydrocarbons present in gas pipelines and also for the detection of a liquid hydrocarbon in a vessel or column. A series of measurements of the hydrogen density of the contents of a vessel or pipe are made using at least one californium-252 neutron source located near the outer side of the pipe. Neutrons are emitted and are scattered by the contents of the pipe. At least one neutron detector is located near the outer side of the metal wall. The detectors have a higher sensitivity for scattered neutrons (from the light hydrogen nuclei present in water or hydrocarbons). A source of 0.1 - 1 micrograms produces enough neutrons for most technical applications so the handling is relatively safe although shielding is advocated. The detectors contain helium-3 at a pressure of about 10 bar. Current pulses from the detector are counted. (U.K.)
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Raman scattering tensors of tyrosine.
Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T
1998-01-01
Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).
Energy Technology Data Exchange (ETDEWEB)
Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)
2014-12-01
As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.
Pion scattering and nuclear dynamics
International Nuclear Information System (INIS)
Johnson, M.B.
1988-01-01
A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab
Scattering of acoustic waves by small crustaceans
Andreeva, I. B.; Tarasov, L. L.
2003-03-01
Features of underwater sound scattering by small crustaceans are considered. The scattering data are obtained with the use of unique instrumentation that allows one to measure quantitative scattering characteristics (backscattering cross sections and angular scattering patterns) for crustaceans of different sizes, at different frequencies (20 200 kHz) and different insonification aspects. A computational model of crustaceans is considered with allowance for both the soft tissues of the main massive part of the animal's body and the stiff armour. The model proves to be advantageous for explaining some scattering features observed in the experiments. The scattering cross sections of crustaceans measured by other researchers are presented in a unified form appropriate for comparison. Based on such a quantitative comparison, relatively simple approximate empirical formulas are proposed for estimating the backscattering cross sections of small (within several centimeters) marine crustaceans in a broad frequency range.
Solution of a simple inelastic scattering problem
International Nuclear Information System (INIS)
Knudson, S.K.
1975-01-01
Simple examples of elastic scattering, typically from square wells, serve as important pedagogical tools in discussion of the concepts and processes involved in elastic scattering events. An analytic solution of a model inelastic scattering system is presented here to serve in this role for inelastic events. The model and its solution are simple enough to be of pedagogical utility, but also retain enough of the important physical features to include most of the special characteristics of inelastic systems. The specific model chosen is the collision of an atom with a harmonic oscillator, interacting via a repulsive square well potential. Pedagogically important features of inelastic scattering, including its multistate character, convergence behavior, and dependence on an ''inelastic potential'' are emphasized as the solution is determined. Results are presented for various energies and strengths of inelastic scattering, which show that the model is capable of providing an elementary representation of vibrationally inelastic scattering
Scattered radiation in fan beam imaging systems
International Nuclear Information System (INIS)
Johns, P.C.; Yaffe, M.
1982-01-01
Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter
Entanglement degradation in depolarizing light scattering
International Nuclear Information System (INIS)
Aiello, A.; Woerdman, J.P.
2005-01-01
Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)
Dynamic light scattering. Observation of polymer dynamics
International Nuclear Information System (INIS)
Hiroi, Takashi
2015-01-01
Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)
Classical trajectory in non-relativistic scattering
International Nuclear Information System (INIS)
Williams, A.C.
1978-01-01
With the statistical interpretation of quantum mechanics as a guide, the classical trajectory is incorporated into quantum scattering theory. The Feynman path integral formalism is used as a starting point, and classical transformation theory is applied to the phase of the wave function so derived. This approach is then used to derive an expression for the scattering amplitude for potential scattering. It is found that the amplitude can be expressed in an impact parameter representation similar to the Glauber formalism. Connections are then made to the Glauber approximation and to semiclassical approximations derived from the Feynman path integral formalism. In extending this analysis to projectile-nucleus scattering, an approximation scheme is given with the first term being the same as in Glauber's multiple scattering theory. Higher-order approximations, thus, are found to give corrections to the fixed scatterer form of the impulse approximation inherent in the Glauber theory
Particle trapping in stimulated scattering processes
International Nuclear Information System (INIS)
Karttunen, S.J.; Heikkinen, J.A.
1981-01-01
Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)
Instruments and accessories for neutron scattering research
International Nuclear Information System (INIS)
Ishii, Yoshinobu; Morii, Yukio
2000-04-01
This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)
Small angle neutron scattering by polymer solutions
International Nuclear Information System (INIS)
Farnoux, B.; Jannink, G.
1980-08-01
Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details
Circular Intensity Differential Scattering of chiral molecules
Energy Technology Data Exchange (ETDEWEB)
Bustamante, C.J.
1980-12-01
In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.
Gamma camera scatter suppression unit WAM
International Nuclear Information System (INIS)
Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.
1990-01-01
In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)
Newtonian versus black-hole scattering
International Nuclear Information System (INIS)
Siopsis, G.
1999-01-01
We discuss non-relativistic scattering by a Newtonian potential. We show that the gray-body factors associated with scattering by a black hole exhibit the same functional dependence as scattering amplitudes in the Newtonian limit, which should be the weak-field limit of any quantum theory of gravity. This behavior arises independently of the presence of supersymmetry. The connection to two-dimensional conformal field theory is also discussed. copyright 1999 The American Physical Society
Inelastic neutron scattering from cerium under pressure
International Nuclear Information System (INIS)
Rainford, B.D.; Buras, B.; Lebech, B.
1976-01-01
Inelastic neutron scattering from Ce metal at 300K was studied both below and above the first order γ-α phase transition, using a triple axis spectrometer. It was found that (a) there is no indication of any residual magnetic scattering in the collapsed α phase and (b) the energy width of the paramagnetic scattering in the γ-phase increases with pressure. (Auth.)
Thomson scattering measurements in atmospheric plasma jets
International Nuclear Information System (INIS)
Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.
1999-01-01
Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society
Optical theorem for heavy-ion scattering
International Nuclear Information System (INIS)
Schwarzschild, A.Z.; Auerbach, E.H.; Fuller, R.C.; Kahana, S.
1976-01-01
An heuristic derivation is given of an equivalent of the optical theorem stated in the charged situation with the remainder or nuclear elastic scattering amplitude defined as a difference of elastic and Coulomb amplitudes. To test the detailed behavior of this elastic scattering amplitude and the cross section, calculations were performed for elastic scattering of 18 O + 58 Ni, 136 Xe + 209 Bi, 84 Kr + 208 Pb, and 11 B + 26 Mg at 63.42 to 114 MeV
How to calculate the Coulomb scattering amplitude
International Nuclear Information System (INIS)
Grosse, H.; Narnhofer, H.; Thirring, W.
1974-01-01
The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)
Lectures on the inverse scattering method
International Nuclear Information System (INIS)
Zakharov, V.E.
1983-06-01
In a series of six lectures an elementary introduction to the theory of inverse scattering is given. The first four lectures contain a detailed theory of solitons in the framework of the KdV equation, together with the inverse scattering theory of the one-dimensional Schroedinger equation. In the fifth lecture the dressing method is described, while the sixth lecture gives a brief review of the equations soluble by the inverse scattering method. (author)
Nuclear Physics Laboratory technical progress report, [August 15, 1991--October 1, 1992
International Nuclear Information System (INIS)
1992-01-01
This report summarizes work carried out between August 15, 1991 and October 1, 1992 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG02-86ER-40269 and DE-FG02-87ER-40335 with the United States Department of Energy. These contracts support experimental and theoretical work in intermediate energy nuclear physics. The experimental program is very broadly based; it includes pion-nucleon and pion-nucleus studies at Los Alamos and TRIUMF inelastic pion scattering and charge exchange reactions at LAMPF, kaon-nucleus scattering at the AGS, and nucleon charge exchange at LAMPF/NTOF
Structural phase transitions and Huang scattering
International Nuclear Information System (INIS)
Yamada, Yasusada
1980-01-01
The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)
New method for solving multidimensional scattering problem
International Nuclear Information System (INIS)
Melezhik, V.S.
1991-01-01
A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed
Directory of Open Access Journals (Sweden)
A. Donnachie
1984-01-01
Full Text Available We present an analysis of pp and ̄pp elastic scattering in terms of various exchanges. Three-gluon exchange dominates at large t, and single-pomeron exchange at small t. The dip seen in high-energy pp scattering is provided by the interference of both of these with double-pomeron exchange. We predict that this dip will not be found in high-energy ̄pp scattering. The dip that is seen in low-energy ̄pp scattering is the result of the additional presence of reggeon-pomeron exchange.
Experimental confirmation of neoclassical Compton scattering theory
Energy Technology Data Exchange (ETDEWEB)
Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)
2013-12-15
Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.
Fatigue and damage tolerance scatter models
Raikher, Veniamin L.
1994-09-01
Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.
Material-independent modes for electromagnetic scattering
Forestiere, Carlo; Miano, Giovanni
2016-11-01
In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.
Geometrical effects in X-mode scattering
International Nuclear Information System (INIS)
Bretz, N.
1986-10-01
One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density
Forward Scattering of Loaded and Unloaded Antennas
DEFF Research Database (Denmark)
Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard
2012-01-01
Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....
Compton scatter tomography in TOF-PET
Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis
2017-10-01
Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.
Scatter factor corrections for elongated fields
International Nuclear Information System (INIS)
Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A.
1989-01-01
Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor
Scattering of photons from atomic electrons
International Nuclear Information System (INIS)
Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.
1990-01-01
Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs
Deep inelastic scattering and disquarks
International Nuclear Information System (INIS)
Anselmino, M.
1993-01-01
The most comprehensive and detailed analyses of the existing data on the structure function F 2 (x, Q 2 ) of free nucleons, from the deep inelastic scattering (DIS) of charged leptons on hydrogen and deuterium targets, have proved beyond any doubt that higher twist, 1/Q 2 corrections are needed in order to obtain a perfect agreement between perturbative QCD predictions and the data. These higher twist corrections take into account two quark correlations inside the nucleon; it is then natural to try to model them in the quark-diquark model of the proton. In so doing all interactions between the two quarks inside the diquark, both perturbative and non perturbative, are supposed to be taken into account. (orig./HSI)
Neutron scattering and models: molybdenum
International Nuclear Information System (INIS)
Smith, A.B.
1999-01-01
A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made
Advanced electromagnetics and scattering theory
2015-01-01
This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...
International Nuclear Information System (INIS)
Kim, J.C.; Hicks, R.S.; Yen, R.; Auer, I.P.; Caplan, H.S.; Bergstrom, J.C.
1978-01-01
Cross sections for elastic and inelastic scattering of electrons from 17 O have been measured for momentum transfers up to 1.2 fm -1 . The elastic cross section indicates that the rms charge radii of 17 O and 16 O are equal to within a few parts in a thousand: 2 17 >sup(1/2)/ 2 16 >sub(1/2)=1.0015+-0.0025. Reduced transition probabilities and ground-state radiative widths are deduced for 17 O excited states below 9 MeV. Various aspects of the inelastic spectrum are discussed, with emphasis on the 'single-particle' levels at 0.871 (1/2 + ) and 5.083 (3/2 + ) MeV, the levels at 7.569 (7/2 - ) and 7.378 (5/2 + ) MeV, and the spectrum of electric octupole excitations. (Auth.)
Phonon scattering in metallic glasses
International Nuclear Information System (INIS)
Black, J.L.
1979-01-01
The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses
Proton scattering at intermediate energies
International Nuclear Information System (INIS)
Chaumeaux, A.; Layly, V.; Schaeffer, R.
1977-01-01
This article is devoted to the analysis of the most recent Saclay data of elastic and inelastic proton scattering on nuclei at incident energies around 1GeV ( 16 O, the Ca isotopes, the Ni isotopes, 90 Zr and 208 Pb). Various theories (Impulse or Glauber approximation) are comapred. It is shown that the reaction mechanism is very well understood at 1GeV and that, at these energies, absorption and distortion is small enough, so one can extract nuclear densities from the experiment. In particular, the shape of the neutron densities is given, and compared to the Hartree-Fock predictions. The uncertainties, especially in the determination of the neutron radii are discussed [fr
Topics in elementary scattering theory
International Nuclear Information System (INIS)
Imrie, D.C.
1980-01-01
In these lectures a summary is given of some of the fundamental ideas and formalism used to describe and understand the interactions of elementary particles. A brief review of relativistic kinematics is followed by a discussion of Lorentz-invariant variables for describing two-body processes, phase space and plots, such as the Dalitz plot, which can be used to study some aspects of the dynamics of an interaction, relatively free from kinematic complications. A general description of scattering and decay is given and then, more specifically, some aspects of two-body interactions in the absence of spin are discussed. Finally, complications that arise when particle spin has to be taken into account are considered. (U.K.)
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Polymer research by neutron scattering
International Nuclear Information System (INIS)
Richter, D.
1993-01-01
Polymer physics aims on an understanding of the macroscopic behavior of polymer systems on the basis of their molecular structure and dynamics. For this purpose neutrons serve as a unique probe, allowing a simultaneous investigation of polymer structure and dynamics on a molecular scale. Furthermore, hydrogen deuterium exchange facilitates molecular labeling and offers the possibility to observe selected chains or chain parts in dense systems. Neutron small angle scattering reveals information on the conformation and possible aggregation of polymer chains. Data on linear and star like molecules are shown as examples. High resolution neutron spin-echospectroscopy observes the molecular dynamics of long chain molecules. Results on the large scale motion of chins in polymer melts are presented. finally, experiments on chain relaxation close to the glass transition are displayed. Three distinctly different relaxation processes are revealed. (author)
Cluster polylogarithms for scattering amplitudes
International Nuclear Information System (INIS)
Golden, John; Paulos, Miguel F; Spradlin, Marcus; Volovich, Anastasia
2014-01-01
Motivated by the cluster structure of two-loop scattering amplitudes in N=4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight four are made up of a single simple building block associated with the A 2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A 2 building blocks arrange themselves to form a unique function associated with the A 3 cluster algebra. This A 3 function manifests all of the cluster algebraic structure of the two-loop n-particle MHV amplitudes for all n, and we use it to provide an explicit representation for the most complicated part of the n = 7 amplitude as an example. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
New techniques in neutron scattering
International Nuclear Information System (INIS)
Hayter, J.B.
1993-01-01
New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper. (author)
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1990-01-29
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.
International Nuclear Information System (INIS)
Noyes, H.P.
1990-01-01
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc 2 in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are ''born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc 2 our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G πN 2 ) 2 = (2m N /m π ) 2 - 1. 21 refs., 1 fig
Cooperative scattering of scalar waves by optimized configurations of point scatterers
Schäfer, Frank; Eckert, Felix; Wellens, Thomas
2017-12-01
We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.
Thomson scattering using an atomic notch filter
Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.
2000-01-01
One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose
An algebraic approach to the scattering equations
Energy Technology Data Exchange (ETDEWEB)
Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)
2015-12-10
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Hard scattering and a diffractive trigger
International Nuclear Information System (INIS)
Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.
1986-02-01
Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs
Hermite scatterers in an ultraviolet sky
Parker, Kevin J.
2017-12-01
The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.
Pion scattering from very light nuclei
International Nuclear Information System (INIS)
Berman, B.
1993-01-01
Selected recent elastic and inelastic pion-scattering experiments on 3 H, 3 He, and 4 He will be reviewed. Particular attention will be given to multinucleon or cluster aspects of the data, and to possible comparisons with electron-scattering results. From elastic scattering from 3 H and 3 He at forward angles, one can extract the matter distribution of the paired neutrons in 3 H as well as that of the paired protons in 3 He. At backward angles, scattering from correlated nucleon pairs and/or two-step processes play an important role. For inelastic scattering, the momentum-transfer dependence of the cross section varies strongly with incident energy. Elastic scattering from a polarized 3 He target shows a strong asymmetry near 90 degrees. Elastic scattering from 4 He yields results which cannot be fitted with a simple optical model. An for inelastic scattering from 4 He, analysis of the data requires an important contribution from direct triton knockout
Arthur H. Compton and Compton Scattering
dropdown arrow Site Map A-Z Index Menu Synopsis Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley , 1923 Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942, DOE Technical
Neutrino proton scattering and the isosinglet term
International Nuclear Information System (INIS)
White, D.H.
1990-01-01
Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
On the K+-nucleus elastic scattering
International Nuclear Information System (INIS)
Ning, P.; Men, D.
1991-01-01
In this paper conventional and unconventional nuclear medium effects in the K + scattering are briefly reviewed. Microscopic calculations of the K + elastic scattering on 4 He, 12 C, 40 Ca, 120 Sn at 800 MeV/c are performed and then possible swellings of nucleons in nuclei are discussed
SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS
Energy Technology Data Exchange (ETDEWEB)
Callaway, Joseph
1962-12-15
The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)
Cascaded Bragg scattering in fiber optics.
Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G
2013-01-15
We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.
An algebraic approach to the scattering equations
International Nuclear Information System (INIS)
Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui
2015-01-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Heavy ion elastic scattering of code : OPTHI
International Nuclear Information System (INIS)
Ismail, M.; Divatia, A.S.
1982-01-01
A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)
Systematic study on nuclear resonant scattering
International Nuclear Information System (INIS)
Suarez, A.A.; Freitas, M.L.
1974-01-01
New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects
High-precision positioning of radar scatterers
Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.
2016-01-01
Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy
Incoherent Thomson scattering as a diagnostic tool
Barth, C. J.
1998-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is
RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL
Directory of Open Access Journals (Sweden)
S. F. Kolomiets
2014-01-01
Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Scattering of high energy electrons on deuteron
International Nuclear Information System (INIS)
Grossetete, B.
1964-12-01
The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr
Invariant imbedding equations for linear scattering problems
International Nuclear Information System (INIS)
Apresyan, L.
1988-01-01
A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation
Electromagnetic theory of plasma light scattering
International Nuclear Information System (INIS)
Bobin, J.L.
1969-01-01
The theory of light scattering by a plasma is formulated using Klimontovich's microscopic distribution functions and Landau method to solve linear kinetic equations. First, Salpeter's derivation and results are given for the spectrum of light scattered by a collisionless plasma. Then, the influence of collision is investigated through B.G.K. kinetic equation. (author) [fr
Bremsstrahlung in electron-positronium scattering
International Nuclear Information System (INIS)
Amusia, M.Ya.; Korol, A.V.; Solovyov, A.V.
1986-01-01
The spectrum of radiation formed in the fast nonrelativistic electron scattering on positronium is calculated. It is shown that all the radiation proceeds via virtual positronium deformations during the collision. An essential difference of bremsstrahlung spectra in electron on positronium and electron on hydrogen scattering is demonstrated. (orig.)
On exact solutions of scattering problems
International Nuclear Information System (INIS)
Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.
1982-01-01
Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived
Energy Transfer in Scattering by Rotating Potentials
Indian Academy of Sciences (India)
Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...
Rayleigh scattering in coupled microcavities: theory.
Vörös, Zoltán; Weihs, Gregor
2014-12-03
In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.
Momentum transfer in a Brillouin surface scattering
International Nuclear Information System (INIS)
Khater, A.F.
1980-01-01
The theory of acoustic excitation scattering in the surface of Brilloiun of opaque materials, is related to the question of momentum transfexed from radiation fields to the material when the incident eight is scattered in a measurable spectrum. (A.C.A.S.) [pt
Diffractive hard scattering and the SSC
International Nuclear Information System (INIS)
Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.
1986-01-01
Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs
Scattering kernels and cross sections working group
International Nuclear Information System (INIS)
Russell, G.; MacFarlane, B.; Brun, T.
1998-01-01
Topics addressed by this working group are: (1) immediate needs of the cold-moderator community and how to fill them; (2) synthetic scattering kernels; (3) very simple synthetic scattering functions; (4) measurements of interest; and (5) general issues. Brief summaries are given for each of these topics
On three-particle scattering theory
International Nuclear Information System (INIS)
Kuz'michev, V.E.
1977-01-01
The approach proposed earlier by the author to three-particle scattering theory is discussed. This approach may prove to be useful for studying certain problems in the physics of few-nucleon systems. The corresponding equations for the partial components of the amplitudes and the potentials are obtained in the N-d scattering case
Light Scatter in Optical Materials: Advanced Haze Modeling
2017-03-31
contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4 Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that
On the microscopic foundation of scattering theory
International Nuclear Information System (INIS)
Moser, T.
2007-01-01
The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics
Double hard scattering without double counting
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2017-02-15
Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.
Pion deuteron scattering at intermediate energies
International Nuclear Information System (INIS)
Ferreira, E.M.
1978-09-01
A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt
Quantum entanglement and neutron scattering experiments
International Nuclear Information System (INIS)
Cowley, R A
2003-01-01
It is shown that quantum entanglement in condensed matter can be observed with scattering experiments if the energy resolution of the experiments enables a clear separation between the elastic scattering and the scattering from the excitations in the system. These conditions are not satisfied in recent deep inelastic neutron scattering experiments from hydrogen-containing systems that have been interpreted as showing the existence of quantum entanglement for short times in, for example, water at room temperature. It is shown that the theory put forward to explain these experiments is inconsistent with the first-moment sum rule for the Van Hove scattering function and we suggest that the theory is incorrect. The experiments were performed using the unique EVS spectrometer at ISIS and suggestions are made about how the data and their interpretation should be re-examined
Diffraction scattering of strongly bound system
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-04-01
The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.
2015-01-01
The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Photon scattering by the giant dipole resonance
International Nuclear Information System (INIS)
Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.
1979-01-01
Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables
Scattering of fast neutrons from elemental molybdenum
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-11-01
Differential broad-resolution neutron-scattering cross sections of elemental molybdenum were measured at 10 to 20 scattering angles distributed between 20 and 160 degrees and at incident-neutron energy intervals of approx. = 50 to 200 keV from 1.5 to 4.0 MeV. Elastically-scattered neutrons were fully resolved from inelastic events. Lumped-level inelastic-neutron-scattering cross sections were determined corresponding to observed excitation energies of; 789 +- 23, 195 +- 23, 1500 +- 34, 1617 +- 12, 1787, 1874, 1991, 2063 +- 24, 2296, 2569 and 2802 keV. An optical-statistical model was deduced from the measured elastic-scattering results. The experimental values were compared with the respective quantities given in ENDF/B-V
Inelastic scattering of fast electrons by crystals
International Nuclear Information System (INIS)
Allen, L.J.; Josefsson, T.W.
1995-01-01
Generalized fundamental equations for electron diffraction in crystals, which include the effect of inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for the cross section for any specific type of inelastic scattering (e.g. inner-shell ionization, Rutherford backscattering). This result takes into account all other (background) inelastic scattering in the crystal leading to absorption from the dynamical Bragg-reflected beams, in practice mainly due to thermal diffuse scattering. There is a contribution to the cross section from all absorbed electrons, which form a diffuse background, as well as from the dynamical electrons. The approximations involved, assuming that the interactions leading to inelastic scattering can be described by a local potential are discussed, together with the corresponding expression for the cross section. It is demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal effects can be significant. 47 refs., 4 figs
Scattering cross section for various potential systems
Directory of Open Access Journals (Sweden)
Myagmarjav Odsuren
2017-08-01
Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.
Scattering cross section for various potential systems
Energy Technology Data Exchange (ETDEWEB)
Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)
2017-08-15
We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.
Application of neutron scattering in polymers
International Nuclear Information System (INIS)
Han, C.C.
2003-01-01
Full text: Neutron scattering offers many opportunities in sciences and technology. This is particularly true in the field of polymer sciences and materials. It is mainly because that the scattering length scales (q -1 ) and scattering contrast (scattering cross-sections) makes neutron a perfect tool for polymer studies. Several examples will be used to illustrate the importance of the small angle neutron scattering and the neutron reflection studies in polymer physics. These include the determination of phase diagram, interaction parameter, and spinodal decomposition kinetics by SANS. In the dynamics area, examples will be given to illustrate the critical temperature shift and mixing of polymer blends under shear flow. Also, the confinement effect on the phase separated structure of polymer blend films will be used to demonstrate the importance of the neutron reflectivity measurement
Improving the resolution of beta scattering spectroscopy
International Nuclear Information System (INIS)
Celiktas, C.; Selvi, S.; Yegin, G.
2004-01-01
We have examined the performance of a modified beta-ray spectrometer using a pulse shape analyzer/timing single channel analyzer and related electronics, thereby preserving the low energy electron tail in measurement of the scattered electron spectra from an n-type Si wafer target. Comparison of measurements with the scattering spectra calculated by the Monte Carlo program EGS4 indicates good agreement across a significant part of the spectrum, an exception being for the energy region 30-100 keV. Re-evaluation of existing scattering cross-sections would be useful, as would possible geometrical effects of the scattering arrangement used herein. Present efforts seek to contribute to the evaluation of electron scattering cross-sections and improvement in theoretical models
Quantum scattering theory on the momentum lattice
International Nuclear Information System (INIS)
Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.
2009-01-01
A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.
Classical- and quantum mechanical Coulomb scattering
International Nuclear Information System (INIS)
Gratzl, W.
1987-01-01
Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)
Raman scattering of light off a superconductor
International Nuclear Information System (INIS)
Cuden, C.B.
1976-01-01
Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11
Double hard scattering without double counting
International Nuclear Information System (INIS)
Diehl, Markus; Gaunt, Jonathan R.
2017-02-01
Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.
Diffractive scattering on nuclei in multiple scattering theory with inelastic screening
International Nuclear Information System (INIS)
Zoller, V.R.
1988-01-01
The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed
Very High Energy Neutron Scattering from Hydrogen
International Nuclear Information System (INIS)
Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I
2010-01-01
The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.
Shintake, Tsumoru
2008-10-01
The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.
Possible role of double scattering in electron-atom scattering in a laser field
International Nuclear Information System (INIS)
Rabadan, I.; Mendez, L.; Dickinson, A.S.
1996-01-01
By considering observations of double-scattering effects in the excitation of the 2 1 P level of He, gas density values estimated for the laser-assisted elastic scattering experiments of Wallbank and Holmes (1993, 1994a,b) for which the Kroll-Watson approximation appears to fail. Using comparable densities for He and lower densities for Ar, and assuming the Kroll-Watson approximation for single-scattering events, differential cross sections are calculated including double scattering for laser-assisted scattering for a range of energies and scattering angles. Comparison with the observed values shows that double-scattering effects can give a semi-quantitative explanation of the apparent breakdown of the Kroll-Watson approximation in both He and Ar. (author)
Krywonos, Andrey; Harvey, James E; Choi, Narak
2011-06-01
Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.
Neutron scattering by normal liquids
Energy Technology Data Exchange (ETDEWEB)
Gennes, P.G. de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
Neutron data on motions in normal liquids well below critical point are reviewed and classified according to the order of magnitude of momentum transfers {Dirac_h}q and energy transfers {Dirac_h}w. For large momentum transfers a perfect gas model is valid. For smaller q and incoherent scattering, the major effects are related to the existence of two characteristic times: the period of oscillation of an atom in its cell, and the average lifetime of the atom in a definite cell. Various interpolation schemes covering both time scales are discussed. For coherent scattering and intermediate q, the energy spread is expected to show a minimum whenever q corresponds to a diffraction peak. For very small q the standard macroscopic description of density fluctuations is applicable. The limits of the various (q) and (w) domains and the validity of various approximations are discussed by a method of moments. The possibility of observing discrete transitions due to internal degrees of freedom in polyatomic molecules, in spite of the 'Doppler width' caused by translational motions, is also examined. (author) [French] L'auteur examine les donnees neutroniques sur les mouvements dans les liquides normaux, bien au-dessous du point critique, et les classe d'apres l'ordre de grandeur des transferts de quantite de mouvement {Dirac_h}q et des transferts d'energie {Dirac_h}w. Pour les grands transferts de, quantite de mouvement, un modele de gaz parfait est valable. En ce qui concerne les faibles valeurs de q et la diffussion incoherente, les principaux effets sont lies a l'existence de deux temps caracteristiques: la periode d'oscillation d'un atome dans sa cellule et la duree moyenne de vie de l'atome dans une cellule determinee. L'auteur etudie divers systemes d'interpolation se rapportant aux deux echelles de temps. Pour la diffusion coherente et les valeurs intermediaires de q, on presume que le spectre d'energie accuse un minimum chaque fois que q correspond a un pic de
[Inelastic electron scattering from surfaces
International Nuclear Information System (INIS)
1993-01-01
This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things
"Phonon" scattering beyond perturbation theory
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Parity violation in electron scattering
International Nuclear Information System (INIS)
Lhuillier, D.
2007-09-01
The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)
Exclusive scattering off the deuteron
Energy Technology Data Exchange (ETDEWEB)
Amrath, D.
2007-12-15
Exclusive processes are a special class of processes giving insight into the inner structure of hadrons. In this thesis we consider two exclusive processes and compute their total cross sections as well as the beam charge and beam polarization asymmetries for different kinematical constraints. These calculations o er the opportunity to get access to the nonperturbative GPDs. Theoretically they can be described with the help of models. The rst process we investigate contains a GPD of the pion, which is basically unknown so far. We include different models and make predictions for observables that could in principle be measured at HERMES at DESY and CLAS at JLab. The second process we consider is electron-deuteron scattering in the kinematical range where the deuteron breaks up into a proton and a neutron. This can be used to investigate the neutron, which cannot be taken as a target due to its lifetime of approximately 15 minutes. For the calculation of the electron-deuteron cross section we implement models for the proton and neutron GPDs. Once there are experimental data available our calculations are ready for comparison. (orig.)
Electromagnetic scattering from buried objects
International Nuclear Information System (INIS)
Brock, B.C.; Sorensen, K.W.
1994-10-01
Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations
Stochastic behavior in quantum scattering
Energy Technology Data Exchange (ETDEWEB)
Gutzwiller, M C [IBM Watson Research Center, Yorktown Heights, NY (USA)
1983-05-01
A 2-dimensional smooth orientable, but not compact space of constant negative curvature with the topology of a torus is investigated. It contains an open end, i.e. an exceptional point at infinite distance, through which a particle or a wave can enter or leave, as in the exponential horn of certain antennas or loud-speakers. In the Poincare model of hyperbolic geometry the solutions of Schroedinger's equation for the reflection of a particle which enters through the horn are easily constructed. The scattering phase shift as a function of the momentum is essentially given by the phase angle of Riemann's zeta function on the imaginary axis, at a distance of 1/2 from the famous critical line. This phase shift shows all the features of chaos, namely the ability to mimick any given smooth function, and great difficulty in its effective numerical computation. A plot shows the close connection with the zeros of Riemann's zeta function for low values of the momentum (quantum regime) which gets lost only at exceedingly large momenta (classical regime). Some generalizations of this approach to chaos are mentioned.
A two-stage method for inverse medium scattering
Ito, Kazufumi; Jin, Bangti; Zou, Jun
2013-01-01
We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer
A direct sampling method for inverse electromagnetic medium scattering
Ito, Kazufumi; Jin, Bangti; Zou, Jun
2013-01-01
In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based
Proceedings of the workshop on neutron scattering instrumentation for SNQ
International Nuclear Information System (INIS)
Scherm, R.; Stiller, H.
1984-10-01
These proceedings contain the articles presented at the named workshop. These concern instrumentation for neutron diffraction with special regards to small angle scattering, diffuse scattering, inelastic scattering, high resolution spectroscopy, and special techniques. (HSI)
Theory of Multiple Coulomb Scattering from Extended Nuclei
Cooper, L. N.; Rainwater, J.
1954-08-01
Two independent methods are described for calculating the multiple scattering distribution for projected angle scattering resulting when very high energy charged particles traverse a thick scatterer. The results are compared with the theories of Moliere and Olbert.
Neutron Scattering from 36Ar and 4He Films
DEFF Research Database (Denmark)
Carneiro, K.
1977-01-01
Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...
Multiple scattering processes: inverse and direct
International Nuclear Information System (INIS)
Kagiwada, H.H.; Kalaba, R.; Ueno, S.
1975-01-01
The purpose of the work is to formulate inverse problems in radiative transfer, to introduce the functions b and h as parameters of internal intensity in homogeneous slabs, and to derive initial value problems to replace the more traditional boundary value problems and integral equations of multiple scattering with high computational efficiency. The discussion covers multiple scattering processes in a one-dimensional medium; isotropic scattering in homogeneous slabs illuminated by parallel rays of radiation; the theory of functions b and h in homogeneous slabs illuminated by isotropic sources of radiation either at the top or at the bottom; inverse and direct problems of multiple scattering in slabs including internal sources; multiple scattering in inhomogeneous media, with particular reference to inverse problems for estimation of layers and total thickness of inhomogeneous slabs and to multiple scattering problems with Lambert's law and specular reflectors underlying slabs; and anisotropic scattering with reduction of the number of relevant arguments through axially symmetric fields and expansion in Legendre functions. Gaussian quadrature data for a seven point formula, a FORTRAN program for computing the functions b and h, and tables of these functions supplement the text
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Measurements of computed tomography radiation scatter
International Nuclear Information System (INIS)
Van Every, B.; Petty, R.J.
1992-01-01
This paper describes the measurement of scattered radiation from a computed tomography (CT) scanner in a clinical situation and compares the results with those obtained from a CT performance phantom and with data obtained from CT manufacturers. The results are presented as iso-dose contours. There are significant differences between the data obtained and that supplied by manufacturers, both in the shape of the iso-dose contours and in the nominal values. The observed scatter in a clinical situation (for an abdominal scan) varied between 3% and 430% of the manufacturers' stated values, with a marked reduction in scatter noted a the head and feet of the patient. These differences appear to be due to the fact that manufacturers use CT phantoms to obtain scatter data and these phantoms do not provide the same scatter absorption geometry as patients. CT scatter was observed to increase as scan field size and slice thickness increased, whilst there was little change in scatter with changes in gantry tilt and table slew. Using the iso-dose contours, the orientation of the CT scanner can be optimised with regard to the location and shielding requirements of doors and windows. Additionally, the positioning of staff who must remain in the room during scanning can be optimised to minimise their exposure. It is estimated that the data presented allows for realistic radiation protection assessments to be made. 13 refs., 5 tabs., 6 figs
Neutron scattering equipments in JAERI. Current status
International Nuclear Information System (INIS)
Hamaguchi, Yoshikazu; Minakawa, Nobuaki
2003-01-01
24 neutron scattering instruments are installed in the JRR-3M research reactor. Among them JAERI has 12 neutron scattering instruments. Those instruments are HRPD for high-resolution structural analysis, TAS-1 and TAS-2 for elastic and inelastic scattering and for magnetic scattering measurements by the polarized neutron, LTAS for elastic and inelastic scattering measurement at a low energy region, and for neutron device development, PNO for topography and for very small angle scattering measurement in a small Q range, NRG for neutron radiography, RESA for internal strain measurements, SANS for the molecule and semi-macroscopic magnetic structural analysis, BIX-2 and BIX-3 for the biological structural analysis research, and PGA for the research of prompt gamma-ray analysis. The university groups have 12 neutron scattering instruments. Since those instruments were installed at the period when JRR-3M was completed, about 10 years have passed. In order to match the old control systems with the progress of recent computer technologies, and peripheral equipment, numbers of instruments are being renewed. In the neutron guide hall of JRR-3M, the Ni mirror guide tube was replaced by a super mirror guide tube to increase neutron flux. The intensity of 2A flux was increased by a factor of about two. (J.P.N.)
Material classification by fast neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Buffler, A. E-mail: abuffler@physci.uct.ac.za; Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Allie, M.S.; Bharuth-Ram, K.; Nchodu, M.R
2001-02-01
The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including 'explosives', 'illicit drugs' and 'other materials' for the purpose of contraband detection.
FIR-laser scattering for JT-60
International Nuclear Information System (INIS)
Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo
1977-09-01
An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)
Studies of the dynamic properties of materials using neutron scattering
International Nuclear Information System (INIS)
Lovesey, S.W.; Windsor, C.G.
1985-09-01
The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)
Efficient Fixed-Offset GPR Scattering Analysis
DEFF Research Database (Denmark)
Meincke, Peter; Chen, Xianyao
2004-01-01
The electromagnetic scattering by buried three-dimensional penetrable objects, as involved in the analysis of ground penetrating radar systems, is calculated using the extended Born approximation. The involved scattering tensor is calculated using fast Fourier transforms (FFT's). We incorporate...... in the scattering calculation the correct radiation patterns of the ground penetrating radar antennas by using their plane-wave transmitting and receiving spectra. Finally, we derive an efficient FFT-based method to analyze a fixed-offset configuration in which the location of the transmitting antenna is different...
High-energy proton scattering on nuclei
Klovning, A; Schlüpmann, K
1973-01-01
High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).
Scattering theory of molecules, atoms and nuclei
Canto, L Felipe
2012-01-01
The aim of the book is to give a coherent and comprehensive account of quantum scattering theory with applications to atomic, molecular and nuclear systems. The motivation for this is to supply the necessary theoretical tools to calculate scattering observables of these many-body systems. Concepts which are seemingly different for atomic/molecular scattering from those of nuclear systems, are shown to be the same once physical units such as energy and length are diligently clarified. Many-body resonances excited in nuclear systems are the same as those in atomic systems and come under the name
Across-horizon scattering and information transfer
Emelyanov, V. A.; Klinkhamer, F. R.
2018-06-01
We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.
Neutron scattering studies of solid electrolytes
International Nuclear Information System (INIS)
Shapiro, S.M.
1976-01-01
The role which neutron scattering can play in determining the nature of the disorder and the conducting mechanism in the solid electrolytes is discussed. First, some of the general formalism for elastic and inelastic neutron scattering is reviewed, and the quantities which can be measured are pointed out. Then the application of neutron scattering to the studies of three different problems is examined; the anion disorder in the fluorite system, the dynamical behavior in beta-alumina, and the cation diffusion in αAgI are discussed. 8 figures
Techniques in high pressure neutron scattering
Klotz, Stefan
2013-01-01
Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea
Monte Carlo simulations of neutron scattering instruments
International Nuclear Information System (INIS)
Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.
2001-01-01
A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)